CN108414599B - 铜纳米颗粒无酶电化学葡萄糖传感器的制备方法 - Google Patents

铜纳米颗粒无酶电化学葡萄糖传感器的制备方法 Download PDF

Info

Publication number
CN108414599B
CN108414599B CN201810205275.7A CN201810205275A CN108414599B CN 108414599 B CN108414599 B CN 108414599B CN 201810205275 A CN201810205275 A CN 201810205275A CN 108414599 B CN108414599 B CN 108414599B
Authority
CN
China
Prior art keywords
electrode
copper
conductive glass
glucose sensor
ito conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810205275.7A
Other languages
English (en)
Other versions
CN108414599A (zh
Inventor
刘启明
韦晨慧楠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan University WHU
Original Assignee
Wuhan University WHU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan University WHU filed Critical Wuhan University WHU
Priority to CN201810205275.7A priority Critical patent/CN108414599B/zh
Publication of CN108414599A publication Critical patent/CN108414599A/zh
Application granted granted Critical
Publication of CN108414599B publication Critical patent/CN108414599B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • G01N27/3275Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction
    • G01N27/3278Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction involving nanosized elements, e.g. nanogaps or nanoparticles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Urology & Nephrology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Food Science & Technology (AREA)
  • Hematology (AREA)
  • Biomedical Technology (AREA)
  • Nanotechnology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Medicinal Chemistry (AREA)
  • Electrochemistry (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

本发明提供了一种铜纳米颗粒无酶电化学葡萄糖传感器的制备方法,其特征在于,该方法包括以下步骤:步骤1.对导电衬底进行预处理;步骤2.构建三电极体系:工作电极选用导电衬底,参比电极选用Ag|AgCl,对电极选用铂片,电解液为2~10mM硫酸铜、10mM柠檬酸钠、1M正丙醇和去离子水的混合液;步骤3.对工作电极施加‑0.40V~‑0.15V vs.Ag|AgCl电压,电沉积10~30分钟,在导电衬底表面获得一层均匀且致密的铜纳米颗粒;步骤4.用乙醇冲洗掉导电衬底表面的电解液,然后放入真空干燥箱内干燥。采用本方法能够简单、高效地制备出具有优良性能的铜纳米颗粒无酶电化学葡萄糖传感器。

Description

铜纳米颗粒无酶电化学葡萄糖传感器的制备方法
技术领域
本发明属于电化学合成生物传感器纳米材料领域,具体涉及铜纳米颗粒无酶电化学葡萄糖传感器的制备方法。
技术背景
根据世界健康组织报道,预计到2030年糖尿病将成为世界上第七大困扰人类的疾病。因此准确地检测葡萄糖的含量变得尤为重要。目前市场上可供使用的葡萄糖传感器大多采用固定酶构成,但成本较高,且本身极易受到湿度、温度及化学物质的影响,势必使得酶葡萄糖传感器的稳定性及准确性降低。与酶葡萄糖传感器相比,无酶葡萄糖传感器不易受温度、湿度等外界因素的影响,而是直接利用电极表面的化学物质催化氧化葡萄糖以实现对葡萄糖的电信号响应的检测。
金属铜具有价格低廉、资源丰富、导电性好等优势。铜纳米颗粒、铜纳米片、铜纳米线、铜纳米枝晶等不同形貌的铜纳米材料在传感器、透明导电薄膜、印刷电路板等领域中都有着广泛的应用。随着葡萄糖传感器研究的深入,如何高效地制备出稳定性好、灵敏度高、线性范围宽的低成本无酶葡萄糖传感器成为研究的热点。目前有很多利用水热法、溶剂热法制备铜基传感器材料的相关报道,这两种方法制备出的材料具有产出量大、重复性好的优点,但大多需要将制备出的材料滴涂在预处理好的玻碳电极表面,再覆盖一层全氟磺酸,以固定电极表面的材料防止脱落,使得制备电极的过程变得复杂且增加了制备电极的成本,且玻碳电极的预处理需要长时间的打磨以达到表面光滑的效果。相较于水热法及溶剂热法,电化学沉积法具有高效、省时、参数易控制的优势,能够通过对工作电极施加一定的电压使材料直接生长在基板表面,粘附性极好,所以不需要再添加粘附剂。但是,电化学沉积法制备出的材料也具有易团聚的缺陷,并且材料的形貌也直接决定着葡萄糖传感器电极的催化氧化性能。
发明内容
本发明是为了解决上述问题而进行的,目的在于提供一种能够简单、高效地制备出铜纳米颗粒无酶电化学葡萄糖传感器的方法。
本发明为了实现上述目的,采用了以下方案:
本发明提供一种铜纳米颗粒无酶电化学葡萄糖传感器的制备方法,其特征在于,包括以下步骤:步骤1.对导电衬底进行预处理;步骤2.构建三电极体系:工作电极选用导电衬底,参比电极选用Ag|AgCl,对电极选用铂片,电解液为2~10mM硫酸铜、10mM柠檬酸钠、1M正丙醇和去离子水的混合液;步骤3.对工作电极施加-0.40V~-0.15V vs.Ag|AgCl电压,电沉积10~30分钟,在导电衬底表面获得一层均匀且致密的铜纳米颗粒;步骤4.用乙醇冲洗掉导电衬底表面的电解液,然后放入真空干燥箱内干燥。
优选地,本发明提供的铜纳米颗粒无酶电化学葡萄糖传感器的制备方法还可以具有以下特征:在步骤1中预处理为:将导电衬底分别在丙酮、乙醇、去离子水中超声洗涤10~30分钟,然后放入鼓风恒温干燥箱中干燥,干燥温度设定为60℃,从而完成预处理,这样效果更好。
优选地,本发明提供的铜纳米颗粒无酶电化学葡萄糖传感器的制备方法还可以具有以下特征:在步骤2采用的电解液中,硫酸铜的浓度与柠檬酸钠的摩尔浓度比值为2~10:10,这样效果更好。
优选地,本发明提供的铜纳米颗粒无酶电化学葡萄糖传感器的制备方法还可以具有以下特征:在步骤3中,电沉积时间为10~30分钟,这样效果更好。
优选地,本发明提供的铜纳米颗粒无酶电化学葡萄糖传感器的制备方法还可以具有以下特征:在步骤4中,干燥温度设定为60℃,这样效果更好。
本发明通过下述技术方案实现铜纳米颗粒无酶电化学葡萄糖传感器对葡萄糖的检测:
(1)制备得到的铜纳米颗粒/ITO等导电衬底为工作电极,银/氯化银为参比电极,铂片为辅助电极插入0.05mM~0.5mM的氢氧化钠溶液;
(2)采用时间-电流测试技术,在0.50V~0.80V vs.Ag|AgCl的电压下进行葡萄糖的检测。
本发明的反应过程如下:
Cu+2OH-→CuO+H2O+2e-(1)
CuO+OH-→CuOOH(2)
CuOOH+e-+Glucose→Glucolactone+CuO+OH-(3)
Glucolactone+OH-→Gluconic acid(4)
葡萄糖与Cu3+的催化氧化产生的电信号实现了铜纳米颗粒无酶电化学葡萄糖传感器对葡萄糖的检测,基于这一原理得到葡萄糖浓度与电信号的线性关系直线。
发明的作用与效果
本发明采用电化学合成纳米颗粒的方法相对简便,只需一步完成,该过程也不需要高温处理,常温常压条件即可,且不需气体保护;本方法能够控制铜纳米颗粒的大小、密度及团聚程度,使得制备的无酶电化学葡萄糖传感器具有原料低廉、线性范围宽、灵敏度高、选择性好、稳定性好等优点。
附图说明
图1为本发明实施例一中合成的铜纳米颗粒的扫描电镜图SEM(a)、X射线诱导俄歇电子能谱XAES(b)、以及高分辨透射电子显微镜图HRTEM(c);
图2为本发明实施例一中合成的铜纳米颗粒/ITO无酶葡萄糖传感器在滴加不同浓度的葡萄糖时的响应曲线(a)和电流-浓度线性关系曲线(b);
图3为本发明实施例一中以不同浓度的硫酸铜为铜源沉积得到的铜纳米颗粒对葡萄糖的电流响应曲线图;
图4为本发明实施例一中测得的人体血样中可能存在的蔗糖、抗坏血酸、尿酸对发明的铜纳米颗粒/ITO无酶葡萄糖传感器检测的影响情况(a)和21天常温常压保存条件下传感器的稳定性(b)。
具体实施方式
以下结合附图对本发明涉及的铜纳米颗粒无酶电化学葡萄糖传感器的制备方法的具体实施方案进行详细地说明。
<实施例一>
传感器的制备
室温下,将氧化铟锡(ITO)导电玻璃先后放入丙酮、乙醇、去离子水中超声处理10分钟,导电面朝上,放在铺有滤纸的培养皿中,再一同放入鼓风干燥箱中,在60℃下干燥2h;配置出5mM硫酸铜、10mM柠檬酸钠、1M正丙醇和去离子水的混合液,静置;工作电极为ITO导电玻璃,参比电极为银/氯化银电极,辅助电极为铂片,使ITO导电玻璃的导电面对准铂片,参比电极放置在工作电极与对电极中间,将三电极插入电解液中;用电化学工作站对工作电极施加-0.26V vs.Ag|AgCl的沉积电压,沉积1000s后,工作电极ITO表面覆盖一层红棕色物质。用乙醇溶液冲洗掉样品表面的电解液后放入铺有滤纸的培养皿中,再一同放入真空干燥箱中于60℃恒温干燥,即可获得铜纳米颗粒/ITO电极。
实验评价
图1(a)为本发明实施例1合成的铜纳米颗粒的扫描电镜图,表明ITO表面生长有一层均匀且致密的铜纳米颗粒,有助于提高其对葡萄糖的催化氧化能力。其尺寸大约为65nm;图1(b)为X射线诱导俄歇电子能谱,峰值大约在918.9eV,表明合成出的颗粒是铜纳米颗粒;图1(b)高分辨透射电子显微镜图HRTEM,晶面间距为0.208nm对应Cu{111},晶面间距为0.181nm对应Cu{200},再次证明成功合成出颗粒是铜纳米颗粒。
采用时间-电流测试技术,将此电极在0.1M氢氧化钠溶液中及0.65V vs.Ag|AgCl的检测电位下连续滴加不同浓度的葡萄糖溶液,得到时间-电流台阶状曲线及浓度-电流线性关系直线。检测结果显示,随着葡萄糖浓度的增大,电流成台阶状上升趋势。图2为铜纳米颗粒/ITO无酶葡萄糖传感器在滴加不同浓度的葡萄糖时的响应曲线(a)及电流-浓度线性关系曲线(b),从图中可知,该传感器的灵敏度为1005.09μA/mM·cm2,线性范围为0.0033~3.9019mM。
为了说明该传感器具有良好的选择性,在测试液氢氧化钠中分别加入0.5mM葡萄糖、0.1mM蔗糖、0.1mM抗坏血酸、0.1mM尿酸,图3中的电流响应程度表明该检测电极具有极好的选择性。
为了说明该传感器具有良好的稳定性,在21天常温常压的保存条件下,每隔三天进行电极对于0.3mM葡萄糖的电化学响应测试,如图4所示,21天后的响应程度只衰减了10.98%,表明该检测电极具有极好的稳定性。
<实施例二>
传感器的制备
室温下,将ITO导电玻璃先后放入丙酮、乙醇、去离子水中超声处理10分钟,导电面朝上,放在铺有滤纸的培养皿中,再一同放入鼓风干燥箱中,在60℃下干燥2h;配置出2mM硫酸铜、10mM柠檬酸钠、1M正丙醇和去离子水的混合液,静置;工作电极为ITO导电玻璃,参比电极为银/氯化银电极,辅助电极为铂片,使ITO导电玻璃的导电面对准铂片,参比电极放置在工作电极与对电极中间,将三电极插入电解液中;用电化学工作站对工作电极施加-0.26V vs.Ag|AgCl的沉积电压,沉积1000s后,工作电极ITO表面覆盖一层红棕色物质。用乙醇溶液冲洗掉样品表面的电解液后放入铺有滤纸的培养皿中,再一同放入真空干燥箱中干燥,即可获得铜纳米颗粒/ITO电极。
实验评价
采用时间-电流测试技术,将此电极在0.1M氢氧化钠溶液中及0.65V vs.Ag|AgCl的检测电位下连续滴加不同浓度的葡萄糖溶液,得到时间-电流台阶状曲线及浓度-电流线性关系直线。结果表明该传感器的灵敏度高、线性范围广。为了说明该传感器具有良好的选择性,在测试液氢氧化钠中分别加入0.5mM葡萄糖、0.1mM蔗糖、0.1mM抗坏血酸、0.1mM尿酸,检测结果表明该检测电极具有极好的选择性。为了说明该传感器具有良好的稳定性,在21天常温常压的保存条件下,每隔三天进行电极对于0.3mM葡萄糖的电化学响应测试,检测结果表明该检测电极具有极好的稳定性。
<实施例三>
传感器的制备
室温下,将ITO导电玻璃先后放入丙酮、乙醇、去离子水中超声处理10分钟,导电面朝上,放在铺有滤纸的培养皿中,再一同放入鼓风干燥箱中,在60℃下干燥2h;配置出10mM硫酸铜、10mM柠檬酸钠、1M正丙醇和去离子水的混合液,静置;工作电极为ITO导电玻璃,参比电极为银/氯化银电极,辅助电极为铂片,使ITO导电玻璃的导电面对准铂片,参比电极放置在工作电极与对电极中间,将三电极插入电解液中;用电化学工作站对工作电极施加-0.30V vs.Ag|AgCl的沉积电压,沉积1000s后,工作电极ITO表面覆盖一层红棕色物质。用乙醇溶液冲洗掉样品表面的电解液后放入铺有滤纸的培养皿中,再一同放入真空干燥箱中干燥,即可获得铜纳米颗粒/ITO电极。
实验评价
采用时间-电流测试技术,将此电极在0.1M氢氧化钠溶液中及0.65V vs.Ag|AgCl的检测电位下连续滴加不同浓度的葡萄糖溶液,得到时间-电流台阶状曲线及浓度-电流线性关系直线。结果表明该传感器的灵敏度高、线性范围广。为了说明该传感器具有良好的选择性,在测试液氢氧化钠中分别加入0.5mM葡萄糖、0.1mM蔗糖、0.1mM抗坏血酸、0.1mM尿酸,检测结果表明该检测电极具有极好的选择性。为了说明该传感器具有良好的稳定性,在21天常温常压的保存条件下,每隔三天进行电极对于0.3mM葡萄糖的电化学响应测试,检测结果表明该检测电极具有极好的稳定性。
<实施例四>
传感器的制备
室温下,将ITO导电玻璃先后放入丙酮、乙醇、去离子水中超声处理10分钟,导电面朝上,放在铺有滤纸的培养皿中,再一同放入鼓风干燥箱中,在60℃下干燥2h;配置出5mM硫酸铜、10mM柠檬酸钠、1M正丙醇和去离子水的混合液,静置;工作电极为ITO导电玻璃,参比电极为银/氯化银电极,辅助电极为铂片,使ITO导电玻璃的导电面对准铂片,参比电极放置在工作电极与对电极中间,将三电极插入电解液中;用电化学工作站对工作电极施加-0.4Vvs.Ag|AgCl的沉积电压,沉积1000s后,工作电极ITO表面覆盖一层红棕色物质。用乙醇溶液冲洗掉样品表面的电解液后放入铺有滤纸的培养皿中,再一同放入真空干燥箱中干燥,即可获得铜纳米颗粒/ITO电极。
实验评价
采用时间-电流测试技术,将此电极在0.3M氢氧化钠溶液中及0.65V vs.Ag|AgCl的检测电位下连续滴加不同浓度的葡萄糖溶液,得到时间-电流台阶状曲线及浓度-电流线性关系直线。检测结果显示,随着葡萄糖浓度的增大,电流成台阶状上升趋势。为了说明该传感器具有良好的选择性,在测试液氢氧化钠中分别加入0.5mM葡萄糖、0.1mM蔗糖、0.1mM抗坏血酸、0.1mM尿酸,电流响应程度表明该检测电极具有极好的选择性。
<实施例五>
传感器的制备
室温下,将ITO导电玻璃先后放入丙酮、乙醇、去离子水中超声处理20分钟,导电面朝上,放在铺有滤纸的培养皿中,再一同放入鼓风干燥箱中,在60℃下干燥2h;配置出5mM硫酸铜、10mM柠檬酸钠、1M正丙醇和去离子水的混合液,静置;工作电极为ITO导电玻璃,参比电极为银/氯化银电极,辅助电极为铂片,使ITO导电玻璃的导电面对准铂片,参比电极放置在工作电极与对电极中间,将三电极插入电解液中;用电化学工作站对工作电极施加-0.15V vs.Ag|AgCl的沉积电压,沉积1000s后,工作电极ITO表面覆盖一层红棕色物质。用乙醇溶液冲洗掉样品表面的电解液后放入铺有滤纸的培养皿中,再一同放入真空干燥箱中干燥,即可获得铜纳米颗粒/ITO电极。
实验评价
采用时间-电流测试技术,将此电极在0.1M氢氧化钠溶液中及0.60V vs.Ag|AgCl的检测电位下连续滴加不同浓度的葡萄糖溶液,得到时间-电流台阶状曲线及浓度-电流线性关系直线,结果表明该传感器的灵敏度高、线性范围广。为了说明该传感器具有良好的选择性,在测试液氢氧化钠中分别加入0.5mM葡萄糖、0.1mM蔗糖、0.1mM抗坏血酸、0.1mM尿酸,检测结果表明该检测电极具有极好的选择性。为了说明该传感器具有良好的稳定性,在21天常温常压的保存条件下,每隔三天进行电极对于0.3mM葡萄糖的电化学响应测试,检测结果表明该检测电极具有极好的稳定性。
以上实施例仅仅是对本发明技术方案所做的举例说明。本发明所涉及的铜纳米颗粒无酶电化学葡萄糖传感器的制备方法并不仅仅限定于在以上实施例中所描述的内容,而是以权利要求所限定的范围为准。本发明所属领域技术人员在该实施例的基础上所做的任何修改或补充或等效替换,都在本发明的权利要求所要求保护的范围内。

Claims (3)

1.一种铜纳米颗粒无酶电化学葡萄糖传感器的制备方法,其特征在于,包括以下步骤:
步骤1.对ITO导电玻璃进行预处理;
步骤2.构建三电极体系:工作电极选用所述ITO导电玻璃,参比电极选用Ag|AgCl,对电极选用铂片,电解液为2~10mM硫酸铜、10mM柠檬酸钠、1M正丙醇和去离子水的混合液;
步骤3.对所述工作电极施加-0.40V~-0.15V vs.Ag|AgCl电压进行电沉积,在所述ITO导电玻璃表面获得一层均匀且致密的铜纳米颗粒;
步骤4.用乙醇冲洗掉所述ITO导电玻璃表面的电解液,然后放入真空干燥箱内干燥,
其中,在所述步骤2采用的所述电解液中,所述硫酸铜的浓度与所述柠檬酸钠的摩尔浓度比值为2~10:10,
在所述步骤3中,电沉积时间为10~30分钟。
2.根据权利要求1所述的铜纳米颗粒无酶电化学葡萄糖传感器的制备方法,其特征在于:
其中,在所述步骤1中是将所述ITO导电玻璃分别在丙酮、乙醇、去离子水中超声洗涤10~30分钟,然后放入鼓风恒温干燥箱中干燥,干燥温度设定为60℃,从而完成预处理。
3.根据权利要求1所述的铜纳米颗粒无酶电化学葡萄糖传感器的制备方法,其特征在于:
其中,在所述步骤4中,干燥温度设定为60℃。
CN201810205275.7A 2018-03-13 2018-03-13 铜纳米颗粒无酶电化学葡萄糖传感器的制备方法 Active CN108414599B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810205275.7A CN108414599B (zh) 2018-03-13 2018-03-13 铜纳米颗粒无酶电化学葡萄糖传感器的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810205275.7A CN108414599B (zh) 2018-03-13 2018-03-13 铜纳米颗粒无酶电化学葡萄糖传感器的制备方法

Publications (2)

Publication Number Publication Date
CN108414599A CN108414599A (zh) 2018-08-17
CN108414599B true CN108414599B (zh) 2020-05-12

Family

ID=63131168

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810205275.7A Active CN108414599B (zh) 2018-03-13 2018-03-13 铜纳米颗粒无酶电化学葡萄糖传感器的制备方法

Country Status (1)

Country Link
CN (1) CN108414599B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110006974B (zh) * 2019-03-26 2023-12-19 西北工业大学深圳研究院 一种高效柔性无酶葡萄糖生物传感电极及制备方法
CN110057880A (zh) * 2019-05-09 2019-07-26 武汉大学 一种基于铜银双金属的柔性无酶葡萄糖电化学传感器的制备方法
CN113130916B (zh) * 2019-12-30 2022-06-14 大连大学 基于PdNPs/NiNPs/ITO电极构建乳糖燃料电池的方法
CN115201304B (zh) * 2022-07-13 2024-03-01 西安文理学院 一种CuNPs-5-Br-PADMA/ ITO电极的制备方法及其应用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106290517B (zh) * 2016-08-15 2018-11-02 中驭(北京)生物工程有限公司 一种高灵敏度的葡萄糖无酶传感器电极材料及其制备方法

Also Published As

Publication number Publication date
CN108414599A (zh) 2018-08-17

Similar Documents

Publication Publication Date Title
CN108414599B (zh) 铜纳米颗粒无酶电化学葡萄糖传感器的制备方法
CN107153089B (zh) 一种树枝状纳米复合物多柔比星电化学传感器的制备方法
Zhou et al. Performance enhancement of ZnO nanorod-based enzymatic glucose sensor via reduced graphene oxide deposition and UV irradiation
Zheng et al. Carbon nanohorns enhanced electrochemical properties of Cu-based metal organic framework for ultrasensitive serum glucose sensing
Hu et al. Real-time photoelectrochemical quantification of hydrogen peroxide produced by living cells
CN111307904B (zh) 竹节状铜镍纳米线阵列葡萄糖传感器电极制备方法及应用
Li et al. Core–shell TiC/C nanofiber arrays decorated with copper nanoparticles for high performance non-enzymatic glucose sensing
CN107436316B (zh) 基于石墨烯和氧化石墨烯复合材料的葡萄糖传感器的制备
CN104569096A (zh) 一种氧化亚铜薄膜基无酶-氧灵敏的葡萄糖光电化学传感器的构建方法和检测方法
CN107192753B (zh) 一种葡萄糖传感电极及其制备方法和应用
Fu et al. Highly sensitive nonenzymatic glucose sensor based on reduced graphene oxide/ultrasmall Pt nanowire nanocomposites
Maghsoudi et al. Reduced graphene oxide nanosheets decorated with cobalt oxide nanoparticles: A nonenzymatic electrochemical approach for glucose detection
CN105606684B (zh) 一种基于蛋白质的石墨烯-单壁碳纳米管-纳米金复合物的制备方法及其应用
CN110057880A (zh) 一种基于铜银双金属的柔性无酶葡萄糖电化学传感器的制备方法
Huang et al. Dual nanocatalysts co-decorated three-dimensional, laser-induced graphene hybrid nanomaterials integrated with a smartphone portable electrochemical system for point-of-care non-enzymatic glucose diagnosis
CN104198554B (zh) 一种工作电极及其制备方法、生物传感器
Chen et al. An electrochemical nonenzymatic microsensor modified by nickel cobaltate nanospheres for glucose sensing in urine
CN110841664B (zh) 一种Cu2O@BiOI复合材料及其制备方法和应用
Singh et al. Synthesis and characterization of wearable cuprous oxide/conductive fabric enabled non-enzymatic electrochemical sensing of glucose
Zhai et al. Facile fabrication of 3D honeycomb-like porous GaN photoanode for reliable and sensitive photoelectrochemical detection of glucose
Zhang et al. A hydrogel electrochemical electrode for simultaneous measurement of cadmium ions and lead ions
Malik et al. Construction of an amperometric pyruvate biosensor based on enzyme bound to a nanocomposite and its comparison with enzyme nanoparticles bound to electrode
CN115097149A (zh) 同时检测葡萄糖和胆固醇的方法、电极及电极制作方法
CN112730543B (zh) 用于快速检测化学需氧量的便携电位型光电化学传感器的构建方法
CN112240901B (zh) 一种简易的甘油生物传感芯片的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant