CN113130916B - 基于PdNPs/NiNPs/ITO电极构建乳糖燃料电池的方法 - Google Patents

基于PdNPs/NiNPs/ITO电极构建乳糖燃料电池的方法 Download PDF

Info

Publication number
CN113130916B
CN113130916B CN201911394456.XA CN201911394456A CN113130916B CN 113130916 B CN113130916 B CN 113130916B CN 201911394456 A CN201911394456 A CN 201911394456A CN 113130916 B CN113130916 B CN 113130916B
Authority
CN
China
Prior art keywords
electrode
ito
ninps
lactose
pdnps
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201911394456.XA
Other languages
English (en)
Other versions
CN113130916A (zh
Inventor
孙晶
曹厚勇
郎明非
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian University
Original Assignee
Dalian University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian University filed Critical Dalian University
Priority to CN201911394456.XA priority Critical patent/CN113130916B/zh
Publication of CN113130916A publication Critical patent/CN113130916A/zh
Application granted granted Critical
Publication of CN113130916B publication Critical patent/CN113130916B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/921Alloys or mixtures with metallic elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Inert Electrodes (AREA)

Abstract

本发明涉及基于PdNPs/NiNPs/ITO电极的乳糖燃料电池的制备方法。以PdNPs/NiNPs/ITO电极为工作电极,Ag/AgCl电极为参比电极,铂丝为辅助电极组成三电极系统,将该三电极系统置于乳糖溶液和支持电解质中,设置初始电位为‑0.2V,终止电位为1.3V,记录乳糖的循环伏安曲线,并利用标准曲线法对电极电催化氧化乳糖溶液的控制过程进行分析。本发明目的是开发一种非酶燃料电池阳极,结合纳米材料的优势,以获得一种具有较高催化活性和稳定性的燃料电池阳极,提高化学能的转换率,促进燃料电池的发展。

Description

基于PdNPs/NiNPs/ITO电极构建乳糖燃料电池的方法
技术领域
本发明涉及燃料电池领域,具体涉及一种基于ITO的纳米镍-钯颗粒复合电极PdNPs/NiNPs/ITO电极在乳糖溶液电催化氧化构建乳糖燃料电池的应用。
背景技术
燃料电池是一种将燃料与氧化剂的化学能通过电化学反应直接转变为电能的发电装置。燃料电池有许多优点,由于它不受卡诺循环的限制,与传统的能量转换系统相比能量转换效率高,能量转化率最高可达到80%,燃料电池技术是当今能量转化率最高的化学发电技术之一。它一般用氢作燃料,氧气为氧化剂,而产物为水,因而对环境的污染很小。由于不同类型的燃料电池在不同场合的应用,使燃料电池有着广泛的用途。基于此,目前,世界上大量科研工作者致力于以葡萄糖为代表的直接糖类燃料电池的研究。因此,制备出具有较高催化活性以及较强稳定性的燃料电池阳极是加速促进燃料电池实现产业化的的关键。在现阶段,生物酶常用于葡萄糖的氧化,以制备出具有较好氧化活性的燃料电池阳极。然而,由于酶的耐受性不足,无法在强酸性或强碱性环境下存活,并且也无法提供稳定的电流,因而限制其在燃料电池方面的应用。
发明内容
为弥补现有技术的不足,本发明提供了一种基于 PdNPs/NiNPs/ITO电极的乳糖燃料电池的方法。本发明中 PdNPs/NiNPs/ITO电极是一种非酶燃料电池阳极,提高化学能的转换率,促进燃料电池的发展。
本发明的发明构思是:本发明以氧化铟玻璃(ITO)为基底和导电层,并在该基底上利用电化学沉积法沉积纳米镍-钯颗粒,制备出纳米镍-钯电极。以PdNPs/NiNPs/ITO电极为工作电极,Ag/AgCl电极为参比电极,铂丝为辅助电极组成三电极系统,将该三电极系统置于以氢氧化钾溶液为电解质的乳糖溶液为燃料组合构建成为该燃料电池。
为实现上述目的,本发明采用的技术方案为:
该PdNPs/NiNPs/ITO电极包括:ITO玻璃为基底和导电层,纳米镍-钯颗粒为电化学沉积层,所述纳米镍-钯颗粒沉积在ITO上。
构建燃料电池:以PdNPs/NiNPs/ITO电极作阳极,Pt电极作阴极;在阳极池中加入浓度1mol/L的氢氧化钾溶液作为电解质溶液,加入浓度为0.01mol/L的乳糖作为燃料,在阴极池加以pH=14的氢氧化钾作溶剂的0.01mol/L的乳糖溶液并且通入氧气,两池之间用阴离子交换膜连接,以此构建形成电催化氧化乳糖燃料电池。
燃料电池测试方法:以PdNPs/NiNPs/ITO电极为工作电极, Ag/AgCl电极为参比电极,铂丝为辅助电极组成三电极系统,将该三电极系统置于乳糖溶液和支持电解质中,设置电位为-0.2~1.3V,记录浓度为2mmol/L~10mmol/L乳糖的循环伏安曲线,并利用标准曲线法对电极电催化氧化乳糖溶液的控制过程进行分析。
进一步地,所述支持电解质含1mol/LKOH,pH为14。
所述乳糖浓度为2mmol/L、4mmol/L、6mmol/L、8mmol/L、 10mmol/L。
基于上述问题,本发明是开发一种非酶燃料电池阳极,结合纳米材料的优势,以获得一种具有较高催化活性和稳定性的燃料电池阳极。在燃料电池中,糖类燃料电池以廉价易得的糖类为燃料,燃料在常温常压下为液体,相比于其它燃料电池而言,具有安全可靠、能量密度高、操作温度低、无电解质腐烛等优点,此外,作为燃料的糖类来源广泛、廉价易得。而乳糖来源广泛,是可再生能源,所制燃料电池体积小巧,燃料利用便利,洁净环保。因此,糖类燃料电池的研究具有很大的应用潜力。
本发明利用ITO良好的导电性,制得一种对乳糖具有高灵敏度的电极,且该电极在乳糖为基液时,催化效果好、灵敏度高、选择性好、结构稳定等优点,本燃料电池可用于制作随身充电宝,可用于发电厂及电动汽车等领域。
附图说明
图1为基于ITO的纳米镍-钯复合电极表面形貌图。
图2为乳糖溶液与空白溶液循环伏安曲线对比图。
图3为不同浓度乳糖溶液的循环伏安曲线。
图4为不同浓度的乳糖的标准曲线。
图5为PdNPs/NiNPs/ITO电极抗毒化曲线。
具体实施方式
下面结合附图和具体实施例对本发明的技术方案作进一步的说明,但本发明不以任何形式受限于实施例内容。实施例中所述实验方法如无特殊说明,均为常规方法;如无特殊说明,所述实验试剂和材料,均可从商业途径获得。
下述实施例PdNPs/NiNPs/ITO电极的制备方法为:
(1)取一块待用的ITO玻璃,用万用表测试ITO玻璃导电面,确保导电面朝下,用玻璃刀切割出尺寸为10*20mm规格的ITO玻璃,备用。将ITO玻璃用去离子水超声清洗30分钟,取出、去离子水冲洗,氮气吹干。依次用丙酮、乙醇超声清洗30分钟,重复上述步骤。
(2)采用三电极体系,用清洗后的ITO电极作为工作电极, Ag/AgCl电极和铂丝电极为参比电极和辅助电极放入盛有硫酸镍 (0.02M)和硫酸钠(0.1M)溶液的电解池中。采用方波伏安法,设置电化学工作站电沉积参数:初始电压-1.0V,终点电位-0.75V,电位增量0.05V,振幅0.025V,频率15HZ,静置时间10s。沉积完后取出电极用超纯水冲洗,氮气吹干。放置一天得到纳米结构的Ni/ITO电极。
(3)采用三电极体系,以纳米结构的Ni/ITO作为工作电极,置于pH=4的醋酸-醋酸钠为缓冲溶液,浓度为5mmol/L的PdCl2溶液中,使用铂电极作为辅助电极,Ag/AgCl作为参比电极,采用交流伏安法,设置电化学工作站电沉积参数:初始电位-0.5V,终点电位 -0.15V,电位增量0.009V,频率60HZ,取样周期10S,得到 PdNPs/NiNPs/ITO电极。
基于ITO/纳米镍-钯复合电极表面形貌图如图1所示:电极上的纳米粒子颗粒大小和分布均匀,电催化性能尤为突出。
实施例1乳糖溶液与空白溶液循环伏安曲线对比
首先,将三电极体系:PdNPs/NiNPs/ITO电极为工作电极、 Ag/AgCl电极为参比电极,铂丝为辅助电极置于pH为14浓度为1 mol/L的KOH溶液中,利用循环伏安法,在-0.2~1.3V的电位范围内进行扫描,记录空白溶液的循环伏安曲线;然后,将三电极体系置于含有1mol/L,pH为14的KOH溶液作为支持电解质的 10mmol/L的乳糖待测液中利用循环伏安法,在-0.2~1.3V的电位范围内进行扫描,记录乳糖的循环伏安曲线。如附图2所示:100mV/s的扫描速度下测试PdNPs/NiNPs/ITO电极在10mmol/L的乳糖的催化效果。从图中可以看出PdNPs/NiNPs/ITO电极对乳糖的催化电流达到一百八十万微安每平方厘米每摩尔。表明PdNPs/NiNPs/ITO电极所组成的燃料能将生物能高效转换为电能。
实施例2PdNPs/NiNPs/ITO电极对相同扫速的不同浓度的乳糖的循环伏安响应
依次将三电极体系置于含有1mol/L,pH为14的KOH溶液作为支持电解质的不同浓度的乳糖待测液中,利用循环伏安法,在 -0.2~1.3V的电位范围内进行扫描。记录浓度为2mmol/L、4mmol/L、 6mmol/L、8mmol/L、10mmol/L乳糖的循环伏安曲线,如附图3、附图4所示:从图中可以看出,随着浓度不断增大,纳米电极在乳糖溶液中的氧化电流也不断增大,氧化峰也不断升高,呈现出良好的催化乳糖的线性响应,由此可以证明乳糖的氧化还原反应受扩散控制。在1~10mmol/L的范围内两者之间还存在着良好的线性关系,乳糖氧化峰电流与浓度的线性回归方程为:I=1.0655C+8.5324,相关系数为0.9904。
实施例3电极抗毒化能力的测定
首先,将三电极体系置于含有1mol/L,pH为14的KOH溶液作为支持电解质的10mm乳糖待测液中,利用时间电流法,在0.7V的电位下,记录乳糖的时间电流曲线。如附图5所示:电流密度在开始时急剧下降。在反应开始时,它是一个快速动力学反应,因此活性位点不含吸附的乳糖分子。之后,新乳糖分子的吸附取决于通过乳糖氧化释放电催化位点,或者在最初几分钟(速率确定步骤)中形成的中间物质如CO,CHx等,电极催化活性位点被占据。因此,电流密度稍微降低主要是由于催化剂的中毒。此外,在整个测试期间特定电流在前300秒经历了快速下降,并且在测试结束之后仍然是平稳且温和的变化,衰减约为7%。所以电极的抗毒化能力强,结构稳定。
以上所述,仅为本发明创造较佳的具体实施方式,但本发明创造的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明创造披露的技术范围内,根据本发明创造的技术方案及其发明构思加以等同替换或改变,都应涵盖在本发明创造的保护范围之内。

Claims (2)

1.基于PdNPs/NiNPs/ITO电极构建乳糖燃料电池的方法,其特征在于,PdNPs/NiNPs/ITO电极包括以ITO为基底和导电层,并在该基底上利用电化学沉积法沉积纳米镍-钯颗粒,制备出PdNPs/NiNPs/ITO电极;
以PdNPs/NiNPs/ITO电极作阳极,Pt电极作阴极;在阳极池中加入浓度1mol/L的氢氧化钾溶液作为电解质溶液,加入浓度为0.01mol/L的乳糖作为燃料,在阴极池加以pH=14的氢氧化钾作溶剂的0.01mol/L的乳糖溶液并且通入氧气,两池之间用阴离子交换膜连接,以此构建形成电催化氧化乳糖燃料电池;
所述PdNPs/NiNPs/ITO电极的制备方法为:
制备纳米结构的NiNPs/ITO电极:采用三电极体系,用清洗后的ITO电极作为工作电极,Ag/AgCl电极为参比电极,铂丝电极为辅助电极放入盛有0.02M硫酸镍和0.1M硫酸钠溶液的电解池中;采用方波伏安法,设置电化学工作站电沉积参数:初始电压-1.0V,终点电位-0.75V,电位增量0.05V,振幅0.025V,频率15HZ,静置时间10s;沉积完后取出电极用超纯水冲洗,氮气吹干,放置一天得到纳米结构的NiNPs/ITO电极;
制备PdNPs/NiNPs/ITO电极:采用三电极体系,以纳米结构的NiNPs/ITO作为工作电极,置于以pH=4的醋酸-醋酸钠为缓冲溶液,浓度为5mmol/L的PdCl2溶液中,使用铂电极作为辅助电极,Ag/AgCl作为参比电极,采用交流伏安法,设置电化学工作站电沉积参数:初始电位-0.5V,终点电位-0.15V,电位增量0.009V,频率60HZ,取样周期10S,得到PdNPs/NiNPs/ITO电极。
2.根据权利要求1所述的方法,其特征在于,ITO电极清洗的制备方法为:
取待用的ITO玻璃,用万用表测试ITO玻璃导电面,确保导电面朝下,用玻璃刀切割出符合规格的ITO玻璃,备用;将ITO玻璃用去离子水超声清洗,取出、去离子水冲洗,氮气吹干;依次用丙酮、乙醇超声清洗,重复上述步骤。
CN201911394456.XA 2019-12-30 2019-12-30 基于PdNPs/NiNPs/ITO电极构建乳糖燃料电池的方法 Active CN113130916B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911394456.XA CN113130916B (zh) 2019-12-30 2019-12-30 基于PdNPs/NiNPs/ITO电极构建乳糖燃料电池的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911394456.XA CN113130916B (zh) 2019-12-30 2019-12-30 基于PdNPs/NiNPs/ITO电极构建乳糖燃料电池的方法

Publications (2)

Publication Number Publication Date
CN113130916A CN113130916A (zh) 2021-07-16
CN113130916B true CN113130916B (zh) 2022-06-14

Family

ID=76767695

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911394456.XA Active CN113130916B (zh) 2019-12-30 2019-12-30 基于PdNPs/NiNPs/ITO电极构建乳糖燃料电池的方法

Country Status (1)

Country Link
CN (1) CN113130916B (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1318874A (zh) * 2001-04-23 2001-10-24 华南理工大学 液体燃料电池及其阳极催化剂
WO2009045567A2 (en) * 2007-05-04 2009-04-09 Ohio University Electrochemical cells and methods for generating fuel
CN102732927A (zh) * 2012-07-17 2012-10-17 西北工业大学 氧化锌/氧化亚铜异质结的制备方法
CN103074641A (zh) * 2012-12-28 2013-05-01 上海交通大学 高效电催化氧化氨的Pt/ITO电极的制备方法
CN104078689A (zh) * 2014-07-09 2014-10-01 哈尔滨工程大学 石墨烯沾附塑料负载PdNi过氧化氢电还原催化剂的制备方法
CN104132976A (zh) * 2014-06-11 2014-11-05 中国科学院长春应用化学研究所 Ito导电玻璃表面电沉积超稳定金属薄膜原位构建电极的方法
CN105688935A (zh) * 2016-01-13 2016-06-22 安徽师范大学 一种Pt/Cu-Ni催化剂的制备方法及其催化氧化醇类的方法及应用
CN106549168A (zh) * 2016-10-20 2017-03-29 哈尔滨工程大学 催化过氧化氢电还原的三维Pd‑Ni纳米线阵列催化剂的制备方法
CN108385125A (zh) * 2018-03-08 2018-08-10 太原理工大学 温和条件制备Au-Bi阳极析氧催化剂的方法及应用
CN108414599A (zh) * 2018-03-13 2018-08-17 武汉大学 铜纳米颗粒无酶电化学葡萄糖传感器的制备方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1318874A (zh) * 2001-04-23 2001-10-24 华南理工大学 液体燃料电池及其阳极催化剂
WO2009045567A2 (en) * 2007-05-04 2009-04-09 Ohio University Electrochemical cells and methods for generating fuel
CN102732927A (zh) * 2012-07-17 2012-10-17 西北工业大学 氧化锌/氧化亚铜异质结的制备方法
CN103074641A (zh) * 2012-12-28 2013-05-01 上海交通大学 高效电催化氧化氨的Pt/ITO电极的制备方法
CN104132976A (zh) * 2014-06-11 2014-11-05 中国科学院长春应用化学研究所 Ito导电玻璃表面电沉积超稳定金属薄膜原位构建电极的方法
CN104078689A (zh) * 2014-07-09 2014-10-01 哈尔滨工程大学 石墨烯沾附塑料负载PdNi过氧化氢电还原催化剂的制备方法
CN105688935A (zh) * 2016-01-13 2016-06-22 安徽师范大学 一种Pt/Cu-Ni催化剂的制备方法及其催化氧化醇类的方法及应用
CN106549168A (zh) * 2016-10-20 2017-03-29 哈尔滨工程大学 催化过氧化氢电还原的三维Pd‑Ni纳米线阵列催化剂的制备方法
CN108385125A (zh) * 2018-03-08 2018-08-10 太原理工大学 温和条件制备Au-Bi阳极析氧催化剂的方法及应用
CN108414599A (zh) * 2018-03-13 2018-08-17 武汉大学 铜纳米颗粒无酶电化学葡萄糖传感器的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
形貌可控的钯纳米粒子的电化学制备及电催化性质;晏晓晖等;《高等学校化学学报》(第11期);全文 *

Also Published As

Publication number Publication date
CN113130916A (zh) 2021-07-16

Similar Documents

Publication Publication Date Title
CN110530954A (zh) 一种非贵金属催化剂膜电极耐久性测试方法
CN114583183B (zh) 一种酸性葡萄糖燃料电池电极及其制备方法
CN113130916B (zh) 基于PdNPs/NiNPs/ITO电极构建乳糖燃料电池的方法
CN113013420B (zh) 一种具有抗毒化能力的果糖燃料电池的制备方法
CN113130913B (zh) PtNPs/NiNPs/AgNWs/PET可塑电极及其在构建果糖燃料电池上的应用
CN113030203B (zh) 一种PdNPs/NiNPs/GO/AgNWs/电极构建麦芽糖燃料电池的方法
CN113054228B (zh) CuO-NiNPs/ITO电极的制备方法及其构建甲醇燃料电池的方法
CN115839991A (zh) 一种铱基析氧电催化剂稳定性的原位监测方法
CN112993266B (zh) 一种应用CuO-NiNPs/碳布可塑电极构建的构建淀粉燃料电池
CN113130950B (zh) 一种应用CuO/泡沫镍电极电催化氧化麦芽糖溶液构建麦芽糖燃料电池的方法
CN113092552B (zh) 一种CuO-NiNPs/MFC电极构建乳糖燃料电池的方法
CN112886025A (zh) 一种果糖燃料电池及其构建方法
CN112886023B (zh) 一种CuO-NiNPs/PET-ITO电极及其应用
CN112993269B (zh) 一种非酶燃料电池阳极及其制备方法和应用
CN113130952A (zh) PdNPs/NiNPs/ITO电极及其电催化氧化乙醇溶液构建乙醇燃料电池的方法
CN113130914B (zh) 乳糖燃料电池及构建该燃料电池的PtNPs/CuNPs/NiNPs/碳布可塑电极
CN113036157B (zh) 一种泡沫镍电极的应用
CN113013453B (zh) 一种构建甲醇燃料电池的方法
CN112993268B (zh) 一种基于gce的纳米镍/纳米铂复合电极及其应用
CN113036158B (zh) 一种阳极构建淀粉燃料电池的方法
CN113054201B (zh) 基于NiNPs/AuNPs/CFP电极电催化氧化蔗糖溶液构建蔗糖燃料电池的方法
CN113054206B (zh) 一种NiNPs/AuNPs/GN/AgNWs/纸可塑电极的制备方法及应用
CN113036164B (zh) 一种基于介孔泡沫碳的复合电极制备方法及应用
CN113097500B (zh) 一种CuO-NiNPs/AgNWs/CNT/PDMS阳极的制备方法及其应用
CN114583188B (zh) 一种构建中性葡萄糖燃料电池电极的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant