CN108424930A - 一种HBeAg转基因小鼠模型的构建方法和用途 - Google Patents

一种HBeAg转基因小鼠模型的构建方法和用途 Download PDF

Info

Publication number
CN108424930A
CN108424930A CN201810206309.4A CN201810206309A CN108424930A CN 108424930 A CN108424930 A CN 108424930A CN 201810206309 A CN201810206309 A CN 201810206309A CN 108424930 A CN108424930 A CN 108424930A
Authority
CN
China
Prior art keywords
hbeag
mouse
genes
hbv
recombination
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810206309.4A
Other languages
English (en)
Inventor
杨军
张明娟
郭睿
黄小钟
李宗芳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian Jiaotong University
Original Assignee
Xian Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Jiaotong University filed Critical Xian Jiaotong University
Priority to CN201810206309.4A priority Critical patent/CN108424930A/zh
Publication of CN108424930A publication Critical patent/CN108424930A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • C12N15/8509Vectors or expression systems specially adapted for eukaryotic hosts for animal cells for producing genetically modified animals, e.g. transgenic
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K67/00Rearing or breeding animals, not otherwise provided for; New or modified breeds of animals
    • A01K67/027New or modified breeds of vertebrates
    • A01K67/0275Genetically modified vertebrates, e.g. transgenic
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/0004Screening or testing of compounds for diagnosis of disorders, assessment of conditions, e.g. renal clearance, gastric emptying, testing for diabetes, allergy, rheuma, pancreas functions
    • A61K49/0008Screening agents using (non-human) animal models or transgenic animal models or chimeric hosts, e.g. Alzheimer disease animal model, transgenic model for heart failure
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/005Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from viruses
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/87Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
    • C12N15/90Stable introduction of foreign DNA into chromosome
    • C12N15/902Stable introduction of foreign DNA into chromosome using homologous recombination
    • C12N15/907Stable introduction of foreign DNA into chromosome using homologous recombination in mammalian cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • C12N9/22Ribonucleases RNAses, DNAses
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2217/00Genetically modified animals
    • A01K2217/07Animals genetically altered by homologous recombination
    • A01K2217/072Animals genetically altered by homologous recombination maintaining or altering function, i.e. knock in
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2227/00Animals characterised by species
    • A01K2227/10Mammal
    • A01K2227/105Murine
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2267/00Animals characterised by purpose
    • A01K2267/03Animal model, e.g. for test or diseases
    • A01K2267/0337Animal models for infectious diseases
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2730/00Reverse transcribing DNA viruses
    • C12N2730/00011Details
    • C12N2730/10011Hepadnaviridae
    • C12N2730/10111Orthohepadnavirus, e.g. hepatitis B virus
    • C12N2730/10122New viral proteins or individual genes, new structural or functional aspects of known viral proteins or genes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2800/00Nucleic acids vectors
    • C12N2800/10Plasmid DNA
    • C12N2800/106Plasmid DNA for vertebrates
    • C12N2800/107Plasmid DNA for vertebrates for mammalian

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Biophysics (AREA)
  • Veterinary Medicine (AREA)
  • Physics & Mathematics (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Environmental Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Plant Pathology (AREA)
  • Diabetes (AREA)
  • Animal Husbandry (AREA)
  • Pathology (AREA)
  • Toxicology (AREA)
  • Endocrinology (AREA)
  • Public Health (AREA)
  • Urology & Nephrology (AREA)
  • Rheumatology (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Epidemiology (AREA)
  • Virology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Cell Biology (AREA)
  • Mycology (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Abstract

本发明提供了一种HBeAg的转基因小鼠模型的构建方法和应用。通过采用CRISPR/Cas9技术,通过同源重组的方式,在Rosa26基因位点将HBeAg基因定点插入pliver‑HBeAg表达框,通过In‑Fusion cloning方法构建重组R26‑e(Alb‑HBeAg)1打靶载体,该载体包含3.3kb 5’同源臂、pliver‑HBeAg和3.3kb 3’同源臂;将Cas9mRNA、gRNA和重组R26‑e(Alb‑HBeAg)1打靶载体显微注射到C57BL/6J小鼠的受精卵中,随后将受精卵移植入C57BL/6J雌性小鼠子宫,经过逐步繁殖纯化,获得HBeAg转基因小鼠。该转基因小鼠能在肝脏特异性表达HBeAg,因而,可用于研究HBeAg感染机制、评价慢性乙型肝炎治疗性药物和疫苗治疗效果的实验动物模型。

Description

一种HBeAg转基因小鼠模型的构建方法和用途
技术领域
本发明属于生物医学技术领域,涉及医用转基因小鼠模型动物的制备,具体涉及一种HBeAg转基因小鼠模型的构建方法和用途。
背景技术
乙型肝炎病毒(Hepatitis B virus,HBV)是嗜肝病毒科的一种DNA病毒,HBV感染引起的急、慢性乙型肝炎及继发病变(肝硬化、肝细胞癌等)严重危害人类健康。自1967年HBV被发现以来,全球约20亿人感染过HBV,其中2.4亿人为HBV携带者。因此,研究HBV感染机制、探索乙肝防治策略具有重大的科学价值和巨大的社会及经济意义。
但是,由于HBV具有严格的种属限制性和嗜肝细胞特性,且除人类外,虽然黑猩猩也可形成HBV急性感染(Fan Y,et al.2013;Wang Q,et al.2012;Yang C,et al.2015.),但难以形成慢性携带(Barker LF,et al.1973.),加之受伦理、动物保护等因素影响,世界卫生组织(WHO)对应用黑猩猩进行动物实验进行严格限制。而食蟹猴(Dupinay T,etal.2013)、猕猴(Bukh J,et al.2013)、灵长动物近缘旁系群的小型哺乳动物树鼩(DandriM,et al.2013.)以及嗜肝DNA病毒科其它正嗜肝DNA病毒和禽嗜肝DNA病毒,如土拨鼠肝炎病毒(WHV)(Wang BJ,et al.2011;王亮,et al.2014;Wang B,et al.2014.)、鸭HBV(DHBV)(Mason WS,J et al.1980;苏何玲,et al.2013,)、树松鼠肝炎病毒、地松鼠肝炎病毒、苍鹭HBV等也被用于人HBV研究的动物模型。但均因不能充分再现人HBV感染的全过程、感染效率差、病毒复制和抗原表达量低、遗传稳定性不足、缺乏清晰的免疫学背景、种属差异过大、研究试剂不全等等问题而难以满足实际工作需要。
可见,缺乏理想的HBV动物模型一直是严重制约和阻碍HBV感染和致病机制研究、治疗性药物和疫苗研发面临的共同瓶颈问题。因此,建立遗传和免疫背景清晰、易于标准化饲养、能重现人HBV感染和致病过程、满足药物试验评估需要的HBV动物模型,仍是探索和认识慢乙肝发生发展机制和治疗方法的必由之路。
实验小鼠是一种遗传背景清晰、检测手段多样、价格便宜、易于饲养的最常用实验动物,被广泛应用于生物医学研究的各个领域,是培育HBV动物模型的理想基础动物。目前,采用转基因、高压水动力注射、HBV病毒活体肝脏靶向性转染、重组腺相关病毒介导及人源化人-鼠嵌合肝脏等方法建立的多种HBV小鼠模型已在HBV相关基础和临床研究及疗效评价中发挥着重要的作用(李凤磊,et al.,2016)。理论认为建立全基因组HBV转基因小鼠模型是开展HBV感染的分子机制研究和药物、疫苗等治疗方案的效果评估(Yu D,et al.2015;Wang X,et al.2015;Li HY,et al.2015)的理想选择。但是,应用重组AAV8载体建立的全基因组HBV小鼠转基因模型虽能稳定、持续高表达HBsAg和HBeAg等HBV抗原(董小岩,etal.2010;Yang D,et al.2014.)、诱导慢性HBV携带,并可激活HBV耐受小鼠的HBV特异性T细胞免疫应答(Martin P,et al.2015.)、胶原沉积、TGF-β上调和肝纤维化(Ye L,etal.2015.),且成模率高,适用于核苷(酸)类似物抗HBV疗效评价(王国婧,et al.2013.)和慢乙肝发病机制的研究(Ye L,et al.2015.)。但是,该模型中免疫应答更多由AAV8载体而并非HBV基因组及其相关蛋白诱发,且由于缺少HBV自然感染环节,而并不适用于HBV感染和病理生理学机制研究(Huang LR,et al.2006;郭燕菊,et al.2010;蔡启茵,et al.2015)。虽然,采用肝内高压注射建立的成年期携带HBV的小鼠模型(Liu F,et al.1999;Zhang G,et al.1999;Yang PL,et al.2002.)和急慢性感染小鼠模型却存在HBV基因转染效率较低、表达不稳定、持续时间短的缺点(刘大斌,et al.2008.)。
将人肝实质细胞移植入uPA/SCID小鼠(Heckel JL,et al.1990.)构建的人源化小鼠模型(Ilan E,et al.1999.)虽可再现HBV完整的生命周期(Kosaka K,et al.2013.),但人肝实质细胞的来源有限(Carpentier A,et al.2014.),同时,缺乏Kupffer细胞、肝窦内皮细胞、星形细胞也是该类模型难以克服的缺陷。而肝脏-免疫系统双人源化人-鼠嵌合HBVA2/NSG-huHSC/Hep小鼠模型(Uchida T,et al.2015.)虽可再现人HBV完整自然感染过程(Sato S,et al.2015.Zhang TY,et al.2015.)、感染率近75%并持续4个月以上、可产生cccDNA并对HBV产生免疫病理损伤,为HBV感染及免疫机制研究和HBV治疗药物、疫苗研发提供了非常有价值的模型。但是,免疫重建引起细胞病理损伤的同时也会对嵌合组织(肝脏)产生免疫排异。同时,由于人源化小鼠构建过于复杂、技术难度大、周期长、繁育困难、产量低、不稳定、个体差异大,因而难以推广使用。
因此,尽管,HBV全基因组转基因小鼠的建立为深入研究HBV感染、发病机制、临床治疗提供了重要的试验动物模型,并已做出了一系列贡献。但是,由于该模型的先天不足和人-鼠间无法可克服的种属差异,常规HBV全基因转基因小鼠模型大多存在HBV复制水平和抗原表达量偏低(Chisari FV,et al.1985.)、不能形成cccDNA、缺乏免疫辅助细胞、难以再现HBV感染过程和相应细胞病理变化以及针对转基因重组载体的免疫反应等缺陷。同时,由于小鼠免疫缺陷引起的天然免疫耐受和免疫过继(Larkin J,et al.1999)或免疫重建或强免疫佐剂等方法逆转HBV转基因鼠的免疫耐受(Moriyama T,et al.1990;Publicover J,etal.2011.)引起的免疫排斥并诱导出急、慢性肝炎的同时,降低HBV相关抗原的表达(Yu D,et al.2015.)。因而并不能满足于研究HBV感染机制、HBV的细胞间扩散、HBV慢性携带状态的形成机制及免疫系统的相互作用的需要(Lucifora J,et al.2014.)(Guidotti LG,etal.1995.),
总之,正因为全基因组转基因HBV小鼠存在难以克服的缺陷。因此,利用单组分转基因动物模型能更好规避人-鼠之间的种属和免疫差异(免疫耐受/免疫排斥)的限制。加之,实验小鼠遗传背景清晰、研究手段和试剂多样的特点,培育HBV单组分转基因小鼠模型,通过对HBV各组分的分子生物学功能逐一进行研究,依然是阐明HBV致病的分子机制、探索乙肝防治策略、研发慢性乙肝治疗性药物、评估各种治疗方法疗效的理想HBV转基因模式动物和重要途径,有助于实现HBV研究的重点突破。
事实上,一直有学者在尝试构建各种HBV单组分转基因小鼠模型用于HBV研究。早在1985年,就已有学者先后采用同源重组、胚胎注射方法构建了能表达HBsAg和HBx的初代HBV转基因(HBV transgenic,HBV-Tg)小鼠(Chisari FV,et al.1985;Babinet C,etal.1985.)。随后,HBV其它组分的转基因小鼠也相继问世(Chisari FV,et al.1995.)。如HBV small S转基因鼠(Burk R D,et al.1988.)、HBx基因鼠(Koike K,et al.1994.)。其中,Chisari等构建的肝脏特异性表达HBV large S蛋白的转基因鼠(Chisari FV,etal.1986.)应用广泛(Chen Y,et al.2007;Wirth S,et al.1995;Graumann F,etal.2015.)(Hsieh YH,Carcinogenesis 2004.)。稳定传代的HBV C转基因小鼠(GuidottiLG,et al.1994.)被用于HBcAg的作用机制研究和疫苗效果评价。NTCP转基因小鼠模型为研究HBV的感染机制提供了理想的小动物模型。HBV X转基因小鼠模型(屠亚军,等.2000;)证实HBV X蛋白的致癌机制(Xu Z,et al.2002;Ueda H,1995;Lin Y,et al.1997;Benn J,etal.1994;Lucito R,et al.1992;Becker SA,et al.1998;Madden CR,et al.2002;Zhu H,et al.2004;Yamazaki K,et al.2008.),水飞蓟素可有效预防或延迟肝癌发生(Wu YF,etal.2008.)。
HBeAg是HBV分泌性非颗粒状病毒衣壳蛋白,与HBcAg高度同源,均由ORF-C基因编码,但却具有不同的二级结构、抗原表位和免疫反应性。现已证实,HBeAg是HBV特有的免疫耐受因子,是引起HBV免疫耐受、慢性乙肝迁延不愈、并出现不良结局的重要原因之一。而HBeAg血清转换(HBeAg转阴)已被认为是乙肝患者良好转归的里程碑事件,是判断病情发展趋势和药物疗效的一个重要指标,是最终彻底清除HBV、根治乙肝的基础,也是慢性乙肝治疗的中期目标。可见,HBeAg有可能成为慢性乙肝治疗之关键和新靶点。虽然,既往也有学者构建HBeAg转基因鼠(Milich DR,et al.1990.)和转HBc/HBeAg基因小鼠证实HBeAg比HBcg能诱导更强的T细胞免疫耐受(刘红,2003),但现有模型并未能实现HBeAg的肝脏特异性表达,且构建效率低。因而,在一定程度上制约了对HBeAg作用机制和相关治疗药物/疫苗疗效的评估。
综上所述,构建新的HBeAg转基因小鼠模型,对深入研究HBV感染后HBeAg的生物学功能和对肝脏局部免疫微环境的分子作用机制、评估以HBeAg为靶点的治疗药物/疫苗等的疗效具有重要的科学价值和临床意义。
发明内容
针对现有HBeAg转基因小鼠模型及构建方法中存在的缺陷或不足,本发明的目的在于提供一种HBeAg转基因小鼠模型的构建方法和用途,该构建方法过程简单,成功率高,能够为研究HBV感染和致病过程中HBeAg对肝脏局部免疫微环境作用的分子机制提供理想的实验动物模型。
本发明是通过以下技术方案来实现:
本发明公开了一种HBeAg转基因小鼠模型的构建方法,包括以下步骤:
1)HBeAg基因的表达载体的构建
先进行乙型肝炎病毒HBeAg基因克隆,再采用CRISPR/Cas9技术,通过同源重组的方式将HBeAg基因在Rosa26基因位点定点插入pliver-HBeAg表达框,获得含有HBeAg基因的重组R26-e(Alb-HBeAg)1打靶载体,该重组R26-e(Alb-HBeAg)1打靶载体包含3.3kb 5’同源臂、pliver-HBeAg和3.3kb 3’同源臂;
2)HBeAg转基因小鼠的构建
将Cas9mRNA、gRNA和重组R26-e(Alb-HBeAg)1打靶载体显微注射到C57BL/6J小鼠的受精卵中,随后将受精卵移植入C57BL/6J雌性小鼠子宫,经过逐步繁殖纯化,获得HBeAg转基因小鼠。
优选地,HBeAg基因的核苷酸序列如SEQ.ID.NO.1所示。
优选地,含有HBeAg基因的重组R26-e(Alb-HBeAg)1打靶载体中的HBeAg基因的核苷酸序列如SEQ.ID.NO.2所示。
优选地,gRNA的核苷酸序列如SEQ.ID.NO.3所示。
优选地,步骤2)中,逐步繁殖纯化,具体包括以下步骤:
步骤1:将受精卵移植入C57BL/6J雌性小鼠子宫后,对出生小鼠进行长片段PCR鉴定,获得HBeAg基因正确同源重组的F0代建系小鼠;
步骤2:将建系F0代小鼠与C57BL/6J小鼠回交获得携带HBeAg基因的F1代转基因小鼠;
步骤3:携带HBeAg基因的F1代转基因小鼠再次回交,直至获得纯合子子代转基因小鼠,即得到目标HBeAg转基因小鼠模型。
本发明还公开了上述的HBeAg转基因小鼠模型的构建方法构建得到的HBeAg转基因小鼠模型在筛选预防或治疗慢性乙型肝炎的药物或疫苗中的应用。
与现有技术相比,本发明具有以下有益的技术效果:
本发明利用CRISPR/Cas9技术高效特异的基因编辑能力,通过同源重组的方式在Rosa26基因位点将HBeAg基因准确地定点插入pliver-HBeAg表达框。较传统的转基因技术采用随机整合的方式而言,不容易发生传代后插入外源基因丢失的情况。同时,由于本发明的使用的pliver-HBeAg表达框进行HBeAg的表达,该表达框应用了白蛋白启动子,从而能够实现HBeAg蛋白仅在肝细胞中特异性高表达。因此,采用本技术方案制备的HBeAg转基因小鼠模型能实现稳定传代和HBeAg在肝脏细胞中的特异性表达。
本发明的提供的HBeAg转基因小鼠是通过在C57BL/6J小鼠的受精卵环节进行的基因编辑操作。因而,小鼠并不会对HBeAg基因产生特异性免疫反应。再者,HBeAg本身为HBV分泌性蛋白,抗原性很低。因此,本发明采用CRISPR/Cas9技术建立的HBeAg转基因小鼠具有对HBeAg的先天性免疫耐受。可见,本发明建立的HBeAg转基因小鼠不仅能在肝细胞中特异性表达HBeAg,同时,还对HbeAg具有先天性免疫耐受,因而并不影响HBeAg蛋白在转基因小鼠体内正常生物功能的发挥。正因如此,也使得该小鼠模型更接近于人感染HBV后初期HBeAg的在体状态,尤其是慢性乙型肝炎中对HBeAg的免疫耐受状态。因而,该转基因小鼠模型更适用于作为研究HBeAg分子生物学功能的实验动物模型。可见,与传统转基因小鼠模型相比较,采用该技术方法建立的HBeAg转基因小鼠模型具有显著的优点。
本发明公开的HBeAg转基因小鼠模型的构建方法,构建简单、成功率高。由此构建的HBeAg转基因小鼠模型的建立为从原位细胞学水平研究HBeAg的分子生物学功能及其对肝脏局部免疫微环境的影响的分子机制、评估以HBeAg为治疗靶点的治疗药物/疫苗等方案的疗效提供了理想的转基因小鼠动物模型。
附图说明
图1为Rosa26基因位点定点插入相应表达框结构示意图;
图2为重组R26-e(Alb-HBeAg)1打靶载体图谱;
图3为重组R26-e(Alb-HBeAg)1打靶载体酶切鉴定电泳图;
图4为体外转录Cas9、gRNA电泳结果;
图5为F0代小鼠鉴定策略示意图;
图6为同源重组阳性F0代小鼠PCR鉴定电泳图;图中,2,9为阳性,M:1kb DNAmarker,左侧为5’同源臂鉴定结果,右侧为3’同源臂鉴定结果;
图7为F1代小鼠5’同源臂(左侧)和3’同源臂(右侧)PCR鉴定电泳图;
图8为小鼠基因型鉴定PCR引物位置示意图;
图9为鉴定HBeAg转基因小鼠基因型PCR和凝胶电泳图。
具体实施方式
下面结合具体的实施例对本发明做进一步的详细说明,所述是对本发明的解释而不是限定。
本发明是通过以下技术方案来实现:
1、重组R26-e(Alb-HBeAg)1打靶载体的构建:
(1)先采用常规方法进行HBV的HBeAg基因克隆,获得HBeAg基因,再采用CRISPR/Cas9技术(Mali P,et al.2013;Cong L,et al.2013;Wang H,et al.2013;Shen B,etal.2013.),通过同源重组的方式分别在Rosa26基因位点将HBeAg基因定点插入相应表达框,如图1所示。
1)过表达目的基因名称:HBeAg
2)插入位点基因名称(Ensembl):Gt(ROSA)26Sor(ENSMUSG00000086429),简称:Rosa26。
3)插入位点目的基因Ensembl网址链接:
http://asia.ensembl.org/Mus_musculus/Gene/Summary?db=core;g=ENSMUSG00000086429;r=6:113067428-113077333
4)插入位点染色体位置(Ensembl):Chromosome 6:113,076,031
5)敲入位点上下游序列信息:
actgtgaatataaaaatgatagcttttcctgaggcagggtctcactatgtatctctgcctgatctgcaacaagatatgtagactaaagttctgcctgcttttgtctcctgaatactaaggttaaaatgtagtaatacttttggaacttgcaggtcagattcttttataggggacacactaagggagcttgggtgatagttggtaaaatgtgtttcaagtgatgaaaacttgaattattatcaccgcaacctactttttaaaaaaaaaagccaggcctgttagagcatgcttaagggatccctaggacttgctgagcacacaagagtagttacttggcaggctcc。
(2)通过In-Fusion cloning的方法构建含有HBeAg基因的重组打靶载体,即重组R26-e(Alb-HBeAg)1打靶载体,如图2所示,图中,Amp:氨苄抗性筛选基因;5`arm:5`同源臂;Alb-pliver:肝特异表达结构;3`arm:3`同源臂。该载体包含3.3kb 5’同源臂、pliver-HBeAg和3.3kb 3’同源臂,并能通过肝脏异表达结构Alb-pliver调控HBeAg在肝细胞中的特异性表达;采用ScaI酶切技术对重组R26-e(Alb-HBeAg)1打靶载体中目的基因进行酶切电泳鉴定,结果如图3,证实目的片段与理论条带大小(1445bp、3206bp、10305bp)一致。
2、HBeAg转基因小鼠的构建
1)将重组R26-e(Alb-HBeAg)1打靶载体进行酶切,得到含有HBeAg基因的线性DNA片段,并进行PCR和电泳鉴定,结果如图4所示,结果证实,载体构建正确,并获得想用目的片段,其中:
gRNA:5’ggggacacactaagggagct-3’。
2)再采用显微注射技术将Cas9mRNA、gRNA和重组R26-e(Alb-HBeAg)1打靶载体注射到C57BL/6J小鼠的受精卵中,然后将受精卵随后移植入C57BL/6J雌性代孕小鼠子宫腔内。采用长片段PCR技术对出生的幼鼠基因型进行鉴定,结果如图5所示,引物序列如下:
5’同源臂重组阳性F0代小鼠PCR鉴定引物:
Forward1:5'-GCCGGGCCTCGTCGTCT-3'
Reverse2:5'-TTTTTGGGGGTGATGGTGGTC-3'
3’同源臂重组阳性F0代小鼠PCR鉴定引物:
Forward3:5'-TGCCCCTATCCTATCAACACTTCC-3'
Reverse4:5'-IV GATCCATTGCCACCTTTCACTTAG-3'
在5’臂同源重组阳性基因组中扩增出3.4kb和6.8kb片段,阴性基因组应扩增出6.8kb片段;3’臂同源重组阳性基因组应扩增出4.7kb片段,阴性基因组无产物,获得HBeAg基因正确同源重组的阳性F0代建系小鼠,结果如图6所示,其中,2,9号为双臂同源重组阳性的F0代小鼠。
3)将建系的F0代小鼠与野生型C57BL/6J小鼠交配,繁育获得F1代小鼠,并对F1代小鼠5’和3’同源臂PCR鉴定鉴定,鉴定方法同上,获得携带HBeAg基因的F1代转基因小鼠,参见图7,其中,F1代小鼠编号1,2,6,10,11,14号为阳性。并对经PCR鉴定阳性小鼠(1,2,6,10,11,14号)进行测序确认。
4)再次将携带HBeAg基因的F1代转基因小鼠(基因敲入杂合子)进行交配,获得子代(杂合子和纯合子)HBeAg转基因小鼠。并采用短片段PCR对其基因型(纯合子、杂合子和野生型)进行鉴定,结果如图8所示,其中P1,P2,P3,P4为引物位置。小鼠基因型PCR鉴定引物如下:
P1(上游引物):5'-TCAGATTCTTTTATAGGGGACACA-3'
P2(下游引物):5'-TAAAGGCCACTCAATGCTCACTAA-3'
P3(上游引物):5'-CTTCTAGATACCGCCTCAGC-3'
P4(下游引物):5'-AGCCATGTTTTATATTCCTTACC-3'
使用上述引物对(P1,P2),(P3,P4)分别对子代HBeAg转基因小鼠样本进行扩增,判断HBeAg转基因小鼠基因型,结果参见图9:
野生型:只有(P1,P2)扩增出994bp条带,(P3,P4)无条带;
杂合子:(P1,P2)扩增出994bp条带,(P3,P4)也扩增出小条带1280bp;
纯合子:(P1,P2)无条带,(P3,P4)可扩增出小条带1280bp。
采用上述方法建立的HBeAg转基因小鼠,以野生型C57BL/6J小鼠为对照,采用尾静脉采血发采用杂合型和纯合型HBeAg转基因小鼠外周血,采用ELISA检测HBeAg蛋白和抗-HBeAb抗体表达,结果发现,在杂合型和纯合型HBeAg转基因小鼠外周血中均能检出高滴度HBeAg蛋白的表达,而抗-HBeAb抗体阴性。说明采用本发明提供的方法构建的HBeAg转基因小鼠不仅能高水平表达HbeAg蛋白,同时,对HBeAg具有免疫耐受,并不产生相应的抗-HBeAb抗体,结果参见表1:
表1ELISA法检测HBeAg转基因小鼠外周血中HBeAg和HBeAb的表达(A450nm)
注意:*滴度为最高稀释度下样本与空白对照在吸光度(450nm)的比值S/N≥2.1
由表1可以看出,该小鼠模型更接近于人感染HBV后初期HBeAg的在体状态,尤其是慢性乙型肝炎中对HBeAg的免疫耐受状态。
综上所述,本发明通过采用CRISPR/Cas9技术,通过同源重组的方式,在Rosa26基因位点将HBeAg基因定点插入pliver-HBeAg表达框,通过In-Fusion cloning方法构建R26-e(Alb-HBeAg)1打靶载体,该载体包含3.3kb 5’同源臂、pliver-HBeAg和3.3kb 3’同源臂;再将Cas9mRNA、gRNA和donor vector显微注射到C57BL/6J小鼠的受精卵中,获得F0代小鼠,并经长片段PCR鉴定后获得正确同源重组的F0代小鼠;再将F0代小鼠与C57BL/6J小鼠交配获得阳性F1代小鼠,并通过回交,直至获得纯合子小鼠模型。该转基因小鼠能在肝脏特异性表达HBeAg,因而,可用于研究HBeAg感染机制、评价慢性乙型肝炎治疗性药物和疫苗治疗效果的实验动物模型。
序列表
<110> 西安交通大学
<120> 一种HBeAg转基因小鼠模型的构建方法和用途
<160> 3
<170> SIPOSequenceListing 1.0
<210> 1
<211> 639
<212> DNA
<213> 人工合成()
<400> 1
atgcaacttt ttcacctctg cctaatcatc tcttgttcat gtcctactgt tcaagcctcc 60
aagctgtgcc ttgggtggct ttggggcatg gacatcgacc cttataaaga atttggagct 120
actgtggagt tactctcgtt tttgccttct gacttctttc cttcagtacg agatcttcta 180
gataccgcct cagctctgta tcgggaagcc ttagagtctc ctgagcattg ttcacctcac 240
catactgcac tcaggcaagc aattctttgc tggggggaac taatgactct agctacctgg 300
gtgggtgtta atttggaaga tccagcgtct agagacctag tagtcagtta tgtcaacact 360
aatatgggcc taaagttcag gcaactcttg tggtttcaca tttcttgtct cacttttgga 420
agagaaacag ttatagagta tttggtgtct ttcggagtgt ggattcgcac tcctccagct 480
tatagaccac caaatgcccc tatcctatca acacttccgg agactactgt tgttagacga 540
cgaggcaggt cccctagaag aagaactccc tcgcctcgca gacgaaggtc tcaatcgccg 600
cgtcgcagaa gatctcaatc tcgggaatct caatgttag 639
<210> 2
<211> 4631
<212> DNA
<213> 人工合成()
<400> 2
ggttgggtct tttgacactg tgggctttct ttaaagcctc cttcctgcca tgtggtctct 60
tgtttgctac taacttccca tggcttaaat ggcatggctt tttgccttct aagggcagct 120
gctgagattt gcagcctgat ttccagggtg gggttgggaa atctttcaaa cactaaaatt 180
gtcctttaat ttttttttta aaaaatgggt tatataataa acctcataaa atagttatga 240
ggagtgaggt ggactaatat taaatgagtc cctcccctat aaaagagcta ttaaggcttt 300
ttgtcttata cttaactttt tttttaaatg tggtatcttt agaaccaagg gtcttagagt 360
tttagtatac agaaactgtt gcatcgctta atcagatttt ctagtttcaa atccagagaa 420
tccaaattct tcacagccaa agtcaaatta agaatttctg acttttaatg ttaatttgct 480
tactgtgaat ataaaaatga tagcttttcc tgaggcaggg tctcactatg tatctctgcc 540
tgatctgcaa caagatatgt agactaaagt tctgcctgct tttgtctcct gaatactaag 600
gttaaaatgt agtaatactt ttggaacttg caggtcagat tcttttatag gggacacact 660
aagggagacc accatcaccc ccaaaaactc gattaattaa gatctttttg atggcagagt 720
tcagtttacc gggtcacatt gtacctggga agattcaagg atttatggaa aaagtcaaca 780
acaggagtca gagcagccgg aaaagcatgg actctgtact taggactgcg ctttgagcaa 840
tggcacagca agctttaacc ctgtttgcag tcagcacaca aactgtggtt caaagctcca 900
ctttatctct tcttgtggaa ttcagatatc agatcagttt aaaccttgcg gccgcactag 960
tgctcaaatg ggagacaaag agattaagct cttatgtaaa atttgctgtt ttacataact 1020
ttaatgaatg gacaaagtct tgtgcatggg ggtgggggtg gggttagagg ggaacagctc 1080
cagatggcaa acatacgcaa gggatttagt caaacaactt tttggcaaag atggtatgat 1140
tttgtaatgg ggtaggaacc aatgaaatgc gaggtaagta tggttaataa tctacagtta 1200
ttggttaaag aagtatatta gagcgagtct ttctgcacac agatcacctt cctatcaacc 1260
ccactagcct ctggcaaagg taccagtgta caggtttgtt tcctttttta aaatacattg 1320
agtatgcttg ccttttagat atagaaatat ctgatgctgt cttcttcact aaattttgat 1380
tacatgattt gacagcaata ttgaagagtc taacagccag cacgcaggtt ggtaagtact 1440
gtgggaacat cacagatttt ggctccatgc cctaaagaga aattggcttt cagattattt 1500
ggattaaaaa caaagacttt cttaagagat gtaaaatttt catgatgttt tcttttttgc 1560
taaaactaaa gaattattct tttacatttc agtttttctg ctagcaggcg cgccagtcga 1620
ctcccgggat cgccaccatg caactttttc acctctgcct aatcatctct tgttcatgtc 1680
ctactgttca agcctccaag ctgtgccttg ggtggctttg gggcatggac atcgaccctt 1740
ataaagaatt tggagctact gtggagttac tctcgttttt gccttctgac ttctttcctt 1800
cagtacgaga tcttctagat accgcctcag ctctgtatcg ggaagcctta gagtctcctg 1860
agcattgttc acctcaccat actgcactca ggcaagcaat tctttgctgg ggggaactaa 1920
tgactctagc tacctgggtg ggtgttaatt tggaagatcc agcgtctaga gacctagtag 1980
tcagttatgt caacactaat atgggcctaa agttcaggca actcttgtgg tttcacattt 2040
cttgtctcac ttttggaaga gaaacagtta tagagtattt ggtgtctttc ggagtgtgga 2100
ttcgcactcc tccagcttat agaccaccaa atgcccctat cctatcaaca cttccggaga 2160
ctactgttgt tagacgacga ggcaggtccc ctagaagaag aactccctcg cctcgcagac 2220
gaaggtctca atcgccgcgt cgcagaagat ctcaatctcg ggaatctcaa tgttaggatc 2280
cagagctcac cgcggactcg agtaacatca catttaaaag catctcaggt aactatattt 2340
tgaatttttt aaaaaagtaa ctgtaatagt tattattaaa atagcaaaga ttgaccattt 2400
ccaagagcca tatagaccag caccaaccac tattctaaac tatttatgta tgtaaatatt 2460
agcttttaaa attctcaaaa tagttgctga gttgggaacc actattattt ctatcgattc 2520
agcagccgta agtctaggac aggcttaaat tgttttcact ggtgtaaatt gcagaaagat 2580
gatctaagta atttggcatt tattttaata ggtttgaaaa acacatgcca ttttacaaat 2640
aagacttata tttgtccttt tgtttttcag cctaccatga gaataagaga aagaaaatga 2700
agatcaaaag cttattcatc tgtttttctt tttcgttggt gtaaagccaa caccctgtct 2760
aaaaaacata aatttcttta atcattttgc ctcttttctc tgtgcttcaa ttaataaaaa 2820
atggaaagaa tctaatagag tggtacagca ctgttatttt tcaaagatgt gttgctatcc 2880
tgaaaattct gtaggttctg tggaagttcc agtgttctct cttattccac ttcggtagag 2940
gatttctagt ttcttgtggg ctaattaaat aaatcattaa tactcttcta agttatggat 3000
tataaacatt caaaataata ttttgacatt atgataattc tgaataaaag aacaaaaacc 3060
atggtatagg taaggaatat aaaacatggc ttttacctta gaaaaaacaa ttctaaaatt 3120
catatggaat caaaaaagag cctgcaggtc gaggcttggg tgatagttgg taaaatgtgt 3180
ttcaagtgat gaaaacttga attattatca ccgcaaccta ctttttaaaa aaaaaagcca 3240
ggcctgttag agcatgctta agggatccct aggacttgct gagcacacaa gagtagttac 3300
ttggcaggct cctggtgaga gcatatttca aaaaacaagg cagacaacca agaaactaca 3360
gttaaggtta cctgtcttta aaccatctgc atatacacag ggatattaaa atattccaaa 3420
taatatttca ttcaagtttt cccccatcaa attgggacat ggatttctcc ggtgaatagg 3480
cagagttgga aactaaacaa atgttggttt tgtgatttgt gaaattgttt tcaagtgata 3540
gttaaagccc atgagataca gaacaaagct gctatttcga ggtctcttgg tttatactca 3600
gaagcacttc tttgggtttc cctgcactat cctgatcatg tgctaggcct accttaggct 3660
gattgttgtt caaataaact taagtttcct gtcaggtgat gtcatatgat ttcatatatc 3720
aaggcaaaac atgttatata tgttaaacat ttgtacttaa tgtgaaagtt aggtctttgt 3780
gggtttgatt tttaattttc aaaacctgag ctaaataagt catttttaca tgtcttacat 3840
ttggtggaat tgtataattg tggtttgcag gcaagactct ctgacctagt aaccctacct 3900
atagagcact ttgctgggtc acaagtctag gagtcaagca tttcaccttg aagttgagac 3960
gttttgttag tgtatactag tttatatgtt ggaggacatg tttatccaga agatattcag 4020
gactattttt gactgggcta aggaattgat tctgattagc actgttagtg agcattgagt 4080
ggcctttagg cttgaattgg agtcacttgt atatctcaaa taatgctggc cttttttaaa 4140
aagcccttgt tctttatcac cctgttttct acataatttt tgttcaaaga aatacttgtt 4200
tggatctcct tttgacaaca atagcatgtt ttcaagccat attttttttc cttttttttt 4260
ttttttttgg tttttcgaga cagggtttct ctgtatagcc ctggctgtcc tggaactcac 4320
tttgtagacc aggctggcct cgaactcaga aatccgcctg cctctgcctc ctgagtgccg 4380
ggattaaagg cgtgcaccac cacgcctggc taagttggat attttgttat ataactataa 4440
ccaatactaa ctccactggg tggattttta attcagtcag tagtcttaag tggtctttat 4500
tggcccttca ttaaaatcta ctgttcactc taacagaggc tgttggtact agtggcactt 4560
aagcaacttc ctacggatat actagcagat taagggtcag ggatagaaac tagtctagcg 4620
ttttgtatac c 4631
<210> 3
<211> 20
<212> RNA
<213> 人工合成()
<400> 3
ggggacacac taagggagct 20

Claims (6)

1.一种HBeAg转基因小鼠模型的构建方法,其特征在于,包括以下步骤:
1)HBeAg基因的表达载体的构建
先进行乙型肝炎病毒HBeAg基因克隆,再采用CRISPR/Cas9技术,通过同源重组的方式将HBeAg基因在Rosa26基因位点定点插入pliver-HBeAg表达框,获得含有HBeAg基因的重组R26-e(Alb-HBeAg)1打靶载体,该重组R26-e(Alb-HBeAg)1打靶载体包含3.3kb 5’同源臂、pliver-HBeAg和3.3kb 3’同源臂;
2)HBeAg转基因小鼠的构建
将Cas9mRNA、gRNA和重组R26-e(Alb-HBeAg)1打靶载体显微注射到C57BL/6J小鼠的受精卵中,随后将受精卵移植入C57BL/6J雌性小鼠子宫,经过逐步繁殖纯化,获得HBeAg转基因小鼠。
2.根据权利要求1所述的HBeAg转基因小鼠模型的构建方法,其特征在于,HBeAg基因的核苷酸序列如SEQ.ID.NO.1所示。
3.根据权利要求1所述的HBeAg转基因小鼠模型的构建方法,其特征在于,含有HBeAg基因的重组R26-e(Alb-HBeAg)1打靶载体中的HBeAg基因的核苷酸序列如SEQ.ID.NO.2所示。
4.根据权利要求1所述的HBeAg转基因小鼠模型的构建方法,其特征在于,gRNA的核苷酸序列如SEQ.ID.NO.3所示。
5.根据权利要求1所述的HBeAg转基因小鼠模型的构建方法,其特征在于,步骤2)中,逐步繁殖纯化,具体包括以下步骤:
步骤1:将受精卵移植入C57BL/6J雌性小鼠子宫后,对出生小鼠进行长片段PCR鉴定,获得HBeAg基因正确同源重组的F0代建系小鼠;
步骤2:将建系F0代小鼠与C57BL/6J小鼠回交获得携带HBeAg基因的F1代转基因小鼠;
步骤3:携带HBeAg基因的F1代转基因小鼠再次回交,直至获得纯合子子代转基因小鼠,即得到目标HBeAg转基因小鼠模型。
6.如权利要求1~5中任意一项所述的HBeAg转基因小鼠模型的构建方法构建得到的HBeAg转基因小鼠模型在筛选预防或治疗慢性乙型肝炎的药物或疫苗中的应用。
CN201810206309.4A 2018-03-13 2018-03-13 一种HBeAg转基因小鼠模型的构建方法和用途 Pending CN108424930A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810206309.4A CN108424930A (zh) 2018-03-13 2018-03-13 一种HBeAg转基因小鼠模型的构建方法和用途

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810206309.4A CN108424930A (zh) 2018-03-13 2018-03-13 一种HBeAg转基因小鼠模型的构建方法和用途

Publications (1)

Publication Number Publication Date
CN108424930A true CN108424930A (zh) 2018-08-21

Family

ID=63157959

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810206309.4A Pending CN108424930A (zh) 2018-03-13 2018-03-13 一种HBeAg转基因小鼠模型的构建方法和用途

Country Status (1)

Country Link
CN (1) CN108424930A (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109937965A (zh) * 2019-04-03 2019-06-28 台州恩泽医疗中心(集团) 一种高囊胚形成率icr小鼠的培育方法
WO2020077930A1 (zh) * 2018-10-17 2020-04-23 江苏集萃药康生物科技有限公司 一种应用Cas9技术制备CKO/KI动物模型的方法
CN111057754A (zh) * 2019-12-27 2020-04-24 四川省医学科学院.四川省人民医院实验动物研究所 鉴定适用于hbv研究的动物模型的方法和应用
CN111500639A (zh) * 2020-04-15 2020-08-07 徐州医科大学 Stat3线粒体定位条件性基因敲入小鼠模型的构建方法
CN111778288A (zh) * 2020-07-17 2020-10-16 广州华腾生物医药科技有限公司 构建hbv转基因小鼠模型的方法、组合物和应用
CN114250247A (zh) * 2020-09-22 2022-03-29 南京盛德生物科技研究院有限公司 Glud1突变基因敲入小鼠动物模型的构建方法及其应用
CN114317536A (zh) * 2021-11-30 2022-04-12 中国人民解放军陆军军医大学第一附属医院 基于CRISPR/Cas9构建uPA转基因小鼠的制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001081421A2 (en) * 2000-04-21 2001-11-01 Tripep Ab Synthetic peptides that bind to the hepatitis b virus core and e antigens
CN1457634A (zh) * 2002-05-17 2003-11-26 中国人民解放军军事医学科学院生物工程研究所 一种乙型肝炎病毒基因定位整合导致肝细胞癌的小鼠模型

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001081421A2 (en) * 2000-04-21 2001-11-01 Tripep Ab Synthetic peptides that bind to the hepatitis b virus core and e antigens
CN1457634A (zh) * 2002-05-17 2003-11-26 中国人民解放军军事医学科学院生物工程研究所 一种乙型肝炎病毒基因定位整合导致肝细胞癌的小鼠模型

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
BENEDIKT WEFERS等: "Gene editing in mouse zygotes using the CRISPR/Cas9 system", 《METHODS》 *
DR MILICH等: "Is a function of the secreted hepatitis B e antigen to induce immunologic tolerance in utero?", 《PNAS》 *
MARGARET CHENDENG: "Immune Tolerance Split between Hepatitis B Virus Precore and Core Proteins", 《JOURNAL OF VIROLOGY》 *
MF618341.1: "Hepatitis B virus isolate OHBV-HIV011,complete genome", 《GENBANK》 *
刘红等: "乙型肝炎病毒核心抗原转基因小鼠的建立", 《第二军医大学学报》 *
杨锡强主编: "《儿童免疫学》", 30 September 2001, 人民卫生出版社 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020077930A1 (zh) * 2018-10-17 2020-04-23 江苏集萃药康生物科技有限公司 一种应用Cas9技术制备CKO/KI动物模型的方法
US11388892B2 (en) 2018-10-17 2022-07-19 Gempharmatech Co., Ltd Method for preparing CKO/KI animal model by using CAS9 technology
CN109937965A (zh) * 2019-04-03 2019-06-28 台州恩泽医疗中心(集团) 一种高囊胚形成率icr小鼠的培育方法
CN109937965B (zh) * 2019-04-03 2021-05-04 台州恩泽医疗中心(集团) 一种高囊胚形成率icr小鼠的培育方法
CN111057754A (zh) * 2019-12-27 2020-04-24 四川省医学科学院.四川省人民医院实验动物研究所 鉴定适用于hbv研究的动物模型的方法和应用
CN111057754B (zh) * 2019-12-27 2021-01-12 四川省医学科学院.四川省人民医院实验动物研究所 鉴定适用于hbv研究的动物模型的方法和应用
CN111500639A (zh) * 2020-04-15 2020-08-07 徐州医科大学 Stat3线粒体定位条件性基因敲入小鼠模型的构建方法
CN111778288A (zh) * 2020-07-17 2020-10-16 广州华腾生物医药科技有限公司 构建hbv转基因小鼠模型的方法、组合物和应用
CN114250247A (zh) * 2020-09-22 2022-03-29 南京盛德生物科技研究院有限公司 Glud1突变基因敲入小鼠动物模型的构建方法及其应用
CN114317536A (zh) * 2021-11-30 2022-04-12 中国人民解放军陆军军医大学第一附属医院 基于CRISPR/Cas9构建uPA转基因小鼠的制备方法
CN114317536B (zh) * 2021-11-30 2024-03-19 中国人民解放军陆军军医大学第一附属医院 基于CRISPR/Cas9构建uPA转基因小鼠的制备方法

Similar Documents

Publication Publication Date Title
CN108424930A (zh) 一种HBeAg转基因小鼠模型的构建方法和用途
Howard The biology of hepadnaviruses
CN105647922A (zh) 基于一种新gRNA序列的CRISPR-Cas9系统在制备乙肝治疗药物中的应用
CN106414740A (zh) CRISPR‑Cas9特异性敲除猪SLA‑3基因的方法及用于特异性靶向SLA‑3基因的sgRNA
CN87100465A (zh) 在酵母中生产乙型肝炎病毒蛋白质的方法
WO2022227942A1 (zh) 一种乙肝病毒表面蛋白突变体及其在抗乙肝病毒中的应用
CN111304258B (zh) Ndufs2基因条件性点突变小鼠模型及其构建方法和应用
CN103329852A (zh) 一种hbv持续性感染及纤维化小鼠模型建立
CN111139240B (zh) 一种靶向乙型肝炎病毒的改造的CRISPR/SaCas9系统及其应用
CN102031263A (zh) 应用家蚕生物反应器制备人DNA聚合酶δ的方法
CN111793721B (zh) eEF1D蛋白在制备预防或治疗口蹄疫病毒感染药物中的应用
CN1457634A (zh) 一种乙型肝炎病毒基因定位整合导致肝细胞癌的小鼠模型
CN103548775B (zh) 一种cd81和ocln双转基因小鼠的构建方法和用途
US7452696B2 (en) Recombinant plasmid and method for expressing hepatitis B viral antigens and virions in vivo
CN106957851A (zh) 一种内质网示踪以及引发内质网应激的方法
CN106086067A (zh) 泛素介导的表达J亚群禽白血病病毒gp85、p27、p10基因的重组质粒及其构建方法和应用
CN102649814A (zh) 具有HBeAg降解酶活性的蚯蚓蛋白及其应用
CN1162182C (zh) 用线粒体翻译系统生产蛋白质的方法
CN102086450B (zh) 一种用于分离纯化高酶活人类DNA聚合酶δ的免疫亲和层析柱及分离纯化方法
CN1679967A (zh) 高表达HBsAg的乙型病毒性肝炎小鼠模型的制备方法
CN101705226B (zh) 检测乙肝病毒复制能力和抗病毒药物敏感性的方法
CN110468156A (zh) 纠正ob/ob小鼠瘦素基因点突变的基因编辑系统及其应用
CN106399374B (zh) 双表达小干扰rna的复制缺损型乙型肝炎病毒载体、其制备方法及应用
Elsayed et al. Red biotechnology: A healthy world
CN103305519B (zh) 一种乙肝病毒核心抗原的核酸适配体序列及应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20180821

RJ01 Rejection of invention patent application after publication