CN108388700A - 一种动态确定高压电缆暂态热路中绝缘最佳分层数的方法 - Google Patents

一种动态确定高压电缆暂态热路中绝缘最佳分层数的方法 Download PDF

Info

Publication number
CN108388700A
CN108388700A CN201810084637.1A CN201810084637A CN108388700A CN 108388700 A CN108388700 A CN 108388700A CN 201810084637 A CN201810084637 A CN 201810084637A CN 108388700 A CN108388700 A CN 108388700A
Authority
CN
China
Prior art keywords
hierarchy number
cable
conductor
thermal circuit
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810084637.1A
Other languages
English (en)
Inventor
刘刚
韩卓展
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China University of Technology SCUT
Original Assignee
South China University of Technology SCUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China University of Technology SCUT filed Critical South China University of Technology SCUT
Priority to CN201810084637.1A priority Critical patent/CN108388700A/zh
Publication of CN108388700A publication Critical patent/CN108388700A/zh
Priority to PCT/CN2018/111212 priority patent/WO2019144657A1/zh
Priority to ZA2020/05139A priority patent/ZA202005139B/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/17Mechanical parametric or variational design
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2113/00Details relating to the application field
    • G06F2113/16Cables, cable trees or wire harnesses
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/06Power analysis or power optimisation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/08Thermal analysis or thermal optimisation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/30Circuit design
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S40/00Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them
    • Y04S40/20Information technology specific aspects, e.g. CAD, simulation, modelling, system security

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Geometry (AREA)
  • General Physics & Mathematics (AREA)
  • Evolutionary Computation (AREA)
  • Computer Hardware Design (AREA)
  • General Engineering & Computer Science (AREA)
  • Pure & Applied Mathematics (AREA)
  • Mathematical Optimization (AREA)
  • Mathematical Analysis (AREA)
  • Computational Mathematics (AREA)
  • Insulated Conductors (AREA)
  • Laying Of Electric Cables Or Lines Outside (AREA)

Abstract

本发明公开了一种动态确定高压电缆暂态热路中绝缘最佳分层数的方法,包括以下步骤:S1、选择所需高压电缆;S2、构建电缆本体暂态热路模型及对应的数学模型;S3、确定模型中各参数;S4、根据S1中的数学模型编辑计算程序;S5、导入各模型参数,计算某一时刻不同分层数下导体的温度值,求解导体温度随分层数的变化率,当变化率达到设定的变化率下限,此时分层数为最佳分层数;S6、以S5中计算结果为基础,确定下一时刻的绝缘层最佳分层数;S7、重复S5、S6,即可得到高压电缆暂态热路中绝缘层实时最佳分层数。本发明方法能得到更优化的暂态热路模型,并且使模型具有实时修正特性,为电缆载流量的准确计算打下重要基础。

Description

一种动态确定高压电缆暂态热路中绝缘最佳分层数的方法
技术领域
本发明涉及高压电缆载流量计算技术领域,特别涉及一种动态确定高压电缆暂态热路中绝缘最佳分层数的方法。
背景技术
随着城市用电量的大幅度增加,同时为了提高城市空间的利用率,城区输电网广泛采用大容量的电缆线路送电。近年来,中心城区部分电缆线路逐渐接近甚至超过了其设计载流量,严重威胁电力系统的安全运行。扩建电缆线路成本高,周期长,并且受到征地等问题的制约,短期内无法解决线路过负荷问题。因此,电缆线路的增容势在必行,而增容的基础是准确计算电缆线路的载流量。
目前,电缆载流量的计算主要有数值解法和解析法,前者包括有限元法、边界元法等,后者包括IEC 60287、IEC 60853、热路等方法。其中热路法在计算暂态过程时需要根据电缆结构尺寸、物性参数构建暂态热路模型并确定各参数,而绝缘层的处理则是极其重要的一环。
周凡等人在暂态热路模型处理中对绝缘层采用4种不同的分层方法,探究分层类型及分层数对载流量计算影响,发现绝缘分层能提高电缆载流量的计算精度。但该研究只停留在定性的层面,并没有定量给出绝缘的最佳分层数,更没有分析在整个温升过程中不同时刻分层数变化对载流量计算的影响。
发明内容
本发明的目的在于克服现有技术的缺点与不足,提供一种动态确定高压电缆暂态热路中绝缘最佳分层数的方法,不仅给出了定量确定绝缘最佳分层数的方法,而且还考虑了不同温升时刻最佳分层数的变化,实现动态、实时确定高压电缆暂态热路中绝缘层最佳分层数的目的。
本发明的目的通过以下的技术方案实现:一种动态确定高压电缆暂态热路中绝缘最佳分层数的方法,包括以下步骤:
S1、选择所需高压电缆,确定其尺寸及各层材料物性参数;
S2、构建电缆本体暂态热路模型及对应的数学模型,该步骤具体为:
S201、构建电缆本体暂态热路模型;
S202、构建热路模型对应的数学模型;
S3、确定暂态热路模型中各参数,该步骤具体为:
S301、时不变参数的确定;
S302、时变参数的确定;
S4、根据步骤S2中的数学模型,采用MATLAB编辑计算程序;
S5、导入各模型参数,利用循环语句,计算某一时刻不同分层数下导体的温度值,求解导体温度随分层数的变化率,当变化率达到设定的变化率下限,此时分层数为最佳分层数;
S6、以S5中计算结果为基础,并重复S5中的步骤,确定下一时刻的绝缘层最佳分层数;
S7、重复S5、S6,即可得到高压电缆暂态热路中绝缘层实时最佳分层数。
优选的,步骤S1中:根据计算需要,选择对象型号的高压电缆作为计算原型,确定相关电缆各层结构的参数包括:尺寸数据、材料特性、导热率、比热容、电阻率。
优选的,所述步骤S201具体为:
根据电缆线路和各层材料的特点,构建暂态热路模型基于以下假设:1)相对电缆半径,电缆线路长度无限大,对于长直电缆段,忽略其轴向传热;2)在一般敷设条件特别是实验条件下,电缆外部环境均匀,电缆各层材料各向同性,并且中心对称;3)各层材料的热容热阻不随时间空间而变化;4)内外屏蔽层很薄且热参数与绝缘层相似,因此三者合并同一层处理,5)相对导体损耗而言,介质损耗忽略不计,单端接地情况下忽略护套损耗;
基于以上假设,电缆本体热路简化成沿着径向的一维热路模型,同时绝缘层采用等厚度分层处理,电缆热路模型为分布参数暂态热路模型;设置:P表示电缆导体损耗;n-3表示绝缘层分层数;T1表示电缆导体温度;T2—Tn-3表示电缆绝缘层,含内、外屏蔽各分层温度;Tn-2表示绕包带温度;Tn-1表示气隙层温度;Tn表示铝护套温度;To表示电缆表皮温度;C1'表示电缆导体热容;C1”、C2—Cn-3表示电缆绝缘层,含内、外屏蔽层各分层热容;Cn-2表示绕包层热容;Cn-1表示气隙层热容;Cn'表示铝护套热容;Cn”表示外护套热容;R1—Rn-3表示电缆绝缘层,含内、外屏蔽各分层热阻;Rn-2表示绕包层热阻;Rn-1表示气隙层热阻;Rn表示外护套热阻。
进一步的,所述步骤S202具体为:
对热路中的每个节点列写节点方程,并转化为矩阵表达形式:
其中,C1=C1'+C1”,Cn=Cn'+Cn”,各矩阵如下:
T=[T1 T2 T3 … Tn]T
优选的,所述步骤S301具体为:
在暂态热路模型中,基于假设,时不变参数包括各层材料的热容、热阻,各层热容热阻以IEC 60287标准计算;
单位长度热容计算公式如下:
式中:d2为计算层外径;d1为计算层内径;δ为计算层材料的体积热容;
单位长度热阻计算公式如下:
式中:d1表示计算层内径;d2表示计算层外径。
优选的,所述步骤S302具体为:
在暂态热路模型中,时变参数包括导体损耗和电缆表面温度,其中电缆表面温度由热电偶实时测量所得,导体损耗随着导体电阻的变化而变化;
单位长度导体损耗计算如下:
P=I2r
式中:P为导体的发热功率;I为负荷电流;r为单位长度导体交流电阻;
导体工作温度下单位长度的交流电阻计算公式:
r=r′(1+Ys+Yp)
式中:r为单位长度导体的交流电阻;r′为单位长度导体的直流电阻;Ys为集肤效应因数;Yp为邻近效应因数;
单位长度导体的直流电阻计算公式:
r′=r0×[1+α(θ-20)]
式中:r0为20℃时单位长度电缆导体的直流电阻;α为导体的电阻温度系数;θ为工作温度;
集肤效应因数Ys计算公式:
式中:ks为经验值;f为电流频率。
优选的,所述步骤S4具体为:根据系列节点所列方程组以及其中各参数的计算方法,采用MATLAB软件,编辑矩阵A、B、P的计算程序和微分方程组的求解程序。
优选的,所述步骤S5具体为:
步骤1:选取某一时刻作为计算起点,导入此刻的计算参数,进入下一步骤;
步骤2:设置分层数为1层,计算此时导体温度值T11,进入下一步骤;
步骤3:设置分层数为2层,计算此时导体温度值T12,较上一分层数计算温度随分层数的变化率,并取其绝对值|T11-T12|,若|T11-T12|小于设定值,则绝缘层的最佳分层数为2,结束,否则进入下一步骤;
步骤4:取分层数变量i=3,进入下一步;
步骤5:设置分层数为i,计算此时导体温度值T1i,较上一分层数计算温度随分层数的变化率,并取其绝对值|T1(i-1)-T1i|,若|T1(i-1)-T1i|小于设定值,则绝缘层的最佳分层数为i,结束,否则进入下一步骤;
步骤6:i=i+1,返回步骤5。
优选的,所述步骤S6具体为:步骤S5确定最佳分层数下的导体温度计算结果作为下一时刻计算的导体温度导入值,再导入下一时刻的表皮温度值,其他导入的参数保持不变,重复步骤S5中各步骤,得到下一时刻绝缘层的最佳分层数。
优选的,所述步骤S7具体为:每下一时刻导体温度的计算均以上一时刻的计算结果为基础,不断重复步骤S5和步骤S6中各步骤,即可得到整个温升过程中不同时刻绝缘层的最佳分层数,也就是实时确定高压电缆暂态热路中绝缘层最佳分层数。
本发明与现有技术相比,具有如下优点和有益效果:
本发明优化高压电缆暂态热路模型中的绝缘层处理,能得到更优化的暂态热路模型,考虑时变因素的同时,给出确定绝缘层最佳分层的方法并且使模型具有实时修正特性,为电缆载流量的准确计算打下重要基础。
附图说明
图1是实施例高压电缆横截面示意图;
图2是实施例分布参数暂态热路模型示意图。
具体实施方式
下面结合实施例及附图对本发明作进一步详细的描述,但本发明的实施方式不限于此。
实施例1
一种动态确定高压电缆暂态热路中绝缘最佳分层数的方法,包括下列步骤:
S1、选择所需高压电缆,确定其尺寸及各层材料物性参数。
根据计算需要,选择某种型号的高压电缆作为计算原型,高压电缆的一般结构示意图如附图1所示,查阅资料确定相关电缆各层结构的尺寸数据、材料特性、导热率、比热容、电阻率等等。
S2、构建电缆本体暂态热路模型及对应的数学模型。
S201、构建电缆本体暂态热路模型;
根据电缆线路和各层材料的特点,构建暂态热路模型基于以下假设:1)相对电缆半径,电缆线路长度无限大,对于长直电缆段,忽略其轴向传热;2)在一般敷设条件特别是实验条件下,电缆外部环境均匀,电缆各层材料各向同性,并且中心对称;3)各层材料的热容热阻不随时间空间而变化;4)内外屏蔽层很薄且热参数与绝缘层相似,因此三者合并同一层处理,5)相对导体损耗而言,介质损耗忽略不计,单端接地情况下忽略护套损耗。基于以上假设,电缆本体热路简化成沿着径向的一维热路模型,同时绝缘层采用等厚度分层处理,分布参数暂态热路模型如附图2所示。
其中:P表示电缆导体损耗,W;n-3表示绝缘层分层数;T1表示电缆导体温度,℃;T2—Tn-3表示电缆绝缘层(含内、外屏蔽)各分层温度,℃;Tn-2表示绕包带温度,℃;Tn-1表示气隙层温度,℃;Tn表示铝护套温度,℃;To表示电缆表皮温度,℃;C1'表示电缆导体热容,J/K;C1”、C2—Cn-3表示电缆绝缘层(含内、外屏蔽层)各分层热容,J/K;Cn-2表示绕包层热容,J/K;Cn-1表示气隙层热容,J/K;Cn'表示铝护套热容,J/K;Cn”表示外护套热容,J/K;R1—Rn-3表示电缆绝缘层(含内、外屏蔽)各分层热阻,K·m/W;Rn-2表示绕包层热阻,K·m/W;Rn-1表示气隙层热阻,K·m/W;Rn表示外护套热阻,K·m/W。
S202、构建热路模型对应的数学模型;
热路具有与电路类似的分析方法,对热路中的每个节点列写节点方程,并转化为矩阵表达形式:
其中,C1=C1'+C1”,Cn=Cn'+Cn”,各矩阵如下:
T=[T1 T2 T3 … Tn]T
S3、确定暂态热路模型中各参数。
S301、时不变参数的确定
在暂态热路模型中,基于假设,时不变参数包括各层材料的热容、热阻,各层热容热阻以IEC 60287标准计算。
单位长度热容计算公式如下:
式中:d2为计算层外径,mm;d1为计算层内径,mm;δ为计算层材料的体积热容,J/K·m3
单位长度热阻计算公式如下:
式中:d1表示计算层内径,mm;d2表示计算层外径,mm。
S302、时变参数的确定
在暂态热路模型中,时变参数包括导体损耗和电缆表面温度,其中电缆表面温度由热电偶实时测量所得,导体损耗随着导体电阻的变化而变化。
单位长度导体损耗计算如下:
P=I2r
式中:P为导体的发热功率,W;I为负荷电流,A;r为单位长度导体交流电阻,Ω。
导体工作温度下单位长度的交流电阻计算公式:
r=r′(1+Ys+Yp)
式中:r为单位长度导体的交流电阻,Ω;r′为单位长度导体的直流电阻,Ω;Ys为集肤效应因数;Yp为邻近效应因数。
单位长度导体的直流电阻计算公式:
r′=r0×[1+α(θ-20)]
式中:r0为20℃时单位长度电缆导体的直流电阻,Ω;α为导体的电阻温度系数,1/K;标准软铜:α=0.00393,该值取决于所使用的绝缘材料类型;θ为工作温度,K。
集肤效应因数Ys计算公式:
式中:ks为经验值,对于干燥的铜圆绞导线可取为1;f为电流频率,Hz。
S4、根据S1中的数学模型,采用MATLAB编辑计算程序;
根据系列节点所列方程组以及其中各参数的计算方法,采用MATLAB软件,编辑矩阵A、B、P的计算程序和微分方程组的求解程序。
S5、导入各模型参数,利用循环语句,计算某一时刻不同分层数下导体的温度值,求解导体温度随分层数的变化率,当变化率达到设定的变化率下限,此时分层数为最佳分层数。
具体的:
步骤1:选取某一时刻作为计算起点,导入此刻的导体温度、表皮温度、各层材料的热阻率和比热容等计算参数,进入下一步骤;
步骤2:设置分层数为1层,计算此时导体温度值T11,进入下一步骤;
步骤3:设置分层数为2层,计算此时导体温度值T12,较上一分层数计算温度随分层数的变化率,并取其绝对值|T11-T12|,若|T11-T12|小于设定值,则绝缘层的最佳分层数为2,结束,否则进入下一步骤;
步骤4:取分层数变量i=3,进入下一步;
步骤5:设置分层数为i,计算此时导体温度值T1i,较上一分层数计算温度随分层数的变化率,并取其绝对值|T1(i-1)-T1i|,若|T1(i-1)-T1i|小于设定值,则绝缘层的最佳分层数为i,结束,否则进入下一步骤;
步骤6:i=i+1,返回步骤5。
S6、以S5中计算结果为基础,并重复S5中的步骤,确定下一时刻的绝缘层最佳分层数。
以步骤S5确定最佳分层数下的导体温度计算结果作为下一时刻计算的导体温度导入值,再导入下一时刻的表皮温度值,其他导入的参数保持不变,重复步骤S5,得到下一时刻绝缘层的最佳分层数。
S7、重复S5、S6,即可得到高压电缆暂态热路中绝缘层实时最佳分层数。
每下一时刻导体温度的计算均以上一时刻的计算结果为基础,不断重复步骤S5和步骤S6,即可得到整个温升过程中不同时刻绝缘层的最佳分层数,也就是实时、动态地确定高压电缆暂态热路中绝缘层最佳分层数。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (10)

1.一种动态确定高压电缆暂态热路中绝缘最佳分层数的方法,其特征在于,包括以下步骤:
S1、选择所需高压电缆,确定其尺寸及各层材料物性参数;
S2、构建电缆本体暂态热路模型及对应的数学模型,该步骤具体为:
S201、构建电缆本体暂态热路模型;
S202、构建热路模型对应的数学模型;
S3、确定暂态热路模型中各参数,该步骤具体为:
S301、时不变参数的确定;
S302、时变参数的确定;
S4、根据步骤S2中的数学模型,采用MATLAB编辑计算程序;
S5、导入各模型参数,利用循环语句,计算某一时刻不同分层数下导体的温度值,求解导体温度随分层数的变化率,当变化率达到设定的变化率下限,此时分层数为最佳分层数;
S6、以S5中计算结果为基础,并重复S5中的步骤,确定下一时刻的绝缘层最佳分层数;
S7、重复S5、S6,即可得到高压电缆暂态热路中绝缘层实时最佳分层数。
2.根据权利要求1所述的动态确定高压电缆暂态热路中绝缘最佳分层数的方法,其特征在于,步骤S1中:根据计算需要,选择对象型号的高压电缆作为计算原型,确定相关电缆各层结构的参数包括:尺寸数据、材料特性、导热率、比热容、电阻率。
3.根据权利要求1所述的动态确定高压电缆暂态热路中绝缘最佳分层数的方法,其特征在于,所述步骤S201具体为:
根据电缆线路和各层材料的特点,构建暂态热路模型基于以下假设:1)相对电缆半径,电缆线路长度无限大,对于长直电缆段,忽略其轴向传热;2)在一般敷设条件特别是实验条件下,电缆外部环境均匀,电缆各层材料各向同性,并且中心对称;3)各层材料的热容热阻不随时间空间而变化;4)内外屏蔽层很薄且热参数与绝缘层相似,因此三者合并同一层处理,5)相对导体损耗而言,介质损耗忽略不计,单端接地情况下忽略护套损耗;
基于以上假设,电缆本体热路简化成沿着径向的一维热路模型,同时绝缘层采用等厚度分层处理,电缆热路模型为分布参数暂态热路模型;设置:P表示电缆导体损耗;n-3表示绝缘层分层数;T1表示电缆导体温度;T2—Tn-3表示电缆绝缘层,含内、外屏蔽各分层温度;Tn-2表示绕包带温度;Tn-1表示气隙层温度;Tn表示铝护套温度;To表示电缆表皮温度;C1'表示电缆导体热容;C1”、C2—Cn-3表示电缆绝缘层,含内、外屏蔽层各分层热容;Cn-2表示绕包层热容;Cn-1表示气隙层热容;Cn'表示铝护套热容;Cn”表示外护套热容;R1—Rn-3表示电缆绝缘层,含内、外屏蔽各分层热阻;Rn-2表示绕包层热阻;Rn-1表示气隙层热阻;Rn表示外护套热阻。
4.根据权利要求3所述的动态确定高压电缆暂态热路中绝缘最佳分层数的方法,其特征在于,所述步骤S202具体为:
对热路中的每个节点列写节点方程,并转化为矩阵表达形式:
其中,C1=C1'+C1”,Cn=Cn'+Cn”,各矩阵如下:
T=[T1 T2 T3 … Tn]T
5.根据权利要求1所述的动态确定高压电缆暂态热路中绝缘最佳分层数的方法,其特征在于,所述步骤S301具体为:
在暂态热路模型中,基于假设,时不变参数包括各层材料的热容、热阻,各层热容热阻以IEC 60287标准计算;
单位长度热容计算公式如下:
式中:d2为计算层外径;d1为计算层内径;δ为计算层材料的体积热容;
单位长度热阻计算公式如下:
式中:d1表示计算层内径;d2表示计算层外径。
6.根据权利要求1所述的动态确定高压电缆暂态热路中绝缘最佳分层数的方法,其特征在于,所述步骤S302具体为:
在暂态热路模型中,时变参数包括导体损耗和电缆表面温度,其中电缆表面温度由热电偶实时测量所得,导体损耗随着导体电阻的变化而变化;
单位长度导体损耗计算如下:
P=I2r
式中:P为导体的发热功率;I为负荷电流;r为单位长度导体交流电阻;
导体工作温度下单位长度的交流电阻计算公式:
r=r′(1+Ys+Yp)
式中:r为单位长度导体的交流电阻;r′为单位长度导体的直流电阻;Ys为集肤效应因数;Yp为邻近效应因数;
单位长度导体的直流电阻计算公式:
r′=r0×[1+α(θ-20)]
式中:r0为20℃时单位长度电缆导体的直流电阻;α为导体的电阻温度系数;θ为工作温度;
集肤效应因数Ys计算公式:
式中:ks为经验值;f为电流频率。
7.根据权利要求4所述的动态确定高压电缆暂态热路中绝缘最佳分层数的方法,其特征在于,所述步骤S4具体为:
根据系列节点所列方程组以及其中各参数的计算方法,采用MATLAB软件,编辑矩阵A、B、P的计算程序和微分方程组的求解程序。
8.根据权利要求1所述的动态确定高压电缆暂态热路中绝缘最佳分层数的方法,其特征在于,所述步骤S5具体为:
步骤1:选取某一时刻作为计算起点,导入此刻的计算参数,进入下一步骤;
步骤2:设置分层数为1层,计算此时导体温度值T11,进入下一步骤;
步骤3:设置分层数为2层,计算此时导体温度值T12,较上一分层数计算温度随分层数的变化率,并取其绝对值|T11-T12|,若|T11-T12|小于设定值,则绝缘层的最佳分层数为2,结束,否则进入下一步骤;
步骤4:取分层数变量i=3,进入下一步;
步骤5:设置分层数为i,计算此时导体温度值T1i,较上一分层数计算温度随分层数的变化率,并取其绝对值|T1(i-1)-T1i|,若|T1(i-1)-T1i|小于设定值,则绝缘层的最佳分层数为i,结束,否则进入下一步骤;
步骤6:i=i+1,返回步骤5。
9.根据权利要求8所述的动态确定高压电缆暂态热路中绝缘最佳分层数的方法,其特征在于,所述步骤S6具体为:
以权利要求8确定最佳分层数下的导体温度计算结果作为下一时刻计算的导体温度导入值,再导入下一时刻的表皮温度值,其他导入的参数保持不变,重复权利要求8中各步骤,得到下一时刻绝缘层的最佳分层数。
10.根据权利要求9所述的动态确定高压电缆暂态热路中绝缘最佳分层数的方法,其特征在于,所述步骤S7具体为:
每下一时刻导体温度的计算均以上一时刻的计算结果为基础,不断重复权利要求8和9中各步骤,即可得到整个温升过程中不同时刻绝缘层的最佳分层数,也就是实时确定高压电缆暂态热路中绝缘层最佳分层数。
CN201810084637.1A 2018-01-29 2018-01-29 一种动态确定高压电缆暂态热路中绝缘最佳分层数的方法 Pending CN108388700A (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201810084637.1A CN108388700A (zh) 2018-01-29 2018-01-29 一种动态确定高压电缆暂态热路中绝缘最佳分层数的方法
PCT/CN2018/111212 WO2019144657A1 (zh) 2018-01-29 2018-10-22 一种动态确定高压电缆暂态热路中绝缘最佳分层数的方法
ZA2020/05139A ZA202005139B (en) 2018-01-29 2020-08-19 A method for dynamically determining optimal layering number of insulation in transient thermal circuit of high-voltage cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810084637.1A CN108388700A (zh) 2018-01-29 2018-01-29 一种动态确定高压电缆暂态热路中绝缘最佳分层数的方法

Publications (1)

Publication Number Publication Date
CN108388700A true CN108388700A (zh) 2018-08-10

Family

ID=63074202

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810084637.1A Pending CN108388700A (zh) 2018-01-29 2018-01-29 一种动态确定高压电缆暂态热路中绝缘最佳分层数的方法

Country Status (3)

Country Link
CN (1) CN108388700A (zh)
WO (1) WO2019144657A1 (zh)
ZA (1) ZA202005139B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019144657A1 (zh) * 2018-01-29 2019-08-01 华南理工大学 一种动态确定高压电缆暂态热路中绝缘最佳分层数的方法
CN113109384A (zh) * 2021-03-04 2021-07-13 国网浙江省电力有限公司嘉兴供电公司 一种输变电混合线路动态增容量评估方法及系统
CN115994468A (zh) * 2022-12-28 2023-04-21 中国电力工程顾问集团中南电力设计院有限公司 一种基于动态负荷的海上风电送出直埋海底电缆截面优化方法
CN116540003A (zh) * 2023-07-05 2023-08-04 成都汉度科技有限公司 一种电缆接头防灾监测方法及系统

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110826206B (zh) * 2019-10-28 2024-03-01 上海交通大学 电池内部三维温度无损软测量方法及系统
CN111666729B (zh) * 2020-07-20 2023-05-23 南方电网科学研究院有限责任公司 基于热力学的绝缘子硅橡胶表面温度计算方法及相关装置
CN113158504B (zh) * 2021-01-19 2024-04-26 中国电力科学研究院有限公司 一种用于特高压直流电缆的接头增强绝缘的方法及系统
CN113468841B (zh) * 2021-05-25 2022-11-29 广东电网有限责任公司广州供电局 配电电缆热缺陷检测方法、装置、计算机设备和存储介质
CN113901686A (zh) * 2021-10-08 2022-01-07 广东电网有限责任公司广州供电局 变压器热路模型构建方法与变压器温度场计算方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006015345A2 (en) * 2004-07-30 2006-02-09 Ulectra Corporation Integrated power and data insulated electrical cable having a metallic outer jacket
CN103336217A (zh) * 2013-06-04 2013-10-02 华南理工大学 一种电力电缆应急负荷时间的计算方法
CN104408249A (zh) * 2014-11-24 2015-03-11 广州供电局有限公司 单芯电缆导体热性参数的确定方法及系统
CN104750989A (zh) * 2015-03-25 2015-07-01 广州供电局有限公司 单芯电缆暂态热路模型导体温度计算方法及装置
CN107122577A (zh) * 2017-07-10 2017-09-01 上海海能信息科技有限公司 一种实时动态的电缆载流量计算方法及系统

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100729135B1 (ko) * 2005-12-12 2007-06-14 경상대학교산학협력단 변환계수를 이용한 22.9㎸급 고온 초전도 케이블의절연두께 설계방법
CN103793558A (zh) * 2014-01-15 2014-05-14 西安交通大学 一种基于有限元法的电缆群线芯暂态温度计算方法
CN105975690A (zh) * 2016-05-05 2016-09-28 苏州华天国科电力科技有限公司 一种基于分割法的10kV三芯电缆暂态热路模型的构建方法
CN107563018B (zh) * 2017-08-16 2021-01-29 广东电网有限责任公司广州供电局 确定电缆热路模型中绝缘层最优层数的方法及装置
CN108388700A (zh) * 2018-01-29 2018-08-10 华南理工大学 一种动态确定高压电缆暂态热路中绝缘最佳分层数的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006015345A2 (en) * 2004-07-30 2006-02-09 Ulectra Corporation Integrated power and data insulated electrical cable having a metallic outer jacket
CN103336217A (zh) * 2013-06-04 2013-10-02 华南理工大学 一种电力电缆应急负荷时间的计算方法
CN104408249A (zh) * 2014-11-24 2015-03-11 广州供电局有限公司 单芯电缆导体热性参数的确定方法及系统
CN104750989A (zh) * 2015-03-25 2015-07-01 广州供电局有限公司 单芯电缆暂态热路模型导体温度计算方法及装置
CN107122577A (zh) * 2017-07-10 2017-09-01 上海海能信息科技有限公司 一种实时动态的电缆载流量计算方法及系统

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
何健华: "高压电缆导体动态温度分层计算法", 《广东电力》 *
刘毅刚 等: "电缆导体温度实时计算的数学方法", 《高电压技术》 *
周凡: "电力电缆暂态热路模型的优化分析", 《中国优秀硕士学位论文全文数据库 工程科技Ⅱ辑》 *
韩卓展 等: "高压电缆暂态热路中绝缘层最佳分层数的确定方法", 《广东电力》 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019144657A1 (zh) * 2018-01-29 2019-08-01 华南理工大学 一种动态确定高压电缆暂态热路中绝缘最佳分层数的方法
CN113109384A (zh) * 2021-03-04 2021-07-13 国网浙江省电力有限公司嘉兴供电公司 一种输变电混合线路动态增容量评估方法及系统
CN115994468A (zh) * 2022-12-28 2023-04-21 中国电力工程顾问集团中南电力设计院有限公司 一种基于动态负荷的海上风电送出直埋海底电缆截面优化方法
CN115994468B (zh) * 2022-12-28 2024-04-05 中国电力工程顾问集团中南电力设计院有限公司 一种基于动态负荷的海上风电送出直埋海底电缆截面优化方法
CN116540003A (zh) * 2023-07-05 2023-08-04 成都汉度科技有限公司 一种电缆接头防灾监测方法及系统
CN116540003B (zh) * 2023-07-05 2023-08-29 成都汉度科技有限公司 一种电缆接头防灾监测方法及系统

Also Published As

Publication number Publication date
WO2019144657A1 (zh) 2019-08-01
ZA202005139B (en) 2021-08-25

Similar Documents

Publication Publication Date Title
CN108388700A (zh) 一种动态确定高压电缆暂态热路中绝缘最佳分层数的方法
CN106055387B (zh) 基于ansys apdl与ansys cfx的钢芯铝绞线径向温度仿真方法
CN104408249B (zh) 单芯电缆导体热性参数的确定方法及系统
CN108334695B (zh) 一种基于地线与预绞丝接触电阻的有限元设置方法
CN105205229B (zh) 一种高压单芯电缆应急负荷下的载流能力动态评估方法
CN110083908A (zh) 基于有限元分析的电缆缆芯温度预测方法
CN106202610B (zh) 一种基于ansys cfx的架空线径向温度场仿真方法
Ruan et al. HST calculation of a 10 kV oil‐immersed transformer with 3D coupled‐field method
Sedaghat et al. Enhanced thermal model of power cables installed in ducts for ampacity calculations
CN107122577A (zh) 一种实时动态的电缆载流量计算方法及系统
CN112100809A (zh) 一种基于多物理场耦合仿真三相同轴超导电缆设计的方法
Holyk et al. Power cable rating calculations-a historical perspective [history]
CN109000825B (zh) 一种含谐波电流的电缆及其终端线芯温度计算方法
CN105975690A (zh) 一种基于分割法的10kV三芯电缆暂态热路模型的构建方法
Joseph et al. Numerical modelling, simulation and experimental validation of partial discharge in cross‐linked polyethylene cables
CN106934096B (zh) 一种基于架空导线表面温度求解钢芯温度的方法
CN106482848A (zh) 一种基于m‑p广义逆的三芯电缆导体温度动态获取方法
Aras et al. An assessment of the methods for calculating ampacity of underground power cables
CN107563018B (zh) 确定电缆热路模型中绝缘层最优层数的方法及装置
CN106294966A (zh) 一种不依赖表皮温度的单回电缆线芯暂态温升获取方法
CN110896265A (zh) 开关磁阻电机温度场分析中定子双绕组等效气隙建模方法
CN104730388A (zh) 环境热阻影响三芯电缆线芯温度的评估方法及装置
CN108153940B (zh) 基于叠加原理的oplc热路模型建模方法
CN113971353A (zh) 一种基于多物理场耦合的多芯电缆载流量有限元计算方法
Gouda et al. Investigations of cable termination thermal analysis under continuous current loading

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20180810