CN108364861B - 制造半导体装置的方法 - Google Patents

制造半导体装置的方法 Download PDF

Info

Publication number
CN108364861B
CN108364861B CN201810027050.7A CN201810027050A CN108364861B CN 108364861 B CN108364861 B CN 108364861B CN 201810027050 A CN201810027050 A CN 201810027050A CN 108364861 B CN108364861 B CN 108364861B
Authority
CN
China
Prior art keywords
oxide film
semiconductor substrate
channel
etching
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810027050.7A
Other languages
English (en)
Other versions
CN108364861A (zh
Inventor
冈田将和
浦上泰
山下侑佑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Publication of CN108364861A publication Critical patent/CN108364861A/zh
Application granted granted Critical
Publication of CN108364861B publication Critical patent/CN108364861B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/063Reduced surface field [RESURF] pn-junction structures
    • H01L29/0634Multiple reduced surface field (multi-RESURF) structures, e.g. double RESURF, charge compensation, cool, superjunction (SJ), 3D-RESURF, composite buffer (CB) structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • H01L21/266Bombardment with radiation with high-energy radiation producing ion implantation using masks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/0619Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction
    • H01L29/0623Buried supplementary region, e.g. buried guard ring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42324Gate electrodes for transistors with a floating gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/317Electron-beam or ion-beam tubes for localised treatment of objects for changing properties of the objects or for applying thin layers thereon, e.g. for ion implantation
    • H01J37/3171Electron-beam or ion-beam tubes for localised treatment of objects for changing properties of the objects or for applying thin layers thereon, e.g. for ion implantation for ion implantation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • H01L21/26506Bombardment with radiation with high-energy radiation producing ion implantation in group IV semiconductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31105Etching inorganic layers
    • H01L21/31111Etching inorganic layers by chemical means
    • H01L21/31116Etching inorganic layers by chemical means by dry-etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/3115Doping the insulating layers
    • H01L21/31155Doping the insulating layers by ion implantation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0642Isolation within the component, i.e. internal isolation
    • H01L29/0649Dielectric regions, e.g. SiO2 regions, air gaps
    • H01L29/0653Dielectric regions, e.g. SiO2 regions, air gaps adjoining the input or output region of a field-effect device, e.g. the source or drain region
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/1608Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42356Disposition, e.g. buried gate electrode
    • H01L29/4236Disposition, e.g. buried gate electrode within a trench, e.g. trench gate electrode, groove gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66053Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide
    • H01L29/66068Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66825Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a floating gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7811Vertical DMOS transistors, i.e. VDMOS transistors with an edge termination structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7813Vertical DMOS transistors, i.e. VDMOS transistors with trench gate electrode, e.g. UMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42364Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity
    • H01L29/42368Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity the thickness being non-uniform
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66234Bipolar junction transistors [BJT]
    • H01L29/66325Bipolar junction transistors [BJT] controlled by field-effect, e.g. insulated gate bipolar transistors [IGBT]
    • H01L29/66333Vertical insulated gate bipolar transistors
    • H01L29/66348Vertical insulated gate bipolar transistors with a recessed gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • H01L29/7395Vertical transistors, e.g. vertical IGBT
    • H01L29/7396Vertical transistors, e.g. vertical IGBT with a non planar surface, e.g. with a non planar gate or with a trench or recess or pillar in the surface of the emitter, base or collector region for improving current density or short circuiting the emitter and base regions
    • H01L29/7397Vertical transistors, e.g. vertical IGBT with a non planar surface, e.g. with a non planar gate or with a trench or recess or pillar in the surface of the emitter, base or collector region for improving current density or short circuiting the emitter and base regions and a gate structure lying on a slanted or vertical surface or formed in a groove, e.g. trench gate IGBT

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • Composite Materials (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Drying Of Semiconductors (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

本发明涉及制造半导体装置的方法。制造半导体装置的方法包括:在半导体基板的表面上形成沟道;在沟道的侧表面和底表面上形成氧化膜;从沟道的底表面通过干蚀刻除去氧化膜的至少一部分;以及在干蚀刻之后,通过沟道的底表面将导电杂质离子注入到半导体基板中。干蚀刻是反应离子蚀刻,在所述反应离子蚀刻中,使用蚀刻气体,所述蚀刻气体包括具有碳原子环结构的碳氟化合物基气体、氧气和氩气。

Description

制造半导体装置的方法
技术领域
本公开涉及一种制造半导体装置的方法。
背景技术
例如,已知诸如金属氧化物半导体场效应管(MOSFET)或绝缘栅双极型晶体管(IGBT)的半导体装置具有p型悬浮区域设置在半导体基板的n型漂移区域中的结构。利用该结构,促进了漂移区域的耗尽,且因此能够改进半导体装置的耐压性。
悬浮区域通过p型杂质的离子注入而形成。通过形成在半导体基板中的沟道的底表面执行离子注入,且悬浮区域被形成在与沟道的底表面相邻的区域中。此时,在p型杂质注入到沟道的侧表面中的情形中,半导体装置的特性(诸如导通电阻)可能恶化。因此,在离子注入期间,事先在沟道的侧表面和底表面上形成氧化膜。作为结果,能够进一步抑制p型杂质到沟道的侧表面中的注入。P型杂质以竖直或大体上竖直的角度进入到沟道的底表面中。因此,p型杂质穿过氧化膜并且被注入到半导体基板中。该技术的示例在日本未审专利申请公报No.2005-116822(JP 2005-116822A)中描述。
发明内容
在形成在沟道的侧表面上的氧化膜的厚度在离子注入到悬浮区域中期间不足的情形中,p型杂质穿过氧化膜并且被注入到沟道的侧表面中。因此,优选的是,氧化膜在沟道的侧表面上形成为相对厚。另一方面,在氧化膜在沟道的底表面上形成为厚的情形中,氧化膜干涉离子到半导体基板中的注入。因此,难于将悬浮区域更深地形成。因此,优选的是,氧化膜在沟道的底表面上形成为极薄或者不存在。然而,在现有技术中,氧化膜均匀地形成在沟道的侧表面和底表面上,且不能够仅将氧化膜选择地从沟道的底表面除去。因此,为了抑制p型杂质注入到沟道的侧表面中,离子注入的注入水平需要被进一步抑制,并且难于将悬浮区域更深地形成。
本公开提供了一种制造半导体装置的方法,其中氧化膜能够在沟道的侧表面上相对厚地形成,并且其中氧化膜能够在沟道的底表面上形成为极薄或能够从底表面完全除去。
本公开的一个方面涉及一种制造半导体装置的方法,所述方法包括:在半导体基板的表面上形成沟道;在沟道的侧表面和底表面上形成氧化膜;从沟道的底表面通过干蚀刻除去氧化膜的至少一部分;以及在干蚀刻之后,通过沟道的底表面将导电杂质离子注入到半导体基板中。所述干蚀刻是反应离子蚀刻,在所述反应离子蚀刻中,使用蚀刻气体,所述蚀刻气体包括具有碳原子环结构的CF基气体、氧气和氩气。在此所述的CF基气体指代碳氟化合物基气体,即,具有在氟原子和碳原子之间的化学键的化合物的气体。
根据本公开的方面,首先在沟道的侧表面和底表面上形成氧化膜,并且然后执行反应离子蚀刻,以选择性地将氧化膜从沟道的底表面除去。在反应离子蚀刻中,使用包括具有碳原子环结构的CF基气体、氧气和氩气的蚀刻气体。CF基气体是供给自由基并且与构成半导体基板的原子和氧进行化学反应以产生反应产物的气体。另一方面,氩气是供给离子辅助反应所需的离子的气体。
离子化的氩气的入射角度在定位在沟道的侧表面上的氧化膜中相对小,且在定位在沟道的底表面上的氧化膜中相对大。由于入射角度的变化,反应产物的产生(即蚀刻)主要在定位在沟道的底表面上的氧化膜中进行。反应产物从沟道的底表面挥发,且然后沉积在定位在沟道的侧表面上的氧化膜上,以形成保护氧化膜的保护膜。此时,在供给自由基的CF基气体具有碳原子环结构的情形中,反应产物很可能沉积。因此,在反应产物排出到沟道外侧之前,较大量的反应产物沉积在定位在沟道的侧表面上的氧化膜上。因此,保护膜更有效地形成。作为结果,定位在沟道的侧表面上的氧化膜被保护,且定位在沟道的底表面上的氧化膜被选择地除去。
在本公开的方面中,在除去氧化膜时,可通过干蚀刻除去氧化膜,直至沟道的底表面露出为止。利用本公开的方面,在随后的离子注入期间,能够通过沟道的底表面将导电杂质注入到较深的位置中。
在本公开的方面中,电容耦合的等离子蚀刻装置可被用于干蚀刻,所述电容耦合的等离子蚀刻装置包括两个交流电源,所述交流电源分别向一对电极供给交流电力。利用根据本公开的方面的等离子蚀刻装置,能够获得相对高的电子密度,且氩或其它离子能够被更强地吸引到半导体基板中。
在本公开的方面中,具有碳原子环结构的CF基气体可由化学式C4F6、C4F8、C5F8和C5HF7中的任一个表示。在此,例如,C4F6或C4F8的附接系数根据多种条件而变化,但为大约0.1至0.01。另一方面,作为不具有碳原子环结构的CF基气体的CF2或CF4的附接系数在相同的条件下作为比较为大约0.01至0.001。
在本公开的方面中,半导体基板可以是碳化硅基板。
在本公开的方面中,在形成氧化膜时,可不仅在沟道的侧表面和底表面上,而且还在半导体基板上的上表面上,均匀地形成所述氧化膜。
在本公开的方面中,在形成氧化膜时,氧化膜可被形成为使得所述氧化膜在垂直于半导体基板的方向上的厚度是1.2微米或更大。
利用根据本公开的方面的制造半导体装置的方法,氧化膜能够在沟道的侧表面上形成为相对厚,且氧化膜能够在沟道的底表面上形成为极薄或者能够完全从底表面被除去。作为结果,即使在随后的离子注入期间注入水平被设定为相对高的情形中,也能够限制导电杂质被注入到沟道的侧表面中。导电杂质能够通过沟道的底表面被注入到较深的位置中。
附图说明
将在下文中参考附图描述本发明的示例性实施例的特征、优点以及技术和工业意义,其中相同的附图标记指示相同的元件,并且其中:
图1是示出了根据实施例的半导体装置的结构的截面图;
图2是示出了根据实施例的制造半导体装置的方法的流程图;
图3是示出了形成有漏极区域、漂移区域、本体区域、接触区域和源极区域的半导体基板的示意图;
图4是示出了在形成沟道的步骤中在半导体基板的上表面上形成第一氧化膜的状态的示意图;
图5是示出了在形成沟道的步骤中在第一氧化膜中形成开口以对应于将形成沟道的位置的状态的示意图;
图6是示出了在形成沟道的步骤中在半导体基板的上表面上形成沟道的状态的示意图;
图7是示出了在形成悬浮区域的步骤中在沟道的侧表面和底表面上形成第二氧化膜的状态的示意图;
图8是示出了在形成悬浮区域的步骤中通过干蚀刻(即,反应离子蚀刻)除去定位在沟道的底表面上的第二氧化膜的状态的示意图;
图9是示意性地示出了在形成悬浮区域的步骤中用于第二氧化膜的反应离子蚀刻的等离子蚀刻装置的示意图;
图10是示出了在形成悬浮区域的步骤中p型杂质的离子注入的示意图;
图11是示出了蚀刻量的测量位置以通过结合地使用图12来描述实验结果的示意图;并且
图12是示出了在图11中所示的测量位置处的第二氧化膜的蚀刻量的测量结果的表格。
具体实施方式
将参考附图描述根据实施例的半导体装置10及其制造方法。根据实施例的半导体装置10是在电力电路中使用的功率半导体装置,并且特别地具有MOSFET结构。虽然未特别地限制于此,但半导体装置10能够被用作例如电驱动车辆中的转换器或逆变器的电力转换电路的开关元件,所述电驱动车辆例如为混合动力车辆、燃料电池车辆或电动车辆。在下文中,将首先描述半导体装置10的结构,并且然后将描述半导体装置10的制造方法。在下文中描述的半导体装置10及其制造方法仅是示例性的,且在说明书中描述的多种技术特征可单独地或组合地应用于其它多种半导体装置及其制造方法。
图1是示出了根据实施例的半导体装置10的结构的截面图。图1仅示出了半导体装置10的一部分的截面。在半导体装置10中,重复地形成在图1中所示的单元结构。如在图1中所示,根据实施例的半导体装置包括:半导体基板12;和被定位在形成在半导体基板12的上表面12a中的沟道13中的栅极电极14。半导体基板12是碳化硅(SiC)基板。沟道13具有一对侧表面13a和底表面13b。栅极绝缘膜14a被形成在沟道13的侧表面13a和底表面13b上,且栅极电极14处在栅极绝缘膜14a的与沟道的侧表面13a相反的一侧上。栅极电极14例如由导电材料形成,诸如多晶硅。栅极绝缘膜14a能够由绝缘材料形成,诸如二氧化硅(SiO2)。形成栅极电极14和栅极绝缘膜14a的具体材料不特别地限制。
半导体装置10进一步包括:设置在半导体基板12的上表面12a上的源极电极16;和设置在半导体基板12的下表面12b上的漏极电极18。源极电极16与半导体基板12的上表面12a欧姆接触,且漏极电极18与半导体基板12的下表面12b欧姆接触。层间绝缘膜14b被设置在源极电极16和栅极电极14之间,且源极电极16与栅极电极14电绝缘。源极电极16和漏极电极18能够使用导电材料形成,诸如铝(Al)、镍(Ni)、钛(Ti)或金(Au)。形成源极电极16和漏极电极18的具体材料不特别地限制。
在此,半导体基板12的上表面12a指代半导体基板12的一个表面,且半导体基板12的下表面12b指代半导体基板12的与上表面12a相反地定位的另一个表面。在说明书中,“上表面”和“下表面”用于方便区分彼此相反地定位的两个表面。例如,半导体基板12的上表面12a不总是定位为竖直向上。取决于半导体基板12的姿态,上表面12a可定位为竖直向下,且下表面12b可定位为竖直向上。
半导体基板12包括漏极区域32、漂移区域34、本体区域36、接触区域38、源极区域40和悬浮区域42。漏极区域32沿着半导体基板12的下表面12b定位且露出至下表面12b。漏极区域32是n型区域。N型杂质可例如由第五族元素(15族元素)形成,例如由磷形成。漏极电极18与漏极区域32欧姆接触。
漂移区域34被定位在漏极区域32上,并且与漏极区域32相邻。漂移区域34是n型区域。漂移区域34中的n型杂质浓度比漏极区域32中的低。n型杂质可例如由第五族元素(15族元素)形成,例如由磷形成。
本体区域36被定位在漂移区域34上,并且与漂移区域34相邻。本体区域36通过至少漂移区域34与漏极区域32分离。本体区域36是p型区域。P型杂质可由由第三族元素(13族元素)形成,例如由硼(B)或铝(Al)形成。
接触区域38被定位在本体区域36上,并且露出至半导体基板12的上表面12a。接触区域38是p型区域。接触区域38中的p型杂质浓度比本体区域36中的高。P型杂质可由第三族元素(13族元素)形成,例如由硼(B)或铝(Al)形成。源极电极16与接触区域38欧姆接触。
源极区域40被定位在本体区域36上,并且露出至半导体基板12的上表面12a。源极区域40通过至少本体区域36与漂移区域34分离。源极区域40是n型区域。源极区域40中的n型杂质的浓度比漂移区域34中的高。N型杂质可例如由第五族元素(15族元素)形成,例如由磷形成。源极16也与源极区域40欧姆接触。
悬浮区域42在漂移区域34中被定位在沟道13的底表面13b和漏极区域32之间。悬浮区域42是p型区域。例如,悬浮区域42中的p型杂质的浓度等于本体区域36中的p型杂质的浓度且低于接触区域38中的p型杂质的浓度。P型杂质可由第三族元素(13族元素)形成,例如由硼(B)或铝(Al)形成。在p型悬浮区域42被设置在n型漂移区域34中的情形中,促进了n型漂移区域34的耗尽,且因此能够进一步改进半导体装置10的耐压性。
沟道13从半导体基板12的上表面12a穿过源极区域40和本体区域36延伸到漂移区域34。源极区域40被定位在沟道13的相对侧上且与沟道13相邻。沟道13中的栅极电极14处在栅极绝缘膜14a与源极区域40、本体区域36和漂移区域34相反的一侧上。在本体区域36的与沟道13的侧表面13a相邻的部分中,通过栅极电极14形成通道。虽然将在下文中描述细节,但悬浮区域42通过将p型杂质通过沟道13的底表面13b注入而形成。关于离子注入,在p型杂质被注入到沟道13的侧表面13a中的情形中,将形成通道的部分中的杂质浓度意外地升高。因此,半导体装置10的特性(特别是导通电阻)恶化。考虑到此点,利用下文中描述的制造半导体装置10的方法,能够在用于形成悬浮区域42的离子注入期间限制p型杂质被注入到沟道13的侧表面13a中。
图2是示出了根据实施例的制造半导体装置10的方法的流程图。首先,在步骤S12中,制备n型半导体基板(例如,半导体晶片)32。虽然不特别地限制,但在实施例中,碳化硅(SiC)基板被用作半导体基板32。半导体基板32形成如在图1中所示的漏极区域32,且因此通过与漏极区域32相同的附图标记指示以便于描述。然后,在步骤S14中,通过SiC外延生长在半导体基板32上形成n型漂移区域34。如上所述,漂移区域34中的n型杂质浓度被调整为比漏极区域32中的低。然后,在步骤S16中,通过SiC外延生长在漂移区域34上形成p型本体区域36。
然后,在步骤S18中,在包括半导体基板12的上表面12a的区域中形成p型接触区域38。为了形成接触区域38,通过半导体基板12的上表面12a执行p型杂质的离子注入。如上所述,接触区域38中的p型杂质浓度被调整为比本体区域36中的高。然后,在步骤S20中,在包括半导体基板12的上表面12a的区域中形成n型源极区域40。为了形成源极区域40,通过半导体基板12的上表面12a执行n型杂质的离子注入。如上所述,源极区域40中的n型杂质浓度被调整为比漂移区域34中的高。通过以上所述的步骤,如在图3中所示,制造了半导体基板12,在该半导体基板12中,包括漏极区域32、漂移区域34和本体区域36的三个层被层叠并且接触区域38和源极区域40沿着上表面12a设置。
然后,在步骤S22中,在半导体基板12的上表面12a上形成沟道13。沟道13主要通过如在图4至图6中所示的过程形成。首先,如在图4中所示,在半导体基板12的上表面12a上形成第一氧化膜50。第一氧化膜50例如是二氧化硅膜,且能够通过化学蒸汽沉积来形成,在所述化学蒸汽沉积中,四乙氧基硅烷(TEOS)被用作源气体。第一氧化膜50的厚度能够被调整为例如1.5微米。在如下所述的形成悬浮区域42的步骤(S24)中,第一氧化膜50功能上用作限制p型杂质被注入到半导体基板12的上表面12a中的掩膜。因此,第一氧化膜50能够被形成为相对厚。
然后,如在图5中所示,在第一氧化膜50上形成抗蚀剂掩膜52,使抗蚀剂掩膜52图案化,并且然后蚀刻第一氧化膜50。作为结果,在第一氧化膜50中形成开口50a,以对应于将形成沟道13的位置。第一氧化膜50的蚀刻可以是湿蚀刻或干蚀刻。在第一氧化膜50的蚀刻之后,将抗蚀剂掩膜52除去。然后,如在图6中所示,通过使用形成有开口50a的第一氧化膜50作为掩膜来蚀刻半导体基板12。作为结果,在半导体基板12的上表面12a中形成沟道13。半导体基板12的蚀刻例如能够通过使用包括六氟化硫(SF6)的蚀刻气体的干蚀刻来进行。
在半导体基板12的蚀刻期间,第一氧化膜50也同时被蚀刻。因此,第一氧化膜50的厚度被减小。如上所述,在如下所述的形成悬浮区域42的步骤(S24)中,第一氧化膜50功能上用作用于p型杂质的掩膜。因此,即使在半导体基板12的蚀刻之后第一氧化膜50的厚度也需要维持到一定程度。例如,在实施例中,在蚀刻之后的第一氧化膜50的厚度的期望值被设定为1.2微米或更大。沟道13的深度为3微米,且半导体基板12对第一氧化膜50的蚀刻选择性为10。即,在形成具有3微米的深度的沟道13期间,第一氧化膜50的厚度减小大约0.3微米。因此,最初,第一氧化膜50形成为具有1.5微米的厚度。如从以上所述显见,在形成期间第一氧化膜50的厚度可合适地考虑到沟道13的深度、半导体基板12对第一氧化膜50的蚀刻选择性和用于形成悬浮区域42的离子注入的每个指标(例如,注入水平)来设定。
返回到图2,在接下来的步骤S24中,在半导体基板12中形成悬浮区域42。悬浮区域42主要通过如在图7至图10中所示的过程形成。首先,如在图7中所示,在沟道13的侧表面13a和底表面13b上形成第二氧化膜54。第二氧化膜54可不仅均匀地形成在沟道13中,而且还均匀地形成在定位在半导体基板12的上表面12a上的第一氧化膜50上。第二氧化膜54例如是二氧化硅膜,且能够通过化学蒸汽沉积形成,在所述化学蒸汽沉积中,四乙氧基硅烷(TEOS)被用作源气体。在该情形中,特别地,低压化学蒸汽沉积(LP-CVD)具有更好的阶梯覆盖率和厚度均匀性,且因此能够优选地被采用以形成第二氧化膜54。
在下文中描述的p型杂质的离子注入期间,第二氧化膜54功能上用作抑制p型杂质被注入到沟道13的侧表面13a中的掩膜。p型杂质进入半导体基板12中的方向垂直于半导体基板12(具体地,垂直于半导体基板12的下表面12b)。因此,为了抑制p型杂质被注入到沟道13的侧表面13a中,定位在沟道13的侧表面13a上的第二氧化膜54的在垂直于半导体基板12的方向上的尺寸是重要的。在实施例中,该尺寸的期望值被设定为1.2微米或更大。因此,假定沟道13的侧表面13a不垂直于半导体基板12且与半导体基板12形成85度的角度,则基于表达式1.2/tan85°=0.105μm=105nm,第二氧化膜54的厚度需要为105纳米或更大。
在如下所述的第二氧化膜54的干蚀刻期间,定位在沟道13的底表面13b上的第二氧化膜54主要地被蚀刻,但定位在沟道13的侧表面13a上的第二氧化膜54也同时被蚀刻。因此,蚀刻量也被考虑以在形成期间设定第二氧化膜54的厚度。例如,假定蚀刻量为30纳米,则在形成期间的第二氧化膜54的厚度能够被设定为135纳米或更大。
然后,如在图8中所示,形成在沟道13的底表面13b上的第二氧化膜54通过干蚀刻被除去。虽然不特别地限制,但是通过干蚀刻除去第二氧化膜54,直至沟道13的底表面13b露出为止。作为结果,在第二氧化膜54中形成开口54a,沟道13的底表面13b通过该开口54a露出。如在图9中所示,第二氧化膜54的干蚀刻是反应离子蚀刻,且蚀刻气体112包括八氟环丁烷(C4F8)、氧气(O2)和氩气(Ar)。例如,在八氟环丁烷的流量为20标准立方厘米每分钟(sccm)的情形中,氧气的流量能够被调整为10至15sccm,且氩气的流量能够被调整为大约300sccm。即,氧气的供给量优选地为八氟环丁烷(或其它CF基气体)的供给量的50%至75%。
八氟环丁烷是具有碳原子环结构的CF基气体的示例。作为八氟环丁烷的替代或者除了八氟环丁烷之外,还可使用具有碳原子环结构的另一个CF基气体。作为具有碳原子环结构的其它CF基气体,能够采用通过化学式C4F6、C4F8、C5F8和C5HF7中的任一个化学式表示的CF基气体。
作为CF基气体的八氟环丁烷(C4F8)是供给自由基并且与构成半导体基板12的原子(Si,C)和氧进行化学反应以产生反应产物的气体。另一方面,氩气是供给离子辅助反应所需的离子的气体。离子化的氩气的入射角度在定位在沟道13的侧表面13a上的第二氧化膜54中相对小,且在定位在沟道13的底表面13b上的第二氧化膜54中相对大。由于入射角度的变化,反应产物的产生(即,蚀刻)主要在定位在沟道13的底表面13b上的氧化膜54中进行。反应产物从沟道13的底表面13b挥发且然后沉积在定位在沟道13的侧表面13a上的氧化膜54上,以形成保护氧化膜54的保护膜。该保护膜例如是碳氟化合物膜,包括作为组成元素的碳和氟,且可选地进一步包括氧。
同时,在供给自由基的CF基气体具有碳原子环结构的情形中,反应产物不太可能解离成小分子并且因此很可能沉积。因此,较大量的反应产物在被排放到沟道13外侧之前沉积在定位在沟道13的侧表面13a上的第二氧化膜54上。因此,更有效地形成保护膜。作为结果,定位在沟道13的侧表面13a上的第二氧化膜54被保护,且定位在沟道13的底表面13b上的第二氧化膜54被选择性地除去。作为结果,第二氧化膜54能够在沟道13的侧表面13a上形成为相对厚,而第二氧化膜54能够在沟道13的底表面13b上形成为极薄或者能够从所述底表面13b完全除去。
如上所述,具有碳原子环结构的CF基气体不太可能解离。这意味着CF基气体的解离所需的电子密度相对高,这使得反应离子蚀刻的控制困难。考虑到此点,在实施例中,如在图9中所示,使用了包括两个交流电源的电容耦合的等离子蚀刻装置100。该等离子蚀刻装置100包括:蚀刻室102;和在蚀刻室102中相互面对的一对电极104、106;和两个交流电源108、110。位于下方的电极104功能上用作工作台,且半导体基板12被布置在电极104上。交流电源108被电连接到该位于下方的电极104并将交流电力供给到该电极104。交流电源110被电连接到位于上方的电极106并将交流电力供给到电极106。位于上方的电极106需要被供给能够生成等离子体的电力。例如,可向电极106供给1000瓦特或更高的交流电力。另一方面,位于下方的电极104需要被供给用于吸引离子的电力。在供给到电极104的电力过高的情形中,所形成的保护膜被不期望地蚀刻。因此,优选的是,将例如600瓦特或更低的交流电力供给到位于下方的电极104。等离子时刻装置100不限制于实施例中所述的构造,且可具有另一个构造。
在半导体基板12的温度在反应离子蚀刻期间过高的情形中,沉积在沟道13的侧表面13a上的保护膜可能被热能解离。因此,半导体基板12的温度优选地尽可能低,例如可被调整到25摄氏度(℃)或更低。另外,蚀刻室102的内部压力尽可能高,以便获得相对高的电子密度,且例如可被调整到5帕斯卡(Pa)或更高。然而,反应离子蚀刻的多种指标不限制于在说明书中所描述的值,且能够合适地改变。
在反应离子蚀刻中,氩气被用作供给离子辅助反应所需的离子的气体。一般而言,作为供给离子的气体,例如氦(He)被广泛地使用。然而,在实施例中使用氦的情形中,供给自由基的CF基气体的解离度变得过高,且因此保护膜的形成被进一步抑制。另一方面,在使用氩气的情形中,CF基气体的解离度被抑制在合适的范围中,且因此能够促进保护膜的形成。即,在CF基气体的解离度合适地低的情形中,自由基能量也合适地减少。因此,反应产物保持在沟道13中且很可能被附接到沟道13的侧表面13a。
然后,如在图10中所示,通过半导体基板12的上表面12a注入p型杂质的离子。通过图10中的箭头P指示的组示意性地示出了注入到半导体基板12中的p型杂质。半导体基板12的上表面12a和沟道13的侧表面13a被覆盖有第一氧化膜50或第二氧化膜54。另一方面,沟道13的底表面13b通过第二氧化膜54的开口54a露出。因此,p型杂质仅通过沟道13的底表面13b并且被引入到半导体基板12中。作为结果,p型杂质被引入到将形成悬浮区域42的区域中。如上所述,第二氧化膜54在沟道13的底表面13b上形成为相对厚。作为结果,p型杂质的离子注入能够通过选择相对高的加速能量在相对高的注入水平下执行。例如,在实施例中,第二氧化膜54在注入p型杂质的方向上的尺寸为1.2微米或更大。因此,加速能量能够增加到最高300千电子伏(keV)。通过进一步增加定位在沟道13的底表面13b上的第二氧化膜54的厚度,加速能量能够进一步增加。作为结果,悬浮区域42能够形成在更深的位置中。注入到半导体基板12中的p型杂质通过随后的退火被激活。
返回到图2,在接下来的步骤S26中,栅极电极14形成在沟道13中。在该步骤中,首先,在沟道13的侧表面13a和底表面13b上形成栅极绝缘膜14a。接下来,在沟道13中形成栅极电极14。接下来,形成层间绝缘膜14b以覆盖沟道13中的栅极电极14。接下来,在步骤S28中,在半导体基板12的上表面12a上形成源极电极16(参考图1)。在步骤S30中,在半导体基板12的下表面12b上形成漏极电极18(参考图1)。接下来,通过例如切割的若干个步骤,制造半导体装置10。在制造半导体装置10的方法中,可选地进一步执行其它另外的步骤。
如上所述,在根据实施例的制造半导体装置10的方法中,在形成悬浮区域42的步骤(S24)中,在沟道13的侧表面13a和底表面13b上形成第二氧化膜54,并且然后通过干蚀刻从沟道13的底表面13b除去第二氧化膜54。所述干蚀刻是反应离子蚀刻,在所述反应离子蚀刻中,使用蚀刻气体112,所述蚀刻气体112包括具有碳原子环结构的CF基气体、氧气和氩气。作为结果,第二氧化膜54能够在沟道13的侧表面13a上形成为相对厚,而第二氧化膜54能够在沟道13的底表面13b上形成为极薄或者能够从底表面13b完全除去。
将参考图11和图12描述在干蚀刻之前和之后测量第二氧化膜54的厚度的实验结果,虽然结果仅是示例性的。如在图11中所示,在实验中,在四个位置处测量在干蚀刻之前和之后的第二氧化膜54的厚度,所述四个位置包括:沟道13的侧表面13a的上部分(A);沟道13的侧表面13a的中间部分(B);沟道13的侧表面13a的下部分(C);和沟道13的底表面13b(D)。另外,为研究取决于半导体晶片上的位置的影响,在定位在半导体晶片的中心部分中的沟道13中和定位在半导体晶片的周缘部分中的沟道13中执行相同的测量。图12示出了结果。如在图12中所示,与在半导体晶片上的位置无关,发现与定位在沟道13的侧表面13a上的第二氧化膜54相比,定位在沟道13的底表面13b上的第二氧化膜54被选择性地除去。特别地,发现即使在第二氧化膜54被干蚀刻的情形中,直至定位在沟道13的底表面13b上的第二氧化膜54被完全除去为止,具有充足厚度的第二氧化膜54也保持在沟道13的侧表面13a上。
在实施例中描述的技术,特别地,形成悬浮区域42的步骤(S24)的方法不仅能够被应用于悬浮区域42的形成,而且还能够被应用于在具有多种其它结构的半导体装置中形成任意类型的区域的步骤。特别地,实施例的技术能够优选地应用于需要通过形成在半导体基板中的沟道的底表面执行导电杂质的离子注入的情形。
在实施例中所描述的技术不限于构成半导体基板12的材料是碳化硅的情形。例如,在实施例中描述的技术还能够应用于构成半导体基板12的材料是硅或另一个半导体材料的情形。在构成半导体基板12的材料是硅的情形中,即使在导电杂质被意外地注入到沟道13的侧表面中时,也容易通过干蚀刻或牺牲氧化来除去沟道13的侧表面13a。另一方面,在构成半导体基板12的材料是碳化硅的情形中,原子之间的结合能相对高。因此,难于通过干蚀刻或牺牲氧化来除去沟道13的侧表面13a。因此,在实施例中描述的技术能够特别优选地应用于构成半导体基板12的材料是碳化硅的情形。
在上文中,已经详细描述了本公开的具体示例。然而,这些示例仅是示例性的且不限制权利要求。在说明书或附图中描述的技术特征在单独使用或组合使用时具有技术意义,且不限于在提交本申请时在权利要求中描述的组合。在说明书或附图中例示的技术同时实现了多个目的,且技术意义通过实现所述目的中的一个目的而获得。

Claims (7)

1.一种制造半导体装置的方法,所述方法的特征在于包括:
在半导体基板的表面上形成沟道;
在所述沟道的侧表面和底表面上形成氧化膜;
从所述沟道的所述底表面通过干蚀刻除去所述氧化膜的至少一部分;以及
在所述干蚀刻之后,通过所述沟道的所述底表面将导电杂质离子注入到所述半导体基板中,从而p型悬浮区域被设置在所述半导体基板的n型漂移区域中,
其中,所述干蚀刻是反应离子蚀刻,在所述反应离子蚀刻中,使用蚀刻气体,所述蚀刻气体包括具有碳原子环结构的碳氟化合物基气体、氧气和氩气。
2.根据权利要求1所述的方法,其特征在于,在除去所述氧化膜时,通过干蚀刻除去所述氧化膜,直至所述沟道的所述底表面露出为止。
3.根据权利要求1或2所述的方法,其特征在于,电容耦合的等离子蚀刻装置被用于所述干蚀刻,所述电容耦合的等离子蚀刻装置包括两个交流电源,所述两个交流电源分别向一对电极供给交流电力。
4.根据权利要求1或2所述的方法,其特征在于,所述具有碳原子环结构的碳氟化合物基气体由化学式C4F6、C4F8、C5F8和C5HF7中的任一个化学式表示。
5.根据权利要求1或2所述的方法,其特征在于,所述半导体基板是碳化硅基板。
6.根据权利要求1或2所述的方法,其特征在于,在形成所述氧化膜时,不仅在所述沟道的所述侧表面和所述底表面上,而且还在所述半导体基板的上表面上,均匀地形成所述氧化膜。
7.根据权利要求1或2所述的方法,其特征在于,在形成所述氧化膜时,所述氧化膜被形成为使得所述氧化膜的在垂直于所述半导体基板的方向上的厚度是1.2微米或更大。
CN201810027050.7A 2017-01-13 2018-01-11 制造半导体装置的方法 Active CN108364861B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-004651 2017-01-13
JP2017004651A JP2018113421A (ja) 2017-01-13 2017-01-13 半導体装置の製造方法

Publications (2)

Publication Number Publication Date
CN108364861A CN108364861A (zh) 2018-08-03
CN108364861B true CN108364861B (zh) 2022-03-01

Family

ID=62716642

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810027050.7A Active CN108364861B (zh) 2017-01-13 2018-01-11 制造半导体装置的方法

Country Status (6)

Country Link
US (1) US10263071B2 (zh)
JP (1) JP2018113421A (zh)
KR (1) KR102054355B1 (zh)
CN (1) CN108364861B (zh)
DE (1) DE102018200237A1 (zh)
TW (1) TWI661486B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10522549B2 (en) * 2018-02-17 2019-12-31 Varian Semiconductor Equipment Associates, Inc. Uniform gate dielectric for DRAM device
KR20210002679A (ko) 2018-06-14 2021-01-08 닛뽕소다 가부시키가이샤 폴리아미드 4 입자의 제조 방법
US20220052152A1 (en) * 2020-08-14 2022-02-17 Cree, Inc. Sidewall dopant shielding methods and approaches for trenched semiconductor device structures
EP4307382A1 (en) * 2021-03-11 2024-01-17 Denso Corporation Field-effect transistor, and method for manufacturing same
CN113829765B (zh) * 2021-08-30 2024-04-05 广东聚华印刷显示技术有限公司 干燥机、干燥方法、发光二极管及其制作方法
TWI802320B (zh) * 2022-03-15 2023-05-11 力晶積成電子製造股份有限公司 半導體結構以及閘極結構的製造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4666556A (en) * 1986-05-12 1987-05-19 International Business Machines Corporation Trench sidewall isolation by polysilicon oxidation
CN1864270A (zh) * 2003-10-08 2006-11-15 丰田自动车株式会社 绝缘栅型半导体器件及其制造方法
CN105874577A (zh) * 2013-12-26 2016-08-17 丰田自动车株式会社 绝缘栅型半导体装置的制造方法及绝缘栅型半导体装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994006263A1 (en) * 1992-09-01 1994-03-17 The University Of North Carolina At Chapel Hill High pressure magnetically assisted inductively coupled plasma
KR100518506B1 (ko) 1998-02-06 2006-04-21 페어차일드코리아반도체 주식회사 트랜치 게이트형 전력용 모스 소자 및 그 제조방법
US6642661B2 (en) * 2001-08-28 2003-11-04 Tokyo Electron Limited Method to affect spatial distribution of harmonic generation in a capacitive discharge reactor
US7217954B2 (en) * 2003-03-18 2007-05-15 Matsushita Electric Industrial Co., Ltd. Silicon carbide semiconductor device and method for fabricating the same
KR100767078B1 (ko) 2003-10-08 2007-10-15 도요다 지도샤 가부시끼가이샤 절연 게이트형 반도체 장치 및 그 제조 방법
JP2012049365A (ja) * 2010-08-27 2012-03-08 Toshiba Corp 半導体装置の製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4666556A (en) * 1986-05-12 1987-05-19 International Business Machines Corporation Trench sidewall isolation by polysilicon oxidation
CN1864270A (zh) * 2003-10-08 2006-11-15 丰田自动车株式会社 绝缘栅型半导体器件及其制造方法
CN105874577A (zh) * 2013-12-26 2016-08-17 丰田自动车株式会社 绝缘栅型半导体装置的制造方法及绝缘栅型半导体装置

Also Published As

Publication number Publication date
JP2018113421A (ja) 2018-07-19
TWI661486B (zh) 2019-06-01
DE102018200237A1 (de) 2018-07-19
TW201841249A (zh) 2018-11-16
US10263071B2 (en) 2019-04-16
CN108364861A (zh) 2018-08-03
US20180204906A1 (en) 2018-07-19
KR102054355B1 (ko) 2019-12-11
KR20180083799A (ko) 2018-07-23

Similar Documents

Publication Publication Date Title
CN108364861B (zh) 制造半导体装置的方法
WO2017043607A1 (ja) 縦型炭化珪素半導体装置のトレンチのアニール処理装置、縦型炭化珪素半導体装置の製造方法および縦型炭化珪素半導体装置
US8791002B2 (en) Semiconductor device and fabrication method for the same
JP2010258442A (ja) 電界効果トランジスタ、電界効果トランジスタの製造方法、および溝の形成方法
US9000447B2 (en) Silicon carbide semiconductor device
JP2010182857A (ja) 半導体装置およびその製造方法
CN108257858B (zh) 一种高k栅介质层的制备方法及碳化硅MOS功率器件
US11424341B2 (en) Semiconductor device
JP2023017101A (ja) 半導体装置の製造方法
JP2005056868A (ja) 炭化珪素半導体装置の製造方法
JP2010238725A (ja) 半導体装置及びその製造方法
WO2017150452A1 (ja) 半導体装置および半導体装置の製造方法
JP2014241350A (ja) 電界効果トランジスタおよびその製造方法
JP2017045943A (ja) 窒化物半導体装置の製造方法
WO2012132229A1 (ja) トレンチ型SiC半導体装置の製造方法
JP6156814B2 (ja) 炭化珪素半導体素子の製造方法
JP6052065B2 (ja) 半導体素装置および半導体装置の製造方法
US9966447B2 (en) Method of manufacturing semiconductor device by plasma treatment and heat treatment, and semiconductor device
JP2011029357A (ja) 半導体装置の製造方法
JP2004253576A (ja) 半導体装置の製造方法
US11830915B2 (en) Nitride semiconductor device
KR20190035331A (ko) 둥근 트렌치 코너를 갖는 트렌치 게이트형 모스펫 제조방법
CN109216174A (zh) 半导体器件的分裂栅结构及其制造方法
TWI726004B (zh) 鑽石電子元件
JP2019153627A (ja) 半導体装置の製造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant