CN106024110B - 一种锡酸锶基柔性透明导电电极及其制备方法 - Google Patents
一种锡酸锶基柔性透明导电电极及其制备方法 Download PDFInfo
- Publication number
- CN106024110B CN106024110B CN201610365591.1A CN201610365591A CN106024110B CN 106024110 B CN106024110 B CN 106024110B CN 201610365591 A CN201610365591 A CN 201610365591A CN 106024110 B CN106024110 B CN 106024110B
- Authority
- CN
- China
- Prior art keywords
- srsno
- sputtering
- layer
- film layer
- deposition
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000002360 preparation method Methods 0.000 title claims abstract description 20
- 229940071182 stannate Drugs 0.000 title abstract 6
- 125000005402 stannate group Chemical group 0.000 title abstract 6
- 229910004410 SrSnO3 Inorganic materials 0.000 claims abstract description 94
- 239000010409 thin film Substances 0.000 claims abstract description 51
- 230000008021 deposition Effects 0.000 claims abstract description 46
- 239000000758 substrate Substances 0.000 claims abstract description 41
- 239000010408 film Substances 0.000 claims abstract description 28
- 239000000463 material Substances 0.000 claims abstract description 15
- 238000000034 method Methods 0.000 claims abstract description 15
- 239000000203 mixture Substances 0.000 claims abstract description 9
- 238000004544 sputter deposition Methods 0.000 claims description 99
- 238000000151 deposition Methods 0.000 claims description 68
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 56
- 239000013077 target material Substances 0.000 claims description 42
- 239000007789 gas Substances 0.000 claims description 40
- WZTUZRFSDWXDRM-IAGOJMRCSA-N 1-[(3s,8r,9s,10r,13s,14s,17r)-6-chloro-3,17-dihydroxy-10,13-dimethyl-1,2,3,8,9,11,12,14,15,16-decahydrocyclopenta[a]phenanthren-17-yl]ethanone Chemical compound C1=C(Cl)C2=C[C@@H](O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@@](C(=O)C)(O)[C@@]1(C)CC2 WZTUZRFSDWXDRM-IAGOJMRCSA-N 0.000 claims description 32
- 229910052786 argon Inorganic materials 0.000 claims description 28
- 238000001755 magnetron sputter deposition Methods 0.000 claims description 26
- 238000005477 sputtering target Methods 0.000 claims description 13
- 238000005086 pumping Methods 0.000 claims description 7
- 239000000843 powder Substances 0.000 claims description 6
- XOLBLPGZBRYERU-UHFFFAOYSA-N SnO2 Inorganic materials O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 claims description 4
- 239000002131 composite material Substances 0.000 claims description 3
- 238000000227 grinding Methods 0.000 claims description 3
- 238000002156 mixing Methods 0.000 claims description 3
- 238000000465 moulding Methods 0.000 claims description 3
- 238000003825 pressing Methods 0.000 claims description 3
- 238000005303 weighing Methods 0.000 claims description 3
- 238000005137 deposition process Methods 0.000 claims description 2
- 230000003287 optical effect Effects 0.000 abstract description 15
- 238000002834 transmittance Methods 0.000 abstract description 13
- 238000012360 testing method Methods 0.000 description 7
- 239000011521 glass Substances 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 239000008367 deionised water Substances 0.000 description 2
- 229910021641 deionized water Inorganic materials 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- 239000004973 liquid crystal related substance Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 238000002371 ultraviolet--visible spectrum Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 241001391944 Commicarpus scandens Species 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 229910021417 amorphous silicon Inorganic materials 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 239000003337 fertilizer Substances 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(III) oxide Inorganic materials [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 description 1
- 239000012774 insulation material Substances 0.000 description 1
- 238000011031 large-scale manufacturing process Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000005693 optoelectronics Effects 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000011056 performance test Methods 0.000 description 1
- 230000005622 photoelectricity Effects 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 229910000018 strontium carbonate Inorganic materials 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B5/00—Non-insulated conductors or conductive bodies characterised by their form
- H01B5/14—Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/08—Oxides
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/14—Metallic material, boron or silicon
- C23C14/20—Metallic material, boron or silicon on organic substrates
- C23C14/205—Metallic material, boron or silicon on organic substrates by cathodic sputtering
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/34—Sputtering
- C23C14/35—Sputtering by application of a magnetic field, e.g. magnetron sputtering
- C23C14/352—Sputtering by application of a magnetic field, e.g. magnetron sputtering using more than one target
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B13/00—Apparatus or processes specially adapted for manufacturing conductors or cables
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Physical Vapour Deposition (AREA)
- Manufacturing Of Electric Cables (AREA)
Abstract
本发明公开了一种锡酸锶基柔性透明导电电极及其制备方法,所述锡酸锶基柔性透明导电电极沉积在柔性透明基材衬底上,所述锡酸锶基柔性透明导电电极为SrSnO3/Ag/SrSnO3复合层状结构,由两层SrSnO3薄膜层夹着Ag层组成。所述锡酸锶基柔性透明导电电极的制备方法包括SrSnO3薄膜层沉积、Ag层沉积和SrSnO3薄膜层二次沉积等步骤。本发明的锡酸锶基柔性透明导电电极及其制备方法具有光学透过率高、导电性能优良、工艺流程简单和应用前景广阔的特点。
Description
技术领域
本发明涉及光电技术领域,具体为一种可以用于柔性液晶显示器、柔性太阳能电池、有机和无机半导体激光器等光电子器件的锡酸锶基柔性透明导电电极及其制备方法。
背景技术
透明导电氧化物(TCO)薄膜由于具有高的可见光透射率和低的电阻率,在抗静电涂层、触摸显示屏、太阳能电池、平板显示、发热器、防结冰装置、光学涂层以及透明光电子等方面具有广阔的发展前景,其中的代表性TCO薄膜是In2O3:Sn(ITO)薄膜,其具有良好的光电性能。然而目前的透明导电薄膜的载流子浓度已经接近上限,因此通过进一步提高载流子浓度来降低电阻率已经很困难,并且很高的载流子浓度会严重影响到透明导电薄膜的光学性能。此外,但是铟有毒,价格昂贵,稳定性差,在氢等离子体气氛中容易被还原等问题,人们力图寻找一种价格低廉且性能优异的ITO 替换材料。
发明内容
本发明的目的是提供一种锡酸锶基柔性透明导电电极及其制备方法,具有光学透过率高、导电性能优良、稳定性高和应用前景广阔的特点。
本发明可以通过以下技术方案来实现:
本发明公开了一种锡酸锶基柔性透明导电电极,所述锡酸锶基柔性透明导电电极沉积在柔性透明基材衬底上,所述锡酸锶基柔性透明导电电极为SrSnO3/Ag/SrSnO3复合层状结构,由两层SrSnO3薄膜层夹着Ag层组成。SrSnO3是典型钙钛矿结构材料,其具有较宽光学带隙,在可见光光区具有极高的光学透过率(>95%)。SrSnO3中所含的元素存量大,价格便宜。但是其电阻率较大,远达不到应用指标。金属具有极低的电阻率,但是不具备光学透过性。如果SrSnO3薄膜与金属结合起来则可以制备出光学透过率高且导电性好的复合透明导电薄膜。选择Ag作为中间层,既充分发挥Ag导电性能优良的优势,又避免了选择Au带来的昂贵成本,在稳定性上又避免了Cu极易氧化对品质带来的缺陷。选择柔性透明基材衬底,与在硬质衬底上淀积的TCO薄膜相比,在柔性基片上制备的透明导电氧化物薄膜不但保留了玻璃基片透明导电膜的光电特性,而且具有许多独特的优点,如质量轻、可折叠、不易破碎、易于大面积生产、便于运输等。这种薄膜可广泛应用于制造柔性发光器件、塑料液晶显示器和柔性衬底非晶硅太阳能电池,还可作为透明隔热保温材料用于塑料大棚、汽车玻璃和民用建筑玻璃贴膜,柔性村底透明导电膜可望成为硬质衬底材料的更新换代产品,有更广泛的应用。
进一步地,所述SrSnO3薄膜层的厚度为10nm ~ 100nm。SrSnO3薄膜层不宜过薄或过厚,过薄会造成电阻过低不满足导电性能优良的要求,过厚的话会造成可见光透光率显著降低。
进一步地,所述Ag层的厚度为3nm ~ 20nm。Ag不宜过薄或过厚,过薄会造成电阻过低不满足导电性能优良的要求,过厚的话会造成可见光透光率显著降低。
进一步地,所述SrSnO3薄膜层的厚度为30nm ~ 50nm。
进一步地,所述Ag层的厚度为8nm ~ 11nm。
进一步地,所述SrSnO3薄膜层和所述Ag层是通过磁控溅射方式沉积在柔性透明基材衬底上,工艺成熟,可以满足规模化生产的工业要求。
进一步地,所述柔性透明基材衬底为PC、PET或PEN。材料来源广泛,可以根据实际需要灵活选择。
一种锡酸锶基柔性透明导电电极的制备方法,包括以下步骤:
SrSnO3薄膜层沉积:以SrSnO3和Ag作为靶材装入磁控溅射腔体内,以柔性透明基材衬底为衬底,控制靶材与衬底的距离为80mm ~ 120mm,将磁控溅射系统的本底真空度抽至1.0×10-3Pa以下,使用高纯氩气作为溅射气体溅射SrSnO3靶材,溅射功率为20~100W,进行沉积得到SrSnO3薄膜层;
Ag层沉积:SrSnO3薄膜层沉积完成后,用氩气混合气作为溅射气体溅射Ag靶材,开始溅射Ag层,溅射功率20~40W,在SrSnO3薄膜层沉积得到Ag层;
SrSnO3薄膜层二次沉积:Ag层沉积完成后,将磁控溅射系统的本底真空度抽至1.0×10-3Pa以下,使用高纯氩气作为溅射气体二次溅射SrSnO3靶材,溅射功率为20~100W,进行二次沉积在Ag层表面沉积得到SrSnO3薄膜层。
进一步地,在所述SrSnO3薄膜层沉积和所述SrSnO3薄膜层二次沉积中溅射总气压0.5 Pa~3 Pa;在所述Ag层沉积过程中溅射气压为0.3 Pa~1.0 Pa。
进一步地,作为靶材的SrSnO3是采用如下方法制备的:按SrSnO3对应元素的化学计量比称取SrCO3和SnO2粉体,研磨4h充分混合后在20MPa的压力下压制成型,最后放入电炉中烧制成作为靶材的SrSnO3,所述电炉烧制的条件为逐步升温至1300 ℃保持10 h。生产工艺简单,成本十分低廉。
进一步地,所述柔性透明基材衬底在使用前用去离子水超声洗涤10分钟,并在烘箱中烘干,可以进一步有效避免柔性透明基材衬底表面污垢对锡酸锶基柔性透明导电电极电性能的影响。
进一步地,所述高纯氩气和所述氩气混合气所使用的氩气纯度均在99.99%以上,进一步保证锡酸锶基柔性透明导电电极性能的稳定性。
本发明一种锡酸锶基柔性透明导电电极及其制备方法,具有如下的有益效果:
第一、光学透过率高,通过采用柔性透明基材衬底,在柔性透明基材衬底上形成SrSnO3/Ag/SrSnO3结构锡酸锶基柔性透明导电电极,可见光的透过率高达80%以上;
第二、导电性能优良,通过采用柔性透明基材衬底,在柔性透明基材衬底上形成合适厚度的SrSnO3/Ag/SrSnO3结构锡酸锶基柔性透明导电电极,特别是Ag层的的引入,保证了锡酸锶基柔性透明导电电极具有较好的导电性能;
第三、工艺过程简单,通过采用柔性透明基材衬底,在柔性透明基材衬底上形成SrSnO3/Ag/SrSnO3结构锡酸锶基柔性透明导电电极,其制备过程工艺步骤少,工艺可实现性强,提高了工艺实现的便捷性;
第四、应用前景广阔,本发明提供的柔性SrSnO3/Ag/SrSnO3结构透明电极制备工艺,流程简单、电学性能优良,为柔性太阳能电池和透明显示设备的开发和应用提供了优良的基础,具有良好的应用前景。
附图说明
附图1为实施例1所得的锡酸锶基柔性透明导电电极进行光学透过性能(紫外-可见光谱)图谱。
具体实施方式
为了使本技术领域的人员更好地理解本发明的技术方案,下面结合实施例及对本发明产品作进一步详细的说明。
实施例1
本发明公开了一种锡酸锶基柔性透明导电电极,具体是采用以下制备方法制备得到的:
SrSnO3薄膜层沉积:以SrSnO3和Ag作为靶材装入磁控溅射腔体内,以PC作为柔性透明基材衬底,控制靶材与衬底的距离为100mm,将磁控溅射系统的本底真空度抽至5.0×10- 4Pa,通入30 sccm 的高纯氩气作为溅射气体溅射SrSnO3靶材,溅射功率为80W,溅射总气压1.0 Pa,进行沉积得到SrSnO3薄膜层;
Ag层沉积:SrSnO3薄膜层沉积完成后,用氩气混合气作为溅射气体溅射Ag靶材,开始溅射Ag层,溅射功率30W,溅射气压为0.6 Pa,在SrSnO3薄膜层沉积得到Ag层;
SrSnO3薄膜层二次沉积:Ag层沉积完成后,将磁控溅射系统的本底真空度抽至5.0×10-4Pa,通入30 sccm 的高纯氩气作为溅射气体二次溅射SrSnO3靶材,溅射功率为80W,溅射总气压1.0 Pa,进行二次沉积在Ag层表面沉积得到SrSnO3薄膜层。
实施例2
本发明公开了一种锡酸锶基柔性透明导电电极,具体是采用以下制备方法制备得到的:
SrSnO3薄膜层沉积:以SrSnO3和Ag作为靶材装入磁控溅射腔体内,以PET作为柔性透明基材衬底,控制靶材与衬底的距离为100mm,将磁控溅射系统的本底真空度抽至5.0×10-4Pa,通入20 sccm 的高纯氩气作为溅射气体溅射SrSnO3靶材,溅射功率为60W,溅射总气压0.5 Pa,进行沉积得到SrSnO3薄膜层;
Ag层沉积:SrSnO3薄膜层沉积完成后,用氩气混合气作为溅射气体溅射Ag靶材,开始溅射Ag层,溅射功率20W,溅射气压为1.0 Pa,在SrSnO3薄膜层沉积得到Ag层;
SrSnO3薄膜层二次沉积:Ag层沉积完成后,将磁控溅射系统的本底真空度抽至5.0×10-4Pa,通入20 sccm 的高纯氩气作为溅射气体二次溅射SrSnO3靶材,溅射功率为60W,溅射总气压0.5 Pa,进行二次沉积在Ag层表面沉积得到SrSnO3薄膜层。
实施例3
本发明公开了一种锡酸锶基柔性透明导电电极,具体是采用以下制备方法制备得到的:
SrSnO3薄膜层沉积:以SrSnO3和Ag作为靶材装入磁控溅射腔体内,以PEN作为柔性透明基材衬底,控制靶材与衬底的距离为120mm ,将磁控溅射系统的本底真空度抽至5.0×10-4Pa,通入20 sccm 的高纯氩气作为溅射气体溅射SrSnO3靶材,溅射功率为20W,溅射总气压0.5 Pa,进行沉积得到SrSnO3薄膜层;
Ag层沉积:SrSnO3薄膜层沉积完成后,用氩气混合气作为溅射气体溅射Ag靶材,开始溅射Ag层,溅射功率20W,溅射气压为0.5Pa,在SrSnO3薄膜层沉积得到Ag层;
SrSnO3薄膜层二次沉积:Ag层沉积完成后,将磁控溅射系统的本底真空度抽至5.0×10-4Pa,通入2- sccm 的高纯氩气作为溅射气体二次溅射SrSnO3靶材,溅射功率为20W,溅射总气压0.5 Pa,进行二次沉积在Ag层表面沉积得到SrSnO3薄膜层。
实施例4
本发明公开了一种锡酸锶基柔性透明导电电极,具体是采用以下制备方法制备得到的:
SrSnO3薄膜层沉积:以SrSnO3和Ag作为靶材装入磁控溅射腔体内,以PC作为柔性透明基材衬底,控制靶材与衬底的距离为100mm,将磁控溅射系统的本底真空度抽至5.0×10- 4Pa,通入30 sccm 的高纯氩气作为溅射气体溅射SrSnO3靶材,溅射功率为100W,溅射总气压1.5Pa,进行沉积得到SrSnO3薄膜层;
Ag层沉积:SrSnO3薄膜层沉积完成后,用氩气混合气作为溅射气体溅射Ag靶材,开始溅射Ag层,溅射功率30W,溅射气压为0.8 Pa,在SrSnO3薄膜层沉积得到Ag层;
SrSnO3薄膜层二次沉积:Ag层沉积完成后,将磁控溅射系统的本底真空度抽至5.0×10-4Pa,通入30 sccm 的高纯氩气作为溅射气体二次溅射SrSnO3靶材,溅射功率为100W,溅射总气压1.5 Pa,进行二次沉积在Ag层表面沉积得到SrSnO3薄膜层。
实施例5
本发明公开了一种锡酸锶基柔性透明导电电极,具体是采用以下制备方法制备得到的:
SrSnO3薄膜层沉积:以SrSnO3和Ag作为靶材装入磁控溅射腔体内,以PET作为柔性透明基材衬底,控制靶材与衬底的距离为80mm ~ 120mm,将磁控溅射系统的本底真空度抽至1.0×10-3Pa以下,使用高纯氩气作为溅射气体溅射SrSnO3靶材,溅射功率为60W,溅射总气压3 Pa,进行沉积得到SrSnO3薄膜层;
Ag层沉积:SrSnO3薄膜层沉积完成后,用氩气混合气作为溅射气体溅射Ag靶材,开始溅射Ag层,溅射功率40W,溅射气压为0.3 Pa,在SrSnO3薄膜层沉积得到Ag层;
SrSnO3薄膜层二次沉积:Ag层沉积完成后,将磁控溅射系统的本底真空度抽至1.0×10-3Pa以下,使用高纯氩气作为溅射气体二次溅射SrSnO3靶材,溅射功率为60W,溅射总气压3 Pa,进行二次沉积在Ag层表面沉积得到SrSnO3薄膜层。
在本实施例中,作为靶材的SrSnO3是采用如下方法制备的:按SrSnO3对应元素的化学计量比称取SrCO3和SnO2粉体,研磨4h充分混合后在20MPa的压力下压制成型,最后放入电炉中烧制成作为靶材的SrSnO3,所述电炉烧制的条件为逐步升温至1300 ℃保持10 h,所述SrCO3和SnO2的纯度均在99.9%以上。
实施例6
本发明公开了一种锡酸锶基柔性透明导电电极,具体是采用以下制备方法制备得到的:
SrSnO3薄膜层沉积:以SrSnO3和Ag作为靶材装入磁控溅射腔体内,以PEN作为柔性透明基材衬底,控制靶材与衬底的距离为110mm,将磁控溅射系统的本底真空度抽至1.0×10-3Pa以下,使用高纯氩气作为溅射气体溅射SrSnO3靶材,溅射功率为30W,溅射总气压3Pa,进行沉积得到SrSnO3薄膜层;
Ag层沉积:SrSnO3薄膜层沉积完成后,用氩气混合气作为溅射气体溅射Ag靶材,开始溅射Ag层,溅射功率25W,溅射气压为1.0 Pa,在SrSnO3薄膜层沉积得到Ag层;
SrSnO3薄膜层二次沉积:Ag层沉积完成后,将磁控溅射系统的本底真空度抽至1.0×10-3Pa以下,使用高纯氩气作为溅射气体二次溅射SrSnO3靶材,溅射功率为30W,溅射总气压3 Pa,进行二次沉积在Ag层表面沉积得到SrSnO3薄膜层。
在本实施例中,所述柔性透明基材衬底在使用前用去离子水超声洗涤10分钟,并在烘箱中烘干。作为靶材的Ag为市售或者自制靶材,纯度为99.99%。
为了有效评估本发明所述锡酸锶基柔性透明导电电极制备方法制备的锡酸锶基柔性透明导电电极的性能,采用本发明的制备方法分别制备得到实施例7~13不同SrSnO3薄膜层厚度和Ag层厚度的锡酸锶基柔性透明导电电极,分别进行方块电阻测试和平均光学透过率测试,具体测试结果如表1和图1所示:
表1 锡酸锶基柔性透明导电电极性能测试结果
从表1的测试结果可以看到,采用柔性透明基材衬底的锡酸锶基柔性透明导电电极的方块导电性能优良,具有较好的应用前景;本发明所述锡酸锶基柔性透明导电电极的可见光范围内平均光学透过率达80%以上。
与此同时,为了进一步测试本发明所述锡酸锶基柔性透明导电电极的光学性能,对实施例1所得的锡酸锶基柔性透明导电电极进行光学透过性能(紫外-可见光谱)图谱测试,具体测试结果如图1所示,从图1可以进一步看到,本发明所述锡酸锶基柔性透明导电电极的可见光范围内平均光学透过率达80%以上。
以上所述,仅为本发明的较佳实施例而已,并非对本发明作任何形式上的限制;凡本行业的普通技术人员均可按说明书所示和以上所述而顺畅地实施本发明;但是,凡熟悉本专业的技术人员在不脱离本发明技术方案范围内,可利用以上所揭示的技术内容而作出的些许更动、修饰与演变的等同变化,均为本发明的等效实施例;同时,凡依据本发明的实质技术对以上实施例所作的任何等同变化的更动、修饰与演变等,均仍属于本发明的技术方案的保护范围之内。
Claims (4)
1.一种锡酸锶基柔性透明导电电极,其特征在于:所述锡酸锶基柔性透明导电电极沉积在柔性透明基材衬底上,所述锡酸锶基柔性透明导电电极为SrSnO3/Ag/SrSnO3复合层状结构,由两层SrSnO3薄膜层夹着Ag层组成;其中,
所述SrSnO3薄膜层的厚度为30nm ~ 50nm;
所述Ag层的厚度为8nm ~ 11nm;
所述SrSnO3薄膜层和所述Ag层是通过磁控溅射方式沉积在柔性透明基材衬底上;
所述柔性透明基材衬底为PC、PET或PEN。
2.一种锡酸锶基柔性透明导电电极的制备方法,其特征在于包括以下步骤:
SrSnO3薄膜层沉积:以SrSnO3和Ag作为靶材装入磁控溅射腔体内,以柔性透明基材衬底为衬底,控制靶材与衬底的距离为80mm ~ 120mm,将磁控溅射系统的本底真空度抽至1.0×10-3Pa以下,使用高纯氩气作为溅射气体溅射SrSnO3靶材,溅射功率为20~100W,进行沉积得到SrSnO3薄膜层;
Ag层沉积:SrSnO3薄膜层沉积完成后,用氩气混合气作为溅射气体溅射Ag靶材,开始溅射Ag层,溅射功率20~40W,在SrSnO3薄膜层沉积得到Ag层;
SrSnO3薄膜层二次沉积:Ag层沉积完成后,将磁控溅射系统的本底真空度抽至1.0×10-3Pa以下,使用高纯氩气作为溅射气体二次溅射SrSnO3靶材,溅射功率为20~100W,进行二次沉积在Ag层表面沉积得到SrSnO3薄膜层。
3.根据权利要求2所述的锡酸锶基柔性透明导电电极的制备方法,其特征在于:在所述SrSnO3薄膜层沉积和所述SrSnO3薄膜层二次沉积中溅射总气压0.5 Pa~3 Pa;在所述Ag层沉积过程中溅射气压为0.3 Pa~1.0 Pa。
4.根据权利要求3所述的锡酸锶基柔性透明导电电极的制备方法,其特征在于:作为靶材的SrSnO3是采用如下方法制备的:按SrSnO3对应元素的化学计量比称取SrCO3和SnO2粉体,研磨4h充分混合后在20MPa的压力下压制成型,最后放入电炉中烧制成作为靶材的SrSnO3,所述电炉烧制的条件为逐步升温至1300 ℃保持10 h。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610365591.1A CN106024110B (zh) | 2016-05-29 | 2016-05-29 | 一种锡酸锶基柔性透明导电电极及其制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610365591.1A CN106024110B (zh) | 2016-05-29 | 2016-05-29 | 一种锡酸锶基柔性透明导电电极及其制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN106024110A CN106024110A (zh) | 2016-10-12 |
CN106024110B true CN106024110B (zh) | 2017-08-29 |
Family
ID=57092176
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610365591.1A Expired - Fee Related CN106024110B (zh) | 2016-05-29 | 2016-05-29 | 一种锡酸锶基柔性透明导电电极及其制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106024110B (zh) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108411252B (zh) * | 2018-03-28 | 2020-02-28 | 天津大学 | 一种SrTiO3/Cu/SrTiO3三明治结构的柔性透明导电薄膜的制备方法 |
CN108588658A (zh) * | 2018-04-20 | 2018-09-28 | 东莞理工学院 | 一种CaSnO3/Ag/CaSnO3多层结构柔性透明导电薄膜及其制备方法 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101609729A (zh) * | 2009-07-13 | 2009-12-23 | 浙江大学 | 一种多层透明导电薄膜及其制备方法 |
CN102051578A (zh) * | 2011-01-20 | 2011-05-11 | 北京航空航天大学 | 一种透明导电金属薄膜及其制备方法 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20110120120A (ko) * | 2010-04-28 | 2011-11-03 | 강석주 | 양면 투명도전 필름기재의 제조방법 |
-
2016
- 2016-05-29 CN CN201610365591.1A patent/CN106024110B/zh not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101609729A (zh) * | 2009-07-13 | 2009-12-23 | 浙江大学 | 一种多层透明导电薄膜及其制备方法 |
CN102051578A (zh) * | 2011-01-20 | 2011-05-11 | 北京航空航天大学 | 一种透明导电金属薄膜及其制备方法 |
Non-Patent Citations (2)
Title |
---|
Characterization of SnO2/Cu/SnO2 multilayers for high performance transparent conducting electrodes;Shihui Yu;《Thin solid films》;20140426;第562卷;摘要,第3页第1段-倒数第1段,第11页第1段-第13页倒数第1段,表1-2 * |
Optical and Electrical Properties Thin Film BaSnO3;Dave Mack;《Senior Thesis 2010》;20100712;第501页左栏第1段第1行-第505页左栏第5段倒数第1行,附图1-9 * |
Also Published As
Publication number | Publication date |
---|---|
CN106024110A (zh) | 2016-10-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101476111A (zh) | 一种透明导电薄膜及其制备方法 | |
CN101985740A (zh) | 一种铝掺氧化锌透明导电薄膜的退火方法 | |
CN105624625B (zh) | 一种提高ZnO/Ag/ZnO透明导电膜光电性能的方法 | |
CN103993288A (zh) | 一种透明导电FTO/Ag/FTO复合薄膜的制备方法 | |
CN104810114B (zh) | 高透光率柔性聚酰亚胺基底ito导电薄膜及其制备方法与应用 | |
CN106119778A (zh) | 室温溅射沉积柔性azo透明导电薄膜的方法 | |
CN106024110B (zh) | 一种锡酸锶基柔性透明导电电极及其制备方法 | |
CN102751341A (zh) | 透明导电薄膜及其制备方法 | |
CN105489270B (zh) | 一种夹层结构透明导电薄膜及其制备方法 | |
KR20090066047A (ko) | 도전 적층체 및 이의 제조방법 | |
CN103031556A (zh) | 一种 ZnO/Al/ZnO光电透明导电薄膜的沉积制备方法 | |
CN114231903B (zh) | 一种氧化铌/银纳米线双层结构柔性透明导电薄膜及其制备方法 | |
CN105908127A (zh) | 一种p型掺杂二氧化锡透明导电膜及其制备方法 | |
CN102719792A (zh) | 一种运用磁控溅射法制备透明导电薄膜的方法 | |
Heo et al. | Deposition of amorphous zinc indium tin oxide and indium tin oxide films on flexible poly (ether sulfone) substrate using RF magnetron Co-sputtering system | |
CN102650044B (zh) | 一种SGZO-Au-SGZO透明导电膜的制备方法 | |
CN102220562A (zh) | 一种绒面结构氧化锌透明导电薄膜的制备方法 | |
CN106637204A (zh) | Ag/ZnO/Mg光电透明导电薄膜的沉积方法 | |
CN113299436A (zh) | 一种MXene/ITO复合透明导电薄膜的制备方法 | |
CN105741916A (zh) | 一种柔性透明电极及其制备方法 | |
ÀÜÜ | Design of antireflective coatings for AZO low infrared emissivity layer | |
CN102650033A (zh) | 一种磷掺杂锡酸锌透明导电膜及其制备方法和应用 | |
CN115074666B (zh) | 一种多层复合ito薄膜的制备方法 | |
KR20110111230A (ko) | 투명전극 소재 및 그 제조방법과 투명전극의 제조방법 | |
Lin et al. | Study of AZO thin films under different annealing atmosphere on structural, optical and electrical properties by rf magnetron sputtering |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20170829 Termination date: 20200529 |
|
CF01 | Termination of patent right due to non-payment of annual fee |