WO2010032542A1 - 酸化亜鉛系透明導電膜及びその製造方法 - Google Patents

酸化亜鉛系透明導電膜及びその製造方法 Download PDF

Info

Publication number
WO2010032542A1
WO2010032542A1 PCT/JP2009/062765 JP2009062765W WO2010032542A1 WO 2010032542 A1 WO2010032542 A1 WO 2010032542A1 JP 2009062765 W JP2009062765 W JP 2009062765W WO 2010032542 A1 WO2010032542 A1 WO 2010032542A1
Authority
WO
WIPO (PCT)
Prior art keywords
zinc oxide
transparent conductive
conductive film
based transparent
gallium
Prior art date
Application number
PCT/JP2009/062765
Other languages
English (en)
French (fr)
Inventor
誠一郎 高橋
誠治 森内
徳彦 宮下
真 池田
Original Assignee
三井金属鉱業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井金属鉱業株式会社 filed Critical 三井金属鉱業株式会社
Priority to JP2010529683A priority Critical patent/JPWO2010032542A1/ja
Publication of WO2010032542A1 publication Critical patent/WO2010032542A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/453Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zinc, tin, or bismuth oxides or solid solutions thereof with other oxides, e.g. zincates, stannates or bismuthates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G9/00Compounds of zinc
    • C01G9/006Compounds containing, besides zinc, two ore more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/086Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022466Electrodes made of transparent conductive layers, e.g. TCO, ITO layers
    • H01L31/022483Electrodes made of transparent conductive layers, e.g. TCO, ITO layers composed of zinc oxide [ZnO]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1884Manufacture of transparent electrodes, e.g. TCO, ITO
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3286Gallium oxides, gallates, indium oxides, indates, thallium oxides, thallates or oxide forming salts thereof, e.g. zinc gallate

Definitions

  • the present invention relates to a zinc oxide-based transparent conductive film mainly composed of zinc oxide and a method for producing the same.
  • transparent conductive films there is an increasing demand for transparent electrodes such as applications of infrared shielding plates and electrostatic shielding plates, conductive films such as surface heating elements and touch switches, and display devices.
  • a transparent conductive film a tin-doped indium oxide film (ITO) has been conventionally used.
  • ITO tin-doped indium oxide film
  • zinc oxide-based transparent conductive films which are cheaper than ITO, are attracting attention, and AZO in which aluminum oxide is added to zinc oxide and GZO in which gallium oxide is added are commercially available.
  • JP 62-154411 A (Claims) JP-A-9-45140 (Claims) JP 2002-75061 A (Claims) JP 2002-75062 A (Claims) JP-A-10-306367 (Claims) JP-A-11-256320 (Claims) Japanese Patent Laid-Open No. 11-322332 (Claims) JP 2000-195101 A (Claims)
  • an object of the present invention is to provide a zinc oxide-based transparent conductive film excellent in workability and environmental resistance.
  • a first aspect of the present invention that solves the above-mentioned problems is mainly composed of zinc oxide and contains both elements of titanium (Ti) and gallium (Ga), both elements being 1.1 at% or more of titanium or gallium.
  • the zinc oxide-based transparent conductive film is characterized by being contained in a range of 5 at% or more.
  • a film excellent in workability and environmental resistance is obtained by containing both elements of titanium (Ti) and gallium (Ga) in a predetermined range.
  • the gallium content y (at%) is a value represented by the titanium content x (at%) ( ⁇ 0.66x + 5.5)
  • the etched film has a higher haze ratio and is more useful as a transparent conductive film for solar cells.
  • the gallium content y (at%) is represented by the titanium content x (at%).
  • Zinc oxide-based transparent conductive film having a value in the range of ( ⁇ 2x + 10.4) or less and in the range of ( ⁇ 0.5x + 1.1) or more represented by the titanium content x (at%) It is in.
  • the gallium content y (at%) is the titanium content x (at%).
  • the value is in the range of ( ⁇ x + 3.4) or less, (x ⁇ 0.9) or less, or ( ⁇ 2.3x + 10.1) or more.
  • the carrier density is particularly reduced, and the transmittance of light having a long wavelength corresponding to the near-infrared region is further improved, which is particularly suitable for solar cell applications.
  • Film
  • a fifth aspect of the present invention is a zinc oxide-based transparent conductive film according to the fourth aspect, which is a transparent conductive film for solar cells.
  • the transmission of light having a long wavelength corresponding to the near-infrared region is particularly excellent, and it is excellent as a solar cell application.
  • a sixth aspect of the present invention is the zinc oxide-based transparent conductive film according to the fifth aspect, wherein the zinc oxide-based transparent conductive film is formed as a surface electrode on a transparent substrate. It is in.
  • a surface electrode that is zinc oxide-based and has excellent workability and environmental resistance can be realized.
  • a seventh aspect of the present invention is the zinc oxide-based transparent conductive film according to any one of the first to sixth aspects, wherein the haze ratio is 10% or more. In the membrane.
  • the transparent conductive film can achieve a haze ratio of 10% or more.
  • An eighth aspect of the present invention is the zinc oxide-based transparent conductive film according to the seventh aspect, which is formed by etching the surface with a weak acid after film formation. It is in a zinc-based transparent conductive film.
  • a transparent conductive film having a further improved haze ratio can be realized by etching.
  • a ninth aspect of the present invention is mainly composed of zinc oxide and contains both elements of titanium (Ti) and gallium (Ga), and both elements are in a range of 1.1 at% or more of titanium or 4.5 at% or more of gallium.
  • a method for producing a zinc oxide-based transparent conductive film comprising forming a zinc oxide-based transparent conductive film contained in
  • a film containing both elements of titanium (Ti) and gallium (Ga) in a predetermined range can be formed, and a film excellent in workability and environmental resistance can be manufactured.
  • zinc oxide is a main component, and both elements of titanium (Ti) and gallium (Ga) are contained.
  • a film having a predetermined range of composition can be formed relatively easily by forming a film by sputtering or ion plating using a target having a predetermined composition.
  • An eleventh aspect of the present invention is the method for producing a zinc oxide-based transparent conductive film according to the ninth or tenth aspect, wherein the haze ratio is increased by etching the surface with a weak acid after film formation. It exists in the manufacturing method of a zinc oxide type transparent conductive film.
  • a film having an improved haze ratio can be produced by etching the surface of the transparent conductive film by a predetermined amount with a weak acid.
  • the zinc oxide-based transparent conductive film of the present invention has an effect of forming a film excellent in workability and environmental resistance by containing both elements of titanium (Ti) and gallium (Ga) in a predetermined range.
  • FIG. 1 is a graph showing the oxygen partial pressure dependence of the specific resistance of films formed in Examples and Comparative Examples.
  • FIG. 2 is a graph showing the measurement results of the environmental resistance test.
  • FIG. 3 is a graph showing the environmental resistance test and the measurement results of specific resistance.
  • FIG. 4 is a graph showing the environmental resistance test and the measurement results of the specific resistance.
  • FIG. 5 is a graph showing the environmental resistance test and the measurement results of carrier density.
  • FIG. 6 is a graph showing the relationship between the etching amount and haze ratio in Test Example 4.
  • FIG. 7 is an SEM image of the surface when the etching amount of the B10 film is changed.
  • FIG. 8 is an SEM image of the surface when the etching amount of the AZO film is changed.
  • FIG. 9 is a graph showing the results of measurement of haze ratio in Test Example 5.
  • FIG. 10 is a diagram schematically showing an example of the configuration of a thin-film silicon solar cell using the zinc oxide-based transparent conductive film
  • the zinc oxide-based transparent conductive film of the present invention has been completed based on the knowledge that when zinc oxide is the main component and titanium is added together with gallium, the environmental resistance is remarkably improved.
  • the zinc oxide-based transparent conductive film of the present invention contains both elements of titanium (Ti) and gallium (Ga) as additive elements, both elements being 1.1 at% or more of titanium or 4.5 at% or more of gallium. In other words, excluding the range of less than 1.1 at% titanium and less than 4.5 at% gallium. This is because if both elements are contained within these ranges, the effect of improving the environmental resistance is obtained, and if the elements are out of the range, the effect of improving the environmental resistance cannot be remarkably obtained. In addition, in these ranges, it was confirmed that there is no problem with processing by etching.
  • the specific resistance change is as small as 7% or less, and the film has environmental resistance and workability that can withstand practical use.
  • the content (at%) of each metal element is represented by the ratio of the number of moles of Ti and Ga to the number of moles of all metal elements (Ti / (Zn + Ti + Ga), Ga / (Zn + Ti + Ga)).
  • the environmental resistance test is to measure a change in specific resistance before and after being left for 250 hours in an environment of 60 ° C. and 90% relative humidity. If the change (increase) in the specific resistance is within 7%, it is determined that the device design can withstand practical use without causing a major problem in device design.
  • the change rate (%) of the specific resistance is expressed by the following formula.
  • Specific resistance change rate (%) [(specific resistance after environmental resistance test / specific resistance before environmental resistance test) ⁇ 1] ⁇ 100
  • rate of change in specific resistance exceeds 7%, there is a possibility of hindering device design, particularly long-term stability maintenance, which is a practical problem.
  • the liquid crystal switching responsiveness is deteriorated, resulting in a problem that an afterimage feeling appears in the video.
  • the gallium content y (at%) is within the range ( ⁇ 2x + 10.4) represented by the titanium content x (at%) and the titanium content x (at%). It is preferable that the zinc oxide-based transparent conductive film be in the range of the represented value ( ⁇ 0.5x + 1.1) or more.
  • the specific resistance is particularly reduced to 2.5 ⁇ 10 ⁇ 3 ⁇ cm or less, and the film has a better electrical conductivity.
  • the gallium content y (at%) is not more than the value ( ⁇ 2.5x + 9.8) represented by the titanium content x (at%) and not less than ( ⁇ 0.5x + 1.1).
  • the specific resistance is 1.5 ⁇ 10 ⁇ 3 ⁇ cm or less, and the film is further improved.
  • the specific resistance is preferably 2.5 ⁇ 10 ⁇ 3 ⁇ cm or less or 1.5 ⁇ 10 ⁇ 3 ⁇ cm or less, for example, when the array side electrode of a liquid crystal display is about 1 ⁇ 10 ⁇ 3 ⁇ cm. This is because it is said that it is possible and is preferable in practice.
  • the gallium content y (at%) is a value represented by the titanium content x (at%) ( ⁇ x + 3.4) or less, (x ⁇ 0.9) or less, or ( ⁇ 2 .3x + 10.1) or more of the zinc oxide-based transparent conductive film is preferable.
  • the carrier density becomes smaller and it becomes a film that easily transmits long-wavelength light corresponding to the near-infrared region. It becomes.
  • the transmittance on the long wavelength side corresponding to the near-infrared region is higher when the plasma oscillation of free electrons causing light absorption / reflection is on the long wavelength side.
  • the plasma wavelength that causes plasma oscillation is expressed by the following formula. The smaller the carrier density, the longer the plasma wavelength becomes.
  • c speed of light 3.0 ⁇ 10 10 [cm / s]
  • e electronic charge 4.8 ⁇ 10 ⁇ 10 esu
  • n e carrier density [cm ⁇ 3 ]
  • ⁇ 0 ⁇ / 4
  • m * effective mass of zinc oxide electrons (0.28 ⁇ 9.1 ⁇ 10 ⁇ 28 [g]
  • Mobility [cm 2 / V ⁇ s].
  • the plasma wavelength is about 1650 nm, and long wavelength light is sufficiently transmitted.
  • the magnitude of the haze ratio which is a value obtained by dividing the diffuse transmitted light amount when light is incident by the total light transmitted light amount. That is, when a transparent conductive film is formed as a surface electrode formed on a transparent substrate and a power generation layer is formed thereon, when the haze ratio of the transparent conductive film is high, light can be confined in the power generation layer, It is said that the power generation efficiency is improved and preferable.
  • the gallium content y (at%) is the titanium content x ( If it is in the range of ( ⁇ 0.66x + 5.5) or less represented by (at%), a suitable texture is easily formed, and a haze ratio of 10% or more can be realized.
  • the manufacturing method of the zinc oxide-based transparent conductive film that is the subject of the present invention is not particularly limited, and for example, sputtering method, ion plating method, vacuum deposition method, chemical vapor deposition method, spray method, anodic oxidation method, coating A known film forming technique such as a sol-gel method or the like can be employed.
  • the method of adding an additive element to the zinc oxide-based transparent conductive film is not particularly limited, but zinc, an alloy, an hydride, an oxide, a halide and an organic compound containing the additive element in the raw material zinc or zinc oxide in the film formation process
  • a sintered body having the same composition as that of the zinc oxide-based transparent conductive film may be used as a target material.
  • a desired film may be formed by simultaneously sputtering the bonded body.
  • the target material which consists of such a sintered compact by the conventionally well-known method.
  • the target includes an ion plating target (also referred to as a pellet) used for forming a transparent conductive film by ion plating, in addition to a sputtering target used for forming a transparent conductive film by sputtering.
  • zinc oxide (ZnO), gallium oxide (Ga 2 O 3 ), and titanium oxide (TiO 2 ) powder are generally used as a starting material that constitutes a target for forming a transparent conductive film of the present invention.
  • ZnO zinc oxide
  • titanium oxide (TiO 2 ) powder are generally used as a starting material that constitutes a target for forming a transparent conductive film of the present invention.
  • these simple substances, compounds, complex oxides and the like may be used as raw materials.
  • it is made to go through a process of making it oxide in advance.
  • the method of mixing and molding these raw material powders at a desired blending ratio is not particularly limited, and various conventionally known wet methods or dry methods can be used.
  • Examples of the dry method include a cold press method and a hot press method.
  • the mixed powder is filled in a mold to produce a molded body and fired.
  • the hot press method the mixed powder is fired and sintered in a mold.
  • a filtration molding method (see JP-A-11-286002) is preferably used.
  • This filtration molding method is a filtration molding die made of a water-insoluble material for obtaining a molded body by draining water from a ceramic raw material slurry under reduced pressure, and a lower molding die having one or more drain holes And a water-permeable filter placed on the molding lower mold, and a molding mold clamped from the upper surface side through a sealing material for sealing the filter, the molding lower mold, Forming mold, sealing material, and filter are assembled so that they can be disassembled respectively.
  • mixed powder, ion-exchanged water and organic Prepare a slurry consisting of additives, inject the slurry into a filtration mold, drain the water in the slurry only from the filter surface side, and produce a molded body. After drying degreasing, and firing.
  • the firing temperature of the one formed by the cold press method or the wet method is preferably 1000 to 1500 ° C., more preferably 1000 to 1300 ° C., and the atmosphere is an air atmosphere, an oxygen atmosphere, a non-oxidizing atmosphere, a vacuum atmosphere, or the like. It is.
  • sintering is preferably performed at 900 to 1300 ° C., and the atmosphere is a non-oxidizing atmosphere or a vacuum atmosphere.
  • molding and a process is given to a predetermined dimension, and it is set as a target.
  • the zinc oxide-based transparent conductive film of the present invention can be appropriately prepared by sputtering using a target manufactured to have the same composition as the desired composition.
  • the manufacturing method of the zinc oxide type transparent conductive film of this invention is not limited to the thing using targets, such as sputtering and ion plating, as mentioned above.
  • the zinc oxide-based transparent conductive film of the present invention is used as a transparent electrode of various semiconductor devices, as an infrared shielding plate or electrostatic shielding plate surface heating element, a conductive film such as a touch switch, a display such as liquid crystal, plasma, and EL. It can be used as a transparent electrode such as a device or a transparent electrode such as a solar cell.
  • a transparent conductive film having a small carrier density and a large transmittance for light having a long wavelength corresponding to the near-infrared region is suitably used for a transparent electrode of a solar cell.
  • a thin film solar cell 10 includes a transparent electrode 12 made of a zinc oxide-based transparent conductive film of the present invention on a transparent substrate 11 such as glass.
  • the transparent electrode 12 may be a film formed by sputtering a zinc oxide-based transparent conductive film, but may have a textured structure by etching the surface with a weak acid.
  • a power generation layer 13 composed of an amorphous silicon p-layer 13a, i-layer 13b and n-layer 13c, and a back electrode 14 composed of metal are provided.
  • Such a solar cell 10 generates power in the power generation layer 13 by introducing sunlight from the transparent substrate 11 side.
  • the haze ratio of the transparent electrode 11 is high, light is confined in the power generation layer 13. This light confinement effect increases the power generation efficiency.
  • the structure of the power generation layer of the amorphous silicon solar cell is a basic example as described above, and is not limited thereto.
  • the zinc oxide-based transparent conductive film of the present invention is used as a transparent electrode of various solar cells. Needless to say, it can be used.
  • compound solar cells such as CIGS (p—Cu (InGa) Se 2 ) and Cd—Te are known as thin film solar cells.
  • a back electrode on a glass substrate p-Cu ( It has a structure comprising a power generation layer made of InGa) Se 2 and a window layer into which light is introduced, and the zinc oxide-based transparent conductive film of the present invention can be applied as the window layer.
  • the zinc oxide-based transparent conductive film of the present invention can be applied as a transparent conductive film for other solar cells as well as thin-film solar cells.
  • the present invention will be described based on an example of a film formed by a sputtering method, but the present invention is not limited to this.
  • BET 3.59m 2 / g ZnO powder
  • BET 7.10m 2 / g Ti and Ga to Ga 2 O 3 powder of the TiO 2 powder
  • BET 13.45m 2 / g to moles of total metal elements
  • a total amount of about 1.0 kg is prepared in such a ratio that the ratio of the number of moles (Ti / (Zn + Ti + Ga), Ga / (Zn + Ti + Ga)) corresponds to the mole ratios shown as Samples A1 to A50 in Tables 1 and 2 below.
  • 4 wt% polyvinyl alcohol aqueous solution as a binder was added to the mixed powder at 6.6 wt%, mixed and cold pressed to obtain a molded body.
  • the molded body was heated at a temperature of 60 ° C./h in the atmosphere and degreased at 600 ° C. for 10 hours. Next, the temperature was raised from room temperature to 1300 ° C. in the atmosphere at 100 ° C./h, followed by firing at 1300 ° C. for 8 hours, and then cooling to room temperature at 100 ° C./h to obtain a sintered body. The obtained sintered body was subjected to surface grinding to obtain a target of ⁇ 100 mm ⁇ 6 mmt.
  • ZnO powder BET 3.59m 2 / g
  • BET 3.89m 2 / g of Al 2 O 3 powder the ratio of moles of Al to the number of moles of all the metal elements (Al / (Zn + Al) ) is 2.
  • a total amount of about 1.0 kg was prepared at a ratio corresponding to 4 at%, and this was mixed with a ball mill. Thereafter, 4 wt% polyvinyl alcohol aqueous solution as a binder was added to the mixed powder at 6.6 wt%, mixed and cold pressed to obtain a molded body.
  • the molded body was heated in the atmosphere at 60 ° C./h and degreased at 600 ° C. for 10 hours. Next, the temperature was raised from room temperature to 1300 ° C. in the atmosphere at 100 ° C./h, followed by firing at 1300 ° C. for 8 hours, and then cooling to room temperature at 100 ° C./h to obtain a sintered body.
  • the obtained sintered body was subjected to surface grinding to obtain a target of ⁇ 100 mm ⁇ 6 mmt.
  • the sputtering target of each production example and the AZO sputtering target were mounted on a DC magnetron sputtering apparatus having a 4-inch cathode, and the substrate temperature was 250 ° C. and the oxygen partial pressure was changed from 0.5 to 10 sccm at 0 to 2.0 sccm (0 to 6.6 ⁇ 10 ⁇ 3 Pa), a transparent conductive film was obtained.
  • the transparent conductive film thus obtained is a zinc oxide-based transparent conductive film having the same composition as that of the sputtered sputtering target for transparent conductive film.
  • the entire amount of the single film may be dissolved and analyzed by ICP.
  • FIB a cross section of the corresponding part is cut out by FIB or the like, and an element analyzer (EDS, WDS, Auger analysis, etc.) attached to the SEM, TEM, etc. ) Can also be specified.
  • the sputtering conditions were as follows, and a film having a thickness of 1200 mm was obtained.
  • the transparent conductive films formed by changing the oxygen partial pressure were cut out to a size of 10 mm ⁇ 10 mm, and the specific resistance was measured by the Van der Pauw method (manufactured by Toyo Technica, Hall coefficient measuring device ResiTest 8300).
  • FIG. 1B shows the oxygen partial pressure dependency of the specific resistance of a ZnO (AZO) film doped with 2.4 at% of aluminum (Al) as a comparative example.
  • the specific resistance is lowest when the oxygen partial pressure is 0 sccm (corresponding to 0 ⁇ 10 ⁇ 3 Pa).
  • FIG. 1A shows the oxygen partial pressure dependence of the specific resistance of a ZnO film (sample A24) doped with 2 at% Ti and 1 at% Ga.
  • the oxygen partial pressure dependence of sample A24 shows the same characteristics as the AZO film. All TiGa-based ZnO films having other sample compositions also exhibit similar characteristics. Therefore, the characteristic values shown in Tables 1 and 2 are all data when the oxygen partial pressure is 0 sccm (corresponding to 0 ⁇ 10 ⁇ 3 Pa).
  • Test example 1 (environmental resistance test) Each transparent conductive film formed with an oxygen partial pressure of 0 sccm (equivalent to 0 ⁇ 10 ⁇ 3 Pa) was cut into a size of 10 mm ⁇ 10 mm, and the specific resistance was first measured by the Van der Pauw method (manufactured by Toyo Technica, Hall coefficient measurement). Measured by a device (ResiTest 8300), then sealed in a thermo-hygrostat (PR-2KP manufactured by ESPEC), left in an atmosphere of 60 ° C. and 90% RH for 250 hours, and then measured again for specific resistance. The rate of change was calculated. In addition, when raising and lowering the temperature inside the constant temperature and humidity chamber, the temperature and humidity were controlled so that the sample was not condensed. The results are shown in Tables 1 and 2.
  • the specific resistance change rate exceeds 7%.
  • the rate of change was 7% or less. That is, from the data in Table 1, it was clarified that the rate of change in specific resistance was 7% or less when the content of titanium was 1.2 at% or more, but the rate of change in specific resistance was 7% or less when titanium was 1%. It was clarified by the tendency of the data other than those shown in Tables 1 and 2 that 1 at% or more and gallium were 4.5 at% or more.
  • Test example 2 (specific resistance measurement) Each transparent conductive film formed with an oxygen partial pressure of 0 sccm (corresponding to 0 ⁇ 10 ⁇ 3 Pa) was cut into a size of 10 mm ⁇ 10 mm, and the specific resistance was determined by the Van der Pauw method (manufactured by Toyo Technica, Hall coefficient measuring device). ResiTest 8300). The results are shown in Tables 1 and 2.
  • the gallium content y (at%) is within the range of ( ⁇ 2x + 10.4) represented by the titanium content x (at%) and the titanium content x (at%). It was found that the specific resistance is 2.5 ⁇ 10 ⁇ 3 ⁇ cm or less in the transparent conductive film in the range of the value ( ⁇ 0.5x + 1.1) or more. On the other hand, it was found that the specific resistance was larger than 2.5 ⁇ 10 ⁇ 3 ⁇ cm for the samples outside this range.
  • the boundary of the range where the specific resistance is 2.5 ⁇ 10 ⁇ 3 ⁇ cm or less and the value ( ⁇ 2x + 10.4) or less represented by the titanium content x (at%) is the gallium content y, It is clear as a result of comprehensive judgment including data other than those shown in Tables 1 and 2 that the content is greater than the value ( ⁇ 0.5x + 1.1) represented by the titanium content x (at%) Became.
  • FIG. 3 shows a sample whose environmental resistance test result is within 7%, a sample whose specific resistance is 2.5 ⁇ 10 ⁇ 3 ⁇ cm or less, and a sample whose specific resistance exceeds 2.5 ⁇ 10 ⁇ 3 ⁇ cm.
  • the gallium content y (at%) is not more than the value ( ⁇ 2.5x + 9.8) represented by the titanium content x (at%) and not less than ( ⁇ 0.5x + 1.1). It was found that the specific resistance was 1.5 ⁇ 10 ⁇ 3 ⁇ cm or less in the range of samples. Note that the boundary of the range where the specific resistance is 1.5 ⁇ 10 ⁇ 3 ⁇ cm or less and the value ( ⁇ 2x + 10.4) or less represented by the titanium content x (at%) is the gallium content y, The content of titanium x (at%) is not more than the value ( ⁇ 2.5x + 9.8) and not less than ( ⁇ 0.5x + 1.1). It became clear as a result of comprehensive judgment including data.
  • Test example 3 Hall coefficient measurement
  • Each transparent conductive film formed with an oxygen partial pressure of 0 sccm (equivalent to 0 ⁇ 10 ⁇ 3 Pa) was cut out, and from the Hall coefficient measurement by Van der Pauw method (Toyo Technica, Hall coefficient measuring device ResiTest 8300), the carrier of each film Density and carrier mobility were measured respectively. The results are shown in Tables 1 and 2.
  • the gallium content y (at%) is a value ( ⁇ x + 3.4) or less, (x ⁇ 0.9) or less represented by the titanium content x (at%), or ( ⁇ 2. It has been found that the carrier density is 4.0 ⁇ 10 20 cm ⁇ 3 or less in the sample in the range of 3 ⁇ + 10.1) or more. On the other hand, it was found that the carrier density was larger than 4.0 ⁇ 10 20 cm ⁇ 3 in the samples in other ranges. In the range where the carrier density is 4.0 ⁇ 10 20 cm ⁇ 3 or less, the gallium content y (at%) is represented by the titanium content x (at%) ( ⁇ x + 3.4). ) Below, (x-0.9) or less, or (-2.3x + 10.1) or more is clearly the result of comprehensive judgment including data other than those shown in Tables 1 and 2 became.
  • FIG. 5 shows that the environmental resistance test result is within 7%, the carrier density is less than 4.0 ⁇ 10 20 cm ⁇ 3 , and the carrier density exceeds 4.0 ⁇ 10 20 cm ⁇ 3 . Samples are indicated by ⁇ , and samples with environmental resistance test results exceeding 7% are indicated by ⁇ .
  • the transparent conductive film thus obtained is a zinc oxide-based transparent conductive film having the same composition as that of the sputtered sputtering target for transparent conductive film.
  • the entire amount of the single film may be dissolved and analyzed by ICP.
  • FIB a cross section of the corresponding part is cut out by FIB or the like, and an element analyzer (EDS, WDS, Auger analysis, etc.) attached to the SEM, TEM, etc. ) Can also be specified.
  • the sputtering conditions were as follows, and a film having a thickness of 5000 mm was obtained.
  • Test example 4 (Relationship F between etching amount and haze ratio)
  • the etching amount was measured using a contact step meter (P-15, manufactured by Tencor), and the etching rate was measured. Then, the sample which changed the etching amount about each sample was created using the said etching liquid, and the haze rate was measured. For comparison, the etching amount was similarly applied to a sample formed using a target having a ratio of (Al / (Zn + Al)) corresponding to 2.4 at% manufactured in the above-described AZO sputtering target manufacturing example. And the relationship between the haze rate and the haze rate.
  • FIG. 6 shows the relationship between the etching amount and the haze ratio.
  • the haze ratio was determined by measuring the center of the sample based on JIS K-7136 (2000) using a haze meter (NDH-2000; manufactured by Nippon Denshoku Industries Co., Ltd.).
  • the haze ratio increased as the etching amount increased, and the haze ratio of the zinc oxide-based transparent conductive film of the present invention increased as the etching amount increased.
  • the rate of increase in the haze ratio varies depending on the composition even with the same etching amount, and (Ti1 at%, Ga 1 at%) (B1), (Ti 5 at%, Ga 1 at%) (B18) , (Ti3 at%, Ga1 at%) (B10), it was found that the increase rate of the haze rate increases with the increase in the etching amount.
  • the etching should be performed 2000 to 3000 mm, preferably 3000 mm in advance. .
  • FIGS. 8A to 8C show SEM images of the surface when the etching amount of the (Ti3 at%, Ga1 at%) (B10) film was changed to 500 mm, 1500 mm, and 3000 mm.
  • FIGS. 8A to 8C show SEM images when the etching amount of the AZO (2.4 at%) film is similarly changed.
  • Ti3at%, Ga1at%) (B10) It was found that when the etching amount was increased, the surface morphology of the film was changed and the haze ratio was improved to about 60%. On the other hand, it was found that even when the AZO (2.4 at%) film was etched, the surface morphology was hardly changed and the haze ratio was only about 20%.
  • Test Example 5 (Haze ratio measurement)
  • a sample provided with a comb-shaped resist pattern resist: TFR970 manufactured by Tokyo Ohka Kogyo Co., Ltd.
  • resist resist: TFR970 manufactured by Tokyo Ohka Kogyo Co., Ltd.
  • L / S line and space
  • An etching rate was measured by immersing in an etchant composed of a solution in which zinc powder was dissolved at 100 mg / L at 30 ° C. for a specified time, measuring an etching amount using a contact step meter (P-15, manufactured by Tencor).
  • the transparent conductive films of B1 to B36 were each etched by about 3000 mm to obtain a haze rate measurement sample.
  • the gallium content y (at%) is particularly high in the range of not more than the value ( ⁇ 0.66x + 5.5) represented by the titanium content x (at%), and the haze ratio is 10% or more.
  • the haze ratio is 10% or more.
  • the range of titanium 1.1 at% or more or gallium 4.5 at% or more (except for titanium at 0 at% and gallium 0 at%) and the gallium content y (at%) is in addition, it was found that a range of ( ⁇ 0.66x + 5.5) or less represented by the titanium content x (at%) is preferable.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Inorganic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Physical Vapour Deposition (AREA)
  • Non-Insulated Conductors (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Photovoltaic Devices (AREA)
  • Manufacturing Of Electric Cables (AREA)

Abstract

加工性、耐環境性に優れた酸化亜鉛系透明導電膜を提供することを課題とする。 酸化亜鉛を主成分とし、チタン(Ti)及びガリウム(Ga)の両元素を含有し、両元素がチタン1.1at%以上又はガリウム4.5at%以上の範囲で含有されている。

Description

酸化亜鉛系透明導電膜及びその製造方法
 本発明は、酸化亜鉛を主成分とする酸化亜鉛系透明導電膜及びその製造方法に関する。
 透明導電膜は、赤外線遮蔽板や静電遮蔽板の用途、面発熱体やタッチスイッチなどの導電膜、ディスプレー装置などの透明電極の需要が高まっている。このような透明導電膜としては、従来、錫をドープした酸化インジウム膜(ITO)が利用されているが、ITOは価格の高いものであるため、安価な透明導電膜の出現が待望されている。
 そこで、ITOより安価な膜である酸化亜鉛系透明導電膜が注目され、酸化亜鉛に酸化アルミニウムを添加したAZOや酸化ガリウムを添加したGZOなどが市販されている。
 しかしながら、これらの酸化亜鉛系透明導電膜は、ITOと比較して導電性や耐久性に劣るものであり、高導電性や安定化を求めて各種元素を添加したものが検討されている(特許文献1~4など参照)。
 また、特に、添加元素としてGaを添加したものが検討されている(特許文献5~7など参照)。
 しかしながら、このような酸化亜鉛系透明導電膜は、この膜を実用化するには、エッチングレートが速すぎて、パターニングし難いという問題があり、また、耐環境性に劣るという問題がある。
 なお光ディスク用保護膜として酸化亜鉛に酸化アルミニウム、酸化ガリウム、酸化ジルコニウム、酸化チタンなどを添加した組成が検討されているが(特許文献8参照)、保護膜は微細にパターニングするものではないので、加工性やヘイズ率などが問題となる透明導電膜とは全く異なる。
特開昭62-154411号公報(特許請求の範囲) 特開平9-45140号公報(特許請求の範囲) 特開2002-75061号公報(特許請求の範囲) 特開2002-75062号公報(特許請求の範囲) 特開平10-306367号公報(特許請求の範囲) 特開平11-256320号公報(特許請求の範囲) 特開平11-322332号公報(特許請求の範囲) 特開2000-195101号公報(特許請求の範囲)
 本発明は、上述した事情に鑑み、加工性、耐環境性に優れた酸化亜鉛系透明導電膜を提供することを課題とする。
 前記課題を解決する本発明の第1の態様は、酸化亜鉛を主成分とし、チタン(Ti)及びガリウム(Ga)の両元素を含有し、両元素がチタン1.1at%以上又はガリウム4.5at%以上の範囲で含有されていることを特徴とする酸化亜鉛系透明導電膜にある。
 かかる第1の態様では、チタン(Ti)及びガリウム(Ga)の両元素を所定範囲で含有することにより、加工性、耐環境性に優れた膜となる。
 本発明の第2の態様は、第1の態様に記載の酸化亜鉛系透明導電膜において、ガリウムの含有量y(at%)が、チタンの含有量x(at%)で表される値(-0.66x+5.5)以下の範囲にあることを特徴とする酸化亜鉛系透明導電膜にある。
 かかる第2の態様では、エッチングを施した膜のヘイズ率がより高くなり、太陽電池用透明導電膜としてより有用なものとなる。
 本発明の第3の態様は、第1又は2の態様に記載の酸化亜鉛系透明導電膜において、ガリウムの含有量y(at%)が、チタンの含有量x(at%)で表される値(-2x+10.4)以下の範囲で且つチタンの含有量x(at%)で表される値(-0.5x+1.1)以上の範囲にあることを特徴とする酸化亜鉛系透明導電膜にある。
 かかる第3の態様では、チタン及びガリウムを所望範囲とすることにより、膜の比抵抗がより小さく、電気導電性がより良好な酸化亜鉛系透明導電膜となる。
 本発明の第4の態様は、第1~3の何れか1つの態様に記載の酸化亜鉛系透明導電膜において、ガリウムの含有量y(at%)が、チタンの含有量x(at%)で表される値(-x+3.4)以下、(x-0.9)以下、または(-2.3x+10.1)以上の範囲にあることを特徴とする酸化亜鉛系透明導電膜にある。
 かかる第4の態様では、チタン及びガリウムを所望範囲とすることにより、キャリア密度が特に小さくなり、近赤外領域に相当する長波長の光の透過性がより向上し、特に太陽電池用途に好適な膜となる。
 本発明の第5の態様は、第4の態様に記載の酸化亜鉛系透明導電膜であって、太陽電池用透明導電膜であることを特徴とする酸化亜鉛系透明導電膜にある。
 かかる第5の態様では、近赤外領域に相当する長波長の光の透過性が特に優れ、太陽電池用途として優れたものとなる。
 本発明の第6の態様は、第5の態様に記載の酸化亜鉛系透明導電膜であって、透明基板上に表面電極として形成されたものであることを特徴とする酸化亜鉛系透明導電膜にある。
 かかる第6の態様では、酸化亜鉛系で、加工性、耐環境性に優れた表面電極が実現できる。
 本発明の第7の態様は、第1~6の何れか1つの態様に記載の酸化亜鉛系透明導電膜であって、ヘイズ率が10%以上であることを特徴とする酸化亜鉛系透明導電膜にある。
 かかる第7の態様では、10%以上のヘイズ率が実現できた透明導電膜となる。
 本発明の第8の態様は、第7の態様に記載の酸化亜鉛系透明導電膜であって、成膜後、表面を弱酸でエッチングすることにより形成されたものであることを特徴とする酸化亜鉛系透明導電膜にある。
 かかる第8の態様では、エッチングによりヘイズ率がより向上した透明導電膜が実現できる。
 本発明の第9の態様は、酸化亜鉛を主成分とし、チタン(Ti)及びガリウム(Ga)の両元素を含有し、両元素がチタン1.1at%以上又はガリウム4.5at%以上の範囲で含有されている酸化亜鉛系透明導電膜を成膜することを特徴とする酸化亜鉛系透明導電膜の製造方法にある。
 かかる第9の態様では、チタン(Ti)及びガリウム(Ga)の両元素を所定範囲で含有する膜が成膜でき、加工性、耐環境性に優れた膜を製造できる。
 本発明の第10の態様は、第9の態様に記載の酸化亜鉛系透明導電膜の製造方法において、酸化亜鉛を主成分とし、チタン(Ti)及びガリウム(Ga)の両元素を含有し、両元素がチタン1.1at%以上又はガリウム4.5at%以上の範囲で含有されている酸化亜鉛系ターゲットを用い、スパッタリング又はイオンプレーティングにより成膜することを特徴とする酸化亜鉛系透明導電膜の製造方法にある。
 かかる第10の態様では、所定の組成のターゲットを用いてスパッタリング又はイオンプレーティングにより成膜することにより、所定範囲の組成の膜が比較的容易に成膜できる。
 本発明の第11の態様は、第9又は10の態様に記載の酸化亜鉛系透明導電膜の製造方法において、成膜後、表面を弱酸でエッチングすることによりヘイズ率を高めることを特徴とする酸化亜鉛系透明導電膜の製造方法にある。
 かかる第11の態様では、透明導電膜の表面を弱酸で所定量だけエッチングすることにより、ヘイズ率の向上した膜を製造することができる。
 本発明の酸化亜鉛系透明導電膜は、チタン(Ti)及びガリウム(Ga)の両元素を所定範囲で含有することにより、加工性、耐環境性に優れた膜となるという効果を奏する。
図1は実施例及び比較例で成膜された膜の比抵抗の酸素分圧依存性を示すグラフである。 図2は、耐環境性試験の測定結果を示すグラフである。 図3は、耐環境性試験及び比抵抗の測定結果を示すグラフである。 図4は、耐環境性試験及び比抵抗の測定結果を示すグラフである。 図5は、耐環境性試験及びキャリア密度の測定結果を示すグラフである。 図6は、試験例4のエッチング量とヘイズ率との関係を示すグラフである。 図7は、B10膜のエッチング量を変化させたときの表面のSEM像である。 図8は、AZO膜のエッチング量を変化させたときの表面のSEM像である。 図9は、試験例5のヘイズ率の測定の結果を示すグラフである。 図10は、本発明の酸化亜鉛系透明導電膜を用いた薄膜シリコン太陽電池の構成の一例を模式的に示す図である。
 本発明の酸化亜鉛系透明導電膜は、酸化亜鉛を主成分とし、ガリウムと共にチタンを添加すると、耐環境性が著しく向上するという知見に基づいて完成されたものである。
 本発明の酸化亜鉛系透明導電膜は、チタン(Ti)及びガリウム(Ga)の両元素を添加元素として含有するものであるが、両元素がチタン1.1at%以上又はガリウム4.5at%以上の範囲、すなわち、チタン1.1at%未満且つガリウム4.5at%未満の範囲を除く範囲で含有されるものである。これらの範囲で両元素が含有されていれば、耐環境性が向上するという効果を奏し、範囲外では耐環境性が向上するという効果が顕著に得られないからである。なお、これらの範囲においては、エッチングによる加工も問題ないことを確認した。
 すなわち、本発明の範囲では、後述するように、耐環境試験の結果、比抵抗の変化が7%以下と小さく、実用に耐え得る耐環境性、及び加工性を有する膜となる。
 なお、本件出願において、各金属元素の含有量(at%)は全金属元素のモル数に対するTiおよびGaのモル数の比率(Ti/(Zn+Ti+Ga)、Ga/(Zn+Ti+Ga))で表わされる。
 ここで、耐環境試験は、60℃、相対湿度90%の環境下に250時間放置した際の前後の比抵抗の変化を測定するものである。比抵抗の変化(増加)が7%以内であれば、デバイス設計上、大きな問題を生じないで、実用に耐え得ると判断される。
 ここで、比抵抗の変化率(%)は、以下の式で表される。なお、比抵抗が減少する場合には、デバイス設計上、大きな問題とはならないので、変化が7%以下の条件を満足するものとする。
 比抵抗の変化率(%)=[(耐環境試験後の比抵抗/耐環境試験前の比抵抗)-1]×100
 一方、比抵抗の変化率が7%を超えてしまうと、デバイス設計、特に長期安定性保持に支障をきたす可能性があり、実用上問題となる。例えば、液晶ディスプレイを長時間使用していると液晶スイッチング応答性が悪くなり、映像に残像感が出てきてしまうといった問題が生じる。
 また、特に、ガリウムの含有量y(at%)が、チタンの含有量x(at%)で表される値(-2x+10.4)以下の範囲で且つチタンの含有量x(at%)で表される値(-0.5x+1.1)以上の範囲にある酸化亜鉛系透明導電膜とするのが好ましい。
 このような範囲でガリウム及びチタンを含有することにより、特に比抵抗が、2.5×10-3Ωcm以下と小さくなり、電気導電性がより優れた膜となるからである。
 また、特に、ガリウムの含有量y(at%)が、チタンの含有量x(at%)で表される値(-2.5x+9.8)以下で且つ(-0.5x+1.1)以上の範囲で比抵抗1.5×10-3Ωcm以下になり、さらに良好な膜となる。
 比抵抗が、2.5×10-3Ωcm以下又は1.5×10-3Ωcm以下が好ましいとしたのは、例えば、液晶ディスプレイのアレイ側電極では1×10-3 Ωcm程度であれば使用可能といわれているためであり、実用上好ましいからである。
 さらに、特に、ガリウムの含有量y(at%)が、チタンの含有量x(at%)で表される値(-x+3.4)以下、(x-0.9)以下、または(-2.3x+10.1)以上の範囲にある酸化亜鉛系透明導電膜とするのが好ましい。
 このような範囲でガリウム及びチタンを含有することにより、キャリア密度がより小さくなり、近赤外領域に相当する長波長の光を透過させ易い膜となるので、例えば、太陽電池用途に好適なものとなる。
 ここで、近赤外領域に相当する長波長側の透過率は、光の吸収・反射を引き起こす自由電子のプラズマ振動が長波長側にある方が高くなる。プラズマ振動を引き起こすプラズマ波長は以下の式で表わされ、キャリア密度が少ないほどプラズマ波長が長波長側になる。
Figure JPOXMLDOC01-appb-M000001
 ここで、c:光速3.0×1010[cm/s]、e:電子電荷4.8×10-10esu、n:キャリア密度[cm-3]、ε=π/4、ε:誘電率(=屈折率の自乗、n=2.0=4.0),m:酸化亜鉛の電子の有効質量(0.28×9.1×10-28[g],μ:移動度[cm/V・s]である。
 キャリア密度が4×1020cm-3の場合、プラズマ波長は1650nm程度であり、長波長の光も十分透過することとなる。
 一方、特に、薄膜シリコン(Si)太陽電池用途を考えた場合、光を入射した際の拡散透過光量を全光線透過光量で割った値であるヘイズ率の大きさが重要となる。すなわち、透明導電膜を透明基板に形成された表面電極として形成し、この上に発電層を形成した場合、透明導電膜のヘイズ率が高いと、発電層に光を閉じ込めておくことができ、発電効率が上昇して好ましいといわれている。
 このようにヘイズ率を高める場合、透明導電膜の表面を弱酸でエッチングして表面にテクスチャを形成するのが好ましいが、特に、ガリウムの含有量y(at%)が、チタンの含有量x(at%)で表される値(-0.66x+5.5)以下の範囲にある場合、好適なテクスチャが形成されやすく、ヘイズ率10%以上が実現できる。
 本発明の対象となる酸化亜鉛系透明導電膜の製造方法は、特に限定されず、例えば、スパッタリング法、イオンプレーティング法、真空蒸着法、化学気相成長法、スプレー法、陽極酸化法、塗布法、ゾルゲル法などの公知の膜形成技術を採用することができる。また、酸化亜鉛系透明導電膜中に添加元素を含有させる方法も特に限定されないが、膜形成過程で原材料の亜鉛もしくは酸化亜鉛に添加元素を含む合金、水素化物、酸化物、ハロゲン化物及び有機化合物等を導入する方法を採用するのが好適であるが、酸化亜鉛の透明導電膜を形成した後、当該透明導電膜中に添加元素を熱拡散したり、イオン注入したりすることも可能である。しかしながら、膜の均質性からすると、添加元素を含有する材料を用いて膜形成を行うのが好ましい。
 また、スパッタリング法又はイオンプレーティング法により酸化亜鉛系透明導電膜を形成する場合には、ターゲット材料として、酸化亜鉛系透明導電膜と同一の組成の焼結体を用いればよいが、複数の焼結体を同時にスパッタリングして所望の膜を形成するようにしてもよい。なお、このような焼結体からなるターゲット材料は、従来からの公知の方法により製造すればよい。ここで、ターゲットとはスパッタリングによる透明導電膜の成膜に使用されるスパッタリングターゲットの他、イオンプレーティングによる透明導電膜の成膜に使用されるイオンプレーティング用ターゲット(ペレットともいう)を含むものである。
 ここで、本発明の酸化亜鉛系透明導電膜をスパッタリング又はイオンプレーティングにより形成する場合に用いる酸化亜鉛系ターゲットの製造方法について説明するが、これは単に例示したものであり、製造方法は特に限定されるものではない。
 まず、本発明の透明導電膜を成膜するためのターゲットを構成する出発原料としては、一般的に酸化亜鉛(ZnO)、酸化ガリウム(Ga)、酸化チタン(TiO)の粉末であるが、これらの単体、化合物、複合酸化物等を原料としてもよい。単体、化合物を使う場合はあらかじめ酸化物にするようなプロセスを通すようにする。
 これらの原料粉を、所望の配合率で混合し、成形する方法は特に限定されず、従来から公知の各種湿式法又は乾式法を用いることができる。
 乾式法としては、コールドプレス(Cold Press)法やホットプレス(Hot Press)法等を挙げることができる。コールドプレス法では、混合粉を成形型に充填して成形体を作製し、焼成させる。ホットプレス法では、混合粉を成形型内で焼成、焼結させる。
 湿式法としては、例えば、濾過式成形法(特開平11-286002号公報参照)を用いるのが好ましい。この濾過式成形法は、セラミックス原料スラリーから水分を減圧排水して成形体を得るための非水溶性材料からなる濾過式成形型であって、1個以上の水抜き孔を有する成形用下型と、この成形用下型の上に載置した通水性を有するフィルターと、このフィルターをシールするためのシール材を介して上面側から挟持する成形用型枠からなり、前記成形用下型、成形用型枠、シール材、およびフィルターが各々分解できるように組立てられており、該フィルター面側からのみスラリー中の水分を減圧排水する濾過式成形型を用い、混合粉、イオン交換水と有機添加剤からなるスラリーを調製し、このスラリーを濾過式成形型に注入し、該フィルター面側からのみスラリー中の水分を減圧排水して成形体を製作し、得られたセラミックス成形体を乾燥脱脂後、焼成する。
 コールドプレス法や湿式法で成形したものの焼成温度は、1000~1500℃が好ましく、さらに好ましくは、1000~1300℃であり、その雰囲気は大気雰囲気、酸素雰囲気、非酸化性雰囲気、または真空雰囲気などである。一方、ホットプレス法の場合は、900~1300℃で焼結させることが好ましく、その雰囲気は、非酸化性雰囲気や真空雰囲気などである。なお、各方法において焼成した後には、所定寸法に成形・加工のための機械加工を施しターゲットとする。
 本発明の酸化亜鉛系透明導電膜は、このように所望の組成と同様な組成となるように製造したターゲットを用いてスパッタリングすることにより適宜作成することができる。なお、本発明の酸化亜鉛系透明導電膜の製造方法は、上述したとおり、スパッタリングやイオンプレーティングなどのターゲットを用いたものに限定されるものではない。
 また、本発明の酸化亜鉛系透明導電膜は、各種半導体装置の透明電極、赤外線遮蔽板や静電遮蔽板面発熱体としての用途、タッチスイッチなどの導電膜、液晶、プラズマ、ELなどのディスプレー装置などの透明電極、太陽電池などの透明電極として使用できる。特に、キャリア密度が小さく、近赤外領域に相当する長波長の光の透過性が大きな透明導電膜は、太陽電池の透明電極に好適に用いられる。
 ここで、透明電極として本発明の酸化亜鉛系透明導電膜を用いた太陽電池の構成の一例を図10を参照して説明する。
 図10に示すように、薄膜太陽電池10は、ガラスなどの透明基板11上に本発明の酸化亜鉛系透明導電膜からなる透明電極12を具備する。透明電極12は、酸化亜鉛系透明導電膜をスパッタリングなどで成膜した膜そのままでもよいが、表面を弱酸でエッチングして表面にテクスチャ構造を有するものとしてもよい。そして、この上に、アモルファスシリコンのp層13a、i層13b及びn層13cからなる発電層13と、金属からなる背面電極14とを設けたものである。
 かかる太陽電池10は、透明基板11側から太陽光を導入することにより、発電層13で発電するが、透明電極11のヘイズ率が高いと、光が発電層13内に閉じ込められるようになり、この光閉じ込め効果により発電効率が上昇することになる。
 なお、アモルファスシリコン太陽電池の発電層の構造は上述したものが基本的な一例であり、これに限定されず、また、本願発明の酸化亜鉛系透明導電膜は、種々の太陽電池の透明電極として使用できることはいうまでもない。
 例えば、薄膜系太陽電池としては、CIGS(p-Cu(InGa)Se)、Cd-Teなどの化合物系太陽電池が知られており、例えば、ガラス基板上に裏面電極と、p-Cu(InGa)Seからなる発電層と、光が導入される窓層とを具備する構造を有し、窓層として本発明の酸化亜鉛系透明導電膜が適用できる。この場合、耐環境性が要求されるため、本発明の酸化亜鉛系透明導電膜を用いることにより、耐環境性が向上する。また、薄膜系太陽電池だけではなく、他の太陽電池の透明導電膜として本発明の酸化亜鉛系透明導電膜を適用することができる。
 以下、本発明をスパッタリング法により成膜した膜を例とした実施例に基づいて説明するが、これに限定されるものではない。
 (スパッタリングターゲット製造例1~50)
 BET=3.59m/gのZnO粉、BET=7.10m/gのTiO粉およびBET=13.45m/gのGa粉を全金属元素のモル数に対するTiおよびGaのモル数の比率(Ti/(Zn+Ti+Ga)、Ga/(Zn+Ti+Ga))が下記表1及び表2にサンプルA1~A50として表すモル比に相当するような比率で全量約1.0kg用意し、これをボールミルで混合した。その後、バインダーとして4wt%ポリビニルアルコール水溶液を混合粉末に対し6.6wt%添加して混合し、コールドプレスして成形体を得た。
 この成形体を、大気中60℃/hの昇温で昇温し600℃で10時間脱脂した。次いで、大気中で室温から1300℃まで100℃/hで昇温した後、1300℃で8時間焼成し、その後室温まで100℃/hで冷却することで焼結体を得た。得られた焼結体は平面研削を施し、φ100mm×6mmtのターゲットを得た。
 なお、得られた焼結体をICPで分析したところ原料配合組成とほぼ同一であることが確認された。
 (AZOスパッタリングターゲット製造例)
 BET=3.59m/gのZnO粉、BET=3.89m/gのAl粉を全金属元素のモル数に対するAlのモル数の比率(Al/(Zn+Al))が2.4at%に相当するような比率で全量約1.0kg用意し、これをボールミルで混合した。その後、バインダーとして4wt%ポリビニルアルコール水溶液を混合粉末に対し6.6wt%添加して混合し、コールドプレスして成形体を得た。
 この成形体を、大気中60℃/hで昇温し600℃で10時間脱脂した。次いで、大気中で室温から1300℃まで100℃/hで昇温した後、1300℃で8時間焼成し、その後室温まで100℃/hで冷却することで焼結体を得た。得られた焼結体は平面研削を施し、φ100mm×6mmtのターゲットを得た。
 (成膜例1)
 4インチカソードのDCマグネトロンスパッタ装置に各製造例のスパッタリングターゲット及びAZOスパッタリングターゲットをそれぞれ装着し、基板温度250℃、酸素分圧を0~2.0sccmで0.5sccm刻みで変化させながら(0~6.6×10-3 Paに相当)、透明導電膜を得た。
 このようにして得られた透明導電膜は、スパッタリングした透明導電膜用スパッタリングターゲットの組成と同一組成の酸化亜鉛系透明導電膜である。このような酸化亜鉛系透明導電膜の組成分析は、単膜を全量溶解しICPで分析してもよい。また、膜自体が素子構成をなしている場合などは、必要に応じてFIB等により該当する部分の断面を切り出し、SEMやTEM等に付属している元素分析装置(EDSやWDS、オージェ分析など)を用いても特定することが可能である。
 スパッタの条件は、以下の通りとし、厚さ1200Åの膜を得た。
 ターゲット寸法 :φ=100mm、t=6mm
 スパッタ方式 :DCマグネトロンスパッタ
 排気装置 :ロータリーポンプ+クライオポンプ
 到達真空度 :3×10-5 Pa以下
 Ar圧力 :4.0×10-1Pa
 酸素分圧 :0~6.6×10-3Pa
 基板温度 :250℃
 スパッタ電力 :130W (電力密度1.6W/cm
 使用基板 :コーニング#1737(液晶ディスプレイ用ガラス)
       50mm×50mm×0.8mmt
 酸素分圧を変化させて成膜した透明導電膜をそれぞれ10mm×10mmの大きさに切り出し、Van der Pauw法によって(東陽テクニカ製,ホール係数測定装置 ResiTest8300)比抵抗をそれぞれ測定した。
 図1(b)に比較例であるアルミニウム(Al)を2.4at%ドープしたZnO(AZO)膜の比抵抗の酸素分圧依存性を示す。このように比抵抗は酸素分圧が0sccm(0×10-3 Pa相当)の場合に比抵抗が最も低い。また、Tiを2at%およびGaを1at%ドープしたZnO膜(サンプルA24)の比抵抗の酸素分圧依存性を図1(a)に示す。サンプルA24の酸素分圧依存性は、AZO膜と同様な特性を示す。この他のサンプル組成におけるTiGa系ZnO膜も全て同様な特性を示す。そこで、表1及び表2に示した特性値は、全て酸素分圧が0sccm(0×10-3 Pa相当)の時のデータとした。
試験例1(耐環境性試験)
 酸素分圧が0sccm(0×10-3 Pa相当)で成膜した各透明導電膜を、それぞれ10mm×10mmの大きさに切り出し、まず比抵抗をVan der Pauw法(東陽テクニカ製,ホール係数測定装置 ResiTest8300)によって測定し、その後恒温恒湿器内(ESPEC製PR-2KP)に封入し、60℃90%RH雰囲気中に250時間放置した後、再度比抵抗を測定し、放置前後における比抵抗の変化率を算出した。なお、恒温恒湿器内を昇降温させる際、温度と湿度をコントロールすることでサンプルが結露しないようにした。
 この結果を表1及び表2に示す。
 この結果、チタン1.1at%未満で且つガリウム4.5at%未満の範囲のサンプルA1~A10並びにガリウムが0%のサンプルA16、A22では、比抵抗の変化率が7%を超えたが、それ以外の範囲のサンプルでは、変化率が7%以下であった。すなわち、表1のデータからはチタンが1.2at%以上では比抵抗の変化率が7%以下となること明らかとなったが、比抵抗の変化率が7%以下となるのはチタンが1.1at%以上、ガリウムが4.5at%以上であることは表1、2に示した以外のデータの傾向で明らかとなった。
 図2には、耐環境性試験結果が7%以内のサンプルを○、7%を超えたサンプルを●で示す。
試験例2(比抵抗測定)
 酸素分圧が0sccm(0×10-3 Pa相当)で成膜した各透明導電膜を、それぞれ10mm×10mmの大きさに切り出し、比抵抗をVan der Pauw法(東陽テクニカ製,ホール係数測定装置 ResiTest8300)によって測定した。
 この結果を表1及び表2に示す。
 この結果、ガリウムの含有量y(at%)が、チタンの含有量x(at%)で表される値(-2x+10.4)以下の範囲で且つチタンの含有量x(at%)で表される値(-0.5x+1.1)以上の範囲にある透明導電膜で、比抵抗2.5×10-3Ωcm以下となることがわかった。一方、この範囲を外れたサンプルでは、比抵抗が2.5×10-3Ωcmより大きいことがわかった。なお、比抵抗2.5×10-3Ωcm以下となるチタンの含有量x(at%)で表される値(-2x+10.4)以下となる範囲の境界が、ガリウムの含有量yが、チタンの含有量x(at%)で表される値(-0.5x+1.1)以上の範囲であることは、表1、2に示した以外のデータを含めて総合的に判断した結果明らかになった。
 図3には、耐環境性試験結果が7%以内のもので、比抵抗が2.5×10-3Ωcm以下のサンプルを□、比抵抗が2.5×10-3Ωcmを超えるサンプルを■、耐環境性試験結果が7%を超えたサンプルを●で示す。
 また、特に、ガリウムの含有量y(at%)が、チタンの含有量x(at%)で表される値(-2.5x+9.8)以下で且つ(-0.5x+1.1)以上の範囲のサンプルで比抵抗が1.5×10-3Ωcm以下になることがわかった。なお、比抵抗1.5×10-3Ωcm以下となるチタンの含有量x(at%)で表される値(-2x+10.4)以下となる範囲の境界が、ガリウムの含有量yが、チタンの含有量x(at%)で表される値(-2.5x+9.8)以下で且つ(-0.5x+1.1)以上の範囲であることは、表1、2に示した以外のデータを含めて総合的に判断した結果明らかになった。
 図4には、図3の中で比抵抗が1.5×10-3Ωcm以下になるサンプルを◇として示す。
試験例3(ホール係数測定)
 酸素分圧が0sccm(0×10-3 Pa相当)で成膜した各透明導電膜を切り出し、Van der Pauw法によるホール係数測定(東陽テクニカ製,ホール係数測定装置 ResiTest8300)から、各膜のキャリア密度およびキャリア移動度をそれぞれ測定した。
 この結果を表1及び表2に示す。
 この結果、ガリウムの含有量y(at%)が、チタンの含有量x(at%)で表される値(-x+3.4)以下、(x-0.9)以下、または(-2.3x+10.1)以上の範囲にあるサンプルでキャリア密度は4.0×1020cm-3以下となることがわかった。一方、これ以外の範囲にあるサンプルではキャリア密度が4.0×1020cm-3より大きいことがわかった。なお、キャリア密度が4.0×1020cm-3以下となる範囲が、ガリウムの含有量y(at%)が、チタンの含有量x(at%)で表される値(-x+3.4)以下、(x-0.9)以下、または(-2.3x+10.1)以上の範囲であることは、表1、2に示した以外のデータを含めて総合的に判断した結果明らかになった。
 図5には、耐環境性試験結果が7%以内のもので、キャリア密度が4.0×1020cm-3以下のサンプルを△、キャリア密度が4.0×1020cm-3を超えるサンプルを▲、耐環境性試験結果が7%を超えたサンプルを●で示す。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 (成膜例2)
 上述した製造例と同様に下記表3の組成で製造したスパッタリングターゲットを4インチカソードのDCマグネトロンスパッタ装置にそれぞれ装着し、基板温度250℃、酸素分圧を0sccm(0×10-3 Pa相当)にして成膜し、透明導電膜を得た。
 このようにして得られた透明導電膜は、スパッタリングした透明導電膜用スパッタリングターゲットの組成と同一組成の酸化亜鉛系透明導電膜である。このような酸化亜鉛系透明導電膜の組成分析は、単膜を全量溶解しICPで分析してもよい。また、膜自体が素子構成をなしている場合などは、必要に応じてFIB等により該当する部分の断面を切り出し、SEMやTEM等に付属している元素分析装置(EDSやWDS、オージェ分析など)を用いても特定することが可能である。
 スパッタの条件は、以下の通りとし、厚さ5000Åの膜を得た。
 ターゲット寸法 :φ=100mm、t=6mm
 スパッタ方式 :DCマグネトロンスパッタ
 排気装置 :ロータリーポンプ+クライオポンプ
 到達真空度 :5×10-5 Pa以下
 Ar圧力 :4.0×10-1Pa
 酸素分圧 :0×10-3Pa
 基板温度 :250℃
 スパッタ電力 :130W (電力密度1.6W/cm
 使用基板 :コーニング#1737(液晶ディスプレイ用ガラス)
       50mm×50mm×0.8mmt
試験例4(エッチング量とヘイズ率との関係F)
 (Ti1at%、Ga1at%)(B1)、(Ti3at%、Ga1at%)(B10)、及び(Ti5at%、Ga1at%)(B18)の透明導電膜について、それぞれの表面にライン&スペース(L/S)=20μmの櫛形の形状のレジストパターン(レジスト:東京応化社製TFR970)を設けたサンプルを、1容量%酢酸に酸化亜鉛粉を100mg/L溶解した液からなるエッチャントに、30℃で規定時間浸漬し、接触段差計(テンコール社製P-15)を用いてエッチング量を測定し、エッチングレートを測定した。その後、当該エッチング液を用いて、各サンプルについてエッチング量を変化させたサンプルを作成し、そのヘイズ率を測定した。なお、比較のため、上述したAZOスパッタリングターゲット製造例で製造した(Al/(Zn+Al))が2.4at%に相当するような比率のターゲットを用い、成膜したサンプルについて、同様にしてエッチング量とヘイズ率との関係を求めた。図6には、エッチング量とヘイズ率との関係を示す。
 ヘイズ率は、ヘイズメータ(NDH-2000;日本電色工業社製)を用いて、JIS K-7136(2000)に基づいて、サンプルの中心部を測定して求めた。
 この結果、エッチング量が大きくなればなるほど、ヘイズ率が高くなり、本発明の酸化亜鉛系透明導電膜は、エッチング量の増加に伴ってヘイズ率が上昇することがわかった。また、本発明の酸化亜鉛系透明導電膜の中では、同じエッチング量でも組成によりヘイズ率の増加率が異なり、(Ti1at%、Ga1at%)(B1)、(Ti5at%、Ga1at%)(B18)、(Ti3at%、Ga1at%)(B10)の順でエッチング量の増加に伴うヘイズ率の増加率が大きくなることがわかった。
 また、何れの場合も、エッチング量に対してヘイズ率はほぼリニアに上昇することがわかり、ヘイズ率を高めるためには、2000~3000Å、好ましくは、3000Å前途エッチングするのがよいことがわかった。
 図7の(a)~(c)に(Ti3at%、Ga1at%)(B10)膜のエッチング量を500Å、1500Å、3000Åと変化させたときの表面のSEM像を示した。また、比較のため、図8の(a)~(c)に、AZO(2.4at%)膜のエッチング量を同様に変化させたときのSEM像を示す。(Ti3at%、Ga1at%)(B10)膜はエッチング量を増やしていくと、膜の表面形態が変化しヘイズ率が60%程度まで向上することがわかった。一方、AZO(2.4at%)膜はエッチングしても表面形態がほとんど変化せずヘイズ率は20%程度にとどまることがわかった。
試験例5(ヘイズ率測定)
 B1~B23の透明導電膜について、その表面にライン&スペース(L/S)=20μmの櫛形の形状のレジストパターン(レジスト:東京応化社製TFR970)を設けたサンプルを、1容量%酢酸に酸化亜鉛粉を100mg/L溶解した液からなるエッチャントに、30℃で規定時間浸漬し、接触段差計(テンコール社製P-15)を用いてエッチング量を測定し、エッチングレートを測定した。
 このようにして求めたエッチングレートを基準として、B1~B36の透明導電膜についてそれぞれ約3000Åエッチングし、ヘイズ率測定サンプルとした。
 各サンプルについて、ヘイズメータ(NDH-2000;日本電色工業社製)を用いて、JIS K-7136(2000)に基づいて、サンプルの中心部を測定してヘイズ率を求めた。結果を表3並びに図9に示す。なお、図9は、ヘイズ率が10%以上のサンプルを■、10%未満のサンプルを◆で示した。
 この結果、ガリウムの含有量y(at%)が、チタンの含有量x(at%)で表される値(-0.66x+5.5)以下の範囲で、ヘイズ率が特に高く、10%以上が実現されることがわかった。なお、透明電極付きガラス基板としてヘイズ率10%からのものが上市されていることから、ヘイズ率が10%以上という範囲は実用化可能なものであることがわかる。
 よって、試験例1の結果と併せると、チタン1.1at%以上又はガリウム4.5at%以上の範囲(チタンが0at%及びガリウム0at%を除く)で且つガリウムの含有量y(at%)が、チタンの含有量x(at%)で表される値(-0.66x+5.5)以下の範囲が好ましいことがわかった。
Figure JPOXMLDOC01-appb-T000004

Claims (11)

  1. 酸化亜鉛を主成分とし、チタン(Ti)及びガリウム(Ga)の両元素を含有し、両元素がチタン1.1at%以上又はガリウム4.5at%以上の範囲で含有されていることを特徴とする酸化亜鉛系透明導電膜。
  2. 請求項1記載の酸化亜鉛系透明導電膜において、ガリウムの含有量y(at%)が、チタンの含有量x(at%)で表される値(-0.66x+5.5)以下の範囲にあることを特徴とする酸化亜鉛系透明導電膜。
  3. 請求項1又は2記載の酸化亜鉛系透明導電膜において、ガリウムの含有量y(at%)が、チタンの含有量x(at%)で表される値(-2x+10.4)以下の範囲で且つチタンの含有量x(at%)で表される値(-0.5x+1.1)以上の範囲にあることを特徴とする酸化亜鉛系透明導電膜。
  4. 請求項1~3の何れか1項に記載の酸化亜鉛系透明導電膜において、ガリウムの含有量y(at%)が、チタンの含有量x(at%)で表される値(-x+3.4)以下、(x-0.9)以下、または(-2.3x+10.1)以上の範囲にあることを特徴とする酸化亜鉛系透明導電膜。
  5. 請求項4記載の酸化亜鉛系透明導電膜であって、太陽電池用透明導電膜であることを特徴とする酸化亜鉛系透明導電膜。
  6. 請求項5記載の酸化亜鉛系透明導電膜であって、透明基板上に表面電極として形成されたものであることを特徴とする酸化亜鉛系透明導電膜。
  7. 請求項1~6の何れか1項に記載の酸化亜鉛系透明導電膜であって、ヘイズ率が10%以上であることを特徴とする酸化亜鉛系透明導電膜。
  8. 請求項7記載の酸化亜鉛系透明導電膜であって、成膜後、表面を弱酸でエッチングすることにより形成されたものであることを特徴とする酸化亜鉛系透明導電膜。
  9. 酸化亜鉛を主成分とし、チタン(Ti)及びガリウム(Ga)の両元素を含有し、両元素がチタン1.1at%以上又はガリウム4.5at%以上の範囲で含有されている酸化亜鉛系透明導電膜を成膜することを特徴とする酸化亜鉛系透明導電膜の製造方法。
  10. 請求項9記載の酸化亜鉛系透明導電膜の製造方法において、酸化亜鉛を主成分とし、チタン(Ti)及びガリウム(Ga)の両元素を含有し、両元素がチタン1.1at%以上又はガリウム4.5at%以上の範囲で含有されている酸化亜鉛系ターゲットを用い、スパッタリング又はイオンプレーティングにより成膜することを特徴とする酸化亜鉛系透明導電膜の製造方法。
  11. 請求項9又は10記載の酸化亜鉛系透明導電膜の製造方法において、成膜後、表面を弱酸でエッチングすることによりヘイズ率を高めることを特徴とする酸化亜鉛系透明導電膜の製造方法。
PCT/JP2009/062765 2008-09-17 2009-07-14 酸化亜鉛系透明導電膜及びその製造方法 WO2010032542A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010529683A JPWO2010032542A1 (ja) 2008-09-17 2009-07-14 酸化亜鉛系透明導電膜及びその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008238750 2008-09-17
JP2008-238750 2008-09-17

Publications (1)

Publication Number Publication Date
WO2010032542A1 true WO2010032542A1 (ja) 2010-03-25

Family

ID=42039384

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/062765 WO2010032542A1 (ja) 2008-09-17 2009-07-14 酸化亜鉛系透明導電膜及びその製造方法

Country Status (3)

Country Link
JP (1) JPWO2010032542A1 (ja)
TW (1) TW201013709A (ja)
WO (1) WO2010032542A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013533637A (ja) * 2010-07-30 2013-08-22 エルジー イノテック カンパニー リミテッド 太陽光発電装置及びその製造方法
JP2013193947A (ja) * 2012-03-22 2013-09-30 Tosoh Corp 酸化物透明導電膜及びその製造方法、それにより得られる素子、並びに太陽電池
JP2014065969A (ja) * 2012-09-04 2014-04-17 Sumitomo Chemical Co Ltd 酸化亜鉛系透明導電膜形成材料およびそれを用いたターゲット
WO2014097963A1 (ja) * 2012-12-17 2014-06-26 住友化学株式会社 酸化亜鉛系透明導電膜

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170084351A (ko) * 2011-02-25 2017-07-19 미쓰비시 마테리알 가부시키가이샤 투명 산화물막 및 그 제조 방법

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10306367A (ja) * 1997-05-06 1998-11-17 Sumitomo Metal Mining Co Ltd スパッタリングターゲット用ZnO−Ga2O3系焼結体およびその製造方法
JPH11256320A (ja) * 1998-03-13 1999-09-21 Sumitomo Metal Mining Co Ltd ZnO系焼結体
JPH11302835A (ja) * 1998-04-21 1999-11-02 Sumitomo Metal Mining Co Ltd ZnO系焼結体の製造方法
JP2000195101A (ja) * 1998-12-28 2000-07-14 Japan Energy Corp 光ディスク保護膜及び同保護膜形成用スパッタリングタ―ゲット

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10306367A (ja) * 1997-05-06 1998-11-17 Sumitomo Metal Mining Co Ltd スパッタリングターゲット用ZnO−Ga2O3系焼結体およびその製造方法
JPH11256320A (ja) * 1998-03-13 1999-09-21 Sumitomo Metal Mining Co Ltd ZnO系焼結体
JPH11302835A (ja) * 1998-04-21 1999-11-02 Sumitomo Metal Mining Co Ltd ZnO系焼結体の製造方法
JP2000195101A (ja) * 1998-12-28 2000-07-14 Japan Energy Corp 光ディスク保護膜及び同保護膜形成用スパッタリングタ―ゲット

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013533637A (ja) * 2010-07-30 2013-08-22 エルジー イノテック カンパニー リミテッド 太陽光発電装置及びその製造方法
US9871159B2 (en) 2010-07-30 2018-01-16 Lg Innotek Co., Ltd. Apparatus for generating electricity using solar power and method for manufacturing same
JP2013193947A (ja) * 2012-03-22 2013-09-30 Tosoh Corp 酸化物透明導電膜及びその製造方法、それにより得られる素子、並びに太陽電池
JP2014065969A (ja) * 2012-09-04 2014-04-17 Sumitomo Chemical Co Ltd 酸化亜鉛系透明導電膜形成材料およびそれを用いたターゲット
WO2014097963A1 (ja) * 2012-12-17 2014-06-26 住友化学株式会社 酸化亜鉛系透明導電膜
JPWO2014097963A1 (ja) * 2012-12-17 2017-01-12 住友化学株式会社 酸化亜鉛系透明導電膜

Also Published As

Publication number Publication date
JPWO2010032542A1 (ja) 2012-02-09
TW201013709A (en) 2010-04-01

Similar Documents

Publication Publication Date Title
JP4295811B1 (ja) 酸化亜鉛系ターゲット
KR101841314B1 (ko) 산화물 소결체 및 그 제조방법, 스퍼터링 타겟, 산화물 투명 도전막 및 그 제조방법, 그리고 태양 전지
KR101789347B1 (ko) 투명 도전막
WO2010032542A1 (ja) 酸化亜鉛系透明導電膜及びその製造方法
JP4043044B2 (ja) 酸化インジウム系透明導電膜及びその製造方法
JP2011184715A (ja) 酸化亜鉛系透明導電膜形成材料、その製造方法、それを用いたターゲット、および酸化亜鉛系透明導電膜の形成方法
JPWO2009044889A1 (ja) 酸化インジウム系ターゲット
US8734621B2 (en) Transparent conducting oxides and production thereof
JP2005135649A (ja) 酸化インジウム系透明導電膜及びその製造方法
KR20120097451A (ko) 투명도전 조성물 및 타겟, 이를 이용한 투명도전 박막 및 그 제조방법
CN100595319C (zh) ZnO:Bi光电薄膜及其制备方法
Kim et al. Formation of flexible and transparent indium gallium zinc oxide/Ag/indium gallium zinc oxide multilayer film
Flickyngerova et al. Modification of AZO thin-film properties by annealing and ion etching
Zhang et al. Performance of InSnZrO as transparent conductive oxides
Huafu et al. Influence of the distance between target and substrate on the properties of transparent conducting Al–Zr co-doped zinc oxide thin films
KR20140006700A (ko) 산화아연계 스퍼터링 타겟, 그 제조방법 및 이를 통해 증착된 차단막을 갖는 박막트랜지스터
Wang et al. Preparation and properties of surface textured ZnO: Al films by direct current pulse magnetron sputtering
JP2012158825A (ja) 酸化亜鉛系透明導電膜形成材料、その製造方法、それを用いたターゲット、酸化亜鉛系透明導電膜の形成方法および透明導電性基板
KR101404404B1 (ko) 산화아연 타겟 제조방법 및 이에 의해 제조된 산화아연 타겟
KR20060067488A (ko) 산화 아연계 산화물 및 이를 이용한 투명 산화물 전극
JP2004168636A (ja) 酸化物焼結体及びスパッタリングターゲット、酸化物透明電極膜の製造方法
CN108411252A (zh) 一种SrTiO3/Cu/SrTiO3三明治结构的柔性透明导电薄膜的制备方法
TWI385258B (zh) 摻雜Al(x%)Sc之N型ZnO導電薄膜及其製程
KR20120072237A (ko) 투명전극용 인듐-갈륨-실리콘-아연 산화물계 조성물
KR20090052008A (ko) 산화아연 타겟 및 그 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09814387

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010529683

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09814387

Country of ref document: EP

Kind code of ref document: A1