CN108441606A - 一种连续式燃气热处理炉中的调质工艺方法 - Google Patents

一种连续式燃气热处理炉中的调质工艺方法 Download PDF

Info

Publication number
CN108441606A
CN108441606A CN201810286772.4A CN201810286772A CN108441606A CN 108441606 A CN108441606 A CN 108441606A CN 201810286772 A CN201810286772 A CN 201810286772A CN 108441606 A CN108441606 A CN 108441606A
Authority
CN
China
Prior art keywords
forging
heating
tempering
temperature
quenching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810286772.4A
Other languages
English (en)
Other versions
CN108441606B (zh
Inventor
陈虎群
李环宇
刘中阳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HUBEI SHENLI FORGING CO Ltd
Original Assignee
HUBEI SHENLI FORGING CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HUBEI SHENLI FORGING CO Ltd filed Critical HUBEI SHENLI FORGING CO Ltd
Priority to CN201810286772.4A priority Critical patent/CN108441606B/zh
Publication of CN108441606A publication Critical patent/CN108441606A/zh
Application granted granted Critical
Publication of CN108441606B publication Critical patent/CN108441606B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/25Hardening, combined with annealing between 300 degrees Celsius and 600 degrees Celsius, i.e. heat refining ("Vergüten")
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/34Methods of heating

Abstract

本发明公开了一种连续式燃气热处理炉中的调质工艺方法,包括锻件输送,锻件采用一线制连续式输送形式,实现前轴锻件在加热炉内步进式连续加热;锻件淬火加热采用分段式加热的方式;锻件淬火采用垂直下落的方式进入淬火槽中,淬火冷却系统喷射系统环绕工件进行喷射,淬火烈度可控,同时避免淬火软点;锻件回火加热采用天然气加热方式,天然气烧嘴进行多区分布,天然气烧嘴、高温循环风机及隔热导流装置共同形成微型燃烧室;锻件回火冷却采用喷雾冷却的方式。本发明通过采用该热处理工艺,提高了产品质量,降低了热处理不良率,同时也降低了能耗,产品质量稳定可靠。

Description

一种连续式燃气热处理炉中的调质工艺方法
技术领域
本发明涉及锻件热处理技术领域,尤其涉及一种连续式燃气热处理炉中的调质工艺方法。
背景技术
对于大型汽车前轴锻件,由于其具有弯曲形状的工字形截面,属长轴型锻件,这使得沿弯曲轴线截面的变化较大且截面的腹板较薄,筋条窄而深,尤其体现在托板处;因此,大型汽车前轴的热处理工艺一直都比较复杂,通常的热处理工艺为锻造下线后进入电加热炉或煤气加热炉内进行再加热,采用的多为周期式炉或淬火加热与回火加热不能完全衔接的半连续式炉。若采用以上这种热处理工艺,其处理方法是:前轴在电加热炉或煤气加热炉内进行加热,然后通过人工或转运机构进入淬火槽中淬火,淬火完毕后,通过人工或转运机构进入回火加热炉内加热,回火完毕后,通过人工或转运机构进行空冷或水冷。这种热处理工艺,由于电加热方式供热慢,加热时间较长,锻件在加热炉内产生变形和脱碳层较深的比例较高;此外,还存在着能耗高、配备变压器容量大等缺陷。而煤气加热炉存在加热温度波动大、温度不均匀等缺陷,导致产品处理后质量不稳定。采用人工或转运机构的方式进行输送,前轴锻件在淬火时及回火冷却时不具有连续性,存在质量风险。为此,我们提出了一种连续式燃气热处理炉中的调质工艺方法。
发明内容
本发明提出了一种连续式燃气热处理炉中的调质工艺方法,以解决上述背景技术中提出的问题。
本发明提出了一种连续式燃气热处理炉中的调质工艺方法,包括以下步骤:
S1:锻件输送:锻件采用一线制连续式输送形式,实现前轴锻件在加热炉内步进式连续加热;
S2:锻件淬火加热:将锻件输送到淬火加热炉内,采用分段式加热的方式,利用天然气加热速度快的特点,在730-770摄氏度温度区域进行保温,以达到均温及避免高温区域脱碳层的缺陷,然后迅速升温至相变点Ac3+30-50摄氏度,保温至锻件表面及心部温度一致;
S3:锻件淬火:将S2中处理后的锻件采用垂直下落的方式进入淬火槽中,淬火冷却系统喷射系统环绕工件进行喷射,淬火烈度可控,同时避免淬火软点,淬火时间控制在120-360秒,确保锻件出水温度在100摄氏度以下;
S4:锻件回火加热:将S3中处理后的锻件输送到回火加热炉内,采用天然气加热方式,天然气烧嘴进行多区分布,天然气烧嘴、高温循环风机及隔热导流装置共同形成微型燃烧室,天然气在里面充分燃烧后,按照特定的流向及流速传导至有效加热区,从而实现均匀加热;
S5:锻件回火冷却:将S4中处理后的锻件输送到回火冷却室内,采用喷雾冷却的方式,冷却速度控制在20-30摄氏度/分钟,冷却速度介于水冷及空冷之间,既能在降低冷却变形的同时,又能避免回火脆性;
S6:将S5处理后的锻件回火冷却后,温度降至50摄氏度以下,对挂装的锻件进行取件及硬度检查。
优选的,在S1中的锻件输送在淬火加热炉内设置10个工位,在淬火系统中设置1个工位,在回火加热炉内设置12个工位,在回火冷却室设置1个工位,运转节拍为24分钟,从而实现连续的、可靠的运输,避免周期式炉一次装挂量过大及其它连续炉不能实现一线制的缺陷。
优选的,在S2中的锻件加热温区设计采用小功率、多分区的方式,加热炉共分为12个加热区,避免了电加热及传统燃气加热分区少、温度波动大的缺陷。
优选的,在S2中的锻件采用悬挂式的吊装方式,烧嘴上下分布,根据热量循环的特点,上下烧嘴功率,进行合理分配,保证上下区域温度的一致性。
优选的,在S4中的锻件回火加热温度一般为550-650摄氏度,炉温均匀性能够达到±9摄氏度以内。
优选的,在S4中的锻件回火加热保温时间通过进行表面、心部温度场曲线测试,有效的减少了多余的保温时间,避免了根据传统经验计算公式形成的过度设计,据对比能够降低能耗10%,从而达到节能降耗的目的。
本发明提出的一种连续式燃气热处理炉中的调质工艺方法,有益效果在于:本发明采用该热处理工艺,即通过采用天然气加热的方式,防止了传统电加热方式容易出现的淬火变形大、加热脱碳层超标等质量缺陷,这样则提高了产品质量,降低了热处理不良率,同时也降低了能耗;与传统的煤气加热方式相比,通过多分区、小功率加热分区的方式,又避免了大功率加热所带来的温度波动大、产品质量不稳定的缺陷。
具体实施方式
下面结合具体实施例来对本发明做进一步说明。
实施例1
本发明提出了一种连续式燃气热处理炉中的调质工艺方法,包括以下步骤:
S1:锻件输送:锻件采用一线制连续式输送形式,实现前轴锻件在加热炉内步进式连续加热;
S2:锻件淬火加热:将锻件输送到淬火加热炉内,采用分段式加热的方式,利用天然气加热速度快的特点,在730摄氏度温度区域进行保温,以达到均温及避免高温区域脱碳层的缺陷,然后迅速升温至相变点Ac3-50摄氏度,保温至锻件表面及心部温度一致;
S3:锻件淬火:将S2中处理后的锻件采用垂直下落的方式进入淬火槽中,淬火冷却系统喷射系统环绕工件进行喷射,淬火烈度可控,同时避免淬火软点,淬火时间控制在120秒,确保锻件出水温度在100摄氏度以下;
S4:锻件回火加热:将S3中处理后的锻件输送到回火加热炉内,采用天然气加热方式,天然气烧嘴进行多区分布,天然气烧嘴、高温循环风机及隔热导流装置共同形成微型燃烧室,天然气在里面充分燃烧后,按照特定的流向及流速传导至有效加热区,从而实现均匀加热;
S5:锻件回火冷却:将S4中处理后的锻件输送到回火冷却室内,采用喷雾冷却的方式,冷却速度控制在20摄氏度/分钟,冷却速度介于水冷及空冷之间,既能在降低冷却变形的同时,又能避免回火脆性;
S6:将S5处理后的锻件回火冷却后,温度降至50摄氏度以下,对挂装的锻件进行取件及硬度检查。
在S1中的锻件输送在淬火加热炉内设置10个工位,在淬火系统中设置1个工位,在回火加热炉内设置12个工位,在回火冷却室设置1个工位,运转节拍为24分钟,从而实现连续的、可靠的运输,避免周期式炉一次装挂量过大及其它连续炉不能实现一线制的缺陷。
在S2中的锻件加热温区设计采用小功率、多分区的方式,加热炉共分为12个加热区,避免了电加热及传统燃气加热分区少、温度波动大的缺陷。
在S2中的锻件采用悬挂式的吊装方式,烧嘴上下分布,根据热量循环的特点,上下烧嘴功率,进行合理分配,保证上下区域温度的一致性。
在S4中的锻件回火加热温度一般为550摄氏度,炉温均匀性能够达到±9摄氏度以内。
在S4中的锻件回火加热保温时间通过进行表面、心部温度场曲线测试,有效的减少了多余的保温时间,避免了根据传统经验计算公式形成的过度设计,据对比能够降低能耗10%,从而达到节能降耗的目的。
实施例2
本发明提出了一种连续式燃气热处理炉中的调质工艺方法,包括以下步骤:
S1:锻件输送:锻件采用一线制连续式输送形式,实现前轴锻件在加热炉内步进式连续加热;
S2:锻件淬火加热:将锻件输送到淬火加热炉内,采用分段式加热的方式,利用天然气加热速度快的特点,在740摄氏度温度区域进行保温,以达到均温及避免高温区域脱碳层的缺陷,然后迅速升温至相变点Ac3-30摄氏度,保温至锻件表面及心部温度一致;
S3:锻件淬火:将S2中处理后的锻件采用垂直下落的方式进入淬火槽中,淬火冷却系统喷射系统环绕工件进行喷射,淬火烈度可控,同时避免淬火软点,淬火时间控制在180秒,确保锻件出水温度在100摄氏度以下;
S4:锻件回火加热:将S3中处理后的锻件输送到回火加热炉内,采用天然气加热方式,天然气烧嘴进行多区分布,天然气烧嘴、高温循环风机及隔热导流装置共同形成微型燃烧室,天然气在里面充分燃烧后,按照特定的流向及流速传导至有效加热区,从而实现均匀加热;
S5:锻件回火冷却:将S4中处理后的锻件输送到回火冷却室内,采用喷雾冷却的方式,冷却速度控制在22摄氏度/分钟,冷却速度介于水冷及空冷之间,既能在降低冷却变形的同时,又能避免回火脆性;
S6:将S5处理后的锻件回火冷却后,温度降至50摄氏度以下,对挂装的锻件进行取件及硬度检查。
在S1中的锻件输送在淬火加热炉内设置10个工位,在淬火系统中设置1个工位,在回火加热炉内设置12个工位,在回火冷却室设置1个工位,运转节拍为24分钟,从而实现连续的、可靠的运输,避免周期式炉一次装挂量过大及其它连续炉不能实现一线制的缺陷。
在S2中的锻件加热温区设计采用小功率、多分区的方式,加热炉共分为12个加热区,避免了电加热及传统燃气加热分区少、温度波动大的缺陷。
在S2中的锻件采用悬挂式的吊装方式,烧嘴上下分布,根据热量循环的特点,上下烧嘴功率,进行合理分配,保证上下区域温度的一致性。
在S4中的锻件回火加热温度一般为570摄氏度,炉温均匀性能够达到±9摄氏度以内。
在S4中的锻件回火加热保温时间通过进行表面、心部温度场曲线测试,有效的减少了多余的保温时间,避免了根据传统经验计算公式形成的过度设计,据对比能够降低能耗10%,从而达到节能降耗的目的。
实施例3
本发明提出了一种连续式燃气热处理炉中的调质工艺方法,包括如下步骤:
S1:锻件输送:锻件采用一线制连续式输送形式,实现前轴锻件在加热炉内步进式连续加热;
S2:锻件淬火加热:将锻件输送到淬火加热炉内,采用分段式加热的方式,利用天然气加热速度快的特点,在750摄氏度温度区域进行保温,以达到均温及避免高温区域脱碳层的缺陷,然后迅速升温至相变点Ac3-10摄氏度,保温至锻件表面及心部温度一致;
S3:锻件淬火:将S2中处理后的锻件采用垂直下落的方式进入淬火槽中,淬火冷却系统喷射系统环绕工件进行喷射,淬火烈度可控,同时避免淬火软点,淬火时间控制在240秒,确保锻件出水温度在100摄氏度以下;
S4:锻件回火加热:将S3中处理后的锻件输送到回火加热炉内,采用天然气加热方式,天然气烧嘴进行多区分布,天然气烧嘴、高温循环风机及隔热导流装置共同形成微型燃烧室,天然气在里面充分燃烧后,按照特定的流向及流速传导至有效加热区,从而实现均匀加热;
S5:锻件回火冷却:将S4中处理后的锻件输送到回火冷却室内,采用喷雾冷却的方式,冷却速度控制在25摄氏度/分钟,冷却速度介于水冷及空冷之间,既能在降低冷却变形的同时,又能避免回火脆性;
S6:将S5处理后的锻件回火冷却后,温度降至50摄氏度以下,对挂装的锻件进行取件及硬度检查。
在S1中的锻件输送在淬火加热炉内设置10个工位,在淬火系统中设置1个工位,在回火加热炉内设置12个工位,在回火冷却室设置1个工位,运转节拍为24分钟,从而实现连续的、可靠的运输,避免周期式炉一次装挂量过大及其它连续炉不能实现一线制的缺陷。
在S2中的锻件加热温区设计采用小功率、多分区的方式,加热炉共分为12个加热区,避免了电加热及传统燃气加热分区少、温度波动大的缺陷。
在S2中的锻件采用悬挂式的吊装方式,烧嘴上下分布,根据热量循环的特点,上下烧嘴功率,进行合理分配,保证上下区域温度的一致性。
在S4中的锻件回火加热温度一般为600摄氏度,炉温均匀性能够达到±9摄氏度以内。
在S4中的锻件回火加热保温时间通过进行表面、心部温度场曲线测试,有效的减少了多余的保温时间,避免了根据传统经验计算公式形成的过度设计,据对比能够降低能耗10%,从而达到节能降耗的目的。
实施例4
本发明提出了一种连续式燃气热处理炉中的调质工艺方法,包括如下步骤:
S1:锻件输送:锻件采用一线制连续式输送形式,实现前轴锻件在加热炉内步进式连续加热;
S2:锻件淬火加热:将锻件输送到淬火加热炉内,采用分段式加热的方式,利用天然气加热速度快的特点,在760摄氏度温度区域进行保温,以达到均温及避免高温区域脱碳层的缺陷,然后迅速升温至相变点Ac3+10摄氏度,保温至锻件表面及心部温度一致;
S3:锻件淬火:将S2中处理后的锻件采用垂直下落的方式进入淬火槽中,淬火冷却系统喷射系统环绕工件进行喷射,淬火烈度可控,同时避免淬火软点,淬火时间控制在300秒,确保锻件出水温度在100摄氏度以下;
S4:锻件回火加热:将S3中处理后的锻件输送到回火加热炉内,采用天然气加热方式,天然气烧嘴进行多区分布,天然气烧嘴、高温循环风机及隔热导流装置共同形成微型燃烧室,天然气在里面充分燃烧后,按照特定的流向及流速传导至有效加热区,从而实现均匀加热;
S5:锻件回火冷却:将S4中处理后的锻件输送到回火冷却室内,采用喷雾冷却的方式,冷却速度控制在27摄氏度/分钟,冷却速度介于水冷及空冷之间,既能在降低冷却变形的同时,又能避免回火脆性;
S6:将S5处理后的锻件回火冷却后,温度降至50摄氏度以下,对挂装的锻件进行取件及硬度检查。
在S1中的锻件输送在淬火加热炉内设置10个工位,在淬火系统中设置1个工位,在回火加热炉内设置12个工位,在回火冷却室设置1个工位,运转节拍为24分钟,从而实现连续的、可靠的运输,避免周期式炉一次装挂量过大及其它连续炉不能实现一线制的缺陷。
在S2中的锻件加热温区设计采用小功率、多分区的方式,加热炉共分为12个加热区,避免了电加热及传统燃气加热分区少、温度波动大的缺陷。
在S2中的锻件采用悬挂式的吊装方式,烧嘴上下分布,根据热量循环的特点,上下烧嘴功率,进行合理分配,保证上下区域温度的一致性。
在S4中的锻件回火加热温度一般为620摄氏度,炉温均匀性能够达到±9摄氏度以内。
在S4中的锻件回火加热保温时间通过进行表面、心部温度场曲线测试,有效的减少了多余的保温时间,避免了根据传统经验计算公式形成的过度设计,据对比能够降低能耗10%,从而达到节能降耗的目的。
实施例5
本发明提出了一种连续式燃气热处理炉中的调质工艺方法,包括如下步骤:
一种连续式燃气热处理炉中的调质工艺方法,包括以下步骤:
S1:锻件输送:锻件采用一线制连续式输送形式,实现前轴锻件在加热炉内步进式连续加热;
S2:锻件淬火加热:将锻件输送到淬火加热炉内,采用分段式加热的方式,利用天然气加热速度快的特点,在770摄氏度温度区域进行保温,以达到均温及避免高温区域脱碳层的缺陷,然后迅速升温至相变点Ac3+30摄氏度,保温至锻件表面及心部温度一致;
S3:锻件淬火:将S2中处理后的锻件采用垂直下落的方式进入淬火槽中,淬火冷却系统喷射系统环绕工件进行喷射,淬火烈度可控,同时避免淬火软点,淬火时间控制在360秒,确保锻件出水温度在100摄氏度以下;
S4:锻件回火加热:将S3中处理后的锻件输送到回火加热炉内,采用天然气加热方式,天然气烧嘴进行多区分布,天然气烧嘴、高温循环风机及隔热导流装置共同形成微型燃烧室,天然气在里面充分燃烧后,按照特定的流向及流速传导至有效加热区,从而实现均匀加热;
S5:锻件回火冷却:将S4中处理后的锻件输送到回火冷却室内,采用喷雾冷却的方式,冷却速度控制在30摄氏度/分钟,冷却速度介于水冷及空冷之间,既能在降低冷却变形的同时,又能避免回火脆性;
S6:将S5处理后的锻件回火冷却后,温度降至50摄氏度以下,对挂装的锻件进行取件及硬度检查。
在S1中的锻件输送在淬火加热炉内设置10个工位,在淬火系统中设置1个工位,在回火加热炉内设置12个工位,在回火冷却室设置1个工位,运转节拍为24分钟,从而实现连续的、可靠的运输,避免周期式炉一次装挂量过大及其它连续炉不能实现一线制的缺陷。
在S2中的锻件加热温区设计采用小功率、多分区的方式,加热炉共分为12个加热区,避免了电加热及传统燃气加热分区少、温度波动大的缺陷。
在S2中的锻件采用悬挂式的吊装方式,烧嘴上下分布,根据热量循环的特点,上下烧嘴功率,进行合理分配,保证上下区域温度的一致性。
在S4中的锻件回火加热温度一般为650摄氏度,炉温均匀性能够达到±9摄氏度以内。
在S4中的锻件回火加热保温时间通过进行表面、心部温度场曲线测试,有效的减少了多余的保温时间,避免了根据传统经验计算公式形成的过度设计,据对比能够降低能耗10%,从而达到节能降耗的目的。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,根据本发明的技术方案及其发明构思加以等同替换或改变,都应涵盖在本发明的保护范围之内。

Claims (6)

1.一种连续式燃气热处理炉中的调质工艺方法,其特征在于,包括以下步骤:
S1:锻件输送:锻件采用一线制连续式输送形式,实现前轴锻件在加热炉内步进式连续加热;
S2:锻件淬火加热:将锻件输送到淬火加热炉内,采用分段式加热的方式,利用天然气加热速度快的特点,在730-770摄氏度温度区域进行保温,以达到均温及避免高温区域脱碳层的缺陷,然后迅速升温至相变点Ac3+30-50摄氏度,保温至锻件表面及心部温度一致;
S3:锻件淬火:将S2中处理后的锻件采用垂直下落的方式进入淬火槽中,淬火冷却系统喷射系统环绕工件进行喷射,淬火烈度可控,同时避免淬火软点,淬火时间控制在120-360秒,确保锻件出水温度在100摄氏度以下;
S4:锻件回火加热:将S3中处理后的锻件输送到回火加热炉内,采用天然气加热方式,天然气烧嘴进行多区分布,天然气烧嘴、高温循环风机及隔热导流装置共同形成微型燃烧室,天然气在里面充分燃烧后,按照特定的流向及流速传导至有效加热区,从而实现均匀加热;
S5:锻件回火冷却:将S4中处理后的锻件输送到回火冷却室内,采用喷雾冷却的方式,冷却速度控制在20-30摄氏度/分钟,冷却速度介于水冷及空冷之间,既能在降低冷却变形的同时,又能避免回火脆性;
S6:将S5处理后的锻件回火冷却后,温度降至50摄氏度以下,对挂装的锻件进行取件及硬度检查。
2.根据权利要求1所述的一种连续式燃气热处理炉中的调质工艺方法,其特征在于:在S1中的锻件输送在淬火加热炉内设置10个工位,在淬火系统中设置1个工位,在回火加热炉内设置12个工位,在回火冷却室设置1个工位,运转节拍为24分钟,从而实现连续的、可靠的运输,避免周期式炉一次装挂量过大及其它连续炉不能实现一线制的缺陷。
3.根据权利要求1所述的一种连续式燃气热处理炉中的调质工艺方法,其特征在于:在S2中的锻件加热温区设计采用小功率、多分区的方式,加热炉共分为12个加热区,避免了电加热及传统燃气加热分区少、温度波动大的缺陷。
4.根据权利要求1所述的一种连续式燃气热处理炉中的调质工艺方法,其特征在于:在S2中的锻件采用悬挂式的吊装方式,烧嘴上下分布,根据热量循环的特点,上下烧嘴功率,进行合理分配,保证上下区域温度的一致性。
5.根据权利要求1所述的一种连续式燃气热处理炉中的调质工艺方法,其特征在于:在S4中的锻件回火加热温度一般为550-650摄氏度,炉温均匀性能够达到±9摄氏度以内。
6.根据权利要求1所述的一种连续式燃气热处理炉中的调质工艺方法,其特征在于:在S4中的锻件回火加热保温时间通过进行表面、心部温度场曲线测试,有效的减少了多余的保温时间,避免了根据传统经验计算公式形成的过度设计,据对比能够降低能耗10%,从而达到节能降耗的目的。
CN201810286772.4A 2018-03-30 2018-03-30 一种连续式燃气热处理炉中的调质工艺方法 Active CN108441606B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810286772.4A CN108441606B (zh) 2018-03-30 2018-03-30 一种连续式燃气热处理炉中的调质工艺方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810286772.4A CN108441606B (zh) 2018-03-30 2018-03-30 一种连续式燃气热处理炉中的调质工艺方法

Publications (2)

Publication Number Publication Date
CN108441606A true CN108441606A (zh) 2018-08-24
CN108441606B CN108441606B (zh) 2020-01-14

Family

ID=63198870

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810286772.4A Active CN108441606B (zh) 2018-03-30 2018-03-30 一种连续式燃气热处理炉中的调质工艺方法

Country Status (1)

Country Link
CN (1) CN108441606B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111121013A (zh) * 2020-02-15 2020-05-08 温州暗帕科技有限公司 一种新型利用燃烧器加热装置
CN112853078A (zh) * 2020-12-25 2021-05-28 中钢集团邢台机械轧辊有限公司 一种中铬材质轧辊回火加工工艺

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0466619A (ja) * 1990-07-05 1992-03-03 Kubota Corp 複合ハイスロールの熱処理法
CN101709362A (zh) * 2009-11-26 2010-05-19 苏州工业园区姑苏科技有限公司 一种燃气加热大型连续式网带淬火炉
CN102605159A (zh) * 2012-03-01 2012-07-25 湖北神力锻造有限责任公司 一种大型汽车前轴余热控温淬火工艺方法
CN103667656A (zh) * 2012-09-07 2014-03-26 苏州金楷科技有限公司 一种辊棒式燃气淬火炉生产工艺
CN204417548U (zh) * 2015-01-16 2015-06-24 杭州邦泰炉业有限公司 一种连续式燃气淬火生产线
CN105671252A (zh) * 2016-04-01 2016-06-15 陕西奥邦锻造有限公司 一种汽车前轴一次锻压成型余热调质工艺

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0466619A (ja) * 1990-07-05 1992-03-03 Kubota Corp 複合ハイスロールの熱処理法
CN101709362A (zh) * 2009-11-26 2010-05-19 苏州工业园区姑苏科技有限公司 一种燃气加热大型连续式网带淬火炉
CN102605159A (zh) * 2012-03-01 2012-07-25 湖北神力锻造有限责任公司 一种大型汽车前轴余热控温淬火工艺方法
CN103667656A (zh) * 2012-09-07 2014-03-26 苏州金楷科技有限公司 一种辊棒式燃气淬火炉生产工艺
CN204417548U (zh) * 2015-01-16 2015-06-24 杭州邦泰炉业有限公司 一种连续式燃气淬火生产线
CN105671252A (zh) * 2016-04-01 2016-06-15 陕西奥邦锻造有限公司 一种汽车前轴一次锻压成型余热调质工艺

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111121013A (zh) * 2020-02-15 2020-05-08 温州暗帕科技有限公司 一种新型利用燃烧器加热装置
CN112853078A (zh) * 2020-12-25 2021-05-28 中钢集团邢台机械轧辊有限公司 一种中铬材质轧辊回火加工工艺

Also Published As

Publication number Publication date
CN108441606B (zh) 2020-01-14

Similar Documents

Publication Publication Date Title
US8075836B2 (en) Steel-sheet continuous annealing equipment and method for operating steel-sheet continuous annealing equipment
JPH08199331A (ja) ガス浸炭方法及びその装置
CN104561504A (zh) 一种整体铸造热轧板带支撑辊的热处理方法
CN103667665B (zh) 高铬铸钢离心复合工作辊差温热处理方法
CN104313295B (zh) 辊底式板材连续回火炉及其回火方法
CN205347520U (zh) 一种积放悬挂式热处理生产线
CN108441606A (zh) 一种连续式燃气热处理炉中的调质工艺方法
CN105349757A (zh) 一种圆环链热处理装置及其使用方法
CN105349737A (zh) 双频三效冷轧辊感应淬火工艺
CN112195334A (zh) 一种带钢调质处理系统
US3293021A (en) Method of heating glass sheets
CN112195323A (zh) 一种淬火装置
CN100577826C (zh) 直燃式金属管材光亮热处理方法
CN109628709B (zh) 一种不锈钢带的退火方法
CN109880983A (zh) 一种基于氮气保护辊底式热处理炉生产薄规格调质钢板淬火加热方法
CN104388662B (zh) 辊底式板材连续回火炉及其回火方法
CN105886736A (zh) 一种大截面轴类锻件热处理方法
CN212451524U (zh) 一种改善辐射管式辊底炉低温无氧化热处理系统
CN214383785U (zh) 带钢回火装置及带钢热处理系统
CN104831039B (zh) 一种电工钢退火加热方法
CN205473896U (zh) 一种圆环链热处理装置
CN105819677A (zh) 乳白玻璃器皿钢化工艺
CN112795734B (zh) 一种GCr15轴承钢棒材及其正火工艺
CN212713685U (zh) 一种带钢调质处理系统
CN107974544A (zh) 杯形锻件的井式炉热处理工艺

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant