CN108425104A - 一种以巯基化合物作为过渡层的涂层制备方法 - Google Patents

一种以巯基化合物作为过渡层的涂层制备方法 Download PDF

Info

Publication number
CN108425104A
CN108425104A CN201810200079.0A CN201810200079A CN108425104A CN 108425104 A CN108425104 A CN 108425104A CN 201810200079 A CN201810200079 A CN 201810200079A CN 108425104 A CN108425104 A CN 108425104A
Authority
CN
China
Prior art keywords
monomer
coating
discharge
acid
transition zone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810200079.0A
Other languages
English (en)
Other versions
CN108425104B (zh
Inventor
宗坚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu Favored Nanotechnology Co Ltd
Original Assignee
Jiangsu Favored Nanotechnology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu Favored Nanotechnology Co Ltd filed Critical Jiangsu Favored Nanotechnology Co Ltd
Priority to CN201810200079.0A priority Critical patent/CN108425104B/zh
Publication of CN108425104A publication Critical patent/CN108425104A/zh
Application granted granted Critical
Publication of CN108425104B publication Critical patent/CN108425104B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/513Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using plasma jets
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/56After-treatment

Abstract

一种以巯基化合物作为过渡层的涂层制备方法,属于等离子体技术领域,该方法中,采用含巯基的薄层作为涂层与基体之间的过渡层。在沉积涂层之前,先以含巯基单体在基体表面沉积一层1‑10nm厚度的薄层。其中,单体一端的巯基与铜、金、镍、环氧树脂等表面发生反应,形成化学健,保持优异的结合性,而单体另一端聚合,且和上层的涂层具有优异的结合性。通过这种沉积过渡层的方法,使得涂层和基体的结合力大大提高。本发明环保性高、沉积温度低、速度更快、涂层结构和成分的可控性强,单体的可选择性强;沉积效率高,得到的有机硅纳米防护涂层致密性显著提高;本发明得到的涂层在不同基体上得到的结合力可提高30‑50%。

Description

一种以巯基化合物作为过渡层的涂层制备方法
技术领域
本发明属于等离子体化学气相沉积技术领域,具体涉及到一种制备多功能性纳米防护涂层的方法。
背景技术
腐蚀性环境是电子器件被破坏的最普遍的因素。因环境腐蚀而导致电子器件中固体材料的腐蚀、导体/半导体绝缘性降低以及短路、断路或者接触不良等故障现象。目前,在国防、航天等高科技行业的产品中,电子部件占有的比率越来越大,对电子产品防潮、防霉、耐腐蚀性要求越来越严格。而在通讯领域,随着技术不断进步,通讯频率的不断提升、对通讯设备的散热、信号传输的稳定可靠性要求也越来越高。因此,需要可靠的方法既能对电路板及电子元件进行有效防护,又不会影响正常散热及信号传输。
聚合物涂层由于经济、易涂装、适用范围广等特点常用于材料表面的防护,可以赋予材料良好的物理、化学耐久性。基于聚合物涂层的阻隔性,其在电子电器、电路板表面形成的保护膜可有效地隔离线路板,并可保护电路在腐蚀环境下免遭侵蚀、破坏,从而提高电子器件的可靠性,增加其安全系数,并保证其使用寿命,被用作防腐蚀涂层。
敷形涂覆(Conformal coating)是将特定材料涂覆到PCB上,形成与被涂物体外形保持一致的绝缘保护层的工艺过程,是一种常用的电路板防水方法,可有效地隔离线路板,并可保护电路免遭恶劣环境的侵蚀、破坏。目前的敷形涂层制备过程中也存在一些问题和弊端:液相法中溶剂容易对电路板器件造成损伤;热固化涂层高温容易造成器件损坏;光固化涂层难以做到密闭的器件内部。美国HZO公司开发应用了一种敷形派瑞林涂层,派瑞林涂层是一种对二甲苯的聚合物,具有低水、气体渗透性、高屏障效果能够达到防潮、防水、防锈、抗酸碱腐蚀的作用。研究发现聚对二甲苯是在真空状态下沉积产生,可以应用在液态涂料所无法涉及的领域如高频电路、极弱电流系统的保护。聚合物薄膜涂层厚度是影响聚对二甲苯气相沉积敷形涂层防护失效的主要原因,印制电路板组件聚合物薄膜涂层在3~7微米厚度易发生局部锈蚀失效,在不影响高频介电损耗情况下涂层厚度应≥30微米。派瑞林涂层对于需要防护的印刷线路板的预处理要求较高,例如导电组件、信号传输组件、射频组件等,在气相沉积敷形涂层时需要对线路板组件做遮蔽预处理,避免对组件性能造成影响。这一弊端给派瑞林涂层的应用带来了极大限制。派瑞林涂层制备原料成本高、涂层制备条件苛刻(高温、高真空度要求)、成膜速率低,难以广泛应用。此外,厚涂层易导致散热差、信号传输阻隔、涂层缺陷增多等问题。
等离子体化学气相沉积(plasma chemical vapor deposition,PCVD)是一种用等离子体激活反应气体,促进在基体表面或近表面空间进行化学反应,生成固态膜的技术。等离子体化学气相沉积法涂层具有以下优点:
(1)是干式工艺,生成薄膜均匀无针孔。
(2)等离子体聚合膜的耐溶剂性、耐化学腐蚀性、耐热性、耐磨损性能等化学、物理性质稳定。
(3)等离子体聚合膜与基体结合力良好。
(4)在凹凸极不规则的基材表面也可制成均一薄膜。
(5)涂层制备温度低,可在常温条件下进行,有效避免对温度敏感器件的损伤。
(6)等离子体工艺不仅可以制备厚度为微米级的涂层而且可以制备超薄的纳米级涂层。
对于等离子体涂层而言,结合力是涂层的重要指标之一,结合力好坏直接决定其防护性能的好坏。对于不同基体材料,涂层的结合力也不相同。同一种涂层在铜、金、镍、环氧树脂等基材表面的结合力差别很大。
发明内容
本发明为解决上述技术问题,进一步提高涂层与在铜、金、镍、环氧树脂等基材上的结合力,从而有效提高涂层的结合力,提供一种以巯基化合物作为过渡层的涂层制备方法。在沉积涂层之前,先以含巯基单体在基体表面沉积一层1-10nm厚度的薄层。其中,单体一端的巯基与铜、金、镍、环氧树脂等表面发生反应,形成化学健,保持优异的结合性,而单体另一端聚合,且和上层的涂层具有优异的结合性。通过这种沉积过渡层的方法,使得涂层和基体的结合力大大提高。在低真空等离子体放电环境下,通过对能量的有效输出,控制分子结构较活泼的单体中的化学键发生断裂,形成活性较高的自由基,激发态的自由基与手机等产品表面活化基团通过化学键结合的方式引发聚合形成纳米防水薄膜,在基材表面形成有机硅纳米涂层。此外,由于有机硅单体中与硅相连的基团具有较高的活性,在低温等离子情况下更容易生成自由基并发生交联反应,形成致密的交联化合物。整个沉积过程中,基材的运动特性和等离子体放电能量组合联动。制备过程中等离子体放电的同时,基材产生运动,提高了涂层沉积效率,并改善了涂层厚度的均匀性和致密性。
本发明所采用的技术方案如下:
(1)前处理:
将基材置于纳米涂层制备设备的反应腔室内,对反应腔室连续抽真空,将反应腔室内的真空度抽到10~200毫托,并通入惰性气体He、Ar或He和Ar混合气体,开启运动机构,使基材在反应腔室内产生运动;
(2)巯基化合物过渡层制备:
通入含巯基的单体蒸汽到反应腔室内,至真空度为30~300毫托,开启等离子体放电,进行化学气相沉积;
所述单体蒸汽成分为:
至少一种含巯基的有机物单体;
所述通入单体或混合物蒸汽的流量为10~1000μL/min;
(3)涂层制备:
通入单体蒸汽到反应腔室内,至真空度为30~300毫托,开启等离子体放电,进行化学气相沉积,在基材表面化学气相沉积制备涂层;
所述单体蒸汽成分为:
至少一种含双键、Si-Cl、Si-O-C、Si-N-Si、Si-O-Si结构或环状结构的有机硅单体;或者至少一种低偶极矩有机物单体;或者至少一种多官能度不饱和烃及烃类衍生物单体;或者至少一种单官能度不饱和氟碳树脂单体;或者以上单体的混合物;
所述通入单体或混合物蒸汽的流量为10~1000μL/min;
(4)后处理:
停止通入单体蒸汽,同时停止等离子体放电,持续抽真空,保持反应腔室真空度为10~200毫托,1~5min后通入大气至一个大气压,停止基材的运动,然后取出基材即可。
在低真空等离子体放电环境下,通过对能量的有效输出,控制分子结构较活泼的单体中的化学键发生断裂,形成活性较高的自由基,激发态的自由基与手机等产品表面活化基团通过化学键结合的方式引发聚合形成纳米防水薄膜,在基材表面形成有机硅纳米涂层。此外,由于有机硅单体中与硅相连的基团具有较高的活性,在低温等离子情况下更容易生成自由基并发生交联反应,形成致密的交联化合物。
所述步骤(1)中基材在反应腔室内产生运动,基材运动形式为基材相对反应腔室进行直线往复运动或曲线运动,所述曲线运动包括圆周运动、椭圆周运动、行星运动、球面运动或其他不规则路线的曲线运动。
所述步骤(1)中基材为固体材料,所述固体材料为电子产品、电器部件、电子组装半成品,PCB板、金属板、聚四氟乙烯板材、PC塑料板或者电子元器件,且所述基材表面制备有机硅纳米涂层后其任一界面可暴露于水环境,霉菌环境,酸、碱性溶剂环境,酸、碱性盐雾环境,酸性大气环境,有机溶剂浸泡环境,化妆品环境,汗液环境,冷热循环冲击环境或湿热交变环境中使用。
所述步骤(1)中反应腔室为旋转体形腔室或者立方体形腔室,容积为50~1000L,反应腔室的温度控制在30~60℃,所述惰性气体通入流量为5~300sccm。
所述步骤(2)、(3)中:等离子体放电,进行化学气相沉积,沉积过程中等离子体放电过程包括小功率连续放电、脉冲放电或周期交替放电。
所述步骤(2)、(3)沉积过程中等离子体放电过程为小功率连续放电时,具体包括以下沉积过程至少一次:
沉积过程包括预处理阶段和镀膜阶段(包括过渡层制备和涂层制备两个步骤),预处理阶段等离子体放电功率为120~400W,持续放电时间60~450s,然后进入镀膜阶段,调整等离子体放电功率为10~75W,持续放电时间600~3600s。
所述步骤(2)、(3)沉积过程中等离子体放电过程为脉冲放电时,具体包括以下沉积过程至少一次:
沉积过程包括预处理阶段和镀膜阶段(包括过渡层制备和涂层制备两个步骤),预处理阶段等离子体放电功率为120~400W,持续放电时间60~450s,然后进入镀膜阶段,镀膜阶段为脉冲放电,功率50~200W,时间600s~3600s,脉冲放电的频率为1~1000HZ,脉冲的占空比为1:1~1:500。
所述步骤(2)、(3)沉积过程中等离子体放电过程为周期交替放电时,具体包括以下沉积过程至少一次:
沉积过程包括预处理阶段和镀膜阶段(包括过渡层制备和涂层制备两个步骤),预处理阶段等离子体放电功率为120~400W,持续放电时间60~450s,然后进入镀膜阶段,镀膜阶段等离子体为周期交替变化放电输出,功率50~200W,时间600s~3600s,交变频率为1-1000Hz,等离子体周期交替变化放电输出波形为锯齿波形、正弦波形、方波波形、全波整流波形或半波整流波形。
所述含巯基的有机物单体成分包括:
6-巯基己-1-醇、3-巯基丙酸甲酯、(+/-)-二氢硫辛酸、巯基乙酸异辛酯、4-巯基-4-甲基-2-戊酮、二巯丙醇、2-巯基乙醇、巯基乙酸、巯基丁二酸、硫代乳酸、1-硫代甘油、对甲苯硫酚、3-巯基丙酸、1,3-丙二硫醇、双巯基乙酸乙二醇酯、邻甲苯硫酚、硫代水杨酸、2,3-二巯基丁二酸、D-半胱氨酸、S-硫代苯甲酰巯基乙酸、2,6-二叔丁基-4-巯基苯酚、4-巯基苯甲酸、2,3-二巯基丁二酸、十四烷基硫代乙酸、对甲硫基苯甲醛、1,4-二巯基苏糖醇、双巯乙基硫醚、3-巯基苯甲酸、3-巯基丙酸乙酯、巯基乙酸苄酯、巯基乙酸异辛酯、季戊四醇四巯基乙酸酯、4-巯基-4-甲基-2-戊酮;
所述含双键、Si-Cl、Si-O-C、Si-N-Si、Si-O-Si结构或环状结构的有机硅单体包括:
含双键结构的有机硅单体:烯丙基三甲氧基硅烷、乙烯基三乙氧基硅烷、乙烯基三甲基硅烷、3-丁烯基三甲基硅烷、乙烯基三丁酮肟基硅烷、四甲基二乙烯基二硅氧烷、1,2,2-三氟乙烯基三苯基硅烷;
含Si-Cl键的有机硅单体:三苯基氯硅烷、甲基乙烯基二氯硅烷、三氟丙基三氯硅烷、三氟丙基甲基二氯硅烷、二甲基苯基氯硅烷、三丁基氯硅烷、苄基二甲基氯硅烷;
含Si-O-C结构的有机硅单体:四甲氧基硅烷、三甲氧基氢硅氧烷、正辛基三乙氧基硅烷、苯基三乙氧基硅烷、乙烯基三(2-甲氧基乙氧基)硅烷、三乙基乙烯基硅烷、六乙基环三硅氧烷、3-(甲基丙烯酰氧)丙基三甲氧基硅烷、苯基三(三甲基硅氧烷基)硅烷、二苯基二乙氧基硅烷、十二烷基三甲氧基硅烷、正辛基三乙氧基硅烷、二甲氧基硅烷、3-氯丙基三甲氧基硅烷;
含Si-N-Si或Si-O-Si结构的有机硅单体:六甲基二硅烷基胺、六甲基环三硅烷氨基、六甲基二硅氮烷、六甲基二硅醚;
含环状结构的有机硅单体:六甲基环三硅氧烷、八甲基环四硅氧烷、六苯基环三硅氧烷、十甲基环五硅氧烷、八苯基环四硅氧烷、三苯基羟基硅烷、二苯基二羟基硅烷、铬酸双(三苯甲基硅烷基)酯、三氟丙基甲基环三硅氧烷、2,2,4,4-四甲基-6,6,8,8-四苯基环四硅氧烷、四甲基四乙烯基环四硅氧烷、3-缩水甘油醚氧基丙基三乙氧基硅烷、γ-缩水甘油醚氧丙基三甲氧基硅烷;
所述低偶极矩有机物单体包括:对二甲苯、苯、甲苯、四氟化碳、α-甲基苯乙烯、聚对二氯甲苯、二甲基硅氧烷、分子量500-50000的聚二甲基硅氧烷、烯丙苯、十氟联苯、十氟联苯酮、全氟烯丙基苯、四氟乙烯、六氟丙烯、1H,1H-全氟辛基胺、全氟碘代十二烷、全氟三丁胺、1,8-二碘代全氟辛烷、全氟己基碘烷、全氟碘代丁烷、全氟碘代癸烷、全氟辛基碘烷、1,4-二(2',3'-环氧丙基)全氟丁烷、十二氟-2-甲基-2-戊烯、2-(全氟丁基)乙基甲基丙烯酸酯、2-(全氟辛基)乙基甲基丙烯酸酯、2-(全氟辛基)碘代乙烷、全氟癸基乙基碘、1,1,2,2-四氢全氟己基碘、全氟丁基乙烯、1H,1H,2H-全氟-1-癸烯、2,4,6-三(全氟庚基)-1,3,5-三嗪、全氟己基乙烯、3-(全氟正辛基)-1,2-环氧丙烷、全氟环醚、全氟十二烷基乙烯、全氟十二烷基乙基碘、二溴对二甲苯、1,1,4,4-四苯基-1,3-丁二烯;
所述多官能度不饱和烃及烃类衍生物包括:
1,3-丁二烯、异戊二烯、1,4-戊二烯、乙氧基化三羟甲基丙烷三丙烯酸酯、二缩三丙二醇二丙烯酸酯、聚乙二醇二丙烯酸酯、1,6-己二醇二丙烯酸酯、二丙烯酸乙二醇酯、二乙二醇二乙烯基醚或二丙烯酸新戊二醇酯;
所述单官能度不饱和氟碳树脂包括:
3-(全氟-5-甲基己基)-2-羟基丙基甲基丙烯酸酯、2-(全氟癸基)乙基甲基丙烯酸酯、2-(全氟己基)乙基甲基丙烯酸酯、2-(全氟十二烷基)乙基丙烯酸酯、2-全氟辛基丙烯酸乙酯、1H,1H,2H,2H-全氟辛醇丙烯酸酯、2-(全氟丁基)乙基丙烯酸酯、(2H-全氟丙基)-2-丙烯酸酯、(全氟环己基)甲基丙烯酸酯、3,3,3-三氟-1-丙炔、1-乙炔基-3,5-二氟苯或4-乙炔基三氟甲苯;
所述步骤(2)、(3)中,等离子体放电方式为射频放电、微波放电、中频放电、高频放电、电火花放电,所述高频放电和中频放电的波形为正弦或双极脉冲。射频等离子体是利用高频电磁场放电而产生的等离子体。微波法是利用微波的能量激发等离子体,具有能量利用效率高的优点,同时由于无电极放电,等离子体纯净,是目前高质量、高速率、大面积制备的优异方法。
整个沉积过程中,基材的运动特性和等离子体放电能量组合联动。制备过程中等离子体放电的同时,基材产生运动,提高了涂层沉积效率,并改善了涂层厚度的均匀性和致密性。
所制备的涂层具有防水防潮,防霉菌,耐酸、碱性溶剂,耐酸、碱性盐雾,耐酸性大气,耐有机溶剂浸泡,耐化妆品,耐汗液,耐冷热循环冲击(-40℃~+100℃),耐湿热交变(湿度75%~95%)等特性。对于电子产品(手机、耳机、智能手环等)、无人机等,涂层在具备上述防护性能的同时,厚度在1~1000nm情况下,对频率在10M~8G范围内的射频通讯信号的影响低于5%,并且涂层不会影响电子产品原有的散热性能和电子产品本身对电流导通性的要求。
本发明的上述技术方案与现有技术相比具有以下优点:
1、等离子体化学气相沉积技术方法,比液相法三防涂层涂敷方法更环保;而相比蒸镀派瑞林方法,沉积温度低、速度更快、涂层结构和成分的可控性强,单体的可选择性强。
2、基材在反应腔室内发生运动,使不同位置的基材镀膜厚度趋向一致,解决了由于反应腔室内不同区域单体密度不同导致基材表面涂层厚度不均匀的问题。制备过程中,基材的运动特性和等离子体放电能量组合联动,放电能量输出的同时,基材进行运动,提高了沉积效率,使得到的有机硅纳米防护涂层致密性显著提高。同时由于沉积效率的提高,单体蒸汽的化学单体原材料的用量也仅有其他现有技术中用量的10%~15%,从而减少了尾气废气的排放,更加绿色环保,在提高实际生产效能中具有重大的意义。
3、通过引入交联结构的其他单体,控制单体配比,根据不同单体的分子键能、键长的差异、汽化温度的差异,给予设备相应的能量输出及工艺参数的有效变化,获得复合、渐变结构的聚合物纳米涂层,既保证了薄膜的疏水性,又提高了电子产品等产品的耐环境腐蚀的性能。
4、相比于传统的无过渡层等离子体化学气相沉积涂层,本方法得到的涂层在不同基体上得到的结合力可提高30-50%。
一般等离子体聚合涂层在不同基体上结合力各不相同,当基体为铜、镍、环氧树脂等材料时,由于表面有氧化层,氧元素的存在使得基体和涂层的结合力良好;但金的表面无氧化层,金和涂层的结合力相对较差。含巯基的单体一端具有巯基,可和铜、金等基体表面形成更稳定的Me-S化学键,而另一端具有大量的碳、氢、氧,和上层涂层也具有优异的结合性能。因此,含巯基化合物过渡层的引入,可有效提高涂层和基体的结合力。
图1描述了含巯基化合物过渡层的引入对于涂层结合力的影响。图1(a)和图1(b)分别是有巯基化合物过渡层和无巯基化合物过渡层的表面涂层形貌。图1(c)和图1(d)分别是有巯基化合物过渡层和无巯基化合物过渡层的涂层表面摩擦后的形貌。从图中可看出未摩擦的涂层表面均比较致密,摩擦后涂层表面出现凹槽,有巯基化合物过渡层的涂层表面凹槽较浅,槽宽较窄,无巯基化合物过渡层的涂层表面凹槽较深,槽宽较宽。
图2是摩擦后的涂层对凹槽处进行能谱分析的结果。从能谱图可见,图2(a2)是对有巯基化合物过渡层的涂层摩擦后凹槽处进行的能谱分析,图2(b2)是对无巯基化合物过渡层的涂层摩擦后凹槽处进行的能谱分析,从表中可见有巯基化合物过渡层的涂层摩擦后Au的含量比无巯基化合物过渡层的涂层摩擦后Au的含量低7.83%,说明有巯基化合物过渡层的涂层表面与材料表面具有更强的结合力和更优的耐磨性。
日常生活中的电子设备极易受腐蚀环境的侵蚀而损坏,在使用的过程中基本处于腐蚀环境中,长此以往,会造成电子设备不可挽回的损害。本发明的镀膜方法大大增加了纳米在提高实际生产效能中具有重大的意义。涂层在腐蚀性环境的使用寿命,提高了产品的保护效果。主要应用于以下产品:
(1)便携设备键盘:便携式键盘具有小而轻的特点,常用于计算机,手机等设备。其能便于用户在旅程中办公。但是当其遇到常见液体的污染,如盛水茶杯的意外翻倒,雨水、汗液的浸透,键盘内部容易短路,进而损坏。使用该类纳米涂层对其进行镀膜后,当能够保障键盘表面易清理,遇水后功能完好,使得键盘能够适应更加严峻的环境。
(2)LED显示屏:LED显示屏有商品宣传,店面装饰,照明,警示等用途。其部分用途需要面对雨水或者多粉尘的恶劣环境,如下雨天时,商场露天LED广告屏幕,生产车间的LED显示屏控制面板,路面警示灯,商标logo的LED灯模组,这些恶劣环境导致LED屏幕失灵,而且容易积灰,不易清洗,使用该纳米涂层后,能够有效解决上述问题。
(3)智能指纹锁:指纹锁是智能锁具,它集合了计算机信息技术、电子技术、机械技术和现代五金工艺,被广泛应用于公安刑侦及司法领域。但是其遇水后,其内部线路易短路,难以修复,需要暴力拆锁,使用该涂层后,能够避免这一问题。
(4)助听器、蓝牙耳机、VR/AR眼镜:这类产品在使用该涂层后,用户可以在一定时间内在有水环境下使用,如洗澡,下雨天,设备均不会因为雨水浸润被损坏。同时,涂覆涂层之后,产品具有一定的耐盐雾和耐汗液的功能,保证用户即使在运动过程中出汗时也能够正常使用产品。
(5)部分传感器:部分传感器需要在液体环境中工作,如水压、油压传感器,以及水下作业设备中用到的传感器,以及工作环境经常遇水的传感器,这些传感器在使用该涂层后,能够保障不会因为液体入侵机械设备内部结构而导致传感器失灵。
(6)大多数3C产品:如移动电话、电脑、平板电脑、数码相机、PSP等。
(7)无人机产品(农用/民用/警用):无人机在正常工作时会遇到不同的天气状况,腐蚀性气体环境、雨天和潮湿环境是不可避免的,甚至与一些农药试剂的接触。无人机产品使用该涂层后,能够有效保护其在雨天甚至泡水等环境下正常使用,而不会出现产品内部进水导致线路板短路或者飞控失灵的现象。
(8)其他需要防水的设备:包括需要在潮湿环境中作业,或者可能遇到常见液体泼洒等意外情况,会影响内部弱电线路正常运行的设备。
该方法制备的有机硅纳米涂层还可以适用于以下不同的环境及其涉及的相关产品:
防水防潮防霉菌:
1房屋内饰:卫生间顶面、墙纸、吊灯、窗帘、窗纱。2生活用品:蚊帐,台灯罩、筷子篓、汽车后视镜。3文物及艺术品:字帖、古玩、木雕、皮革、青铜器、丝绸、古装、古籍。4电子元器件及电子产品:传感器(潮湿或者多尘环境中作业)、各类电子产品(电子血压计、智能手表)的芯片、线路板、手机、LED屏幕、助听器。5精密仪器及光学设备:机械手表、显微镜。6农用/警用/民用无人机。
耐酸、碱性溶剂,耐酸、碱性盐雾,耐酸性大气:
1住房内饰件:墙纸、瓷砖。2防护用具:耐酸(碱)手套、耐酸(碱)防护服。3机械设备及管道:烟道脱硫设备、密封件(酸/碱性润滑油)、管道、阀门、大管径海用输送管道内衬等处。4各种反应釜、反应器。5化学药品生产、储存;污水处理、曝气池;6其它:酸碱车间、防碱航空航天、能源电力、钢铁冶金、石油化工、医疗等各行业、贮藏容器、雕像(减小酸雨对其的腐蚀)、传感器(酸/碱性性环境下)。
耐有机溶剂浸泡,耐化妆品,耐汗液:
1如链烷烃、烯烃、醇、醛、胺、酯、醚、酮、芳香烃、氢化烃、萜烯烃、卤代烃、杂环化物、含氮化合物及含硫化合物溶剂等;2化妆品包装容器;3指纹锁、耳机。
耐冷热循环冲击(-40℃~+100℃),耐湿热交变(湿度75%~95%),:电工、电子、汽车电器,如航空、汽车、家电、科研等领域的设备。
附图说明
图1为本发明含巯基化合物过渡层的引入对于涂层结合力的影响图。
其中:(a)为有巯基化合物过渡层的表面涂层形貌;(b)为无巯基化合物过渡层的表面涂层形貌;(c)为有巯基化合物过渡层的涂层表面摩擦后的形貌;(d)为无巯基化合物过渡层的涂层表面摩擦后的形貌。
图2为摩擦后的涂层对凹槽处进行能谱分析的结果图。
其中:(a2)为对有巯基化合物过渡层的涂层摩擦后凹槽处进行的能谱分析;(b2)为对无巯基化合物过渡层的涂层摩擦后凹槽处进行的能谱分析。
具体实施方式
下面结合具体实施例详细说明本发明,但本发明并不局限于具体实施例。
实施例1
一种以巯基化合物作为过渡层的涂层制备方法,包括以下步骤:
(1)前处理:
将基材置于纳米涂层制备设备的反应腔室内,闭合反应腔室并对反应腔室连续抽真空,将反应腔室内的真空度抽到10毫托,通入惰性气体Ar,开启运动机构,使基材在反应腔室内产生运动;
步骤(1)中基材为固体材料,所述固体材料为块状的聚四氟乙烯板材。
步骤(1)中反应腔室为旋转体形腔室,反应腔室的容积为50L,反应腔室的温度控制在30℃,通入惰性气体的流量为5sccm。
步骤(1)中基材在反应腔室内产生运动,基材运动形式为基材相对反应腔室进行圆周运动,转速为1转/min。
(2)巯基化合物过渡层制备:
通入含巯基的单体蒸汽到反应腔室内,至真空度为70毫托,开启等离子体放电,进行化学气相沉积,在基材表面化学气相沉积制备巯基化合物过渡层;
所述单体蒸汽成分为:两种含巯基的有机物单体的混合物;
所述步骤(2)中:等离子体放电,进行化学气相沉积,沉积过程中等离子体放电过程为脉冲放电,具体包括以下沉积过程一次:
沉积过程包括预处理阶段和镀膜阶段,预处理阶段等离子体放电功率为120W,持续放电时间350s,然后进入镀膜阶段,镀膜阶段为脉冲放电,功率190W,时间800s,脉冲放电的频率为3HZ,脉冲的占空比为1:2。
步骤(2)中:通入单体蒸汽为将单体通过加料泵进行雾化、挥发,由低压70毫托引入反应腔体,所述通入单体蒸汽的流量为480μL/min;
所述两种含巯基的有机物单体为:6-巯基己-1-醇、3-巯基丙酸甲酯;
步骤(2)中等离子体放电方式为射频放电。
(3)涂层制备:
通入单体蒸汽到反应腔室内,至真空度为70毫托,开启等离子体放电,进行化学气相沉积,在基材表面化学气相沉积制备有机硅纳米涂层;
所述单体蒸汽成分为:
一种含双键结构的有机硅单体和两种多官能度不饱和烃及烃类衍生物的混合物,所述单体蒸汽中多官能度不饱和烃及烃类衍生物所占的质量分数为21%;
所述步骤(3)中:等离子体放电,进行化学气相沉积,沉积过程中等离子体放电过程为小功率连续放电,具体包括以下沉积过程一次:
沉积过程包括预处理阶段和镀膜阶段,预处理阶段等离子体放电功率为120W,持续放电时间450s,然后进入镀膜阶段,调整等离子体放电功率为70W,持续放电时间600s。
步骤(3)中:通入单体蒸汽为将单体通过加料泵进行雾化、挥发,由低压70毫托引入反应腔室,所述通入单体蒸汽的流量为700μL/min;
所述一种含双键结构的有机硅单体为:乙烯基三乙氧基硅烷;
所述两种多官能度不饱和烃及烃类衍生物为:异戊二烯,二丙烯酸乙二醇酯;
所述步骤(3)中等离子体放电方式为射频放电。
(4)后处理:
停止通入单体蒸汽,同时停止等离子体放电,持续抽真空,保持反应腔室真空度为40毫托1min后通入大气至一个大气压,停止基材的运动,然后取出基材即可。
得到的沉积有有机硅纳米涂层的聚四氟乙烯板,按GJB150.10A-2009测试防霉菌性能,效果如下:
实施例2
一种以巯基化合物作为过渡层的涂层制备方法,包括以下步骤:
(1)前处理:
将基材置于纳米涂层制备设备反应腔室内,闭合反应腔室并对反应腔室连续抽真空,将反应腔室内的真空度抽到20毫托,通入惰性气体He,启动运动机构,使基材进行运动;
步骤(1)中基材为固体材料,所述固体材料为块状铝合金阳极氧化材料。
步骤(1)中反应腔室为立方体形腔室,反应腔室的容积为250L,反应腔室的温度控制在40℃,通入惰性气体的流量为15sccm。
步骤(1)中基材进行行星运动,公转速度为1转/min,自转速度为1.5转/min。
(2)巯基化合物过渡层制备:
通入含巯基的单体蒸汽到反应腔室内,至真空度为30毫托,开启等离子体放电,进行化学气相沉积,在基材表面化学气相沉积制备巯基化合物过渡层;
所述单体蒸汽成分为:三种含巯基的有机物单体的混合物;
所述步骤(2)中:等离子体放电,进行化学气相沉积,沉积过程中等离子体放电过程为脉冲放电,具体包括以下沉积过程两次:
沉积过程包括预处理阶段和镀膜阶段,预处理阶段等离子体放电功率为350W,持续放电时间150s,然后进入镀膜阶段,镀膜阶段为脉冲放电,功率50W,时间3600s,脉冲放电的频率为900HZ,脉冲的占空比为1:350。
步骤(2)中:通入单体蒸汽为将单体通过加料泵进行雾化、挥发,由低压40毫托引入反应腔体,所述通入单体蒸汽的流量为600μL/min;
所述三种含巯基的有机物单体为:双巯基乙酸乙二醇酯、S-硫代苯甲酰巯基乙酸和2,3-二巯基丁二酸;
步骤(2)中等离子体放电方式为微波放电。
(3)涂层制备:
通入单体蒸汽到反应腔室内,至真空度为30毫托,开启等离子体放电,进行化学气相沉积,在基材表面化学气相沉积制备有机硅纳米涂层;
所述单体蒸汽成分为:
两种含Si-Cl结构的有机硅单体和三种多官能度不饱和烃及烃类衍生物的混合物,所述单体蒸汽中多官能度不饱和烃及烃类衍生物所占的质量分数为39%;
所述步骤(3)中:等离子体放电,进行化学气相沉积,沉积过程中等离子体放电过程为小功率连续放电,具体包括以下沉积过程三次:
沉积过程包括预处理阶段和镀膜阶段,预处理阶段等离子体放电功率为400W,持续放电时间200s,然后进入镀膜阶段,调整等离子体放电功率为20W,持续放电时间2700s。
步骤(3)中:通入单体蒸汽为将单体通过加料泵进行雾化、挥发,由低压40毫托引入反应腔体,所述通入单体蒸汽的流量为780μL/min;
所述两种含Si-Cl结构的有机硅单体为:三苯基氯硅烷和三氟丙基甲基二氯硅烷。
所述三种多官能度不饱和烃及烃类衍生物为:1,4-戊二烯、二缩三丙二醇二丙烯酸酯、聚乙二醇二丙烯酸酯;
步骤(3)中等离子体放电方式为微波放电。
(4)后处理:
停止通入单体蒸汽,同时停止等离子体放电,持续抽真空,保持反应腔体真空度为30毫托,2min后通入大气至一个大气压,然后取出基材即可。
上述块状铝合金阳极氧化材料表面制备有机硅涂层后,暴露于酸、碱测试环境中测试其耐酸、碱性,效果如下:
实施例3
一种以巯基化合物作为过渡层的涂层制备方法,包括以下步骤:
(1)前处理:
将基材置于纳米涂层制备设备的反应腔室内,闭合反应腔室并对反应腔室连续抽真空,将反应腔室内的真空度抽到20毫托,通入惰性气体Ar和He的混合气体,启动运动机构,使基材进行运动;
步骤(1)中基材为固体材料,所述固体材料为块状合金钢板材料和PC塑料板。
步骤(1)中反应腔室为旋转体形腔室,反应腔室的容积为480L,反应腔室的温度控制在50℃,通入惰性气体的流量为60sccm,。
步骤(1)中基材进行圆周运动,转速为3转/min。
(2)巯基化合物过渡层制备:
通入含巯基的单体蒸汽到反应腔室内,至真空度为250毫托,开启等离子体放电,进行化学气相沉积,在基材表面化学气相沉积制备巯基化合物过渡层;
所述单体蒸汽成分为:两种含巯基的有机物单体的混合物;
所述步骤(2)中:等离子体放电,进行化学气相沉积,沉积过程中等离子体放电过程为周期交替放电,具体包括以下沉积过程两次:
沉积过程包括预处理阶段和镀膜阶段,预处理阶段等离子体放电功率为120W,持续放电时间450s,然后进入镀膜阶段,镀膜阶段等离子体为周期交替变化放电输出,功率200W,时间600s,交变频率为1Hz,等离子体周期交替变化放电输出波形为锯齿波形;
步骤(2)中:通入单体蒸汽为将单体通过加料泵进行雾化、挥发,由低压250毫托引入反应腔体,所述通入单体蒸汽的流量为50μL/min;
所述两种含巯基的有机物单体为:3-巯基苯甲酸、3-巯基丙酸乙酯;
步骤(2)中等离子体放电方式为电火花放电。
(3)涂层制备:
通入单体蒸汽到反应腔室内,至真空度为250毫托,开启等离子体放电,进行化学气相沉积,在基材表面化学气相沉积制备有机硅纳米涂层;
所述单体蒸汽成分为:
三种含环状结构的有机硅单体和两种低偶极矩有机物单体的混合物,所述单体蒸汽中低偶极矩有机物单体所占的质量分数为35%;
所述步骤(3)中:等离子体放电,进行化学气相沉积,沉积过程中等离子体放电过程为脉冲放电,具体包括以下沉积过程三次:
沉积过程包括预处理阶段和镀膜阶段,预处理阶段等离子体放电功率为120W,持续放电时间450s,然后进入镀膜阶段,镀膜阶段为脉冲放电,功率200W,时间600s,脉冲放电的频率为1HZ,脉冲的占空比为1:1。
步骤(3)中:通入单体蒸汽为将单体通过加料泵进行雾化、挥发,由低压130毫托引入反应腔体,所述通入单体蒸汽的流量为550μL/min;
所述三种含环状结构的有机硅单体为:六甲基环三硅氧烷、八苯基环四硅氧烷和3-缩水甘油醚氧基丙基三乙氧基硅烷;
所述两种低偶极矩有机物单体为:对二甲苯和全氟碘代十二烷;
步骤(3)中等离子体放电方式为电火花放电。
(4)停止通入单体蒸汽,同时停止等离子体放电,持续抽真空,保持反应腔体真空度为40毫托,3min后通入大气至一个大气压,然后取出基材即可。
上述合金钢板材料和PC塑料板沉积有机硅涂层后,在有机溶剂中浸泡测试其耐有机溶剂性能,效果如下:
实施例4
一种以巯基化合物作为过渡层的涂层制备方法,包括以下步骤:
(1)前处理:
将基材置于纳米涂层制备设备反应腔室内,闭合反应腔室并对反应腔室连续抽真空,将反应腔室内的真空度抽到20毫托,通入惰性气体He,启动运动机构,使基材进行运动;
步骤(1)中基材为固体材料,所述固体材料为块状铝制材料和PCB板。
步骤(1)中反应腔室的容积为680L,反应腔室的温度控制在50℃,通入惰性气体的流量为160sccm。
步骤(1)中基材进行直线往复运动,运动速度为20mm/min。
(2)巯基化合物过渡层制备:
通入单体蒸汽到反应腔室内,至真空度为200毫托,开启等离子体放电,进行化学气相沉积,在基材表面化学气相沉积制备有机硅纳米涂层;
所述单体蒸汽成分为:一种含巯基的有机物单体;
所述步骤(2)中:等离子体放电,进行化学气相沉积,沉积过程中等离子体放电过程为周期交替放电,具体包括以下沉积过程三次:
沉积过程包括预处理阶段和镀膜阶段,预处理阶段等离子体放电功率为350W,持续放电时间60s,然后进入镀膜阶段,镀膜阶段等离子体为周期交替变化放电输出,功率50W,时间1800s,交变频率为1000Hz,等离子体周期交替变化放电输出波形为全波整流波形;
步骤(2)中:通入单体蒸汽为将单体通过加料泵进行雾化、挥发,由低压200毫托引入反应腔体,所述通入单体蒸汽的流量为160μL/min;
所述一种含巯基的有机硅单体为:巯基乙酸异辛酯。
步骤(2)中等离子体放电方式为中频放电。
(3)涂层制备:
通入单体蒸汽到反应腔室内,至真空度为200毫托,开启等离子体放电,进行化学气相沉积,在基材表面化学气相沉积制备有机硅纳米涂层;
所述单体蒸汽成分为:
两种含Si-N-Si或Si-O-Si结构的有机硅单体、一种单官能度不饱和氟碳树脂和三种多官能度不饱和烃及烃类衍生物的混合物,所述单体蒸汽中单官能度不饱和氟碳树脂所占的质量分数为55%,所述单体蒸汽中多官能度不饱和烃及烃类衍生物所占的质量分数为32%;
所述步骤(3)中:等离子体放电,进行化学气相沉积,沉积过程中等离子体放电过程为脉冲放电,具体包括以下沉积过程一次:
沉积过程包括预处理阶段和镀膜阶段,预处理阶段等离子体放电功率为400W,持续放电时间60s,然后进入镀膜阶段,镀膜阶段为脉冲放电,功率50W,时间3600s,脉冲放电的频率为1000HZ,脉冲的占空比为1:500。
步骤(3)中:通入单体蒸汽为将单体通过加料泵进行雾化、挥发,由低压200毫托引入反应腔室,所述通入单体蒸汽的流量为220μL/min;
所述两种含Si-N-Si或Si-O-Si结构的有机硅单体为:六甲基环三硅烷氨基、六甲基二硅氮烷;
所述一种单官能度不饱和氟碳树脂为:1H,1H,2H,2H-全氟辛醇丙烯酸酯;
所述三种多官能度不饱和烃及烃类衍生物为:异戊二烯、乙氧基化三羟甲基丙烷三丙烯酸酯和二缩三丙二醇二丙烯酸酯;
步骤(3)中等离子体放电方式为中频放电。
(4)后处理:
停止通入单体蒸汽,同时停止等离子体放电,持续抽真空,保持反应腔体真空度为40毫托,4min后通入大气至一个大气压,然后取出基材即可。
上述镀膜后的块状铝制材料和PCB板,暴露于冷、热循环测试环境中进行冷热循环冲击试验,测试效果如下:
实施例5
一种以巯基化合物作为过渡层的涂层制备方法,包括以下步骤:
(1)前处理:
将基材置于纳米涂层制备设备反应腔室内,闭合反应腔室并对反应腔室连续抽真空,将反应腔室内的真空度抽到20毫托,通入惰性气体Ar,启动运动机构,使基材进行运动;
步骤(1)中基材为固体材料,所述固体材料为电子元器件。
步骤(1)中反应腔室的容积为1000L,反应腔室的温度控制在60℃,通入惰性气体的流量为300sccm。
步骤(1)中基材进行曲线往复运动,速度为100mm/min。
(2)巯基化合物过渡层制备:
通入单体蒸汽到反应腔室内,至真空度为90毫托,开启等离子体放电,进行化学气相沉积,在基材表面化学气相沉积制备有机硅纳米涂层;
所述单体蒸汽成分为:四种含巯基的有机物单体;
所述步骤(2)中:等离子体放电,进行化学气相沉积,沉积过程中等离子体放电过程为小功率连续放电,具体包括以下沉积过程一次:
沉积过程包括预处理阶段和镀膜阶段,预处理阶段等离子体放电功率为120W,持续放电时间450s,然后进入镀膜阶段,调整等离子体放电功率为70W,持续放电时间2000s。
步骤(2)中:通入单体蒸汽为将单体通过加料泵进行雾化、挥发,由低压90毫托引入反应腔室,所述通入单体蒸汽的流量为400μL/min;
所述四种多官能度不饱和烃及烃类衍生物为:巯基乙酸异辛酯、硫代水杨酸、4-巯基苯甲酸和3-巯基苯甲酸;
所述步骤(2)中等离子体放电方式为射频放电。
(3)涂层制备:
通入单体蒸汽到反应腔室内,至真空度为90毫托,开启等离子体放电,进行化学气相沉积,在基材表面化学气相沉积制备有机硅纳米涂层;
所述单体蒸汽成分为:
三种含环状结构的有机硅单体、两种单官能度不饱和氟碳树脂和一种多官能度不饱和烃及烃类衍生物的混合物,所述单体蒸汽中单官能度不饱和氟碳树脂所占的质量分数为48%,所述单体蒸汽中多官能度不饱和烃及烃类衍生物所占的质量分数为16%;
所述步骤(3)中:等离子体放电,进行化学气相沉积,沉积过程中等离子体放电过程为周期交替放电,具体包括以下沉积过程四次:
沉积过程包括预处理阶段和镀膜阶段,预处理阶段等离子体放电功率为120W,持续放电时间450s,然后进入镀膜阶段,镀膜阶段等离子体为周期交替变化放电输出,功率200W,时间600s,交变频率为1Hz,等离子体周期交替变化放电输出波形为方波波形;
步骤(3)中:通入单体蒸汽为将单体通过加料泵进行雾化、挥发,由低压200毫托引入反应腔体,所述通入单体蒸汽的流量为10μL/min;
所述三种含环状结构的有机硅单体为:八苯基环四硅氧烷、铬酸双(三苯甲基硅烷基)酯、四甲基四乙烯基环四硅氧烷;
所述两种单官能度不饱和氟碳树脂为:3-(全氟-5-甲基己基)-2-羟基丙基甲基丙烯酸酯和2-(全氟癸基)乙基甲基丙烯酸酯;
所述一种多官能度不饱和烃类衍生物为:二丙烯酸乙二醇酯;
步骤(3)中等离子体放电方式为射频放电。
(4)后处理:
停止通入单体蒸汽,同时停止等离子体放电,持续抽真空,保持反应腔体真空度为40毫托,5min后通入大气至一个大气压,然后取出基材即可。
上述镀膜后的电子元器件,暴露于湿热测试环境中测试其耐湿热交变性能,测试结果如下:
实施例6
一种以巯基化合物作为过渡层的涂层制备方法,包括以下步骤:
(1)前处理:
将基材置于纳米涂层制备设备反应腔室内,闭合反应腔室并对反应腔室连续抽真空,将反应腔室内的真空度抽到200毫托,通入惰性气体Ar,启动运动机构,使基材进行运动;
步骤(1)基材为固体材料,所述固体材料为电器部件。
步骤(1)中反应腔室的容积为880L,反应腔室的温度控制在50℃,通入惰性气体的流量为200sccm。
步骤(1)中基材进行椭圆周运动,速度为200mm/min。
(2)巯基化合物过渡层制备:
通入单体蒸汽到反应腔室内,至真空度为130毫托,开启等离子体放电,进行化学气相沉积,在基材表面化学气相沉积制备有机硅纳米涂层;
所述单体蒸汽成分为:两种含巯基的有机物单体的混合物;
所述步骤(2)中:等离子体放电,进行化学气相沉积,沉积过程中等离子体放电过程为小功率连续放电,具体包括以下沉积过程三次:
沉积过程包括预处理阶段和镀膜阶段,预处理阶段等离子体放电功率为400W,持续放电时间200s,然后进入镀膜阶段,调整等离子体放电功率为10W,持续放电时间3600s。
步骤(2)中:通入单体蒸汽为将单体通过加料泵进行雾化、挥发,由低压130毫托引入反应腔体,所述通入单体蒸汽的流量为1000μL/min;
所述两种含巯基的有机物单体为:季戊四醇四巯基乙酸酯和4-巯基-4-甲基-2-戊酮。
步骤(2)中等离子体放电方式为中频放电。
(3)涂层制备:
通入单体蒸汽到反应腔室内,至真空度为130毫托,开启等离子体放电,进行化学气相沉积,在基材表面化学气相沉积制备有机硅纳米涂层;
所述单体蒸汽成分为:
三种含Si-O-C结构的有机硅单体、两种低偶极矩有机物和三种多官能度不饱和烃及烃类衍生物的混合物,所述单体蒸汽中低偶极矩有机物所占的质量分数为37%;所述单体蒸汽中多官能度不饱和烃及烃类衍生物所占的质量分数为11%;
所述步骤(3)中:等离子体放电,进行化学气相沉积,沉积过程中等离子体放电过程为周期交替放电,具体包括以下沉积过程一次:
沉积过程包括预处理阶段和镀膜阶段,预处理阶段等离子体放电功率为400W,持续放电时间300s,然后进入镀膜阶段,镀膜阶段等离子体为周期交替变化放电输出,功率100W,时间3600s,交变频率为500Hz,等离子体周期交替变化放电输出波形为半波整流波形;
步骤(3)中:通入单体蒸汽为将单体通过加料泵进行雾化、挥发,由低压130毫托引入反应腔体,所述通入单体蒸汽的流量为35μL/min;
所述三种含Si-O-C结构的有机硅单体为:六乙基环三硅氧烷、二苯基二乙氧基硅烷和十二烷基三甲氧基硅烷;
所述两种低偶极矩有机物为:分子量500-50000的聚二甲基硅氧烷和全氟碘代十二烷;
所述三种多官能度不饱和烃类衍生物为:1,3-丁二烯、1,6-己二醇二丙烯酸酯、二丙烯酸新戊二醇酯。
步骤(3)中等离子体放电方式为中频放电。
(4)后处理:
停止通入单体蒸汽,同时停止等离子体放电,持续抽真空,保持反应腔体真空度为40毫托,5min后通入大气至一个大气压,然后取出基材即可。
上述镀膜后的电器部件,在国际工业防水等级标准IPX7所述的环境下测试耐水下通电性和耐水下浸泡性,实验效果如下:
下表为本实施例制备的涂层在不同电压下电流达到1mA所用时间测试:
电压 3.8V 5V 12.5V
时间 >48h >48h >48h
得到的沉积有防水耐电击穿涂层的电器部件IPX 7防水等级测试(水下1m浸水试验30min)效果如下:
实施例7
本实施例中所述的一种以巯基化合物作为过渡层的涂层制备方法的各基本步骤与实施例5相同,不同的技术参数为:
1)步骤(1)中基材运动形式为基材相对反应腔室进行球面运动;
2)步骤(1)中基材为电子组装半成品;
3)步骤(2)中小功率连续放电,具体包括以下沉积过程三次:沉积过程包括预处理阶段和镀膜阶段,预处理阶段等离子体放电功率为260W,持续放电时间60s,然后进入镀膜阶段,调整等离子体放电功率为75W;
4)步骤(2)中所述单体蒸汽成分为:五种含巯基的有机物单体:4-巯基-4-甲基-2-戊酮、二巯丙醇、2-巯基乙醇、巯基乙酸、巯基丁二酸;
5)步骤(3)中所述单体蒸汽成分为:五种含环状结构的有机硅单体、六种单官能度不饱和氟碳树脂和一种多官能度不饱和烃及烃类衍生物的混合物,所述五种含环状结构的有机硅单体:八甲基环四硅氧烷、六苯基环三硅氧烷、十甲基环五硅氧烷、三苯基羟基硅烷、二苯基二羟基硅烷,所述六种单官能度不饱和氟碳树脂:2-(全氟己基)乙基甲基丙烯酸酯、2-(全氟十二烷基)乙基丙烯酸酯、2-全氟辛基丙烯酸乙酯、2-(全氟丁基)乙基丙烯酸酯、(2H-全氟丙基)-2-丙烯酸酯、(全氟环己基)甲基丙烯酸酯,所述一种多官能度不饱和烃及烃类衍生物:二乙二醇二乙烯基醚;
6)步骤(3)中周期交替放电,输出波形为正弦波形。
实施例8
本实施例中所述的一种以巯基化合物作为过渡层的涂层制备方法的各基本步骤与实施例1相同,不同的技术参数为:步骤(3)中所述单体蒸汽成分中包括六种含双键结构的有机硅单体:烯丙基三甲氧基硅烷、乙烯基三甲基硅烷、3-丁烯基三甲基硅烷、乙烯基三丁酮肟基硅烷、四甲基二乙烯基二硅氧烷、1,2,2-三氟乙烯基三苯基硅烷。
实施例9
本实施例中所述的一种以巯基化合物作为过渡层的涂层制备方法的各基本步骤与实施例2相同,不同的技术参数为:步骤(3)中所述单体蒸汽成分中包括五种含Si-Cl结构的有机硅单体:甲基乙烯基二氯硅烷、三氟丙基三氯硅烷、二甲基苯基氯硅烷、三丁基氯硅烷、苄基二甲基氯硅烷。
实施例10
本实施例中所述的一种以巯基化合物作为过渡层的涂层制备方法的各基本步骤与实施例6相同,不同的技术参数为:步骤(3)中所述单体蒸汽成分中包括六种含Si-O-C结构的有机硅单体:四甲氧基硅烷、三甲氧基氢硅氧烷、正辛基三乙氧基硅烷、苯基三乙氧基硅烷、乙烯基三(2-甲氧基乙氧基)硅烷、三乙基乙烯基硅烷;包含六种低偶极矩有机物:苯、甲苯、四氟化碳、α-甲基苯乙烯、聚对二氯甲苯、二甲基硅氧烷。
实施例11
本实施例中所述的一种以巯基化合物作为过渡层的涂层制备方法的各基本步骤与实施例6相同,不同的技术参数为:步骤(3)中所述单体蒸汽成分中包括五种含Si-O-C结构的有机硅单体:3-(甲基丙烯酰氧)丙基三甲氧基硅烷、苯基三(三甲基硅氧烷基)硅烷、正辛基三乙氧基硅烷、二甲氧基硅烷、3-氯丙基三甲氧基硅烷;包含七种低偶极矩有机物:烯丙苯、十氟联苯、十氟联苯酮、全氟烯丙基苯、四氟乙烯、六氟丙烯、1H,1H-全氟辛基胺。
实施例12
本实施例中所述的一种以巯基化合物作为过渡层的涂层制备方法的各基本步骤与实施例6相同,不同的技术参数为:步骤(3)中所述单体蒸汽成分包含十种低偶极矩有机物:全氟三丁胺、1,8-二碘代全氟辛烷、全氟己基碘烷、全氟碘代丁烷、全氟碘代癸烷、全氟辛基碘烷、1,4-二(2',3'-环氧丙基)全氟丁烷、十二氟-2-甲基-2-戊烯、2-(全氟丁基)乙基甲基丙烯酸酯、2-(全氟辛基)乙基甲基丙烯酸酯。
实施例13
本实施例中所述的一种以巯基化合物作为过渡层的涂层制备方法的各基本步骤与实施例6相同,不同的技术参数为:步骤(3)中所述单体蒸汽成分包含十三种低偶极矩有机物:2-(全氟辛基)碘代乙烷、全氟癸基乙基碘、1,1,2,2-四氢全氟己基碘、全氟丁基乙烯、1H,1H,2H-全氟-1-癸烯、2,4,6-三(全氟庚基)-1,3,5-三嗪、全氟己基乙烯、3-(全氟正辛基)-1,2-环氧丙烷、全氟环醚、全氟十二烷基乙烯、全氟十二烷基乙基碘、二溴对二甲苯、1,1,4,4-四苯基-1,3-丁二烯。
实施例14
本实施例中所述的一种以巯基化合物作为过渡层的涂层制备方法的各基本步骤与实施例5相同,不同的技术参数为:
1)步骤(2)中所述单体蒸汽成分为:八种含巯基的有机物单体:(+/-)-二氢硫辛酸、硫代乳酸、1-硫代甘油、对甲苯硫酚、3-巯基丙酸、1,3-丙二硫醇、邻甲苯硫酚、2,3-二巯基丁二酸;
2)步骤(3)中所述单体蒸汽成分为:三种含环状结构的有机硅单体、三种单官能度不饱和氟碳树脂和一种多官能度不饱和烃及烃类衍生物的混合物,所述三种含环状结构的有机硅单体:三氟丙基甲基环三硅氧烷、2,2,4,4-四甲基-6,6,8,8-四苯基环四硅氧烷、γ-缩水甘油醚氧丙基三甲氧基硅烷,所述三种单官能度不饱和氟碳树脂:3,3,3-三氟-1-丙炔、1-乙炔基-3,5-二氟苯、4-乙炔基三氟甲苯,所述一种多官能度不饱和烃及烃类衍生物:二乙二醇二乙烯基醚。
实施例15
本实施例中所述的一种以巯基化合物作为过渡层的涂层制备方法的各基本步骤与实施例5相同,不同的技术参数为:步骤(2)中所述单体蒸汽成分为:八种含巯基的有机物单体:D-半胱氨酸、2,6-二叔丁基-4-巯基苯酚、十四烷基硫代乙酸、对甲硫基苯甲醛、1,4-二巯基苏糖醇、双巯乙基硫醚、巯基乙酸苄酯、巯基乙酸异辛酯。
实施例16
本实施例中所述的一种以巯基化合物作为过渡层的涂层制备方法的各基本步骤与实施例4相同,不同的技术参数为:步骤(3)中所述单体蒸汽成分包括两种含Si-N-Si或Si-O-Si结构的有机硅单体为:六甲基二硅烷基胺、六甲基二硅醚。

Claims (8)

1.一种以巯基化合物作为过渡层的涂层制备方法,其特征在于:包括以下步骤:
(1)前处理:
将基材置于纳米涂层制备设备的反应腔室内,对反应腔室连续抽真空,将反应腔室内的真空度抽到10~200毫托,并通入惰性气体He或Ar或He和Ar混合气体,开启运动机构,使基材在反应腔室内产生运动;
(2)巯基化合物过渡层制备:
通入含巯基的单体蒸汽到反应腔室内,至真空度为30~300毫托,开启等离子体放电,进行化学气相沉积;
所述单体蒸汽成分为:
至少一种含巯基的有机物单体;
所述通入单体或混合物蒸汽的流量为10~1000μL/min;
(3)涂层制备:
通入单体蒸汽到反应腔室内,至真空度为30~300毫托,开启等离子体放电,进行化学气相沉积,在基材表面化学气相沉积制备涂层;
所述单体蒸汽成分为:
至少一种含双键、Si-Cl、Si-O-C、Si-N-Si、Si-O-Si结构或环状结构的有机硅单体;或者至少一种低偶极矩有机物单体;或者至少一种多官能度不饱和烃及烃类衍生物单体;或者至少一种单官能度不饱和氟碳树脂单体;或者以上单体的混合物;
所述通入单体或混合物蒸汽的流量为10~1000μL/min;
(4)后处理:
停止通入单体蒸汽,同时停止等离子体放电,持续抽真空,保持反应腔室真空度为10~200毫托,1~5min后通入大气至一个大气压,停止基材的运动,然后取出基材即可。
2.根据权利要求1所述的一种以巯基化合物作为过渡层的涂层制备方法,其特征在于:所述步骤(1)中基材在反应腔室内产生运动,基材运动形式为基材相对反应腔室进行直线往复运动或曲线运动,所述曲线运动包括圆周运动、椭圆周运动、行星运动、球面运动或其他不规则路线的曲线运动。
3.根据权利要求1所述的一种以巯基化合物作为过渡层的涂层制备方法,其特征在于:所述步骤(1)中基材为固体材料,所述固体材料为电子产品、电器部件、电子组装半成品,PCB板、金属板、聚四氟乙烯板材、PC塑料板或者电子元器件,且所述基材表面制备有机硅纳米涂层后其任一界面可暴露于水环境,霉菌环境,酸、碱性溶剂环境,酸、碱性盐雾环境,酸性大气环境,有机溶剂浸泡环境,化妆品环境,汗液环境,冷热循环冲击环境或湿热交变环境中使用。
4.根据权利要求1所述的一种以巯基化合物作为过渡层的涂层制备方法,其特征在于:所述步骤(1)中反应腔室的容积为50~1000L,反应腔室的温度控制在30~60℃,所述惰性气体通入流量为5~300sccm。
5.根据权利要求1或4所述的一种以巯基化合物作为过渡层的涂层制备方法,其特征在于:所述反应腔室为旋转体形腔室或者立方体形腔室。
6.根据权利要求1所述的一种以巯基化合物作为过渡层的涂层制备方法,其特征在于:所述步骤(2)、(3)中:等离子体放电,进行化学气相沉积,沉积过程中等离子体放电过程包括小功率连续放电、脉冲放电或周期交替放电;
所述步骤(2)、(3)沉积过程中等离子体放电过程为小功率连续放电时,具体包括以下沉积过程至少一次:
沉积过程包括预处理阶段和镀膜阶段,预处理阶段等离子体放电功率为120~400W,持续放电时间60~450s,然后进入镀膜阶段,调整等离子体放电功率为10~75W,持续放电时间600~3600s;
所述步骤(2)、(3)沉积过程中等离子体放电过程为脉冲放电时,具体包括以下沉积过程至少一次:
沉积过程包括预处理阶段和镀膜阶段,预处理阶段等离子体放电功率为120~400W,持续放电时间60~450s,然后进入镀膜阶段,镀膜阶段为脉冲放电,功率50~200W,时间600s~3600s,脉冲放电的频率为1~1000HZ,脉冲的占空比为1:1~1:500;
所述步骤(2)、(3)沉积过程中等离子体放电过程为周期交替放电时,具体包括以下沉积过程至少一次:
沉积过程包括预处理阶段和镀膜阶段,预处理阶段等离子体放电功率为120~400W,持续放电时间60~450s,然后进入镀膜阶段,镀膜阶段等离子体为周期交替变化放电输出,功率50~200W,时间600s~3600s,交变频率为1-1000Hz,等离子体周期交替变化放电输出波形为锯齿波形、正弦波形、方波波形、全波整流波形或半波整流波形。
7.根据权利要求1所述的一种以巯基化合物作为过渡层的涂层制备方法,其特征在于:
所述含巯基的有机物单体成分包括:
6-巯基己-1-醇、3-巯基丙酸甲酯、(+/-)-二氢硫辛酸、巯基乙酸异辛酯、4-巯基-4-甲基-2-戊酮、二巯丙醇、2-巯基乙醇、巯基乙酸、巯基丁二酸、硫代乳酸、1-硫代甘油、对甲苯硫酚、3-巯基丙酸、1,3-丙二硫醇、双巯基乙酸乙二醇酯、邻甲苯硫酚、硫代水杨酸、2,3-二巯基丁二酸、D-半胱氨酸、S-硫代苯甲酰巯基乙酸、2,6-二叔丁基-4-巯基苯酚、4-巯基苯甲酸、2,3-二巯基丁二酸、十四烷基硫代乙酸、对甲硫基苯甲醛、1,4-二巯基苏糖醇、双巯乙基硫醚、3-巯基苯甲酸、3-巯基丙酸乙酯、巯基乙酸苄酯、巯基乙酸异辛酯、季戊四醇四巯基乙酸酯、4-巯基-4-甲基-2-戊酮;
所述含双键、Si-Cl、Si-O-C、Si-N-Si、Si-O-Si结构或环状结构的有机硅单体包括:
含双键结构的有机硅单体:烯丙基三甲氧基硅烷、乙烯基三乙氧基硅烷、乙烯基三甲基硅烷、3-丁烯基三甲基硅烷、乙烯基三丁酮肟基硅烷、四甲基二乙烯基二硅氧烷、1,2,2-三氟乙烯基三苯基硅烷;
含Si-Cl键的有机硅单体:三苯基氯硅烷、甲基乙烯基二氯硅烷、三氟丙基三氯硅烷、三氟丙基甲基二氯硅烷、二甲基苯基氯硅烷、三丁基氯硅烷、苄基二甲基氯硅烷;
含Si-O-C结构的有机硅单体:四甲氧基硅烷、三甲氧基氢硅氧烷、正辛基三乙氧基硅烷、苯基三乙氧基硅烷、乙烯基三(2-甲氧基乙氧基)硅烷、三乙基乙烯基硅烷、六乙基环三硅氧烷、3-(甲基丙烯酰氧)丙基三甲氧基硅烷、苯基三(三甲基硅氧烷基)硅烷、二苯基二乙氧基硅烷、十二烷基三甲氧基硅烷、正辛基三乙氧基硅烷、二甲氧基硅烷、3-氯丙基三甲氧基硅烷;
含Si-N-Si或Si-O-Si结构的有机硅单体:六甲基二硅烷基胺、六甲基环三硅烷氨基、六甲基二硅氮烷、六甲基二硅醚;
含环状结构的有机硅单体:六甲基环三硅氧烷、八甲基环四硅氧烷、六苯基环三硅氧烷、十甲基环五硅氧烷、八苯基环四硅氧烷、三苯基羟基硅烷、二苯基二羟基硅烷、铬酸双(三苯甲基硅烷基)酯、三氟丙基甲基环三硅氧烷、2,2,4,4-四甲基-6,6,8,8-四苯基环四硅氧烷、四甲基四乙烯基环四硅氧烷、3-缩水甘油醚氧基丙基三乙氧基硅烷、γ-缩水甘油醚氧丙基三甲氧基硅烷;
所述低偶极矩有机物单体包括:对二甲苯、苯、甲苯、四氟化碳、α-甲基苯乙烯、聚对二氯甲苯、二甲基硅氧烷、分子量500-50000的聚二甲基硅氧烷、烯丙苯、十氟联苯、十氟联苯酮、全氟烯丙基苯、四氟乙烯、六氟丙烯、1H,1H-全氟辛基胺、全氟碘代十二烷、全氟三丁胺、1,8-二碘代全氟辛烷、全氟己基碘烷、全氟碘代丁烷、全氟碘代癸烷、全氟辛基碘烷、1,4-二(2',3'-环氧丙基)全氟丁烷、十二氟-2-甲基-2-戊烯、2-(全氟丁基)乙基甲基丙烯酸酯、2-(全氟辛基)乙基甲基丙烯酸酯、2-(全氟辛基)碘代乙烷、全氟癸基乙基碘、1,1,2,2-四氢全氟己基碘、全氟丁基乙烯、1H,1H,2H-全氟-1-癸烯、2,4,6-三(全氟庚基)-1,3,5-三嗪、全氟己基乙烯、3-(全氟正辛基)-1,2-环氧丙烷、全氟环醚、全氟十二烷基乙烯、全氟十二烷基乙基碘、二溴对二甲苯、1,1,4,4-四苯基-1,3-丁二烯;
所述多官能度不饱和烃及烃类衍生物包括:
1,3-丁二烯、异戊二烯、1,4-戊二烯、乙氧基化三羟甲基丙烷三丙烯酸酯、二缩三丙二醇二丙烯酸酯、聚乙二醇二丙烯酸酯、1,6-己二醇二丙烯酸酯、二丙烯酸乙二醇酯、二乙二醇二乙烯基醚或二丙烯酸新戊二醇酯;
所述单官能度不饱和氟碳树脂包括:
3-(全氟-5-甲基己基)-2-羟基丙基甲基丙烯酸酯、2-(全氟癸基)乙基甲基丙烯酸酯、2-(全氟己基)乙基甲基丙烯酸酯、2-(全氟十二烷基)乙基丙烯酸酯、2-全氟辛基丙烯酸乙酯、1H,1H,2H,2H-全氟辛醇丙烯酸酯、2-(全氟丁基)乙基丙烯酸酯、(2H-全氟丙基)-2-丙烯酸酯、(全氟环己基)甲基丙烯酸酯、3,3,3-三氟-1-丙炔、1-乙炔基-3,5-二氟苯或4-乙炔基三氟甲苯。
8.根据权利要求1所述的一种以巯基化合物作为过渡层的涂层制备方法,其特征在于:所述步骤(2)、(3)中,等离子体放电方式为射频放电、微波放电、中频放电、高频放电、电火花放电,所述高频放电和中频放电的波形为正弦或双极脉冲。
CN201810200079.0A 2018-03-12 2018-03-12 一种以巯基化合物作为过渡层的涂层制备方法 Active CN108425104B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810200079.0A CN108425104B (zh) 2018-03-12 2018-03-12 一种以巯基化合物作为过渡层的涂层制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810200079.0A CN108425104B (zh) 2018-03-12 2018-03-12 一种以巯基化合物作为过渡层的涂层制备方法

Publications (2)

Publication Number Publication Date
CN108425104A true CN108425104A (zh) 2018-08-21
CN108425104B CN108425104B (zh) 2020-02-18

Family

ID=63158184

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810200079.0A Active CN108425104B (zh) 2018-03-12 2018-03-12 一种以巯基化合物作为过渡层的涂层制备方法

Country Status (1)

Country Link
CN (1) CN108425104B (zh)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109204762A (zh) * 2018-11-13 2019-01-15 深圳市金蛙人科技有限公司 一种用于水域救生圈的防水无刷马达
CN109402611A (zh) * 2018-10-24 2019-03-01 江苏菲沃泰纳米科技有限公司 一种含硅共聚物纳米涂层及其制备方法
CN109438707A (zh) * 2018-08-29 2019-03-08 中山大学 一种用于抗肿瘤药物递送的聚二硫苏糖醇纳米体系及其制备方法和应用
CN109893269A (zh) * 2019-03-15 2019-06-18 温州医科大学附属口腔医院 一种减少细菌附着率的牙合垫
CN110029327A (zh) * 2019-04-24 2019-07-19 佛山市思博睿科技有限公司 一种等离子化学气相沉积循环镀疏水膜方法
CN110158060A (zh) * 2019-06-24 2019-08-23 清华大学深圳研究生院 一种多层结构及其制备方法
CN110306166A (zh) * 2019-08-15 2019-10-08 佛山市思博睿科技有限公司 一种等离子化学气相沉积金属基材表面纳米膜的制备方法
WO2020133682A1 (zh) * 2018-12-24 2020-07-02 武汉华星光电半导体显示技术有限公司 一种显示面板及其制备方法
CN111570216A (zh) * 2020-04-27 2020-08-25 江苏菲沃泰纳米科技有限公司 具有硅烷过渡层的复合防护膜层及其制备方法和产品
CN111978962A (zh) * 2020-08-21 2020-11-24 南京工程学院 一种用于硒化物量子点的绿色制造方法及设备
CN111979526A (zh) * 2020-08-21 2020-11-24 南京工程学院 一种用于制造硫化锌、硫化铅和硫化镉量子点的方法及设备
CN112301329A (zh) * 2020-08-21 2021-02-02 南京工程学院 一种微纳3d打印方法及打印设备
CN113773682A (zh) * 2021-08-25 2021-12-10 佛山市思博睿科技有限公司 用于低温等离子化学气相沉积的疏水材料及使用其制备纳米膜的方法
WO2021249145A1 (zh) * 2020-06-09 2021-12-16 江苏菲沃泰纳米科技股份有限公司 一种保护涂层及其制备方法
WO2022247633A1 (zh) * 2021-05-26 2022-12-01 江苏菲沃泰纳米科技股份有限公司 一种等离子体聚合涂层、制备方法及器件
CN115889118A (zh) * 2021-08-05 2023-04-04 江苏菲沃泰纳米科技股份有限公司 聚合物膜层及其制备方法和led产品

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060068096A1 (en) * 2001-12-12 2006-03-30 Electrovac, Fabrikation Elektrotechnischer Spezialartikel Gesellschaft M.B.H. Method of synthesising carbon nano tubes
CN104328390A (zh) * 2014-09-25 2015-02-04 北京科技大学 一种GaN/金刚石膜复合片的制备方法
CN107058979A (zh) * 2017-01-23 2017-08-18 无锡荣坚五金工具有限公司 一种防水耐电击穿涂层的制备方法
CN107201510A (zh) * 2017-05-21 2017-09-26 无锡荣坚五金工具有限公司 一种周期交替放电制备多功能性纳米防护涂层的方法
CN107523808A (zh) * 2017-08-23 2017-12-29 无锡荣坚五金工具有限公司 一种有机硅纳米防护涂层的制备方法
CN107686986A (zh) * 2017-08-23 2018-02-13 江苏菲沃泰纳米科技有限公司 一种调制结构的有机硅纳米防护涂层的制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060068096A1 (en) * 2001-12-12 2006-03-30 Electrovac, Fabrikation Elektrotechnischer Spezialartikel Gesellschaft M.B.H. Method of synthesising carbon nano tubes
CN104328390A (zh) * 2014-09-25 2015-02-04 北京科技大学 一种GaN/金刚石膜复合片的制备方法
CN107058979A (zh) * 2017-01-23 2017-08-18 无锡荣坚五金工具有限公司 一种防水耐电击穿涂层的制备方法
CN107201510A (zh) * 2017-05-21 2017-09-26 无锡荣坚五金工具有限公司 一种周期交替放电制备多功能性纳米防护涂层的方法
CN107523808A (zh) * 2017-08-23 2017-12-29 无锡荣坚五金工具有限公司 一种有机硅纳米防护涂层的制备方法
CN107686986A (zh) * 2017-08-23 2018-02-13 江苏菲沃泰纳米科技有限公司 一种调制结构的有机硅纳米防护涂层的制备方法

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109438707A (zh) * 2018-08-29 2019-03-08 中山大学 一种用于抗肿瘤药物递送的聚二硫苏糖醇纳米体系及其制备方法和应用
CN109438707B (zh) * 2018-08-29 2021-04-06 中山大学 一种用于抗肿瘤药物递送的聚二硫苏糖醇纳米体系及其制备方法和应用
WO2020042470A1 (zh) * 2018-08-29 2020-03-05 中山大学 一种用于抗肿瘤药物递送的聚二硫苏糖醇纳米体系及其制备方法和应用
CN109402611A (zh) * 2018-10-24 2019-03-01 江苏菲沃泰纳米科技有限公司 一种含硅共聚物纳米涂层及其制备方法
CN109204762A (zh) * 2018-11-13 2019-01-15 深圳市金蛙人科技有限公司 一种用于水域救生圈的防水无刷马达
WO2020133682A1 (zh) * 2018-12-24 2020-07-02 武汉华星光电半导体显示技术有限公司 一种显示面板及其制备方法
CN109893269A (zh) * 2019-03-15 2019-06-18 温州医科大学附属口腔医院 一种减少细菌附着率的牙合垫
CN110029327A (zh) * 2019-04-24 2019-07-19 佛山市思博睿科技有限公司 一种等离子化学气相沉积循环镀疏水膜方法
CN110158060A (zh) * 2019-06-24 2019-08-23 清华大学深圳研究生院 一种多层结构及其制备方法
CN110306166A (zh) * 2019-08-15 2019-10-08 佛山市思博睿科技有限公司 一种等离子化学气相沉积金属基材表面纳米膜的制备方法
CN110306166B (zh) * 2019-08-15 2022-07-12 佛山市思博睿科技有限公司 一种等离子化学气相沉积金属基材表面纳米膜的制备方法
CN111570216B (zh) * 2020-04-27 2023-10-13 江苏菲沃泰纳米科技股份有限公司 具有硅烷过渡层的复合防护膜层及其制备方法和产品
CN111570216A (zh) * 2020-04-27 2020-08-25 江苏菲沃泰纳米科技有限公司 具有硅烷过渡层的复合防护膜层及其制备方法和产品
WO2021249145A1 (zh) * 2020-06-09 2021-12-16 江苏菲沃泰纳米科技股份有限公司 一种保护涂层及其制备方法
CN112301329A (zh) * 2020-08-21 2021-02-02 南京工程学院 一种微纳3d打印方法及打印设备
CN111979526A (zh) * 2020-08-21 2020-11-24 南京工程学院 一种用于制造硫化锌、硫化铅和硫化镉量子点的方法及设备
CN112301329B (zh) * 2020-08-21 2023-05-26 南京工程学院 一种微纳3d打印方法及打印设备
CN111978962A (zh) * 2020-08-21 2020-11-24 南京工程学院 一种用于硒化物量子点的绿色制造方法及设备
WO2022247633A1 (zh) * 2021-05-26 2022-12-01 江苏菲沃泰纳米科技股份有限公司 一种等离子体聚合涂层、制备方法及器件
CN115889118A (zh) * 2021-08-05 2023-04-04 江苏菲沃泰纳米科技股份有限公司 聚合物膜层及其制备方法和led产品
CN113773682A (zh) * 2021-08-25 2021-12-10 佛山市思博睿科技有限公司 用于低温等离子化学气相沉积的疏水材料及使用其制备纳米膜的方法

Also Published As

Publication number Publication date
CN108425104B (zh) 2020-02-18

Similar Documents

Publication Publication Date Title
CN108425104A (zh) 一种以巯基化合物作为过渡层的涂层制备方法
CN107523808B (zh) 一种有机硅纳米防护涂层的制备方法
CN107587119B (zh) 一种复合结构高绝缘硬质纳米防护涂层的制备方法
CN107587120B (zh) 一种具有调制结构的高绝缘纳米防护涂层的制备方法
CN107686986B (zh) 一种调制结构的有机硅纳米防护涂层的制备方法
CN107523809B (zh) 一种有机硅硬质纳米防护涂层的制备方法
CN107201511B (zh) 一种循环周期交替放电制备多功能性纳米防护涂层的方法
CN107142465B (zh) 一种循环小功率连续放电制备多功能性纳米防护涂层的方法
CN107699868A (zh) 一种高绝缘性纳米防护涂层的制备方法
CN107177835B (zh) 一种循环大占空比脉冲放电制备多功能性纳米防护涂层的方法
CN106958012A (zh) 一种基材运动式等离子体放电制备纳米涂层的设备及方法
CN107201510B (zh) 一种周期交替放电制备多功能性纳米防护涂层的方法
CN107142466B (zh) 一种小功率连续放电制备多功能性纳米防护涂层的方法
CN107217243B (zh) 一种大占空比脉冲放电制备多功能性纳米防护涂层的方法
CN206768216U (zh) 一种基材运动式等离子体放电制备纳米涂层的设备
US11185883B2 (en) Methods for preparing nano-protective coating
US11389825B2 (en) Methods for preparing nano-protective coating with a modulation structure

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CP03 Change of name, title or address
CP03 Change of name, title or address

Address after: No.182, East Ring Road, Yuqi supporting area, Huishan Economic Development Zone, Wuxi City, Jiangsu Province, 214000

Patentee after: Jiangsu feiwotai nanotechnology Co.,Ltd.

Address before: 214000 East Ring Road, Yuqi supporting area, Huishan Economic Development Zone, Wuxi City, Jiangsu Province

Patentee before: Jiangsu Favored Nanotechnology Co.,Ltd.