CN108352847B - 用于直接取样极宽带收发器的系统和方法 - Google Patents

用于直接取样极宽带收发器的系统和方法 Download PDF

Info

Publication number
CN108352847B
CN108352847B CN201680063881.9A CN201680063881A CN108352847B CN 108352847 B CN108352847 B CN 108352847B CN 201680063881 A CN201680063881 A CN 201680063881A CN 108352847 B CN108352847 B CN 108352847B
Authority
CN
China
Prior art keywords
signal
digital
analog
strong
cancellation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201680063881.9A
Other languages
English (en)
Other versions
CN108352847A (zh
Inventor
A·P·古德森
J·D·萨赫尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Washington
Original Assignee
University of Washington
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Washington filed Critical University of Washington
Publication of CN108352847A publication Critical patent/CN108352847A/zh
Application granted granted Critical
Publication of CN108352847B publication Critical patent/CN108352847B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/10Means associated with receiver for limiting or suppressing noise or interference
    • H04B1/109Means associated with receiver for limiting or suppressing noise or interference by improving strong signal performance of the receiver when strong unwanted signals are present at the receiver input
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/10Means associated with receiver for limiting or suppressing noise or interference
    • H04B1/12Neutralising, balancing, or compensation arrangements
    • H04B1/123Neutralising, balancing, or compensation arrangements using adaptive balancing or compensation means
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L23/00Apparatus or local circuits for systems other than those covered by groups H04L15/00 - H04L21/00
    • H04L23/02Apparatus or local circuits for systems other than those covered by groups H04L15/00 - H04L21/00 adapted for orthogonal signalling

Abstract

本发明公开用于直接取样极宽带收发器的系统和方法。一种实例收发器包含天线、N位模/数转换器、数字信号处理器、数/模转换器和加法器。所述N位ADC从所述天线接收宽带RF输入信号,其中所述输入信号包含弱信号和强信号;对所述输入信号进行过取样,且提供数字样本信号。所述数字信号处理器从所述数字样本信号产生数字消除信号,其中所述数字取消信号使用M位产生,M大于N。所述DAC基于所述数字取消信号提供模拟取消信号,且所述加法器通过将所述输入信号和所述模拟取消信号相加而提供残余模拟信号,其中所述强信号归因于所述模拟取消信号而至少在所述残余模拟信号中减小。

Description

用于直接取样极宽带收发器的系统和方法
相关申请的交叉引用
本申请要求2015年9月2日提交的第62/213,530号美国临时申请的权益,所述临时申请的内容以引用的方式并入本文中。
技术领域
本公开大体上涉及无线电装置,且确切地说但非排他地涉及宽带高动态范围直接取样收发器。
背景技术
无线电装置传统地基于超外差架构。然而,超外差架构很复杂且仅适合于一次一个小频带,例如频谱窗。所述复杂性部分归因于添加混频器和各种操作频率以及包含滤波器来抑制所要频谱窗外部的不合需要的信号。虽然常规无线电装置良好地工作且提供稳健的通信系统,但非常需要针对较宽带使用单一无线电装置且减小无线电装置的复杂性的能力。
对于满足复杂性降低和高带宽的目标的替代无线电装置的需求已经导致直接取样宽带无线电装置。直接取样宽带无线电装置的开发一直基于模/数转换器技术以及数/模转换器的发展。然而,这些无线电装置在带内强信号赶走较弱信号(这减小无线电装置的动态范围)时遭受困难,且一直仅按需要在受控环境中操作。此外,极高速模/数转换器具有有限的精度(8到10位),对于强信号足够,但阻碍了在存在强信号的情况下弱信号的检测和取样。
附图说明
参见以下图式描述本发明的非限制性和非穷尽性的实施例,其中除非另有指定,否则各图中相同的参考标号指代相同的零件。在适当时,不一定标记元件的所有例项,以免使图式混乱。图式不必按比例绘制,而是重点在于说明所描述的原理。
图1是根据本公开的实施例的实例直接取样宽带无线电装置的框图。
图2是根据本公开的实施例的实例直接取样宽带收发器的框图。
图3A-3D是展示根据本公开的实施例的收发器的宽带操作的一系列RF曲线。
图4是根据本发明的实施例的宽带高动态范围直接取样收发器的实例方法。
图5是根据本公开的实施例用于实施宽带高动态范围直接取样收发器的实例计算机可读存储媒体。
具体实施方式
本文中描述用于极宽带高动态范围直接取样收发器的系统和方法的实施例。在以下描述中,阐述许多特定细节以提供对实施例的透彻理解。然而,相关领域的技术人员将认识到,可在没有所述特定细节中的一或多个的情况下或使用其它方法、组件、材料等实践本文所描述的技术。在其它情况下,未展示或详细描述众所周知的结构、材料或操作以免使某些方面混淆。
在整个本说明书中提到“一个实施例”或“一实施例”意味着结合所述实施例描述的特定特征、结构或特性包含在本发明的至少一个实施例中。因此,贯穿本说明书在不同位置中出现短语“在一个实施例中”或“在一实施例中”未必都是指同一个实施例。此外,在一或多个实施例中,特定特征、结构或特性可以任何合适的方式组合。
直接取样极宽带收发器可能够例如将所接收的极宽频带中发生的所有所接收射频(RF)信号转换为数字信号。举例来说,RF信号可直接转换为数字信号,而不使用中频和混频器。此外,直接取样极宽带收发器可不包含滤波器以滤出准许所关注的整个频谱的主要奈奎斯特滤波器外部的非所要频率。由此,直接取样极宽带收发器可跨越所接收信号的极宽带提供数字信号,所述所接收信号可横跨任何合乎需要的频谱窗。对于非限制性实例,极宽带可横跨达频谱的2GHz。此外,所要频谱窗可包含AM、FM、GPS、DTV等带。直接取样极宽带收发器和接收器可替代多个常规超外差无线电装置,这是归因于其能够跨越极宽带检测信号。
举例来说,直接取样极宽带收发器可包含模/数转换器(ADC)以将所接收的RF信号转换为能够由数字信号处理器分析和使用的数字信号。所接收的RF信号可包含弱信号和强信号。然而,ADC可被强信号饱和,这可能将噪声底限升高到高于弱信号的强度。因此,ADC可能不能对弱信号进行取样,例如检测。因为收发器的带宽中的任何和所有信号可以是所要信号,所以弱信号的损失可能很大程度上削弱直接取样极宽带收发器的有用性。
换句话说,不受控环境中的极宽带直接取样收发器可能因强带内信号而不堪重负,这可能防止信号处理器检测宽带中的弱信号。举例来说,可在范围内的任何频率处发生的带内强信号可使ADC饱和,和/或以将所有较弱信号推动到ADC的噪声底限以下的方式驱动自动增益控制系统。如果一或多个大信号使ADC饱和,那么大信号的数字表示将失真,且所有较弱信号将遭受来自饱和的非线性操作的严重频谱污染,从而高效地增加接收器的噪声底限。
本文公开用于在存在强带内发射信号的情况下利用极宽带直接取样收发器接收和发射射频(RF)信号的系统和方法。强带内发射信号可以是“本船(own-ship)”发射或来自附近或高功率发射器的发射。收发器可由预备取样级、注入/取消级、次级取样级和数字信号处理系统组成。预备取样级用模/数转换器对任何和所有强信号取样,且可由数字处理系统产生取消信号。取消信号可以是较高分辨率信号(较多位),例如与预备取样信号相比强信号的较好近似,且可由数/模转换器(DAC)转换到模拟域中。界定取消信号的信息还可转发到数字处理系统,且取消信号可在注入级与总RF信号组合,从而产生残余信号。残余信号可具有两个性质:其可具有低量值(例如,所有强信号已经移除),且其可由与取消信号的产生相关联的量化噪声主导。此残余信号接着可由第二取样级取样。数字化残余信号可转发到数字处理系统。
因为主导的量化“噪声”是从已知信号(例如,取消信号)产生,所以此取样噪声可数字上从数字残余信号减去。主要数字处理系统可估计取消信号量化噪声,且将其从数字化残余信号移除。在如此移除了量化噪声的情况下,可恢复原始弱信号。由第一级捕获的弱信号和强信号两者可随后可用于进一步数字处理和/或再发射。接收器接着可被表征为极高动态范围直接数字化接收器。
图1是根据本公开的实施例的实例直接取样宽带无线电装置100的框图。在存在一或多个强带内信号的情况下,无线电装置100可对RF信号的宽带直接取样,且将RF信号转换为数字信号。强带内信号可经考虑使得可检测到RF信号内的较弱信号。一般来说,无线电装置100可以是宽带高动态范围,其能够检测包含在RF输入信号中的弱和强信号,而强信号不会不利地影响弱信号的检测。
无线电装置100的所说明的实施例包含天线102、取消信号产生电路104、求和电路106和接收器108。取消信号产生电路104可以是预备取样级、求和器106为注入/取消级,且接收器108为次级取样级。此外,接收器108和取消信号产生电路104可包含和/或可耦合到数字信号处理系统。天线102可接收宽带RF输入信号且将宽带RF输入信号的模拟信号提供到取消信号产生电路104和求和器106。在一些实施例中,天线102可能够接收横跨带宽的大约2GHz的RF信号。举例来说,由天线102接收的RF输入信号可在零赫兹到高达2GHz的范围内,且在其它实例中高达2.5GHz。在一些实施例中,包含在输入中的频率的范围可取决于接收器108的取样速率,其中取样速率越高,则可接收的频率范围越大。一般来说,天线102可参考含于极宽带RF输入信号内的弱和/或强信号的带宽接收所述RF输入信号,所述信号可具有例如25KHz到6MHz范围内的带宽。
RF输入信号可包含若干弱信号和零个、一个或更多个强信号。强信号可例如超出弱信号的强度50dB或更大。零个、一个或更多个强信号可以是RF输入信号的带宽内各个中心频率处发生的带内信号,而弱信号可组成RF输入信号的带宽的剩余部分的较大部分。在一些实施例中,RF输入信号的带宽可涵盖所关注的各种RF带,例如AM和FM无线电装置、GPS、数字TV(DTV)等。
取消信号产生电路104可从天线102接收RF输入信号,且作为响应将模拟取消信号提供到求和器106。模拟取消信号可以是RF输入信号中的强信号的精确近似,所述强信号可归因于模拟取消信号而被抑制或从RF输入信号移除。取消信号产生电路104可执行各种模/数和数/模转换连同一些数字信号处理以产生模拟取消信号。举例来说,取消信号产生电路104可对RF输入信号取样以产生数字样本,例如A/D转换。数字样本接着可转换为强信号的较精确数字估计。如本文中所使用,“较精确”可指代用于界定强信号的位数目。随后,可通过反转信号的符号(例如转换为互补信号)而将强信号的数字估计转换为数字取消信号。取消信号产生电路104接着可将数字取消电路转换为模拟取消电路,例如D到A转换。数字取消信号和/或数字估计可额外存储且提供到接收器108。
可仅包含所述一或多个强信号的数字样本可能已使用高数目的位过取样以提供所述一或多个强信号的良好近似。举例来说,可能已通过使用每样本八个位以大约每秒5吉咖样本(GSPS)(例如,5GHz)取样而从RF输入信号产生数字样本。数字样本接着可使用比用于界定数字样本多的位转换为较精确数字近似,例如数字估计。较精确可意味着所述数字近似可以是所述一或多个强信号的比数字样本提供的近似更高分辨率的近似。可归因于对RF输入信号过取样而实现改进数字样本的精度。此外,因为所述一或多个强信号尤其关于RF输入信号的总带宽可以是窄带,所以估计值的精度可能归因于过取样而超出瞬时取样精度,其中数字样本表示强信号的瞬时样本。在一些实施例中,数字取消信号到模拟取消信号的转换可包含将量化噪声注入到模拟取消信号中。可显现为具有平坦宽谱的白噪声的量化噪声可能影响例如接收器108对弱信号的检测。
在一些实施例中,取消信号产生电路104可包含模/数转换器(ADC)、数字信号处理器(例如FPGA)和数/模转换器(DAC)。ADC可对RF输入信号取样且将数字样本提供到数字信号处理器,数字信号处理器可将数字样本转换为数字取消信号。继而,数字取消信号可由DAC转换为模拟取消信号。归因于强信号,ADC可饱和,和/或自动增益可将弱信号抑制到ADC的噪声底限以下,这减小ADC和继而无线电装置100的动态范围。弱信号的抑制可能使其不可检测。因此,数字样本可仅包含噪声和所述一或多个强信号。在一些实施例中,ADC可以是5GHz处的八位ADC取样。
在一些实施例中,包含在取消信号产生电路104中的数字信号处理器可归因于RF输入信号的过取样而产生所述一或多个强信号的较精确估计值。过取样可提供关于强信号的电压电平的额外细节,这可以允许数字信号处理器增加精度且将更多位添加到数字样本信号,例如13。较精确数字样本接着可转换为数字取消信号。数字取消信号接着可由DAC转换为模拟取消信号。在一些实施例中,DAC可以是13位DAC。
求和电路106可经耦合以从天线102接收RF输入信号且从取消信号产生电路104接收模拟取消信号,且作为响应提供模拟残余信号。RF输入信号中的所述一或多个强信号可归因于与模拟取消信号的求和而减小或移除。在一些实施例中,举例来说,残余信号还可包含归因于DAC而引入到模拟取消信号中的量化噪声。在一些实施例中,求和器106可额外包含耦合在天线102和求和电路106之间的延迟元件,其可在将模拟取消信号添加到RF输入信号上之前延迟所述RF输入信号以考虑取消信号产生电路104的时延。
接收器108可经耦合以接收残余信号,且作为响应将残余信号转换为RF输入信号的数字表示。此外,接收器108可经耦合以从取消信号产生电路104接收数字取消信号关于数字取消信号的信息。接收器108可使用数字取消信号或所述相关信息再创建由取消信号产生电路104注入在残余信号中的量化噪声。在强信号为所关注信号的情况下,数字取消信号可额外加回到残余信号。相应地,接收器108可对包含注入的量化噪声的残余信号取样,且转换为数字残余信号。然而,弱信号可能归因于所注入量化噪声而仍不可检测,从而影响接收器108的DAC的动态范围。但是,因为接收器108已从数字取消信号的先验知识估计所注入量化噪声,所以所注入量化噪声可从数字残余信号减去,从而留下可用的弱信号。此外,在强信号为所关注信号的情况下,所述强信号可插回到数字残余信号中。因此,即使在存在强带内信号的情况下,整个RF输入信号也可能已由无线电装置100完全数字化。
实际上,归因于强信号的过取样以及所注入量化噪声的减去,无线电装置100为高动态范围宽带接收器。
虽然图1中未展示,但无线电装置100还可包含各种带相关信号处理器,其经耦合以接收RF输入信号的数字表示以便解调所要信号,例如AM、FM、GPS、DTV等。在一些实施例中,无线电装置100也可包含能够发射信号的组件。
在操作中,无线电装置100可接收横跨例如零到2GHz的频率范围的RF输入信号。RF输入信号可主要包含相对弱信号连同一或多个相对强信号。举例来说,可由本地强发射体发射的强信号可以是弱信号的强度的多倍。举例来说,如果无线电装置100仅包含天线102和接收器108,那么强信号可使ADC饱和,和/或以将所有弱信号推动到噪声底限以下的方式驱动包含在接收器108中的ADC的自动增益控制系统,从而致使跨越RF输入信号的所有频率的所有所接收数据不可用。然而,取消信号产生电路104和求和器106可将前馈取消提供到无线电装置100,这可更改强信号使得弱信号变得可检测。强信号可从RF输入信号移除或减小到允许检测到弱信号的电平。
在强信号已经移除或减小之后,接收器108可对来自求和器106的残余信号取样以在一些额外处理之后提供整个RF输入信号的0到2GHz的数字表示。举例来说,接收器108可在其为所关注信号的情况下再插入强信号,且还可移除注入到残余信号中的量化噪声。整个RF输入信号的数字表示接着可供例如任何数目的带特定应用使用,和/或再发射。
图2是根据本公开的实施例的收发器200的框图。收发器200可包含无线电装置100加上额外功能组件的实例。收发器200可以是能够在包含在所接收带宽中的所有频率处检测信号的直接取样极宽带无线电装置。在一些实施例中,收发器200可接收例如带宽的高达2GHz,但带宽是本公开的非限制性方面。覆盖所接收带宽的RF信号可包含弱信号和一或多个强信号。收发器200可即使在存在强信号的情况下也能够检测弱信号,且再发射所述弱信号。一般来说,收发器200可以是宽带高动态范围收发器。
收发器200的所说明的实施例包含接收天线202、取消信号产生电路204、求和电路206、接收器208、应用处理器224、发射DAC 226和发射天线228。接收天线202可接收RF输入信号且将其提供到取消信号产生电路204和求和电路206。接收天线202可以是当前已知和将来开发的任何类型的宽带天线,且可能影响收发器200可接收的频率的范围。在一些实施例中,接收天线202可接收高达2GHz的频率。然而,接收天线202的带宽是本公开的非限制性方面,且预期任何带宽。
取消信号产生电路204可接收RF输入信号且作为响应提供模拟取消信号。模拟取消信号可以是包含在RF输入信号中的强信号的补体,其可用于移除或减小RF输入信号中的强信号的强度。取消信号产生电路204的所说明的实施例包含ADC 214、信号处理器216和DAC 218。ADC 214可对RF输入信号取样且作为响应提供强信号的数字样本。信号处理器216可产生强信号的较精确估计且作为响应提供数字取消信号。数字取消信号可以是强信号的估计的补体以便减小强信号或从RF输入信号移除强信号。DAC 218可接收数字取消信号,且作为响应提供模拟取消信号。
在一些实施例中,ADC 214可对RF输入信号过取样以作为响应产生精确数字样本。然而,因为强信号可将弱信号抑制到ADC 214的噪声底限以下,所以数字样本可仅包含强信号的样本。RF输入信号的过取样可经执行以增加数字样本的精度,这可额外增加数字和模拟取消信号的精度。过取样的量可基于ADC 214的取样频率与强信号的带宽的比率。强信号的带宽可比ADC 214的取样频率小得多,例如参看图3A-3D。在一些实施例中,ADC 214可在5GHz处取样,且强信号可具有大约25KHz到大约6MHz范围内的带宽。相应地,过取样率可在1000到100,000的范围内。如所提到,强信号的过取样可产生通过数字和模拟取消信号对强信号的较精确近似。在一些实施例中,ADC 214可为至少8位ADC,其可使用8位描述沿着强信号的每一电压电平。
信号处理器216可以是经耦合以产生数字样本的较精确估计值的数字信号处理器。举例来说,信号处理器216可将可使用8位来描述每一经取样电压电平的数字样本转换为使用高达13位来描述每一经取样电压电平的强信号的估计值。13位估计值可比数字样本更精确。所增加精度可归因于过取样,其允许例如强信号等窄带信号的估计值的精度超出数字样本的精度。过取样可提供沿着强信号的每一电压点的多个量度,其可例如求平均以提供实际电压电平的更精细量度。电压电平的更精确样本可以允许沿着强信号的点的电压电平的更精细估计值。由此,所述更精细估计值可以允许以比沿着强信号的每一点最初被取样所处的精度更大的精度(例如,更多的位)界定所述点。这继而允许使用较高位DAC(例如DAC 218)将数字取消信号转换为模拟取消信号。应注意,数字取消信号可具有强信号的估计值的相反符号(例如补体),使得模拟取消信号在求和电路206处移除和/或抑制RF输入信号中的强信号。
DAC 218可经耦合以接收数字取消信号,且作为响应产生模拟取消信号。DAC 218可耦合在信号处理器216的输出处且耦合在求和电路206的输入处。在产生模拟取消信号期间,DAC 218可将可具有白噪声的形式的量化噪声注入到模拟取消信号中。所注入的量化噪声可能影响后续取样,但因为所注入噪声的基础是已知的(例如数字取消信号),所以量化噪声可在后续取样之后减去。下文将更详细地论述所注入量化噪声的移除。如所提到,DAC218可以是比ADC 214更高位组件,这至少部分归因于由信号处理器216执行的估计。举例来说,DAC 218可以是13位DAC。在一些实施例中,DAC 218可小于13位,例如9、10、11或12位。
求和电路206的所说明实施例包含延迟210和加法器212。延迟210可经耦合以从天线202接收RF输入信号,将其延迟可调整时间量,且将经延迟的RF输入信号提供到加法器212。加法器212可经耦合以接收经延迟的RF输入信号,且进一步经耦合以从取消信号产生电路204接收模拟取消信号。加法器212可将两个信号相加,且提供残余信号作为输出。残余信号可以是具有归因于模拟取消信号和RF输入信号的添加而被抑制到可接受电平或被移除的强信号的RF输入信号。
延迟210(其可以是任选的)可以是经配置以将一些时延引入到RF输入信号的传播中的可调整延迟元件。时延的量可基于取消信号产生电路204引入到收发器200中的时延的量。举例来说,由延迟210引入的时延量可考虑产生模拟取消信号且将其提供到加法器212所花费的时间量。所述时延可确保模拟取消信号和RF输入信号在时间上对准以抑制和/或移除来自RF输入信号的强信号。然而,在一些实施例中,延迟210可能不将任何时延引入到RF输入信号中。
加法器212可以是物理连接点,其中RF输入信号和模拟取消信号的模拟电压叠加以产生残余信号。由此,延迟210的输出、DAC 218的输出和接收器208的输入之间的连接可以是电线或金属迹线,其中加法器212为那些电线/迹线在该处连接的节点。
接收器208的所说明的实施例包含ADC 220和信号处理器222。ADC 220可经耦合以接收残余信号,且对残余信号取样以产生数字残余信号。在一些实施例中,ADC 220可具有与ADC 214相同的位分辨率。残余信号可提供到信号处理器222。信号处理器222可经耦合以接收数字残余信号且进一步经耦合以从取消信号产生电路204接收数字取消信号。在一些实施例中,信号处理器222可接收关于数字取消信号的信息,例如中心频率、带宽和强度,而非信号本身。所接收的信息可以是例如重建提供到DAC 218的数字信号所需的最小信息。信号处理器222可将强信号添回到数字残余信号中且移除由DAC 218注入的噪声以便产生包含弱和强信号的RF输入信号的数字表示。
ADC 220可对残余信号取样以提供数字残余信号。然而,归因于来自DAC 218的所注入噪声,ADC 220可能不能够检测到包含在残余信号中的弱信号中的一些或全部。此外,如果强信号未完全从残余信号移除,那么其强度可增加ADC 220的噪声底限以进一步驱逐出弱信号。由此,ADC 220的输出可由ADC 214提供的数字样本主导。然而,因为所注入噪声的源和基础是已知的,所以信号处理器222可能够移除(例如,减去)所注入噪声。
信号处理器222(其可以是类似于信号处理器216的数字信号处理器)可经耦合以从ADC 220接收数字残余信号,且作为响应提供RF输入信号的数字表示。此外,信号处理器222可经耦合以例如从信号处理器216接收数字取消信号或关于数字取消信号的信息。此外,信号处理器222可重建由DAC 218注入到模拟取消信号中的量化噪声,且随后从数字残余信号中将其移除。
因为信号处理器222接收数字取消信号,所以其可基于DAC 218的操作性质近似模拟取消信号和所注入噪声的特性。经近似的所注入噪声接着可从数字残余信号减去,这可揭露弱信号。弱信号接着可在RF输入信号的数字表示中提供。此外,因为强信号可以是所关注信号,所以强信号可使用从信号处理器216接收的数字取消信号加回到RF输入信号的数字表示。应注意,数字取消信号可与由ADC 214取样的强信号相同,只是符号反转。
应用处理器224可经耦合以从接收器208接收RF输入信号的数字表示,且处理RF输入信号的各种带。在一些实施例中,应用处理器224可包含多个子块,例如子处理器,其经调适以执行RF输入信号的带宽内的各种子带的操作(例如解调)。举例来说,应用处理器224可具有经调适以接收AM无线电、FM无线电、DTV和GPS子带的子块。此外,应用处理器224可在各个子带中提供数字信息,以用于所接收RF输入信号的各个子带的发射和/或再发射。
此外,应用处理器224可产生数字发射信号。在一些实施例中,数字发射信号可包含形成子块中的一或多个的子信号。在一些实施例中,数字发射信号可提供到信号处理器216。数字发射信号可将先验知识提供到数字发射信号的信号处理器216,所述先验知识可用于例如校准和/或预失真目的。
发射DAC 226可经耦合以从应用处理器224接收数字发射信号。可类似于DAC 218的DAC 226可将数字发射信号转换为模拟发射信号,且将其提供到发射天线228。发射天线228继而可发射所述模拟发射信号。
虽然收发器200的各种组件展示为个别组件,但此描绘是为了便于论述。在一些实施例中,相似或类似的组件和/或功能可由相同物理组件执行。举例来说,在一实施例中,ADC 214和ADC 220可以是相同的物理ADC。此外,举例来说,在一实施例中,接收天线202和发射天线228可以是相同的物理天线,但时间共享。这也适用于信号处理器216和220。
此外,收发器200的各种组件可以是软件、硬件或其组合。举例来说,信号处理器216和220可以是浮点门阵列(FPGA)、专用电路(ASIC),或其可为安装在专门计算系统上的软件和/或固件。ADC 214、220、DAC 218、226和应用处理器224可同样由FPGA、ASIC或在专用计算机上操作的软件形成。
接收器200可额外能够执行各种校准、定时和预失真功能以增强总体操作。这些各种功能可在内部和/或经由接收发射信号作为反馈而执行。举例来说,参考信号可由信号处理器216添加到数字取消信号,其可用于对信号路径的至少一部分进行自校准。所发射的信号可由接收器200分析以确定发射失真和/或提供天线表征和校准可操作性。
信号处理器216可将参考信号注入到数字取消信号中。参考信号可例如在ADC 220的饱和电平以下,以便不会影响其操作。举例来说,参考信号(其可以是(例如)伪随机数序列)可用作定时标记,且用作用于表征从DAC 218到ADC 220的模拟路径的载体。模拟路径的表征可提供模拟路径的转移函数,所述转移函数可由信号处理器222使用以再创建所注入噪声。模拟路径的转移函数可能影响所注入噪声,且具有转移函数的先验知识可以允许信号处理器222更准确地再创建所注入噪声以实现其从数字残余信号的增强的移除。
收发器200可通过RF输入信号的有效高动态范围过取样来启用。然而,收发器200的发射器侧存在的一个问题可能是失真。所述失真可能导致所发射信号偏离既定信号。然而,收发器200可能够经由所发射信号的接收和分析以及接收到的所发射信号与数字发射信号的比较识别对于发射的失真效应。举例来说,信号处理器可将从应用处理器224接收的数字发射信号与经由ADC 214接收的发射信号比较,且基于所述比较确定所发射信号中的失真量。基于失真的识别和表征,收发器200可通过信号处理器222和/或应用处理器224在发射之前使发射信号预失真。预失真可移除或减少主导失真效应中的一些或全部。由此,如果收发器200包含经由DAC 226的直接信号产生而无调谐器,那么模拟发射信号可使用发射器的经识别的失真性质“预解除失真(pre-un-distorted)”,使得最终所发射信号无失真。
此外,举例来说,收发器200可执行可导向天线202和228的连续的内置测试和校准。如果每一天线202、228具有发射能力和接收能力两者,那么可连续地估计个别天线特性和耦合参数。由此,收发器200可提供关于发射器和接收器操作的所有方面的健康和状态信息,以及关键天线参数(例如S11、Snm等)的演变估计值。后一参数可随着收发器200在不同条件(例如,雨)中操作而演变。此外,可通过连续监视参数且相应地作出调整来维持在存在子系统故障/降级的情况下的得体降级。
图3A-3D是展示根据本公开的实施例的收发器200的宽带操作的一系列RF曲线。所述系列的曲线305-335将用于进一步说明收发器200的实例操作。曲线305-335描绘遍及收发器的信号路径的噪声底限的改变,且进一步说明收发器200的宽带和动态范围能力两者。
所述曲线中的每一个展示RF输入信号的总谱范围上的功率谱密度。所述功率谱密度以dBW/Hz为单位展示,且谱范围以Hz给定。总谱范围从零到2GHz,且功率谱密度的范围从零降至-220dBW/Hz。RF输入信号包含散布穿过谱范围的四个强信号,其中剩余谱范围包含弱信号和背景噪声。此外,曲线315、325和335包含在某一对应过程之后包含在信号中的量化噪声。来自所述过程的量化噪声为了便于比较在后续曲线中展示,但将不会如其将出现在收发器200中那样包含在各种信号中。
曲线305展示例如由天线202提供的RF输入信号。所述曲线展示强信号、弱信号和背景噪声。如曲线305中所展示的RF信号可作为输入提供到ADC 214和求和器206。
曲线315展示在由ADC 214取样之后的RF输入信号和量化噪声,例如ADC QUANT'NNOISE。如此项技术中已知,量化噪声可由取样过程产生,且描绘为浅灰宽谱信号。此外,噪声底限(例如,量化噪声的电平)高于弱信号的电平,这可能导致弱信号不可检测。如上文所论述,弱信号可能归因于强信号使ADC 214饱和和/或归因于自动增益控制系统降低ADC214的增益而被抑制到噪声底限的电平以下。实际上,ADC 214的固定动态范围可由在RF输入信号中占主导的强信号消耗。由此,如果收发器200将试图使用数字样本作为最终信号以提供到应用处理器224,那么仅强信号可能是可用的,从而致使大多数RF输入信号不可用。
曲线325展示在由DAC 218进行数/模转换之后的RF输入信号和由DAC 218注入的量化噪声。由DAC 218注入的量化噪声标记为DAC QUANT'N NOISE,且可例如存在于从DAC218到接收器208的模拟流中。较浅灰色是ADC QUANT'N NOISE,其在曲线325中展示仅用于比较的目的,且可能不存在于收发器200中的模拟流中。DAC QUANT'N NOISE可低于ADCQUANT'N NOISE,这是归因于DAC 218基于较高位数,这可产生较少量化噪声。然而,尽管其可能较低,但DAC QUANT'N NOISE可在RF输入信号中占主导且遮蔽RF输入信号中的许多弱信号。
曲线335展示在数字残余信号已经由信号处理器222处理之后的RF输入信号及ADC和DAC量化噪声,以及系统噪声底限。曲线335可以是所注入量化噪声(例如,DAC QUANT'NNOISE)已从数字残余信号减去之后的RF输入信号的数字表示。尽管ADC和DAC量化噪声展示于曲线335中,但其描绘是出于说明的目的,且将不在信号处理器222提供的实际信号中。系统噪声底限可以是收发器200的较低噪声,但可足够低使得所有或近似所有弱信号可由下游组件(例如应用处理器224)使用。包含在曲线335中的强信号还可以是由ADC 214取样的原始强信号,其可能已由信号处理器222添加到数字残余信号中。
如曲线335所说明,收发器200可被表征为高带宽高动态范围无线电装置。高动态范围由弱信号中的最弱者与强信号之间的大信号强度差展示。
图4是根据本公开的实施例的宽带高动态范围直接取样收发器的实例方法400。方法400可说明收发器200的实例操作。
方法400可在过程框402处开始,过程框402包含由例如天线202等宽带天线接收输入信号。所述输入信号可以是横跨至少两吉赫频率的RF输入信号,且包含弱信号和至少一个强信号。举例来说,强信号比弱信号强至少50dB。
过程框402之后可以是过程框404,过程框404可包含对输入信号进行过取样以提供至少强信号的数字样本信号。过取样可由例如ADC 214等ADC执行,所述ADC可以是例如以5GHz的速率取样的8位ADC。数字样本可仅包含强信号,这是归因于强信号致使弱信号被抑制到ADC的噪声底限以下,而这又可能是归因于强信号相对于弱信号的强度。信号的相对强度可能影响ADC的动态范围。
过程框404之后可以是过程框406,过程框406包含基于数字样本信号产生强信号的数字取消信号。数字取消信号可由例如信号处理器216等数字信号处理器形成。此外,用于界定数字取消信号的位数目可大于由ADC产生的位数目。举例来说,用以界定数字取消信号的位数目可为13。此外,数字取消信号可以是数字样本的补体,例如其负数形式,使得当模拟取消信号添加到RF输入信号时可移除或减小强信号。
过程框406之后可以是过程框408,过程框408包含基于数字取消信号产生模拟取消信号。可由DAC(例如DAC 218)产生的模拟取消信号可提供比数字样本信号提供的更精确的强信号估计值。在一些实施例中,DAC可以是13位DAC。
过程框408之后可以是过程框410,过程框410包含对模拟取消信号和输入信号求和以提供残余信号。举例来说,求和可由加法器212执行。残余信号可包含弱信号和经抑制的强信号。在一些实施例中,强信号可能在残余信号中缺失。
过程框410之后可以是过程框412,过程框412包含基于所述残余信号产生数字残余信号。数字残余信号可由例如ADC 220等ADC形成。残余信号可具有归因于模拟取消信号的转换的量化噪声,所述量化噪声可由DAC 218注入到模拟取消信号中。
过程框412之后可以是过程框414,过程框414包含从数字残余信号移除量化噪声。例如信号处理器222等数字信号处理器可基于强信号的先验知识估计量化噪声,且接着从数字残余信号移除量化噪声。相应地,从数字残余信号移除量化噪声可揭露弱信号,这可以使弱信号可用。
过程框414之后可以是过程框416,过程框416包含将强信号插入到数字残余信号中以提供包含弱信号和强信号的输入信号的数字表示。举例来说,信号处理器222可将强信号插回到数字残余信号中,因为强信号可以是所关注信号。
过程框中的一些或全部在方法400中出现的次序不应视为限制性的。实际上,得到本公开的益处的所属领域的一般技术人员将理解,一些过程框可以未说明的多种次序执行,乃至并行执行。
图5是根据本公开的实施例用于实施宽带高动态范围直接取样收发器的实例计算机可读存储媒体500。举例来说,计算机可读存储媒体(CRM)500可包含指令集505以实施方法400。CRM 500可耦合到计算系统或机器或者并入到计算系统或机器中,且可由所述计算系统/机器执行以便实施实例宽带高动态范围直接取样收发器。
指令集505可包含可致使执行的计算系统或机器对输入信号过取样以提供数字样本信号的指令。输入信号可以是具有弱信号和强信号的宽带RF信号,且数字样本信号是基于N位取样。在一些实施例中,N可为8,且输入信号可在5GHz处取样。
指令集505可进一步致使机器基于数字样本信号产生强信号的数字取消信号,其中数字取消信号为M位信号,且M可大于N。在一些实施例中,M可为13。此外,指令集505可致使计算系统或机器基于数字取消信号产生模拟取消信号,且对输入信号与模拟取消信号求和以产生残余信号。残余信号可以是包含弱信号和至少一减小的强信号的模拟信号。在一些实施例中,强信号可从残余信号移除。
指令集505可进一步致使计算系统或机器对残余信号取样以产生数字残余信号,其中数字残余信号包含通过产生模拟取消信号而注入的量化噪声;且基于对输入信号中的强信号的了解估计量化噪声。量化噪声可进一步从数字残余信号减去以恢复数字残余信号中的弱信号,且强信号可插入到数字残余信号中以提供输入信号的数字表示。
上文阐述的过程依据计算机软件和硬件描述。所描述的技术可构成有形或非暂时性机器(例如,计算机)可读存储媒体内体现的机器可执行指令,所述机器可执行指令当由机器执行时将致使所述机器执行所描述的操作。此外,所述过程可体现在例如专用集成电路(“ASIC”)等硬件或例如现场可编程门阵列(“ASIC”)等可编程固件内,或以其它方式体现。
有形机器可读存储媒体包含以可由机器(例如,计算机、网络装置、个人数字助理、制造工具、具有一组一或多个处理器的任何装置等)存取的非暂时性形式提供(即,存储)信息的任何机制。举例来说,机器可读存储媒体包含可记录/不可记录媒体(例如,只读存储器(ROM)、随机存取存储器(RAM)、磁盘存储媒体、光学存储媒体、快闪存储器装置等)。
本发明的所说明实施例的以上描述(包含摘要中描述的内容)不希望为详尽的或将本发明限于所公开的精确形式。虽然本文中出于说明性目的描述本发明的特定实施例和实例,但相关领域的技术人员将认识到,在本发明的范围内各种修改是可能的。
可鉴于以上详细描述对本发明作出这些修改。所附权利要求书中使用的术语不应解释为将本发明限于本说明书中公开的特定实施例。实际上,本发明的范围应完全由所附权利要求书确定,应根据权利要求解释的已确立的原则来解释所附权利要求书。

Claims (26)

1.一种收发器,其包括:
第一天线,其用以接收输入信号,其中所述输入信号是横跨宽频带且包含弱信号和强信号的RF信号;
第一模/数转换器(ADC),其经耦合以接收所述输入信号且作为响应提供数字样本信号,其中所述第一ADC对所述输入信号过取样,其中所述数字样本信号至少包含所述强信号的样本,且其中所述第一ADC为N位ADC;
第一数字信号处理器,其经耦合以接收所述数字样本信号且作为响应提供数字取消信号,其中所述数字取消信号是所述数字样本信号的互补估计,其中所述第一数字信号处理器使用M位产生所述数字取消信号,其中M大于N;
第一数/模转换器(DAC),其经耦合以接收所述数字取消信号且作为响应提供模拟取消信号,
其中所述第一DAC在将所述数字取消信号转换为所述模拟取消信号时产生量化噪声,且其中所述量化噪声注入到所述模拟取消信号中;
加法器,其经耦合以接收所述输入信号和所述模拟取消信号且作为响应提供残余模拟信号,其中所述残余模拟信号是所述输入信号和所述模拟取消信号的组合,且其中所述强信号归因于所述模拟取消信号而至少在所述残余模拟信号中减小;
第二ADC,其经耦合以从所述加法器接收所述残余模拟信号,且经由对所述残余模拟信号取样而作为响应提供数字残余信号;以及
第二数字信号处理器,其经耦合以接收所述数字残余信号且经耦合以从所述第一数字信号处理器接收所述数字取消信号,所述第二数字信号处理器进一步经耦合以作为响应提供包含所述弱信号和所述强信号的所述输入信号的数字表示,其中所述第二数字信号处理器基于从所述第一数字信号处理器接收的所述数字取消信号来估计由所述第一DAC产生的所述量化噪声,且通过减去经估计的量化噪声而从所述数字残余信号中移除所述量化噪声并再插入所述强信号以提供包括所述弱信号和所述强信号的所述输入信号的所述数字表示。
2.根据权利要求1所述的收发器,其中所述第一ADC是在5GHz处取样的八位ADC,且所述第一DAC是10位DAC。
3.根据权利要求1所述的收发器,其中所述输入信号被过取样1000倍。
4.根据权利要求1所述的收发器,其中过取样的量是基于所述输入信号的带宽与所述强信号的带宽的比率。
5.根据权利要求1所述的收发器,其中所述第一数字信号处理器基于为N位的所述数字样本信号确定所述强信号的特性,且作为响应产生13位估计信号,且其中所述数字取消信号是所述13位估计信号的补体。
6.根据权利要求1所述的收发器,其中所述量化噪声的所述移除使所述弱信号可检测。
7.根据权利要求1所述的收发器,其进一步包括:
应用处理器,其经耦合以接收包含所述弱信号和所述强信号的所述输入信号的所述数字表示,且解调所述输入信号的一或多个子带,并作为响应提供数字发射信号;
第二DAC,其经耦合以接收所述数字发射信号且作为响应提供模拟发射信号;以及
第二天线,其经耦合以接收所述模拟发射信号且作为响应而发射所述模拟发射信号。
8.根据权利要求1所述的收发器,其中所述第一天线耦合至所述第一模/数转换器ADC,其中所述第一数字信号处理器耦合至所述第一ADC,其中所述第一DAC耦合至所述第一数字信号处理器,且其中所述加法器耦合至所述第一DAC。
9.根据权利要求8所述的收发器,其中所述第二ADC耦合至所述加法器,且其中所述第二数字信号处理器耦合至所述第二ADC。
10.根据权利要求1所述的收发器,其中所述第一数字信号处理器将一个或多个参考信号注入到所述数字取消信号中以至少部分地校准所述收发器。
11.根据权利要求10所述的收发器,其中所述一个或多个参考信号在所述第二ADC的饱和电平以下,且其中所述一个或多个参考信号包括定时标记。
12.根据权利要求11所述的收发器,其中所述一个或多个参考信号包括伪随机数序列。
13.根据权利要求10所述的收发器,其中所述一个或多个参考信号经利用以表征所述第一DAC和所述第二ADC之间的模拟路径以确定所述模拟路径的转移函数,且其中经估计的量化噪声是至少部分地利用所述模拟路径的所述转移函数来确定的。
14.根据权利要求1所述的收发器,其中所述强信号包括多个强信号。
15.一种方法,其包括:
由第一模/数转换器(ADC)对输入信号取样以提供强信号的数字样本信号,其中所述第一ADC是N位ADC,且其中所述输入信号是横跨宽频带且包含弱信号和所述强信号的RF输入信号;
由第一数字处理器基于所述数字样本信号产生所述强信号的数字取消信号,其中所述数字取消信号是M位信号,M大于N;
由第一数/模转换器(DAC)基于所述数字取消信号产生模拟取消信号,其中所述模拟取消信号提供比所述数字样本信号提供的更精确的所述强信号的估计值,且其中所述模拟取消信号是所述强信号的补体;以及
对所述模拟取消信号和所述输入信号求和以提供残余信号,其中所述残余信号包含所述弱信号和经抑制的强信号,且其中所述残余信号为模拟信号;
由第二ADC基于所述残余信号产生数字残余信号,其中所述数字残余信号包含由所述第一DAC注入到所述模拟取消信号中的量化噪声;以及
通过以下操作以由耦合至所述第二ADC的第二数字信号处理器从所述数字残余信号中移除所述量化噪声:基于由所述第二数字信号处理器从所述第一数字信号处理器接收的所述数字取消信号而估计由所述第一DAC产生的所述量化噪音以及减去经估计的量化噪声以揭露所述弱信号。
16.根据权利要求15所述的方法,其进一步包括:
通过宽带天线接收所述输入信号,其中所述输入信号横跨至少两吉赫频率,且其中所述强信号比所述弱信号强至少50dB。
17.根据权利要求15所述的方法,其中N为至少8且M为至少10,且其中所述第一ADC在5GHz处取样。
18.根据权利要求15所述的方法,其中所述第一ADC以基于所述第一ADC的取样速率与所述强信号的带宽的比率的速率过取样。
19.根据权利要求15所述的方法,其进一步包括:
将所述强信号插入到所述数字残余信号中以提供包含所述弱信号和所述强信号的所述输入信号的数字表示。
20.一种非暂时性机器可存取的存储介质,其提供指令,所述指令当由机器执行时将致使所述机器:
对输入信号取样以提供数字样本信号,其中所述输入信号是具有弱信号和强信号的宽带RF信号,且其中所述数字样本信号是基于N位取样;
基于所述数字样本信号产生所述强信号的数字取消信号,其中所述数字取消信号为M位信号,M大于N;
基于所述数字取消信号产生模拟取消信号;
将所述输入信号与所述模拟取消信号求和以产生残余信号,其中所述残余信号是包含所述弱信号和至少一减小的强信号的模拟信号;
对所述残余信号取样以产生数字残余信号,其中所述数字残余信号包含通过所述模拟取消信号的所述产生而注入的量化噪声;
基于所述数字取消信号和对所述输入信号中的所述强信号的了解来估计所述量化噪声;以及
从所述数字残余信号减去所述量化噪声以恢复所述数字残余信号中的所述弱信号。
21.根据权利要求20所述的非暂时性机器可存取的存储介质,其中N为至少8且M为至少10,且其中所述输入信号在5GHz处取样。
22.根据权利要求20所述的非暂时性机器可存取的存储介质,其中所述输入信号以至少1000的因数过取样。
23.根据权利要求20所述的非暂时性机器可存取的存储介质,其中所述输入信号的带宽为至少2GHz。
24.根据权利要求20所述的非暂时性机器可存取的存储介质,其进一步提供指令,所述指令当由所述机器执行时将致使所述机器执行进一步操作,包括:
将所述强信号插入到所述数字残余信号中以提供所述输入信号的数字表示。
25.根据权利要求24所述的非暂时性机器可存取的存储介质,其进一步提供指令,所述指令当由所述机器执行时将致使所述机器执行进一步操作,包括:
解调所述输入信号的所述数字表示的至少一个子带;以及
在所述输入信号的宽带内的频率处产生数字发射信号。
26.根据权利要求25所述的非暂时性机器可存取的存储介质,其进一步提供指令,所述指令当由所述机器执行时将致使所述机器执行进一步操作,包括:
将所述数字发射信号转换为模拟发射信号;以及
发射所述模拟发射信号。
CN201680063881.9A 2015-09-02 2016-09-02 用于直接取样极宽带收发器的系统和方法 Active CN108352847B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201562213530P 2015-09-02 2015-09-02
US62/213,530 2015-09-02
PCT/US2016/050261 WO2017041034A1 (en) 2015-09-02 2016-09-02 A system and method for direct-sample extremely wide band transceiver

Publications (2)

Publication Number Publication Date
CN108352847A CN108352847A (zh) 2018-07-31
CN108352847B true CN108352847B (zh) 2020-10-02

Family

ID=58188534

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201680063881.9A Active CN108352847B (zh) 2015-09-02 2016-09-02 用于直接取样极宽带收发器的系统和方法

Country Status (6)

Country Link
US (1) US10419048B2 (zh)
EP (1) EP3342048B1 (zh)
JP (1) JP6728340B2 (zh)
CN (1) CN108352847B (zh)
CA (1) CA2997183C (zh)
WO (1) WO2017041034A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10991375B2 (en) * 2018-06-20 2021-04-27 Mimi Hearing Technologies GmbH Systems and methods for processing an audio signal for replay on an audio device
US10938428B2 (en) * 2019-02-25 2021-03-02 Huawei Technologies Co., Ltd. Wireless receiver system for neutralizing blocking signals
CN110208601B (zh) * 2019-05-21 2021-02-02 成都西科微波通讯有限公司 基于fpga的瞬时测频方法及其数字接收机
US11283476B2 (en) * 2019-07-09 2022-03-22 Raytheon Bbn Technologies Corp. System and method for cancelling strong signals from combined weak and strong signals in communications systems
CN111555764A (zh) * 2020-05-15 2020-08-18 山东大学 一种射频直采宽带数字接收机系统、方法及射电观测系统

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1667949A (zh) * 2004-03-10 2005-09-14 松下电器产业株式会社 数据转换器装置和数据转换方法及其发射机电路、通信装置和电子装置
US6956517B1 (en) * 2004-06-12 2005-10-18 L-3 Integrated Systems Company Systems and methods for multi-channel analog to digital conversion

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR501511A (fr) 1919-02-08 1920-04-16 Edwin Howard Armstrong Méthode de réception d'oscillations de haute fréquence
JP3209744B2 (ja) * 1990-01-22 2001-09-17 デカルブ・ジェネティクス・コーポレーション 結実能力のある遺伝子変換コーン
US6151373A (en) 1997-04-03 2000-11-21 At&T Corp. Weak signal resolver
JP3955965B2 (ja) 1999-02-15 2007-08-08 株式会社ケンウッド 広帯域ディジタル受信機
JP2002076891A (ja) * 2000-08-25 2002-03-15 Matsushita Electric Ind Co Ltd プリプロセッサ、オーバーサンプリングa/d変換方法及び受信装置
USH2152H1 (en) 2001-01-18 2006-04-04 Halliburton Energy Services, Inc. Telemetry system having amplitude modulation of Walsh functions
US7241210B2 (en) * 2001-07-16 2007-07-10 Holland Industriele Diamantwerken B.V. Floor treating machine comprising individually driven discs
US7187647B1 (en) 2002-01-23 2007-03-06 At&T Corp. Ultra-wide bandwidth system and method for in-premises wireless networking
DE60333940D1 (de) * 2002-10-10 2010-10-07 Koninkl Philips Electronics Nv Elektrophoretische anzeigetafel
US7787886B2 (en) * 2003-02-24 2010-08-31 Invisitrack, Inc. System and method for locating a target using RFID
KR20060128820A (ko) * 2003-08-18 2006-12-14 스피드알크 엘티디. 데이터 변환 방법 및 시스템
JP2005295521A (ja) * 2004-03-10 2005-10-20 Matsushita Electric Ind Co Ltd データ変換装置、データ変換方法、それらを用いた送信回路、通信機器、および電子機器
CA2564236C (en) * 2004-05-12 2013-04-02 Electronics And Telecommunications Research Institute Apparatus and method of on-channel repeater
US7091894B2 (en) 2004-06-12 2006-08-15 L-3 Integrated Systems Company Systems and methods for analog to digital conversion
US7253755B1 (en) * 2006-02-16 2007-08-07 General Dynamics C4 Systems, Inc. High dynamic range analog to digital converter architecture
JP2009065278A (ja) * 2007-09-04 2009-03-26 Toshiba Corp フィルタ回路、これを用いた受信機及びフィルタリング方法
WO2010006646A1 (en) * 2008-07-16 2010-01-21 Signal Processing Devices Sweden Ab Device and method for blocking-signal reduction
US8081946B2 (en) 2008-12-23 2011-12-20 L-3 Communications Integrated Systems L.P. Interference cancellation for reconfigurable direct RF bandpass sampling interference cancellation
US8406278B2 (en) 2009-06-01 2013-03-26 At&T Intellectual Property I, L.P. Narrowband interference rejection for ultra-wideband systems
JP2011061660A (ja) * 2009-09-14 2011-03-24 Ricoh Co Ltd 無線受信装置
US9059778B2 (en) 2011-01-07 2015-06-16 Integrated Device Technology Inc. Frequency domain compression in a base transceiver system
CN102565791A (zh) 2011-12-28 2012-07-11 程玉才 超宽带雷达护栏监控系统及利用该系统定位扰动源的方法
US20140369451A1 (en) * 2013-06-18 2014-12-18 Broadcom Corporation Direct sampling receiver with continuous-time mdac
US9590747B2 (en) 2013-10-30 2017-03-07 Samsung Electronics Co., Ltd RF loopback via antenna coupling for calibration of multiple transceiver systems
US9910160B2 (en) 2014-11-24 2018-03-06 The Boeing Company Detecting and removing spoofing signals
US9660772B2 (en) 2014-12-16 2017-05-23 The Boeing Company Detecting and processing weak signals using an array of antennas

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1667949A (zh) * 2004-03-10 2005-09-14 松下电器产业株式会社 数据转换器装置和数据转换方法及其发射机电路、通信装置和电子装置
US6956517B1 (en) * 2004-06-12 2005-10-18 L-3 Integrated Systems Company Systems and methods for multi-channel analog to digital conversion

Also Published As

Publication number Publication date
CA2997183C (en) 2020-07-21
JP6728340B2 (ja) 2020-07-22
JP2018532305A (ja) 2018-11-01
CN108352847A (zh) 2018-07-31
US20180254787A1 (en) 2018-09-06
EP3342048A1 (en) 2018-07-04
CA2997183A1 (en) 2017-03-09
US10419048B2 (en) 2019-09-17
EP3342048A4 (en) 2019-04-17
WO2017041034A1 (en) 2017-03-09
EP3342048B1 (en) 2020-05-27

Similar Documents

Publication Publication Date Title
CN108352847B (zh) 用于直接取样极宽带收发器的系统和方法
US10348343B1 (en) System and method for digital interference cancellation
US9748966B2 (en) Histogram based error estimation and correction
EP3110017B1 (en) All digital transmitter noise correction
US10164807B2 (en) Receiver circuits
US8594253B2 (en) Jitter compensation
US9344107B1 (en) Continuous time ADC and filter
US8494100B2 (en) Device and method for blocking-signal reduction
US10911161B2 (en) RF transmitter and auxiliary receiver to capture transmit signal data to compensate for transmit signal impairments
US9503154B2 (en) Methods and systems for interference estimation via quantization in spread-spectrum systems
Liu et al. An architecture for capturing the nonlinear distortion of analog self-interference cancellers in full-duplex radios
US7885355B2 (en) Multi-dynamic multi-envelope receiver
US10142041B2 (en) Homodyne receiver calibration
Pritsker et al. Digital integrated monobit dithering in FPGA
EP2814184B1 (en) Two stage leakage cancellation in full duplex communication
US20230318647A1 (en) High-power analog interference cancellation
US10673661B1 (en) Signal component cancellation for feedback receiver

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant