CN108362636B - 一种燃料电池用双极板耐腐蚀性能测试方法 - Google Patents

一种燃料电池用双极板耐腐蚀性能测试方法 Download PDF

Info

Publication number
CN108362636B
CN108362636B CN201711468255.0A CN201711468255A CN108362636B CN 108362636 B CN108362636 B CN 108362636B CN 201711468255 A CN201711468255 A CN 201711468255A CN 108362636 B CN108362636 B CN 108362636B
Authority
CN
China
Prior art keywords
bipolar plate
corrosion resistance
plate material
fuel cell
testing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201711468255.0A
Other languages
English (en)
Other versions
CN108362636A (zh
Inventor
徐鑫
杜晓莉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Shenli Technology Co Ltd
Original Assignee
Shanghai Shen Li High Tech Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Shen Li High Tech Co Ltd filed Critical Shanghai Shen Li High Tech Co Ltd
Priority to CN201711468255.0A priority Critical patent/CN108362636B/zh
Publication of CN108362636A publication Critical patent/CN108362636A/zh
Application granted granted Critical
Publication of CN108362636B publication Critical patent/CN108362636B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N17/00Investigating resistance of materials to the weather, to corrosion, or to light
    • G01N17/02Electrochemical measuring systems for weathering, corrosion or corrosion-protection measurement

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Ecology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Environmental Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)
  • Fuel Cell (AREA)

Abstract

本发明涉及一种燃料电池用双极板耐腐蚀性能测试方法,将表面清洗干净的双极板材料置于电解质溶液中,并与电化学工作站的工作电极相连;在电解质溶液中插入参比电极及对电极;测试过程中控制在氧气气氛下,通电测试双极板材料的开路电位,测定得到双极板的耐腐蚀性能。与现有技术相比,本发明仅仅通过双极板材料OCP的测定即可快速判断双极板耐腐蚀特性。

Description

一种燃料电池用双极板耐腐蚀性能测试方法
技术领域
本发明涉及燃料电池领域,尤其是涉及一种燃料电池用双极板耐腐蚀性能测试方法。
背景技术
质子交换膜燃料电池(proton exchange membrane fuel cell,PEMFC)由于高效、清洁、快速启动等优点被认为是下一代移动替代能源的首要选择。燃料电池堆的主要组成部分包括膜电极组件、双极板等,其中双极板占电堆体积和质量的很大比重。此外,双极板还起到收集电流、分配燃料及氧化剂、分隔单电池等作用。因此,理想的双极板需要具有良好的导电性、高气密性、低密度、良好的耐腐蚀性等特性。目前常用的双极板有两种:石墨双极板和金属双极板。金属双极板由于导热性能好、电导率高、易于加工等优点被认为是理想的双极板材料。但是金属双极板在PEMFC强酸、高湿、高温的苛刻条件下,容易发生腐蚀,溶解的金属离子会对膜及催化剂造成损坏,降低燃料电池性能及寿命。因此,耐腐蚀性能是双极板表征的一个重要参数。
目前,双极板耐腐蚀的参数指标为腐蚀电流及恒电位下腐蚀电流。腐蚀电流通过Tafel曲线测试做切线得到,其数值受到扫描速率及切线位置影响,具有一定的不确定性。而恒电位下腐蚀电流测试时间较长,不能快速的反映出双极板的耐腐蚀特性。
发明内容
本发明的目的就是为了克服上述现有技术存在的缺陷而提供一种燃料电池用双极板耐腐蚀性能测试方法。
本发明的目的可以通过以下技术方案来实现:
一种燃料电池用双极板耐腐蚀性能测试方法,采用以下步骤:
(1)将表面清洗干净的双极板材料置于电解质溶液中,并与电化学工作站的工作电极相连;
(2)在电解质溶液中插入参比电极及对电极;
(3)测试前将溶液和测试容器中中的空气排除干净,测试过程中控制在完全氧气气氛下,通电测试10~20s,检测得到双极板材料的开路电位,测定得到双极板的耐腐蚀性能,比较同类双极板材料的开路电位,其中开路电位较高的双极板材料耐腐蚀性能较好。
所述的电解质溶液为含有氟离子的硫酸溶液。
所述的硫酸溶液的浓度为0.4-0.6M。
所述的硫酸溶液中氟离子的浓度为4-6ppm。
所述的参比电极为饱和氯化银参比电极及可逆氢参比电极。
测试过程中控制温度为25~90℃。
以石墨双极板为例,碳材料是一种热力学不稳定的材料,25℃时其平衡电势为0.207V(相对于可逆氢参比电极,),腐蚀机理如下:
C+2H2O→CO2+4H++4e 0.207V v.s.RHE (1)
当燃料电池在一定的电流密度下运行时,其阴极电位E一般为0.6~1.0V。此时,加在双极板上的腐蚀电位E即为阴极电位。而双极板在该腐蚀电位下发生碳腐蚀,腐蚀电流的大小与过电位的关系由Butler-Volmer方程描述,其表达式如下:
i=i0[e–αfη-e(1–α)fη] (2)
其中i为反应电流,i0为交换电流密度,与材料种类有关,α为传递系数,在同一类反应中相同,f=F/RT,F为法拉第常数,≈96485C/mol,R为摩尔气体常数,≈8.314J/(mol·K),T为热力学温度,η为过电位,即加在双极板上的偏压,其计算方法如下:
η=E-E0 (3)
其中E为加在双极板上的电位,在本发明中为阴极电位,E0为双极板平衡电位,即本发明中测试得到的OCP,则η的表达式替换为:
η=E-OCP (4)
由式(2)可知,腐蚀电流的大小与过电位密切相关,过电位越高,腐蚀电流越大。由式(4)可知过电位与双极板材料OCP负相关,OCP越高,过电位越小。因此,OCP越高的双极板材料过电位越小,根据Butler-Volmer方程计算得到腐蚀电流越小,耐腐蚀特性越强。
与现有技术相比,本发明具有以下优点:
(1)测试准确,避免了人为操作带来的数据处理误差、腐蚀面积误差等;
(2)测试快捷,仅仅通过双极板材料OCP的测定即可快速判断双极板耐腐蚀特性;
(3)操作简便,不需要处理常规Tafel测试的曲线,仅需要记录双极板材料OCP即可。
具体实施方式
下面结合具体实施例对本发明进行详细说明。以下实施例将有助于本领域的技术人员进一步理解本发明,但不以任何形式限制本发明。应当指出的是,对本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进。这些都属于本发明的保护范围。
实施例1
一种燃料电池用双极板耐腐蚀性能测试方法,采用以下步骤:利用五口腐蚀池作为容器,其中盛放有0.5M H2SO4+5ppm F电解质溶液,五口腐蚀池的另外一个瓶口用于放置参比电极(饱和氯化银参比电极、可逆氢参比电极(reversible hydrogen electrode,RHE)),一瓶口放置对电极,另外两个瓶口用于通入和导出氧气;将清洗表面后的双极板材料置于五口腐蚀池中,并与电化学工作站的工作电极相连;测试双极板材料的开路电位(open circuit potential,OCP)。比较同类双极板材料的OCP,其中OCP较高的双极板材料耐腐蚀性能较好,整个测试过程的温度控制在40℃。
实施例2
一种燃料电池用双极板耐腐蚀性能测试方法,采用以下步骤:利用五口腐蚀池作为容器,其中盛放有0.4M H2SO4+6ppm F电解质溶液,五口腐蚀池的另外一个瓶口用于放置参比电极(饱和氯化银参比电极、可逆氢参比电极(reversible hydrogen electrode,RHE)),一瓶口放置对电极,另外两个瓶口用于通入和导出氧气;将清洗表面后的双极板材料置于五口腐蚀池中,并与电化学工作站的工作电极相连;测试双极板材料的开路电位(open circuit potential,OCP)。比较同类双极板材料的OCP,其中OCP较高的双极板材料耐腐蚀性能较好,整个测试过程的温度控制在25℃。
实施例3
一种燃料电池用双极板耐腐蚀性能测试方法,采用以下步骤:利用五口腐蚀池作为容器,其中盛放有0.6M H2SO4+4ppm F电解质溶液,五口腐蚀池的另外一个瓶口用于放置参比电极(饱和氯化银参比电极、可逆氢参比电极(reversible hydrogen electrode,RHE)),一瓶口放置对电极,另外两个瓶口用于通入和导出氧气;将清洗表面后的双极板材料置于五口腐蚀池中,并与电化学工作站的工作电极相连;测试双极板材料的开路电位(open circuit potential,OCP)。比较同类双极板材料的OCP,其中OCP较高的双极板材料耐腐蚀性能较好,整个测试过程的温度控制在90℃。
以上对本发明的具体实施例进行了描述。需要理解的是,本发明并不局限于上述特定实施方式,本领域技术人员可以在权利要求的范围内做出各种变形或修改,这并不影响本发明的实质内容。

Claims (3)

1.一种燃料电池用双极板耐腐蚀性能测试方法,其特征在于,该方法采用以下步骤:
(1)将表面清洗干净的双极板材料置于电解质溶液中,并与电化学工作站的工作电极相连;
(2)在电解质溶液中插入参比电极及对电极;所述的电解质溶液为含有氟离子的硫酸溶液,所述的硫酸溶液的浓度为0.4-0.6M,所述的硫酸溶液中氟离子的浓度为4-6ppm;
(3)测试前将溶液和测试容器中的空气排除干净,测试过程中控制在完全氧气气氛下,通电测试10~20s,检测得到双极板材料的开路电位,测定得到双极板的耐腐蚀性能,比较同类双极板材料的开路电位,其中开路电位较高的双极板材料耐腐蚀性能较好。
2.根据权利要求1所述的一种燃料电池用双极板耐腐蚀性能测试方法,其特征在于,所述的参比电极为饱和氯化银参比电极及可逆氢参比电极。
3.根据权利要求1所述的一种燃料电池用双极板耐腐蚀性能测试方法,其特征在于,测试过程中控制温度为25~90℃。
CN201711468255.0A 2017-12-29 2017-12-29 一种燃料电池用双极板耐腐蚀性能测试方法 Active CN108362636B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711468255.0A CN108362636B (zh) 2017-12-29 2017-12-29 一种燃料电池用双极板耐腐蚀性能测试方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711468255.0A CN108362636B (zh) 2017-12-29 2017-12-29 一种燃料电池用双极板耐腐蚀性能测试方法

Publications (2)

Publication Number Publication Date
CN108362636A CN108362636A (zh) 2018-08-03
CN108362636B true CN108362636B (zh) 2021-07-09

Family

ID=63010833

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711468255.0A Active CN108362636B (zh) 2017-12-29 2017-12-29 一种燃料电池用双极板耐腐蚀性能测试方法

Country Status (1)

Country Link
CN (1) CN108362636B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110927237B (zh) * 2018-09-20 2022-03-18 北京科技大学 一种pemfc金属双极板寿命测试装置及方法
CN109596511A (zh) * 2018-12-10 2019-04-09 新源动力股份有限公司 燃料电池双极板耐蚀性测试方法
CN109856037B (zh) * 2019-01-08 2021-09-10 浙江锋源氢能科技有限公司 一种金属双极板长期稳定性的测定方法
CN109752424B (zh) * 2019-01-30 2022-03-11 大连海事大学 一种薄液层溶液控制装置及应用
CN112285013A (zh) * 2020-09-28 2021-01-29 武汉船用电力推进装置研究所(中国船舶重工集团公司第七一二研究所) 一种金属双极板涂层质量现场快速抽检方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1198131C (zh) * 2002-08-19 2005-04-20 乐金电子(天津)电器有限公司 金属耐腐蚀性测定装置
JP4280168B2 (ja) * 2004-01-20 2009-06-17 新日本製鐵株式会社 燃料電池セパレーター用金属材料の耐食性評価方法
CN101144769B (zh) * 2007-09-29 2010-08-18 哈尔滨工业大学 五电极钢筋锈蚀监测传感器及其制备方法
CN105810972A (zh) * 2016-04-11 2016-07-27 武汉理工大学 一种质子交换膜燃料电池的不锈钢双极板表面改性的方法
CN107084919A (zh) * 2017-04-10 2017-08-22 武汉理工大学 一种金属双极板材料耐腐蚀性能测试用参比电极的制备方法

Also Published As

Publication number Publication date
CN108362636A (zh) 2018-08-03

Similar Documents

Publication Publication Date Title
CN108362636B (zh) 一种燃料电池用双极板耐腐蚀性能测试方法
US6156447A (en) Method for identifying a gas leak, and fuel cell system
CN109856037B (zh) 一种金属双极板长期稳定性的测定方法
CN1466689A (zh) 燃料电池阻抗的测量
US7148654B2 (en) Method and apparatus for monitoring fuel cell voltages
WO2013083872A1 (en) Method and arrangement for indicating solid oxide cell operating conditions
Bandlamudi et al. Study on electrode carbon corrosion of high temperature proton exchange membrane fuel cell
CN102169165B (zh) 燃料电池堆的最小电池电压退化的早期检测
CN101427409A (zh) 燃料电池的穿透损耗的测定方法及测定装置
US9209468B2 (en) Fuel cell failure prediction apparatus
CN114628745B (zh) 用于高温质子交换膜燃料电池的极化损失分离方法及系统
JP3696171B2 (ja) 直接型液体燃料電池発電装置の検査方法、検査装置、及び直接型液体燃料電池発電装置
WO2013083873A1 (en) Method and arrangement for diagnosis of solid oxide cells operating conditions
JP2002289243A (ja) 透過水素ガス量測定方法およびその装置
JP6722122B2 (ja) 触媒被毒判定用プログラム、燃料電池エージング用プログラム、及び燃料電池システム
AU2020281450B2 (en) Method and system for examining a fuel cell by means of a cyclic voltammetric measurement
Ido et al. Degradation Analysis of SOFC Performance for Long-Term Operation with High Fuel Utilization
CN113629278A (zh) 一种可准确测试由氢气杂质引起的燃料电池阳极过电位的方法及其应用
JP2010186704A (ja) 固体高分子型燃料電池の寿命加速試験方法
Lagergren et al. The effects of oxidant gas composition on the polarization of porous LiCoO2 electrodes for the molten carbonate fuel cell
CN219709607U (zh) 一种电解槽产成气的快速高压控制系统
CN100470905C (zh) 用于液态燃料电池的燃料供给方法
JP2020129568A (ja) 燃料電池エージング用プログラム、及び燃料電池システム
Nurettin Fuel Cell Electrochemistry Measurement Methods
Han et al. An Experimental Study on the Analysis of Operating Conditions in the PEMFC Flow Channel by Observing Temperature/Humidity Field

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant