CN108350806B - 燃气轮机系统 - Google Patents

燃气轮机系统 Download PDF

Info

Publication number
CN108350806B
CN108350806B CN201680067818.2A CN201680067818A CN108350806B CN 108350806 B CN108350806 B CN 108350806B CN 201680067818 A CN201680067818 A CN 201680067818A CN 108350806 B CN108350806 B CN 108350806B
Authority
CN
China
Prior art keywords
combustion chamber
ammonia
chamber
combustion
cracking
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201680067818.2A
Other languages
English (en)
Other versions
CN108350806A (zh
Inventor
G·布拉特
T·休斯
J·梅
I·威金森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens Energy Global GmbH and Co KG
Original Assignee
Siemens Energy Global GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Energy Global GmbH and Co KG filed Critical Siemens Energy Global GmbH and Co KG
Publication of CN108350806A publication Critical patent/CN108350806A/zh
Application granted granted Critical
Publication of CN108350806B publication Critical patent/CN108350806B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C3/00Gas-turbine plants characterised by the use of combustion products as the working fluid
    • F02C3/20Gas-turbine plants characterised by the use of combustion products as the working fluid using a special fuel, oxidant, or dilution fluid to generate the combustion products
    • F02C3/26Gas-turbine plants characterised by the use of combustion products as the working fluid using a special fuel, oxidant, or dilution fluid to generate the combustion products the fuel or oxidant being solid or pulverulent, e.g. in slurry or suspension
    • F02C3/28Gas-turbine plants characterised by the use of combustion products as the working fluid using a special fuel, oxidant, or dilution fluid to generate the combustion products the fuel or oxidant being solid or pulverulent, e.g. in slurry or suspension using a separate gas producer for gasifying the fuel before combustion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C6/00Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use
    • F02C6/003Gas-turbine plants with heaters between turbine stages
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/04Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
    • C01B3/047Decomposition of ammonia
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C3/00Gas-turbine plants characterised by the use of combustion products as the working fluid
    • F02C3/20Gas-turbine plants characterised by the use of combustion products as the working fluid using a special fuel, oxidant, or dilution fluid to generate the combustion products
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C3/00Gas-turbine plants characterised by the use of combustion products as the working fluid
    • F02C3/20Gas-turbine plants characterised by the use of combustion products as the working fluid using a special fuel, oxidant, or dilution fluid to generate the combustion products
    • F02C3/22Gas-turbine plants characterised by the use of combustion products as the working fluid using a special fuel, oxidant, or dilution fluid to generate the combustion products the fuel or oxidant being gaseous at standard temperature and pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/28Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
    • F23R3/36Supply of different fuels
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/16Controlling the process
    • C01B2203/1614Controlling the temperature
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/80Aspect of integrated processes for the production of hydrogen or synthesis gas not covered by groups C01B2203/02 - C01B2203/1695
    • C01B2203/84Energy production
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/70Application in combination with
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/129Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

一种燃气轮机系统,包括:氨源(3)和含氧气体源(1);被连接以接纳氨、富氢气流(24)和含氧气体的第一燃烧室(2);被连接以接纳来自所述第一燃烧室的排气流(26)的涡轮机(6);和被连接以接纳来自所述涡轮机的排气(34)、氨(28)和富氢气流(30)的第二燃烧室(7)。

Description

燃气轮机系统
技术领域
本发明涉及氨的燃烧以释放能量。特别地,本发明涉及通过氨的燃烧而提供燃料的燃气轮机的操作。
背景技术
已知的通过氨的燃烧从氨释放能量的程序需要供应氨、含氧气体和氢。氢的供应和储存是昂贵的并且引起安全问题,而本发明不需要储存氢气。优选的是尽可能高效地运行从氨释放能量的过程,同时能量浪费最少。优选的是不需要外部热源或能量源来操作用于氨的燃烧的过程。
发明内容
因此,本发明提供了一种燃气轮机系统和一种用于从氨提取能量的方法。
具体地,本发明提供了一种燃气轮机系统,包括:氨源和含氧气体源;第一燃烧室,被连接以接纳三种气流:氨、富氢气流和含氧气体;涡轮机,被连接以接纳来自第一燃烧室的排气流;以及第二燃烧室,被连接以接纳三种气流:来自涡轮机的排气、氨和富氢气流。
燃气轮机系统还可包括第一裂化室,该第一裂化室被布置为:接纳来自氨源的氨,以及将富氢气流供应至第一燃烧室。该富氢气流供应氨的燃烧所需要的氢,而不需要提供和存储氢。
燃气轮机系统还可包括第二裂化室,该第二裂化室被布置为接纳来自氨源的氨并将富氢气流供应至第二燃烧室。该富氢气流供应氨的燃烧所需要的氢,而不需要提供和存储氢。
该裂化室或每个裂化室的温度可以由来自第二燃烧室的排气的流量的质量控制来调节。这提供了温度控制,而无需外部加热源。
燃气轮机系统还可包括一个热交换器,该热交换器被布置为接纳来自第二燃烧室的排气。可以提供如下蒸汽轮机,该蒸汽轮机由源自所述热交换器的热来操作。
本发明还提供一种用于氨的燃烧的方法,包括以下步骤:将含氧气体提供至第一燃烧室;将氨提供至第一燃烧室;将富氢气体提供至第一燃烧室;在第一燃烧室中执行第一燃烧;将来自第一燃烧室的排气供应至第二燃烧室;将氨供应至第二燃烧室;将富氢气体供应至第二燃烧室;以及以增加的当量比在第二燃烧室中执行第二燃烧。当量比实际上是化学计量比。
被供应至第一燃烧室的富氢气体可由氨的裂化产生。
被供应至第二燃烧室的富氢气体可由氨的裂化产生。
裂化可在升高的温度下实施,该升高的温度由来自第二燃烧室的排气的流量提供。
该方法还可包括从来自第二燃烧室的排气流去除废热并回收能量的步骤。
本发明还提供一种从氨提取能量的方法,包括执行氨的燃烧,并包括以下步骤:连接用以接纳来自第一燃烧室的排气的涡轮机,并将来自涡轮机的排气提供至第二燃烧室,通过所述涡轮机的气体流动产生机械输出。
附图说明
通过考虑以下仅作为示例给出的具体实施例的描述,本申请的上述和更多目的、特征和优点将变得更加清楚,其中:
图1示意性地图示出了本发明的一个实施例。
图1示出了根据本发明示例性实施例的燃气轮机系统,其包括可选特征。本发明的必要特征在所附的独立权利要求中阐述。
具体实施方式
在所图示的实施例中,燃气轮机系统包括诸如压气机1的源,其提供诸如空气的含氧气体,并且将其传送到第一燃烧室2中。氨3通过经校准的质量流量分离器4,其中一部分质量流量被直接传送到第一燃烧室2,并且第二部分被传送到裂化室5。裂化室5含有催化剂(Ru、Rh、Pt、Pd或类似物),其促进氨NH3分解成包括氮、氢和其它成分的富氢气体混合物。通过改变氨和催化剂的温度来控制分解的程度。氨和催化剂的升高的温度可以通过与来自第二燃烧室7的排气流20进行热交换来实现,这将在下面描述。升高的温度可以通过如下来控制,即,改变经过热交换器的氨的质量流量和经过第一裂化室的催化剂床的排气流20的质量流量。
氨流22和富氢流24被注入第一燃烧室2中,燃烧在第一燃烧室2中发生,以产生热和排气流26。由于氨(NH3)的不完全燃烧,排气流将具有高水平的NOx。排气流26被供应至涡轮机6,在那里功被传递到轴或类似物,以产生机械输出。
离开涡轮机的排气流26是热的并且被引导至第二燃烧室7。氨3流入第二经校准的流量分离器8中,其中氨的质量流量的一部分作为氨流28而被直接传送到第二燃烧室7。第二部分被传送到第二裂化室9。该裂化室9含有催化剂(Ru、Rh、Pt、Pd或类似物),其促进NH3分解成进入富氢流30的氮、氢和其他成分。通过改变第二裂化室9内的气体和催化剂的温度,来控制分解的程度。第二裂化室9中的升高的温度可以通过与来自第二燃烧室7的排气流32的热交换来实现。温度可以通过改变经过热交换器的排气流32的质量流量和经过裂化室的催化剂床的氨的质量流量来控制。
氨流28和富氢流30被注入第二燃烧室7中,并在第二燃烧室7处燃烧。第二燃烧室中的燃烧是以增加的当量比进行的,该当量比通常为1.0至1.2,这意味着存在过量的氨。增加的比确保燃烧产生相当大比例的NH2 -离子。这些NH2 -离子与来自涡轮机6的排气流34中的NOx结合,以产生N2和H2O,从此从排气流中去除Nox
来自第二燃烧室7的排气流36流过经校准的流量分离器10,使得质量流量的一部分被引导到另一个经校准的流量分离器11。通过控制经校准的流量分离器10和11,质量流量被调节,以使得第一裂化室5和第二裂化室9处于所需要的温度。
优选地,热量交换器回路12被用以从排气流36去除废热,并且例如通过使水沸腾来使蒸汽轮机13旋转而回收能量。
因此,本发明提供了一种以由氨提供动力的涡轮机,其使得以氨的形式存储的能量能够被回收到在涡轮机6处的机械输出中。
通过使用双燃烧室,氮氧化物NOx被从排气流中去除。在第二燃烧室中的燃烧是以适当的当量比执行的,以允许形成NH2 -离子,其与来自第一燃烧室的排气中的NOx结合。当量比可以通过适当选择和控制裂化室5、9的温度来实现。裂化室的温度进而可以通过控制排气的流量来控制。
该方法是节能的,因为裂化室用以从氨生成富氢流所需的加热通过来自氨燃烧的排气流来提供。这不需要单独提供和存储诸如氢气的加热源,或者不需要提供通过诸如电加热的其它方式的加热。
通过蒸汽轮机或其他能量回收装置的操作,存在于最终排气温度中的能量可以被回收到机械输出中。

Claims (8)

1.一种燃气轮机系统,包括:
-一个氨源(3)和一个含氧气体源(1);
-一个第一燃烧室(2),被连接以接纳:
-第一氨气流(22);
-第一包含氢气的气流(24);以及
-来自所述含氧气体源的含氧气体;
-一个涡轮机(6),被连接以接纳来自所述第一燃烧室的排气流(26);以及
-一个第二燃烧室(7),被连接以接纳:
-来自所述涡轮机的排气流(34);
-第二氨气流(28);以及
-第二包含氢气的气流(30);
其中所述氨源(3)被连接到所述第一燃烧室并且将所述第一氨气流(22)提供至所述第一燃烧室;
其中所述氨源(3)被连接到所述第二燃烧室并且将所述第二氨气流(28)提供至所述第二燃烧室;
其中所述燃气轮机系统还包括一个第一裂化室(5),被布置为接纳来自所述氨源(3)的氨以及将所述第一包含氢气的气流(24)供应至所述第一燃烧室(2);
其中所述燃气轮机系统还包括一个第二裂化室(9),被布置为接纳来自所述氨源(3)的氨以及将所述第二包含氢气的气流(30)供应至所述第二燃烧室(7);
其中所述第一裂化室(5)和所述第二裂化室(9)的温度被控制为使得所述第二燃烧室(7)中的第二燃烧以相对于所述第一燃烧室(2)中的第一燃烧增加的当量比被执行。
2.根据权利要求1所述的燃气轮机系统,其中所述裂化室或者每个裂化室的温度由来自所述第二燃烧室(7)的排气流(36)的流量的质量控制来调节。
3.根据权利要求1或2所述的燃气轮机系统,还包括一个热交换器(12),被布置为接纳来自所述第二燃烧室(7)的排气流(36)。
4.根据权利要求3所述的燃气轮机系统,其中一个蒸汽轮机(13)被提供,所述蒸汽轮机(13)由源自所述热交换器(12)的热来操作。
5.一种用于从氨提取能量的方法,包括以下步骤:
-将含氧气体提供至一个第一燃烧室(2);
-将氨提供至所述第一燃烧室(2);
-将第一包含氢气的气流(24)提供至所述第一燃烧室(2);
-在所述第一燃烧室中执行第一燃烧;
-将来自所述第一燃烧室的排气流(26)供应至一个第二燃烧室(7);
-将氨供应至所述第二燃烧室;
-将第二包含氢气的气流(30)供应至所述第二燃烧室;
-在所述第二燃烧室中执行第二燃烧;
其中被供应至所述第一燃烧室的所述第一包含氢气的气流(24)由通过第一裂化室(5)对氨的裂化产生,
其中被供应至所述第二燃烧室的所述第二包含氢气的气流(30)由通过第二裂化室(9)对氨的裂化产生,
其中控制所述第一裂化室(5)和所述第二裂化室(9)的温度,使得所述第二燃烧室(7)中的第二燃烧以相对于所述第一燃烧室(2)中的第一燃烧增加的当量比被执行,
所述方法还包括以下步骤:连接用以接纳来自所述第一燃烧室的所述排气流(26)的一个涡轮机(6),并将来自所述涡轮机(6)的排气流(34)提供至所述第二燃烧室(7),通过所述涡轮机(6)的气体流动产生机械输出。
6.根据权利要求5所述的用于从氨提取能量的方法,其中所述增加的当量比处于1.0-1.2的范围中。
7.根据权利要求5或6所述的方法,其中所述裂化是在升高的温度下实施的,所述升高的温度由来自所述第二燃烧室的排气流(36)的流量提供。
8.根据权利要求5或6所述的方法,还包括以下步骤:从来自所述第二燃烧室的排气流(36)去除废热,以及回收能量。
CN201680067818.2A 2015-11-20 2016-11-02 燃气轮机系统 Active CN108350806B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
GB1520612.1 2015-11-20
GB1520612.1A GB2544552A (en) 2015-11-20 2015-11-20 A gas turbine system
PCT/EP2016/076453 WO2017084876A1 (en) 2015-11-20 2016-11-02 A gas turbine system

Publications (2)

Publication Number Publication Date
CN108350806A CN108350806A (zh) 2018-07-31
CN108350806B true CN108350806B (zh) 2023-05-26

Family

ID=55133209

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201680067818.2A Active CN108350806B (zh) 2015-11-20 2016-11-02 燃气轮机系统

Country Status (9)

Country Link
US (1) US10753276B2 (zh)
EP (1) EP3377745B1 (zh)
JP (1) JP6779998B2 (zh)
KR (1) KR102622896B1 (zh)
CN (1) CN108350806B (zh)
AU (1) AU2016356598B2 (zh)
CA (1) CA3001942C (zh)
GB (1) GB2544552A (zh)
WO (1) WO2017084876A1 (zh)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6707013B2 (ja) * 2016-11-08 2020-06-10 三菱日立パワーシステムズ株式会社 ガスタービンプラント、及びその運転方法
EP3450850A1 (en) * 2017-09-05 2019-03-06 Siemens Aktiengesellschaft A gas turbine combustor assembly with a trapped vortex cavity
AU2018377847A1 (en) * 2017-11-28 2020-06-11 Renam Properties Pty Ltd Autonomous vehicle energy and service hub
US11649762B2 (en) * 2020-05-06 2023-05-16 New Wave Hydrogen, Inc. Gas turbine power generation systems using hydrogen-containing fuel produced by a wave reformer and methods of operating such systems
US12006865B2 (en) 2020-11-20 2024-06-11 Rtx Corporation Cracking and separation of ammonia fuel
US11773777B2 (en) * 2020-12-18 2023-10-03 New Wave Hydrogen, Inc. Zero-emission jet engine employing a dual-fuel mix of ammonia and hydrogen using a wave
US11920524B2 (en) * 2021-04-15 2024-03-05 Rtx Corporation Multi-fuel, fuel injection system for a turbine engine
CA3217031A1 (en) 2021-04-27 2022-11-03 Mark Davidson Improved conversion system for wave-rotor reactor system
KR102536353B1 (ko) * 2021-10-27 2023-05-26 두산에너빌리티 주식회사 복합 발전 시스템 및 복합 발전 시스템의 운영 방법
WO2023144335A1 (de) * 2022-01-27 2023-08-03 Thyssenkrupp Industrial Solutions Ag Verfahren und anlage zur herstellung von wasserstoff aus ammoniak
KR102538689B1 (ko) 2022-02-15 2023-05-30 두산에너빌리티 주식회사 복합 발전 시스템 및 복합 발전 시스템의 구동 방법
GB202210681D0 (en) * 2022-07-21 2022-09-07 Johnson Matthey Plc Process
KR20240033947A (ko) 2022-09-06 2024-03-13 한국에너지기술연구원 암모니아를 이용한 고순도 수소 제조장치 및 제조방법
EP4361095A1 (en) 2022-10-24 2024-05-01 Linde GmbH Method and apparatus for providing heat
EP4361094A1 (en) 2022-10-24 2024-05-01 Linde GmbH Method and apparatus for processing ammonia
EP4361096A1 (en) 2022-10-24 2024-05-01 Linde GmbH Method and apparatus for processing ammonia
JP2024064612A (ja) * 2022-10-28 2024-05-14 株式会社Ihi 燃焼システム

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1534891A (en) * 1975-01-10 1978-12-06 Peauroux B Process and devices for utilizing ammonia as a fuel for engines
GB1537109A (en) * 1975-10-23 1978-12-29 Gen Electric Gas turbine combustion system
EP0317110A2 (en) * 1987-11-18 1989-05-24 Radian Corporation Low NOx cogeneration process
US5272867A (en) * 1991-07-18 1993-12-28 Siemens Aktiengesellschaft Method and plant for reducing the nitrogen oxide emissions of a gas turbine

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3313103A (en) * 1965-08-25 1967-04-11 Gen Motors Corp Gas turbine combustion process
JP2948351B2 (ja) 1991-05-17 1999-09-13 三菱重工業株式会社 タービンプラント
WO2001087770A1 (en) * 2000-05-12 2001-11-22 Gradient Technology Production of hydrogen by autothermic decomposition of ammonia
GB0509163D0 (en) * 2005-05-05 2005-06-15 Boc Group Plc Gas combustion apparatus
US8220268B2 (en) * 2007-11-28 2012-07-17 Caterpillar Inc. Turbine engine having fuel-cooled air intercooling
DE102008054038B3 (de) * 2008-10-30 2010-04-29 Karlsruher Institut für Technologie Verfahren und Vorrichtung zur Reduzierung von Schadstoffemissionen in Verbrennungsanlagen
JP5049947B2 (ja) * 2008-11-19 2012-10-17 日立造船株式会社 アンモニアエンジンシステム
WO2010082360A1 (ja) * 2009-01-14 2010-07-22 トヨタ自動車株式会社 エンジン
CN101538010B (zh) * 2009-03-17 2011-04-06 陈效刚 一种基于热机排气余热的氨分解制氢系统
MY156099A (en) * 2010-07-02 2016-01-15 Exxonmobil Upstream Res Co Systems and methods for controlling combustion of a fuel
JP2012255420A (ja) 2011-06-10 2012-12-27 Nippon Shokubai Co Ltd ガスタービンシステム
US20130269356A1 (en) 2012-04-12 2013-10-17 General Electric Company Method and system for controlling a stoichiometric egr system on a regenerative reheat system
JP5935124B2 (ja) 2012-11-12 2016-06-15 一般財団法人電力中央研究所 タービン設備及び発電設備
JP5900972B2 (ja) * 2013-03-22 2016-04-06 一般財団法人電力中央研究所 Nh3併産型の発電プラント
JP6153163B2 (ja) * 2013-08-02 2017-06-28 一般財団法人電力中央研究所 再熱型アンモニアガスタービン
JP2015190466A (ja) 2014-03-31 2015-11-02 株式会社Ihi 燃焼装置、ガスタービン及び発電装置
GB2539667B (en) 2015-06-23 2018-04-04 Siemens Ag Method and equipment for combustion of ammonia

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1534891A (en) * 1975-01-10 1978-12-06 Peauroux B Process and devices for utilizing ammonia as a fuel for engines
GB1537109A (en) * 1975-10-23 1978-12-29 Gen Electric Gas turbine combustion system
EP0317110A2 (en) * 1987-11-18 1989-05-24 Radian Corporation Low NOx cogeneration process
US5272867A (en) * 1991-07-18 1993-12-28 Siemens Aktiengesellschaft Method and plant for reducing the nitrogen oxide emissions of a gas turbine

Also Published As

Publication number Publication date
AU2016356598A1 (en) 2018-04-26
AU2016356598B2 (en) 2020-09-10
US20180355794A1 (en) 2018-12-13
KR20180084051A (ko) 2018-07-24
JP6779998B2 (ja) 2020-11-04
CA3001942C (en) 2023-12-19
WO2017084876A1 (en) 2017-05-26
CN108350806A (zh) 2018-07-31
GB2544552A (en) 2017-05-24
US10753276B2 (en) 2020-08-25
JP2018535355A (ja) 2018-11-29
EP3377745A1 (en) 2018-09-26
KR102622896B1 (ko) 2024-01-08
EP3377745B1 (en) 2019-08-21
CA3001942A1 (en) 2017-05-26
GB201520612D0 (en) 2016-01-06

Similar Documents

Publication Publication Date Title
CN108350806B (zh) 燃气轮机系统
JP6573137B2 (ja) 温室効果ガスの排出、特に二酸化炭素の排出を最小限にする工業生産プラント、およびその運転方法
US8833080B2 (en) Arrangement with a steam turbine and a condenser
CN107810365B (zh) 用于燃烧氨气的方法和装备
JP2003535259A (ja) 燃焼プラントを作動させる方法と燃焼プラント
JP2011502766A (ja) 過渡プロセスガスを処理するためのシステム及び方法
KR102096259B1 (ko) 암모니아의 연소를 위한 방법 및 장비
MX2014007408A (es) Método multietapa para producir combustible gaseoso con contenido de hidrógeno e instalación termogeneradora de gas para su implementación.
US20160195270A1 (en) Arrangement of a carbon dioxide generation plant, a capture plant and an carbon dioxide utilization plant and method for its operation
JP6336257B2 (ja) ガス化燃料電池複合発電システム及びその運転方法
JP2023084456A (ja) 化学合成システムおよび化学合成方法
TW201213655A (en) System and method for high efficiency power generation using a carbon dioxide circulating working fluid

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right
TA01 Transfer of patent application right

Effective date of registration: 20211026

Address after: Munich, Germany

Applicant after: Siemens energy Global Co.,Ltd.

Address before: Munich, Germany

Applicant before: SIEMENS AG

GR01 Patent grant
GR01 Patent grant