CN108411252A - 一种SrTiO3/Cu/SrTiO3三明治结构的柔性透明导电薄膜的制备方法 - Google Patents

一种SrTiO3/Cu/SrTiO3三明治结构的柔性透明导电薄膜的制备方法 Download PDF

Info

Publication number
CN108411252A
CN108411252A CN201810267138.6A CN201810267138A CN108411252A CN 108411252 A CN108411252 A CN 108411252A CN 201810267138 A CN201810267138 A CN 201810267138A CN 108411252 A CN108411252 A CN 108411252A
Authority
CN
China
Prior art keywords
srtio
film
transparent conductive
sandwich structure
conductive film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810267138.6A
Other languages
English (en)
Other versions
CN108411252B (zh
Inventor
于仕辉
赵乐
刘荣闯
李玲霞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin University
Original Assignee
Tianjin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin University filed Critical Tianjin University
Priority to CN201810267138.6A priority Critical patent/CN108411252B/zh
Publication of CN108411252A publication Critical patent/CN108411252A/zh
Application granted granted Critical
Publication of CN108411252B publication Critical patent/CN108411252B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • C23C14/352Sputtering by application of a magnetic field, e.g. magnetron sputtering using more than one target
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/088Oxides of the type ABO3 with A representing alkali, alkaline earth metal or Pb and B representing a refractory or rare earth metal
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • C23C14/185Metallic material, boron or silicon on other inorganic substrates by cathodic sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)
  • Manufacturing Of Electric Cables (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

本发明公开了一种SrTiO3/Cu/SrTiO3三明治结构的柔性透明导电薄膜的制备方法,该薄膜是由上下两层SrTiO3中间夹着Cu薄膜层及透明有机柔性衬底组成;先将SrTiO3和Cu靶材及衬底装入磁控溅射腔体内,靶材与衬底的距离为40~90mm;系统本底真空度抽至3.0×10‑3Pa以下,使用Ar作为溅射气体溅射SrTiO3层,沉积得到SrTiO3薄膜层,其厚度为10~200nm;再沉积得到Cu薄膜层,其厚度为3~20nm;再重复沉积得到SrTiO3薄膜层,其厚度为10~200nm;再原位70~90℃退火,制得SrTiO3/Cu/SrTiO3三明治结构的柔性透明导电薄膜。本发明薄膜性能优良,成本低廉,适合工业化生产。

Description

一种SrTiO3/Cu/SrTiO3三明治结构的柔性透明导电薄膜的制 备方法
技术领域
本发明属于一种以成分为特征的陶瓷组合物,尤其涉及一种SrTiO3/Cu/SrTiO3三明治结构的柔性透明导电薄膜及其制备方法。
背景技术
透明导电薄膜作为透明电极被广泛应用在诸多光电器件中。其中,Sn4+掺杂的In2O3(ITO)薄膜因具有低的电阻率和高的可见光透过率等优良的光电性能,是目前最常用的透明导电薄膜材料。但是ITO中含有稀有金属铟,其资源极为匮乏、价格昂贵,需要开发出一种新的透明导电薄膜来替代ITO。特别是随着柔性电子学的发展,对柔性透明导电薄膜的需求极为迫切,而在柔性基底上制备的透明导电氧化物类薄膜的电阻率普遍在10-3Ω·cm以上,远远不能满足应用要求。亟需采用新的结构设计和制备技术来制备柔性透明导电薄膜。
SrTiO3是一种具有具有钙钛矿结构的宽带隙(~3.7eV)半导体材料,化学稳定性和热稳定性好,在电化学、电阻开关、半导体晶体管方面有着重要的应用。并且STO中不含有稀有元素,价格便宜,易于制备。超薄导电金属层也可以作为透明导电膜,但目前能应用的只有金、银和铂等电阻率低且化学稳定性好的贵金属,但金和铂成本昂贵,限制了其应用。因此本发明中选用Cu作为导电金属层制备SrTiO3/Cu/SrTiO3三明治结构的柔性透明导电薄膜。
发明内容
本发明的目的,在于克服现有技术中电学性能的不足,利用磁控溅射沉积技术,提供一种成本低廉而性能优良的SrTiO3/Cu/SrTiO3三明治结构的柔性透明导电薄膜的制备方法。
本发明通过如下技术方案予以实现。
一种SrTiO3/Cu/SrTiO3三明治结构的柔性透明导电薄膜的制备方法,具有如下步骤:
所述SrTiO3/Cu/SrTiO3三明治结构的柔性透明导电薄膜是由上下两层SrTiO3中间夹着Cu薄膜层以及透明有机柔性衬底组成;
(1)将SrTiO3靶材和Cu靶材装入磁控溅射腔体内;
将透明有机柔性衬底用无水乙醇和去离子水超声洗涤,并用高纯氮气吹干,清洁干燥的Pt/Ti/SiO2/Si透明有机柔性衬底放入磁控溅射样品台上;
所述透明有机柔性衬底为聚碳酸酯衬底、聚对苯二甲酸类衬底或者聚萘二甲酸乙二醇酯衬底;
靶材与衬底的距离为40~90mm;
(2)待步骤(1)完成后,将磁控溅射系统的本底真空度抽至3.0×10-3Pa以下,使用Ar作为溅射气体溅射SrTiO3层,溅射功率为30~180W,溅射总气压0.3~15Pa,沉积得到SrTiO3薄膜层,SrTiO3薄膜层的厚度为10~200nm;
(3)步骤(2)完成后,开始溅射Cu层,溅射功率20~200W,溅射总气压为0.3~15Pa,沉积得到Cu薄膜层,Cu薄膜层的厚度为3~20nm;
(4)步骤(3)完成后,重复步骤(2),将磁控溅射系统的本底真空度抽至3.0×10-3Pa以下,使用Ar作为溅射气体溅射SrTiO3薄膜层,溅射功率为30~180W,溅射总气压0.3~15Pa,沉积得到SrTiO3薄膜层,SrTiO3薄膜层的厚度为10~200nm;
(5)溅射结束后,原位70~90℃退火2~30min,制得SrTiO3/Cu/SrTiO3三明治结构的柔性透明导电薄膜。
所述步骤(1)的SrTiO3和Cu靶材为任意市售或者按常规工艺自制靶材,SrTiO3靶材中SrTiO3的纯度为98-99.999%,Cu靶材中Cu的纯度为99-99.9999%。
所述步骤(2)中Ar的纯度在99.99%以上。
所述步骤(2)或(4)SrTiO3薄膜层的厚度为30~60nm。
所述步骤(3)的Cu薄膜层厚度为7~13nm。
所述步骤(2)、(3)或(4)薄膜层的厚度通过调节制备工艺参数或沉积时间控制。
本发明利用磁控溅射技术制备SrTiO3/Cu/SrTiO3三明治结构的柔性透明导电薄膜,薄膜性能优良,成本低廉,适合工业化生产。
附图说明
图1是实施例1的SrTiO3/Cu/SrTiO3三明治结构的柔性透明导电薄膜的光学透过性能(紫外-可见光谱)图谱。
具体实施方式
下面结合具体实施例进一步阐述本发明,应理解,这些实施例仅用于说明本发明而不用于限制本发明的保护范围。
实施例1
所述SrTiO3/Cu/SrTiO3三明治结构的柔性透明导电薄膜是由上下两层SrTiO3中间夹着Cu薄膜层以及透明有机柔性衬底组成;
(1)将SrTiO3靶材与Cu靶材一起装入磁控溅射真空腔体内。
先后用无水乙醇和去离子水超声清洗聚碳酸酯衬底,并用高纯氮气吹干,放入磁控溅射腔体中,氮气纯度为99.99%。
靶材与衬底的距离为40mm~90mm。
(2)将磁控溅射系统的本底真空度抽至1.0×10-3Pa。通入高纯(99.99%)的氩气作为溅射气体,溅射总气压调节为1.0Pa,溅射功率为80W,进行沉积得到40nm厚的SrTiO3薄膜层。
(3)步骤(2)结束后,使用溅射功率为30W,溅射总气压为1Pa,进行沉积得到9nm厚的Cu薄膜层。
(4)步骤(3)结束后,重复步骤(2),使用溅射功率为80W,溅射总气压为1Pa,进行沉积得到40nm后的SrTiO3薄膜。
(5)步骤(4)结束后,在80℃下原位退火10min,制得SrTiO3/Cu/SrTiO3三明治结构的柔性透明导电薄膜。
图1为实施例1中制备在聚碳酸酯衬底上SrTiO3/Cu/SrTiO3三明治结构的柔性透明导电薄膜制品的光学透过性能(紫外-可见光谱)图谱,可见在可见光范围内(380nm-780nm)的平均光学透过率达75%以上。
经检测,实施例1得到的SrTiO3/Cu/SrTiO3三明治结构的柔性透明导电薄膜的方块电阻为13.1Ω/□。
实施例2~7
实施例2~7除SrTiO3与Cu薄膜层厚度之外,其它工艺步骤和工艺参数均与实施例1完全相同。检测后的各个具体实施例的导电性能详见表1。
表1

Claims (6)

1.一种SrTiO3/Cu/SrTiO3三明治结构的柔性透明导电薄膜的制备方法,具有如下步骤:
所述SrTiO3/Cu/SrTiO3三明治结构的柔性透明导电薄膜是由上下两层SrTiO3中间夹着Cu薄膜层以及透明有机柔性衬底组成;
(1)将SrTiO3靶材和Cu靶材装入磁控溅射腔体内;
将透明有机柔性衬底用无水乙醇和去离子水超声洗涤,并用高纯氮气吹干,清洁干燥的Pt/Ti/SiO2/Si透明有机柔性衬底放入磁控溅射样品台上;
所述透明有机柔性衬底为聚碳酸酯衬底、聚对苯二甲酸类衬底或者聚萘二甲酸乙二醇酯衬底;
靶材与衬底的距离为40~90mm;
(2)待步骤(1)完成后,将磁控溅射系统的本底真空度抽至3.0×10-3Pa以下,使用Ar作为溅射气体溅射SrTiO3薄膜层,溅射功率为30~180W,溅射总气压0.3~15Pa,沉积得到SrTiO3薄膜层,SrTiO3薄膜层的厚度为10~200nm;
(3)步骤(2)完成后,开始溅射Cu薄膜层,溅射功率20~200W,溅射总气压为0.3~15Pa,沉积得到Cu薄膜层,Cu薄膜层的厚度为3~20nm;
(4)步骤(3)完成后,重复步骤(2),将磁控溅射系统的本底真空度抽至3.0×10-3Pa以下,使用Ar作为溅射气体溅射SrTiO3薄膜层,溅射功率为30~180W,溅射总气压0.3~15Pa,沉积得到SrTiO3薄膜层,SrTiO3薄膜层的厚度为10~200nm;
(5)溅射结束后,原位70~90℃退火2~30min,制得SrTiO3/Cu/SrTiO3三明治结构的柔性透明导电薄膜。
2.根据权利要求1所述的一种SrTiO3/Cu/SrTiO3三明治结构的柔性透明导电薄膜的制备方法,其特征在于,所述步骤(1)的SrTiO3和Cu靶材为任意市售或者按常规工艺自制靶材,SrTiO3靶材中SrTiO3的纯度为98-99.999%,Cu靶材中Cu的纯度为99-99.9999%。
3.根据权利要求1所述的一种SrTiO3/Cu/SrTiO3三明治结构的柔性透明导电薄膜的制备方法,其特征在于,所述步骤(2)中Ar的纯度在99.99%以上。
4.根据权利要求1所述的一种SrTiO3/Cu/SrTiO3三明治结构的柔性透明导电薄膜的制备方法,其特征在于,所述步骤(2)或(4)SrTiO3薄膜层的厚度为30~60nm。
5.根据权利要求1所述的一种SrTiO3/Cu/SrTiO3三明治结构的柔性透明导电薄膜的制备方法,其特征在于,所述步骤(3)的Cu薄膜层厚度为7~13nm。
6.根据权利要求1所述的一种SrTiO3/Cu/SrTiO3三明治结构的柔性透明导电薄膜的制备方法,其特征在于,所述步骤(2)、(3)或(4)薄膜层的厚度通过调节制备工艺参数或沉积时间控制。
CN201810267138.6A 2018-03-28 2018-03-28 一种SrTiO3/Cu/SrTiO3三明治结构的柔性透明导电薄膜的制备方法 Expired - Fee Related CN108411252B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810267138.6A CN108411252B (zh) 2018-03-28 2018-03-28 一种SrTiO3/Cu/SrTiO3三明治结构的柔性透明导电薄膜的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810267138.6A CN108411252B (zh) 2018-03-28 2018-03-28 一种SrTiO3/Cu/SrTiO3三明治结构的柔性透明导电薄膜的制备方法

Publications (2)

Publication Number Publication Date
CN108411252A true CN108411252A (zh) 2018-08-17
CN108411252B CN108411252B (zh) 2020-02-28

Family

ID=63133686

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810267138.6A Expired - Fee Related CN108411252B (zh) 2018-03-28 2018-03-28 一种SrTiO3/Cu/SrTiO3三明治结构的柔性透明导电薄膜的制备方法

Country Status (1)

Country Link
CN (1) CN108411252B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114156371A (zh) * 2021-10-20 2022-03-08 广东爱旭科技有限公司 一种硅基FeSi2薄膜量子阱太阳能电池及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103993288A (zh) * 2014-05-30 2014-08-20 天津大学 一种透明导电FTO/Ag/FTO复合薄膜的制备方法
CN105741916A (zh) * 2016-03-09 2016-07-06 东莞理工学院 一种柔性透明电极及其制备方法
CN106024110A (zh) * 2016-05-29 2016-10-12 东莞理工学院 一种锡酸锶基柔性透明导电电极及其制备方法
US9506153B2 (en) * 2014-09-17 2016-11-29 The United States Of America As Represented By The Secretary Of The Army Integrated composite perovskite oxide heterostructure

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103993288A (zh) * 2014-05-30 2014-08-20 天津大学 一种透明导电FTO/Ag/FTO复合薄膜的制备方法
US9506153B2 (en) * 2014-09-17 2016-11-29 The United States Of America As Represented By The Secretary Of The Army Integrated composite perovskite oxide heterostructure
CN105741916A (zh) * 2016-03-09 2016-07-06 东莞理工学院 一种柔性透明电极及其制备方法
CN106024110A (zh) * 2016-05-29 2016-10-12 东莞理工学院 一种锡酸锶基柔性透明导电电极及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
RAHMAN QAZI INAMUR等: ""Efficient degradation of Methylene Blue dye over highly reactive Cu doped strontium titanate(SrTiO3) nanoparticles photocatalyst under visible light"", 《JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114156371A (zh) * 2021-10-20 2022-03-08 广东爱旭科技有限公司 一种硅基FeSi2薄膜量子阱太阳能电池及其制备方法

Also Published As

Publication number Publication date
CN108411252B (zh) 2020-02-28

Similar Documents

Publication Publication Date Title
Castro et al. Dependence of Ga-doped ZnO thin film properties on different sputtering process parameters: Substrate temperature, sputtering pressure and bias voltage
CN103993288B (zh) 一种透明导电FTO/Ag/FTO复合薄膜的制备方法
CN107735841A (zh) 透明导电体
JP2013131560A (ja) 透明導電膜積層体及びその製造方法、並びに薄膜太陽電池及びその製造方法
KR20130063472A (ko) 터치 패널 센서용 Cu 합금 배선막 및 그 제조 방법, 및 터치 패널 센서 및 스퍼터링 타깃
KR20090063946A (ko) 산화인듐주석 타겟 및 이를 이용한 투명 도전막의 제조방법
CN102677012A (zh) 多层透明导电薄膜的制备方法
CN104183301A (zh) 石墨烯透明导电膜
JP2011184715A (ja) 酸化亜鉛系透明導電膜形成材料、その製造方法、それを用いたターゲット、および酸化亜鉛系透明導電膜の形成方法
WO2007114429A1 (ja) 酸化インジウム系透明導電膜及びその製造方法
CN105807986B (zh) 透明导电体和触摸屏
CN108193179B (zh) 一种多层红外透明导电薄膜及其制备方法
CN108411252A (zh) 一种SrTiO3/Cu/SrTiO3三明治结构的柔性透明导电薄膜的制备方法
Cho et al. Nanoscale silver-based Al-doped ZnO multilayer transparent-conductive oxide films
JP2005135649A (ja) 酸化インジウム系透明導電膜及びその製造方法
Chu et al. Study of Cu-based Al-doped ZnO multilayer thin films with different annealing conditions
CN105845752B (zh) 一种应用于柔性光电器件的透明导电薄膜及其制备方法
CN105489270B (zh) 一种夹层结构透明导电薄膜及其制备方法
TW201013709A (en) Zinc oxide group transparent conductive film and process for making same
CN102134699A (zh) 一种多层透明导电薄膜的制备方法及其制备的薄膜和应用
CN102134704A (zh) 一种多层透明导电薄膜的制备方法及其制备的薄膜和应用
CN102650044B (zh) 一种SGZO-Au-SGZO透明导电膜的制备方法
KR20150075173A (ko) 투명 전도성 산화물과 은 나노 와이어를 포함하는 투명 전극 및 그 제조방법
CN209281907U (zh) 一种透明导电膜
CN114231903A (zh) 一种氧化铌/银纳米线双层结构柔性透明导电薄膜及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20200228

Termination date: 20210328

CF01 Termination of patent right due to non-payment of annual fee