TW201213655A - System and method for high efficiency power generation using a carbon dioxide circulating working fluid - Google Patents

System and method for high efficiency power generation using a carbon dioxide circulating working fluid Download PDF

Info

Publication number
TW201213655A
TW201213655A TW100125736A TW100125736A TW201213655A TW 201213655 A TW201213655 A TW 201213655A TW 100125736 A TW100125736 A TW 100125736A TW 100125736 A TW100125736 A TW 100125736A TW 201213655 A TW201213655 A TW 201213655A
Authority
TW
Taiwan
Prior art keywords
stream
temperature
pressure
liquid
burner
Prior art date
Application number
TW100125736A
Other languages
Chinese (zh)
Other versions
TWI583866B (en
Inventor
Rodney John Allam
Miles R Palmer
Glenn William Brown Jr
Original Assignee
Palmer Labs Llc
River Capttal Llc 8
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US12/872,777 external-priority patent/US8596075B2/en
Application filed by Palmer Labs Llc, River Capttal Llc 8 filed Critical Palmer Labs Llc
Publication of TW201213655A publication Critical patent/TW201213655A/en
Application granted granted Critical
Publication of TWI583866B publication Critical patent/TWI583866B/en

Links

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Treating Waste Gases (AREA)

Abstract

The present invention provides methods and system for power generation using a high efficiency combustor in combination with a CO2 circulating fluid. The methods and systems advantageously can make use of a low pressure ratio power turbine and an economizer heat exchanger in specific embodiments. Additional low grade heat from an external source can be used to provide part of an amount of heat needed for heating the recycle CO2 circulating fluid. Fuel derived CO2 can be captured and delivered at pipeline pressure. Other impurities can be captured.

Description

201213655 六、發明說明: 【發明所屬之技術領域】 [0001] 相關申請案的相互參照 本專利申請案優先權主張基於2010年1月28曰提出申請的 美國暫時專利申請案第61/299, 272號以及於2010年2月 26曰提出申請的美國專利申請案第12/714074號(其優 先權主張於2009年2月26曰提出申請的美國暫時專利申請 案第61/1 55755號),其揭示内容全體皆在此併入做為 參考。 〇 本發明指向透過使用循環液體而傳輸經由燃料的高效率 燃燒所產生的能量的發電(例如,電力)系統以及方法 。特別地是’此系統以及方法可使用二氧化碳作為循環 液體。 【先前技術】 [0002]預估,於接下來的一百年中’在開發以及部署無碳能源 的同時,石化燃料將繼續提供世界電力需求的大部份。 然而’透過燃燒石化燃料、及/或適當生質體(bi〇mass201213655 VI. Description of the Invention: [Technical Field of the Invention] [0001] Cross-Reference to Related Applications This patent application claims priority to US Provisional Patent Application No. 61/299, 272 filed on Jan. 28, 2010. And U.S. Patent Application Serial No. 12/714,074, filed on Feb. 26, 2010, the disclosure of which is hereby incorporated by reference. The disclosures are hereby incorporated by reference in its entirety. 〇 The present invention is directed to a power generation (e.g., electric power) system and method for transmitting energy generated by efficient combustion of fuel through the use of circulating liquid. In particular, this system and method can use carbon dioxide as a circulating liquid. [Prior Art] [0002] It is estimated that in the next 100 years, while developing and deploying carbon-free energy, petrochemical fuels will continue to provide most of the world's electricity demand. However, by burning fossil fuels and/or suitable biomass (bi〇mass)

I )的已知發電方法卻受累於能量成本上升以及二氧化碳 (C〇2)產量以及其他排放量的增加。全球暖化已逐漸被 視為是已開發以及發展中國家所致增加的碳排放量的潛 在火難性後果。太陽能以及風力在短期内似無法取代石 化燃料燃燒,並且,核能具有相關於核擴張以及核廢料 處理的危險性。 從石化燃料、或適當的生質體發電的習知裝置現在已越 來越受制於針對遞送至封存地點(seqUestrati〇n site)之高壓(:02補獲需求。然而,由於即使是針對c〇 100125736 表單編號A0101 第3頁/共134頁 201213655 捕獲的最佳設計,現存的技術僅能提供非常低的熱效率 ,因此,此需求證實在執行上有困難。再者,達成(:〇2捕 獲的建設成本很高,並且,相較於將<:〇2發散至大氣中的 系統,此導致顯著更高的電力成本。據此,在本技藝對 於能顧及C0排放量的降低、及/或已產生C0的更加方便 L· L· 封存的高效率發電系統以及方法始終有增加的需求。 【發明内容】 [0003] 本發明提供利用結合一循環液體(例如,一(:〇2循環液體 )的高效燃燒器(例如,一蒸散冷卻燃燒器)之發電方 法及系統。特別地是,該循環液體可與用於燃燒的一燃 料以及一氧化劑一起被導入該燃燒器之中,以使得包括 該循環液體以及任何燃燒產物的一高壓、高溫液體流被 產生。該液體流可被導入一發電裝置,例如,一渦輪中 。具優勢地是,該液體流在擴張進入該渦輪的期間,可 被維持在相對而言較高的壓力,以使得跨越該滿輪的壓 力比率(亦即,於渦輪入口處的壓力以及於渦輪出口處 的壓力間的比率)少於大約12。接著,該液體流可進一 步進行處理而分離該液體流中的成份,其可包括使該液 體流通過一熱交換器。特別地是,該循環液體(其至少 一部份可回收自該液體流)可通過相同的熱交換器,以 在被導入該燃燒器前加熱該循環液體。在如此的實施例 中,有用地是,操作該熱交換器(例如,透過選擇一低 位熱源)而使得熱交換器在該渦輪排出以及該熱交換器 熱端處的該回收液體間僅具有小溫度差異。 在某些方面中,本發明提供發電系統,其能以低建設成 100125736 本而產生高效發電,以及亦可產生處於管路壓力之大體 表單編號A0101 第4頁/共134頁 1003441436-0 201213655 為純的C〇2,以用於封存。該〇〇2亦可被回收進入該發電 系統。 本發明的系統及方法的特徵在於使用廣泛不同燃料源的 能力°舉例而言’根據本發明所使用的該高效燃燒器可 利用氣態(例如,天然氣或煤衍生氣體)、液態(例如 ’碳氫化合物,瀝青)、以及固態(例如,煤,褐煤, 石油焦)燃料。甚至是更進一步的燃料(如另外在此所敘 述)也可以使用。 在其他方面中’本發明的方法及系統特別有用地是,它The known power generation methods of I) are affected by an increase in energy costs and an increase in carbon dioxide (C〇2) production and other emissions. Global warming has gradually been seen as a potential firefighting consequence of developed and increased carbon emissions from developing countries. Solar energy and wind power may not replace fossil fuel combustion in the short term, and nuclear energy has a risk associated with nuclear expansion and nuclear waste disposal. Conventional devices for generating electricity from fossil fuels, or suitable biomass, are now increasingly subject to high pressure (:02 replenishment requirements for delivery to the storage site (seqUestrati〇n site). However, even for c〇 100125736 Form No. A0101 Page 3 of 134 201213655 The best design for capture, the existing technology can only provide very low thermal efficiency, so this requirement proves to be difficult to implement. Furthermore, (: 〇 2 captured The construction cost is high and this results in significantly higher power costs compared to systems that circulate <:〇2 into the atmosphere. Accordingly, the art is capable of taking into account the reduction in C0 emissions, and/or A more efficient L.L. sealed high efficiency power generation system and method has always had an increased demand. SUMMARY OF THE INVENTION [0003] The present invention provides for the use of a combined circulating liquid (eg, a (: 〇 2 circulating liquid) Power generation method and system for a high efficiency burner (for example, an evapotranspiration burner). In particular, the circulating liquid can be introduced into the combustion together with a fuel for combustion and an oxidant. The burner is such that a high pressure, high temperature liquid stream comprising the circulating liquid and any combustion products is produced. The liquid stream can be directed to a power generating device, such as a turbine. Advantageously, the liquid stream is During expansion into the turbine, it may be maintained at a relatively high pressure such that the pressure ratio across the full wheel (ie, the ratio between the pressure at the turbine inlet and the pressure at the turbine outlet) is less At about 12. The liquid stream can then be further processed to separate components of the liquid stream, which can include passing the liquid stream through a heat exchanger. In particular, the circulating liquid (at least a portion of which can be recycled From the liquid stream, the same heat exchanger can be used to heat the circulating liquid prior to being introduced into the burner. In such an embodiment, it is useful to operate the heat exchanger (e.g., by selecting a low temperature heat source) The heat exchanger has only a small temperature difference between the turbine discharge and the recovered liquid at the hot end of the heat exchanger. In certain aspects, the invention provides A power generation system that can generate high-efficiency power generation with a low construction of 100,125,736, and can also produce a general C No. in the pipeline pressure form A0101 Page 4 / 134 pages 1003441436-0 201213655 for pure C〇2 The crucible 2 can also be recycled into the power generation system. The system and method of the present invention is characterized by the ability to use a wide variety of fuel sources. For example, the high efficiency combustor used in accordance with the present invention can utilize a gaseous state ( For example, natural gas or coal-derived gas), liquid (eg, 'hydrocarbons, bitumen), and solid (eg, coal, lignite, petroleum coke) fuels. Even further fuels (as described elsewhere) can also In other aspects, the method and system of the present invention are particularly useful in that it

們可超過不提供(:〇2捕獲的現存煤燃燒發電站的最佳效率 。如此的現存發電站利用1.7吋水銀冷凝壓力而使用瀝青We can exceed the optimum efficiency of the existing coal-fired power station that does not provide (: 〇2 capture. Such an existing power station uses 1.7 吋 mercury condensing pressure to use asphalt

煤來提供最佳大約45%的效率(較低的發熱值,或“LHV ’)。本發明的系統可以超過如此的效率,同時亦可以 在所需壓力針對封存或其他處置而遞送c〇。 2The coal provides an optimum efficiency of about 45% (lower calorific value, or "LHV'). The system of the present invention can exceed such efficiency while also delivering c〇 at the desired pressure for sequestration or other disposal. 2

在仍然另一方面中’相較於利用類似燃料的當前技術, 本發明提供降低發電系統的實體尺寸以及建設成本的能 力。因此’本發明的方法及系統可顯著地減少關連於發 電系統的建構成本。 仍然更進一步地,本發明的系統及方法可設想所使用、 及/或產生的C〇2(尤其是來自該燃料中碳的c〇2)的幾乎 100%恢復。特別地是,該c〇2可被提供為處於管路壓力的 一已乾燥、已純化氣體。再者,本發明針對其他用途、 及/或處置而提供分離地恢復其他燃料以及燃燒衍生不純 物的能力。 100125736 在一特別方面中,本發明指向一種結合使用 例如c〇2)的發電方法。在特定的實施例中, 表單編號A0101 —循環液體( 根據本發明 第5頁/共134頁 1003441436-0 201213655 的發電方法可包括將含碳燃料、〇2、以及C〇2循環液體導 入一燃燒器。具體而言,該C〇2以至少大約8 MPa (較佳 地是至少大約12 MPa)的壓力,以及至少大約200 °C ( 較佳地是至少大約400 °C)的溫度而被導入。該方法更 進一步包括燃燒該燃料,以提供一包括c〇2的燃燒產物流 。特別地是,該燃燒產物流可具有至少大約80 0 °C的溫 度。再者,該方法可包括將該燃燒產物流擴張跨越一渦 輪,以進行發電,該渦輪具有用以接收該燃燒產物流的 一入口,以及用以釋放一包括c〇2的渦輪排放流的一出口 。較佳地是,於該入口處的該燃燒產物流相較於在該出 口處的該渦輪排放流的壓力比率少於大約12。在特定的 實施例中,想要地是,該C〇2在至少大約10 MPa的壓力、 至少大約20 MPa的壓力、至少大約400 °C的溫度、或至 少大約700 °C的溫度被導入該燃燒器中。甚至更進一步 的可能處理參數亦於此進行敘述。 在一些實施例中,該c〇2循環液體可被導入該蒸散冷卻燃 燒器,以與該〇2以及該含碳燃料的其中之一、或二者相 混合。在其他實施例中,該c〇2循環液體可被導入該蒸散 冷卻燃燒器,以作為一蒸散冷卻液體的所有或部份,該 蒸散冷卻液體通過形成在該蒸散冷卻燃燒器中的一、或 更多蒸散液體供應通道而被導入。在特定的實施例中, 該c〇2循環液體可被導入該燃燒器作為該蒸散液體。 該燃燒的特徵具體在於真實的燃燒溫度。舉例而言,燃 燒在至少大約1,500 °C的溫度實行。在其他實施例中, 燃燒在至少大約1,600 °C至大約3,300 °C的溫度實行。 本發明特徵也在於在該〇2流中c〇2的純度。舉例而言,在 100125736 表單編號A0101 第6頁/共134頁 1003441436-0 201213655 一些實施例中,環境空氣是有用的。然而,在特定的實 施例中,將該該氧内容物純化是有益的。舉例而言,該 〇2可被提供作為一流,其中,該〇2的莫耳濃度為至少85% 。甚至進一步的特定濃度亦於此進行敘述。 在特定的實施例中,燃燒產物流可具有至少大約1,〇〇〇 °C之溫度。再者,燃燒產物流具有被導入該燃燒器的c〇2 的壓力的至少大約90%,或為被導入該燃燒器的C〇2的壓 力的至少大約95%的壓力。 在一些實施例中,該燃燒產物流於渦輪入口處的壓力相 〇 較於該渦輪排放流於渦輪出口處的壓力的壓力比率可為 大約1.5至大約10,或可為大約2至大約8。甚至更進一步 的可能比率亦於此提供。 本發明的特徵可在於被導入該燃燒腔室的特定材料的比 率。舉例而言,在該c〇2循環液體中的c〇2與在被導入該 燃燒器的燃料中的碳的比率基於莫耳可以是大約1 0至大 約50,或可為大約10至大約30。甚至再更進一步的可能 比率亦於此提供。 C3 本發明的特徵更可在於,在該渦輪排放流中的至少一部 份c〇2可被回收以及重新導入該燃燒器中。至少一部份的 c〇2可從系統排出(例如,用於封存或其他處置),舉例 而言,透過一管路。 在特定的實施例中,在該渦輪排放流中的c〇2可為氣態。 特別地是,該渦輪排放流可具有少於、或等於7 MPa的壓 力。 在其他實施例中,本發明的方法更包括使該渦輪排放流 通過至少一熱交換器(其冷卻該渦輪排放流),以及提供 100125736 表單編號A0101 第7頁/共134頁 1003441436-0 201213655 具有溫度少於大約20 0 °C的溫度之一 C〇2循環液體流。此 可有用地在有助於移除一、或更多個從屬成份(亦即, 除了 C〇2以外的成份)的條件下提供C〇2循環液體流。在 特定的實施例中,此可包括使該渦輪排放流通過串聯的 至少二個熱交換器。更具體而言,在該串聯中的該第一 熱交換器可接收該渦輪排放流並降低其溫度,該第一熱 交換器是由可承受至少大約900 °C的高溫合金所形成。 本發明的方法亦可包括對該c〇2循環液體流執行一、或更 多個分離步驟,以移除存在於該循環液體流中除了 c〇2以 外的一、或更多個從屬成份(正如前面所提及)。具體而 言,該一、或更多個從屬成份可包括水。 本發明的方法亦包括壓縮一(:〇2流。舉例而言,在擴張該 燃燒產物流以及冷卻該渦輪排放流後,有益地是對該流 進行壓縮以回收回該燃燒器。具體而言,該方法可包括 使該C〇2循環液體流通過一、或更多壓縮器(例如,幫浦 ),以將該C〇2循環液體流壓縮到至少大約8 MPa的壓力 。此更進一步地可包括,使該<:〇2循環液體流通過串聯的 至少二壓縮器,以對該c〇2循環液體流進行加壓。在某些 實施例中,該C〇2循環液體流可被加壓到至少大約15 Mpa 的壓力。甚至更進一步的壓力範圍亦是所想要的(如另外 於此所述)。在其他實施例中,該已加壓c〇2循環液體流 特別地可被提供為處於超臨界流體狀態。在一些實施例 中,在該已加壓c〇2循環液體流中的至少一部份c〇2可被 導入一已加壓管路,以用於封存(或其他處置,正如已 於前所述)。 除了加壓以外,本發明的方法亦包括對先前冷卻的(:〇2循 100125736 表單编號A0101 第8頁/共134頁 1003441436-0 201213655 環液體流加熱,以導回該燃燒器(亦即,該(:〇2循環液體 流的回收)。在一些實施例中,此可包括將該已加壓c 〇 2 循環液體流加熱到至少大約200 °C、至少大約400 °C、 或至少大約700 °C之溫度。在某些實施例中,該已加壓 c〇2循環液體流的溫度可被加熱至不比該渦輪排放流的溫 度少超過大約50 °C。甚至更進一步可能的溫度範圍亦提 供於此。具體而言,如此的加熱可包括,使該已加壓c〇2 循環液體流通過用來冷卻該渦輪排放流的該(等)相同 的熱交換器。如此的加熱亦可包括從一外部來源輸入熱 Ο (亦即,除了捕獲自該等熱交換器的熱以外)。在特定 的實施例中,加熱可包括使用自一〇2分離單元所收回的 熱。較佳地是,此額外的熱在該熱交換器單元的冷端( 或當使用熱交換器的一串聯時,在運作於最高溫範圍的 該串聯中的熱交換器前)被導入。In still another aspect, the present invention provides the ability to reduce the physical size and construction cost of a power generation system as compared to current technologies that utilize similar fuels. Thus, the method and system of the present invention can significantly reduce the cost of construction associated with a power generation system. Still further, the systems and methods of the present invention contemplate nearly 100% recovery of C〇2 used, and/or produced c尤其2, especially from carbon in the fuel. In particular, the c〇2 can be provided as a dried, purified gas at line pressure. Moreover, the present invention provides the ability to separately recover other fuels and burn derivative-derived impurities for other uses, and/or disposal. 100125736 In a particular aspect, the invention is directed to a method of power generation using a combination of, for example, c〇2). In a particular embodiment, Form No. A0101 - Circulating Liquid (The power generation method according to the fifth page of the present invention, page 3, 344, 436, 00, 00, 00, 00, 00 Specifically, the C 〇 2 is introduced at a pressure of at least about 8 MPa (preferably at least about 12 MPa) and a temperature of at least about 200 ° C (preferably at least about 400 ° C). The method still further includes combusting the fuel to provide a combustion product stream comprising c. 2. In particular, the combustion product stream can have a temperature of at least about 80 ° C. Again, the method can include The combustion product stream expands across a turbine for generating electricity, the turbine having an inlet for receiving the combustion product stream, and an outlet for releasing a turbine discharge stream comprising c〇2. Preferably, The ratio of pressure of the combustion product stream at the inlet to the turbine discharge stream at the outlet is less than about 12. In a particular embodiment, desirably, the C〇2 is at a pressure of at least about 10 MPa. At least about 2 A pressure of 0 MPa, a temperature of at least about 400 ° C, or a temperature of at least about 700 ° C is introduced into the combustor. Even further possible processing parameters are also described herein. In some embodiments, the c〇 2 circulating liquid may be introduced into the transpiration cooling burner for mixing with the crucible 2 and one or both of the carbonaceous fuel. In other embodiments, the c〇2 circulating liquid may be introduced into the evapotranspiration. The burner is cooled to be all or part of an evapotranspiration liquid that is introduced through one or more evapotranspiration supply channels formed in the evapotranspiration burner. In a particular embodiment, The c〇2 circulating liquid can be introduced into the combustor as the evaporative liquid. The combustion is characterized in particular by the actual combustion temperature. For example, combustion is carried out at a temperature of at least about 1,500 ° C. In other embodiments The combustion is carried out at a temperature of at least about 1,600 ° C to about 3,300 ° C. The invention is also characterized by the purity of c 〇 2 in the 〇 2 stream. For example, at 100125736 Form No. A010 1 Page 6 of 134 1003441436-0 201213655 Ambient air is useful in some embodiments. However, in certain embodiments, it may be beneficial to purify the oxygen content. For example, the 〇2 It can be provided as first class, wherein the molar concentration of the ruthenium 2 is at least 85%. Even further specific concentrations are also described herein. In a particular embodiment, the combustion product stream can have at least about 1, 〇〇〇 The temperature of ° C. Further, the combustion product stream has a pressure of at least about 90% of the pressure of c〇2 introduced into the burner, or a pressure of at least about 95% of the pressure of C〇2 introduced into the burner. In some embodiments, the pressure ratio of the combustion product flowing at the turbine inlet to the pressure of the turbine discharge at the turbine outlet may be from about 1.5 to about 10, or may be from about 2 to about 8. Even further possible ratios are also provided here. The invention may be characterized by the ratio of the particular material being introduced into the combustion chamber. For example, the ratio of c 〇 2 in the c 〇 2 circulating liquid to carbon in the fuel introduced into the combustor may be from about 10 to about 50, or may be from about 10 to about 30, based on the molar. . Even further possible ratios are offered here. C3 The invention may be characterized in that at least a portion c2 in the turbine discharge stream can be recovered and reintroduced into the combustor. At least a portion of c〇2 can be discharged from the system (e.g., for sequestration or other disposal), for example, through a conduit. In a particular embodiment, c〇2 in the turbine discharge stream can be in a gaseous state. In particular, the turbine discharge stream can have a pressure of less than, or equal to, 7 MPa. In other embodiments, the method of the present invention further includes passing the turbine exhaust stream through at least one heat exchanger (which cools the turbine exhaust stream), and providing 100125736 Form No. A0101 Page 7 of 134 Page 1003441436-0 201213655 The temperature is less than about 20 ° C. One of the temperatures C 〇 2 circulates the liquid stream. This may usefully provide a C〇2 circulating liquid stream under conditions that facilitate the removal of one or more subordinate components (i.e., components other than C〇2). In a particular embodiment, this can include passing the turbine discharge stream through at least two heat exchangers in series. More specifically, the first heat exchanger in the series can receive the turbine discharge stream and lower its temperature, the first heat exchanger being formed of a superalloy that can withstand at least about 900 °C. The method of the present invention may also include performing one or more separation steps on the c〇2 circulating liquid stream to remove one or more subordinate components present in the circulating liquid stream other than c〇2 ( As mentioned above). In particular, the one or more subordinate components may comprise water. The method of the present invention also includes compressing one (: 〇 2 stream. For example, after expanding the combustion product stream and cooling the turbine effluent stream, it is beneficial to compress the stream to recover it back. Specifically The method can include passing the C〇2 circulating liquid stream through one or more compressors (eg, a pump) to compress the C〇2 circulating liquid stream to a pressure of at least about 8 MPa. The method may include circulating the <:〇2 circulating liquid through at least two compressors in series to pressurize the c〇2 circulating liquid stream. In some embodiments, the C〇2 circulating liquid stream may be Pressurizing to a pressure of at least about 15 Mpa. Even further pressure ranges are desirable (as otherwise described). In other embodiments, the pressurized c〇2 circulating liquid stream is particularly Provided to be in a supercritical fluid state. In some embodiments, at least a portion c2 of the pressurized c〇2 circulating liquid stream can be directed to a pressurized line for storage ( Or other disposal, as previously mentioned). The method of the present invention also includes heating the previously cooled (: 〇 2, 100125736 Form No. A0101, page 8 / 134, page 1003441436-0 201213655 ring liquid flow to direct the burner (ie, the (: Recovery of the 循环2 circulating liquid stream. In some embodiments, this may include heating the pressurized c 〇 2 circulating liquid stream to at least about 200 ° C, at least about 400 ° C, or at least about 700 ° C. Temperature. In certain embodiments, the temperature of the pressurized c〇2 circulating liquid stream can be heated to no more than about 50 ° C less than the temperature of the turbine exhaust stream. Even further possible temperature ranges are provided herein. In particular, such heating may include passing the pressurized c〇2 circulating liquid stream through the same heat exchanger for cooling the turbine discharge stream. Such heating may also include from an external The source is input to the heat (i.e., in addition to the heat captured from the heat exchangers). In a particular embodiment, the heating may include the use of heat recovered from a separate unit. Preferably, this additional Heat in the heat exchanger The cold end of the element (or when a series connection of heat exchangers is used, in front of the heat exchanger in the series operating at the highest temperature range) is introduced.

在某些實施例中,本發明的特徵在於燃燒產物流可允許 多個渦輪的選擇性執行的性質。舉例而言,在一些實施 例中,該燃燒產物流可為包括一、或更多可燃成份(例 ◎ 如,選自由下列組成之群組的成份:H2,CO,CH4,H2S ,nh3,以及其結合)的一還原液體。此可藉由〇2與所使 用燃料的比率而進行控制。在一些實施例中,該燃燒產 物流可包含完全氧化地成份,例如,c〇2,H2〇,以及 s〇2,,以及已上所列的該等已還原成份。所達成的真實 組成可取決於在至該蒸散燃燒器的饋送中〇2以及所使用 燃料的比率。具體而言,使用在如此的實施例中的渦輪 可包括二、或更多單元,其每一個皆具有一入口以及一 出口。在特定的實施例中,該等渦輪單元可操作為使得 100125736 表單編號A0101 第9頁/共134頁 1003441436-0 201213655 在該入口處的操作溫度大體上相同,此可包括添加一些 〇2至在該第一渦輪單元(或當使用三或更更多單元時的 該在前的渦輪單元)出口處的該液體流。〇2的提供允許 了前述一、或更多可燃成份的燃燒,其在進入串聯中的 下一個渦輪前升高了該流的溫度。此導致了在該循環液 體存在下最大化產生自該燃燒氣體的電力的能力。 在其他實施例中,該渦輪排放流可為氧化液體。舉例而 言,該渦輪排放流可包括過量〇2。 在一些實施例中,本發明的特徵在於各種流的狀態。舉 例而言,在使該燃燒產物流擴張跨越該渦輪的步驟後, 該渦輪排放流可處於氣體狀態。此氣體可通過至少一熱 交換器,以冷卻該氣態渦輪排放流,進而從任何從屬成 份分離該C〇2。之後,至少一部份的已分離(:〇2可被加壓 並轉換成為超臨界液體型態,並再次地通過該(等)相 同的熱交換器,以對回收進入該燃燒器的該c 〇 2進行加熱 。在特定的實施例中,從該擴張步驟進入該熱交換器( 或當使用一串聯時的該第一熱交換器)的該渦輪排放流 的溫度以及離開相同的熱交換器以回收進入該燃燒器的 該已加熱、已加壓、超臨界流體C〇2的溫度之間的溫度差 異可少於大約50 °C。 正如先前所提及,離開該燃料燃燒器的該液體流可包括 該(:〇2循環液體以及一、或更多進一步的成份,例如,燃 燒產物。在一些實施例中,有用地是回收至少一部份的 C〇2以及將其重新導入該燃料燃燒器。因此,該循環液體 可以是一回收液體。當然,來自一外部來源的C〇2可被使 用作為該循環液體。渦輪排出可在一節省器熱交換器中 100125736 表單編號A0101 第10頁/共134頁 1003441436-0 201213655 冷卻,以及被收回的熱可被用來加熱該高壓回收c〇2。離 開忒熱父換器的低溫端的該已冷卻渦輪排放可包含衍生 自β亥燃料或β亥燃燒處理的成份’例如,η 〇,,s〇 , NO,N〇2,Hg,以及HC1。在另外的實施例中,這些成份 可利用適當的方法而從該流令移除。在此流中的其他成 份可包括衍生自該燃料或氧化劑的惰性氣態不純物,例 如,\,氬(Ar),以及過量〇2。這些可藉由分離的合 適處理而被移除。在另外的實施例中,該渦輪排出必須 處於一壓力,該壓力少於處於可得冷卻裝置之溫度的該 Ο 渦輪排出中C〇2的冷凝壓力,以使得當該渦輪排出被冷卻 時沒有c〇2液相會形成,因為這將允許液態水從包含最小 量水蒸氣的該氣態c〇2分離,以允許水被冷凝。在進一步 的實施例中,該已純化(:〇2現在可被壓縮而連同代表氧化 碳(衍生自饋送至燃料器的燃料之碳)之液體中c〇2的至少 一部份來產生高壓回收c〇2循環液體流,其可被導入用於 封存的一已加壓管路。由於該渦輪排放流的高壓,以最 小的進一步處理、或壓縮而直接從該燃燒處理將c〇2傳遞 〇 進入一已加壓管路的能力是明顯有別於習知方法(其中 C〇2被恢復至接近大氣壓力(亦即,大約〇. 1 MPa)或被 發散至大氣)的優點。再者,根據本發明用於封存的co L· 能以比習知更有效率以及經濟的方式傳送。 進入該熱交換器的該回收C〇流(理想地是,處在臨界壓 u 力之上)的比熱為高,且隨著溫度上升而降低。特別有 益地是,至少一部份處於最低溫等級的熱是衍生自一外 部來源、此舉例而言可為一低壓流供應,其可對冷凝提 供熱、在進一步的實施例中,此熱來源可衍生自絕熱模 100125736 表單編號A0101 第π頁/共134頁 1003441436-0 201213655 式下供應氧化劑至該燃燒器的該低溫空氣分離工薇中所 使用的空氣壓縮器的操作(其沒有隨被使用來提供熱至回 收c〇2流的熱傳遞液體的封閉循環流之對壓縮熱的萃取以 及内部冷卻)。 在一實施例中’根據本發明的發電方法可包括下列步驟 將一燃料、〇2、以及(:〇2循環液體導入一燃燒器,該c〇2 以至少大約8 Mpa的壓力,以及至少大約200 t:的溫度 被導入; 燃燒該燃料’以提供一包括C〇2的燃燒產物流,該燃燒產 物流具有溫度至少大約800 °c ; 將該燃燒產物流擴張而跨越一渦輪,以進行發電,該渦 輪具有一入口來接收該燃燒產物流,以及一出口來釋放 一包括c〇2的渦輪排放流,其中,於該入口處的該燃燒產 物流相較於在該出口處的該渦輪排放流的壓力比率少於 大約12 ; 藉由將該渦輪排放流通過一熱交換單元而從該渦輪排放 流收回熱,進而提供一已冷卻渦輪排放流; 自該已冷卻渦輪排放流移除存在於該已冷卻满輪排放流 中加上C09的一、或更多個從屬成份,以提供一已純化、 L· 已冷卻渦輪排放流; 利用一第一壓縮器將該已純化、已冷卻渦輪排放流壓縮 至高於該(:〇2臨界壓力的壓力,以提供一超臨界co2循環 液體流; 將該超臨界c〇2循環液體流冷卻至其密度至少大約200 kg/n^的一溫度, 表單編號A0101 100125736 第12頁/共134頁 1003441436-0 201213655 使該超臨界、高密度c〇2循環液體通過一第二壓縮器,以 將該(:〇2循環液體加壓至輸入該燃燒器所需的壓力; 使該超臨界、高密度、高壓C〇2循環液體通過相同的該熱 交換單元,以使得被收回的熱被用來增加該(:〇2循環液體 的溫度; 供給一額外量的熱至該超臨界、高密度、高壓C〇2循環液 體,以使得用於回收至該燃燒器而離開該熱交換單元的 該(:〇2循環液體的溫度以及該渦輪排放流的溫度間的差異 少於大約50 °C ;以及 Ο 將該已加熱、超臨界、高密度(:〇2循環液體回收到該燃燒 器中。 在特殊的實施例中,該等系統及方法特別有用地是結合 了現存的發電系統及方法(例如,習知的燃煤發電站, 核能反應器,以及可利用習知鍋爐系統的其他系統及方 法)。因此,在一些實施例中,在如上所述之該擴張步 驟以及該收回步驟之間,本發明的方法可包括使該渦輪 排放流通過一第二熱交換單元。如此的第二熱交換單元 可使用來自該渦輪排放流的熱而加熱衍生自一蒸汽發電 系統(例如,一習知鍋爐系統,包括燃煤發電站以及核 能反應器)的一、或更多流。接著,因而加熱蒸氣流可 通過一、或更多渦輪,以進行發電。離開該等渦輪的流 可藉由通過習知發電系統(例如,锅爐)的零件循環回 去而進行處理。 在另外的實施例中,本發明的方法的特徵可在於接下來 的一、或更多步驟: 將該渦輪排放流冷卻至低於其水露點的一溫度; 100125736 表單編號A0101 第13頁/共134頁 1003441436-0 201213655 靠一環境溫度冷卻媒介而進一步冷卻該渦輪排放流; 將水與該一、或更多個從屬成份冷凝,以形成包括HJ0, 2 4 ,HNOq,HC1,以及汞的其中之一、或更多的溶液; u 將該已冷卻渦輪排放流加壓到少於大約15 MPa的壓力; 在通過該主要熱交換單元前,自該超臨界、高密度、高 壓c〇2循環液體流中收回一產物c〇2流; 將一部份燃燒產物流使用作為燃料; 在一 c 〇 2循環液體存在下以〇 2燃燒一含碳燃料,該含碳燃 料、〇2、以及C〇2循環液體的提供比率使得該含碳燃料僅 部份地氧化,以產生包括一不可燃成份,c〇2,以及H2, CO,CH,,H9S,以及NHq的其中之一、或更多的部份氧化 4 L 〇 燃燒產物流; 以讓該部份氧化燃燒產物流的溫度足夠低的比率提供該 含碳燃料、〇2、以及(:〇2循環液體,,以使得該流中的所 有不可燃成份為固態粒子形式; 使該部份氧化燃燒產物流通過一、更或多個過濾器; 使用該過濾器來將不可燃成份的剩餘量降低至少於該部 份氧化燃燒產物流的大約2 mg/m3; 使用煤、褐煤、或石油焦作為燃料; 提供微粒形式燃料,以作為一具有(:〇2的漿料。 進一步的實施例中,本發明敘述成相關於發電方法,其 包括下列步驟: 將一含碳燃料、〇2、及一c〇2循環液體導入一蒸散冷卻燃 燒器,該C〇2被以至少大約8 Mpa的壓力,以及至少大約 200 °C的溫度被導入; 燃燒該燃料,以提供一包括c〇2的燃燒產物流,該燃燒產 100125736 表單編號A0101 第14頁/共134頁 1003441436-0 201213655 物流具有至少大約8 0 0 °c的溫度; 將該燃燒產物流擴張跨越一渦輪,以進行發電,該渦輪 具有一入口來接收該燃燒產物流,以及一出口來釋放一 包括c〇2的渦輪排放流’其中,於該入口處的該燃燒產物 流相較於在該出口處的該渦輪排放流的壓力比率少於大 約12 ; 使該渦輪排放流通過串聯的至少二熱交換器,其自該渦 輪排放流收回熱’並提供該C〇循環液體流;In certain embodiments, the invention features a property that the combustion product stream can allow for selective execution of multiple turbines. For example, in some embodiments, the combustion product stream can be comprised of one or more combustible components (eg, selected from the group consisting of: H2, CO, CH4, H2S, nh3, and It combines a reducing liquid. This can be controlled by the ratio of 〇 2 to the fuel used. In some embodiments, the combustion stream may comprise fully oxidized components, for example, c〇2, H2〇, and s〇2, and the reduced components listed above. The actual composition achieved may depend on the ratio of 〇2 and the fuel used in the feed to the evapotranspiration burner. In particular, a turbine used in such an embodiment may include two or more units each having an inlet and an outlet. In a particular embodiment, the turbo units are operable such that the 100125736 form number A0101 page 9/134 pages 1003441436-0 201213655 operate at substantially the same temperature at the inlet, which may include adding some 〇2 to The liquid flow at the outlet of the first turbine unit (or the preceding turbine unit when three or more units are used). The provision of 〇2 allows for the combustion of one or more of the aforementioned combustible components which raises the temperature of the stream before entering the next turbine in the series. This results in the ability to maximize the power generated from the combustion gases in the presence of the circulating liquid. In other embodiments, the turbine discharge stream can be an oxidizing liquid. For example, the turbine discharge stream can include an excess of 〇2. In some embodiments, the invention features the state of the various streams. For example, after the step of expanding the flow of combustion products across the turbine, the turbine discharge stream can be in a gaseous state. The gas may pass through at least one heat exchanger to cool the gaseous turbine discharge stream to separate the C〇2 from any of the subordinate components. Thereafter, at least a portion of the separator has been separated (: 〇2 can be pressurized and converted to a supercritical liquid form and again passed through the same heat exchanger to recover the c into the burner 〇2 is heated. In a particular embodiment, the temperature of the turbine discharge stream entering the heat exchanger (or when using a first heat exchanger in series) from the expansion step and leaving the same heat exchanger The temperature difference between the temperatures of the heated, pressurized, supercritical fluid C〇2 recovered into the combustor may be less than about 50 ° C. As previously mentioned, the liquid exiting the fuel burner The stream may comprise the (: 〇 2 circulating liquid and one or more further components, for example, combustion products. In some embodiments, usefully recovering at least a portion of C 〇 2 and reintroducing it into the fuel The burner. Therefore, the circulating liquid can be a recovered liquid. Of course, C〇2 from an external source can be used as the circulating liquid. The turbine discharge can be in an economizer heat exchanger 100125736 Form No. A0 101 Page 10 of 134 1003441436-0 201213655 Cooling, and the recovered heat can be used to heat the high pressure recovery c〇2. The cooled turbine discharge leaving the low temperature end of the heat exchanger can be derived from β The components of the fuel or the β-combustion treatment are, for example, η 〇, s〇, NO, N 〇 2, Hg, and HCl. In other embodiments, these components can be removed from the flow by an appropriate method. Other components in this stream may include inert gaseous impurities derived from the fuel or oxidant, for example, \, argon (Ar), and excess ruthenium 2. These may be removed by suitable processing of the separation. In other embodiments, the turbine discharge must be at a pressure that is less than the condensing pressure of the 涡轮 turbine discharge C 〇 2 at the temperature of the available chiller so that there is no c 当 when the turbine discharge is cooled. 2 The liquid phase will form as this will allow liquid water to be separated from the gaseous c〇2 containing a minimum amount of water vapor to allow the water to be condensed. In a further embodiment, the purified (: 〇2 can now be compressed And together with the representative At least a portion of c液体2 in the liquid of carbon oxide (derived from the carbon fed to the fuel of the fuel) to produce a high pressure recovery c〇2 circulating liquid stream that can be introduced into a pressurized line for sequestration Due to the high pressure of the turbine discharge stream, the ability to transfer c〇2 directly into the pressurized line from the combustion process with minimal further processing, or compression, is distinctly different from conventional methods (where C〇 2 is restored to near atmospheric pressure (i.e., about 1 1 MPa) or is diverged to the atmosphere. Furthermore, the co L· for sequestration according to the present invention can be more efficient and economical than conventionally known. Mode Transfer The specific heat of the recovered C turbulent flow entering the heat exchanger (ideally, above the critical pressure u force) is high and decreases as the temperature rises. It is particularly advantageous that at least a portion of the heat at the lowest temperature level is derived from an external source, which may be, for example, a low pressure flow supply that provides heat to the condensation, in further embodiments, the heat source Derived from the adiabatic mold 100125736 Form No. A0101 Page π / Total 134 pages 1003441436-0 201213655 The operation of the air compressor used in the cryogenic air separation of the oxidant to supply the burner (which is not used) To provide heat to the closed loop stream of the heat transfer liquid of the recycle c〇2 stream for extraction of compressed heat and internal cooling). In an embodiment, the power generation method according to the present invention may include the steps of introducing a fuel, helium 2, and (:〇2 circulating liquid into a combustor, the c〇2 being at a pressure of at least about 8 Mpa, and at least about a temperature of 200 t: is introduced; burning the fuel to provide a combustion product stream comprising C 〇 2 having a temperature of at least about 800 ° C; expanding the combustion product stream across a turbine for power generation The turbine has an inlet to receive the combustion product stream, and an outlet to release a turbine discharge stream comprising c〇2, wherein the combustion product stream at the inlet is compared to the turbine discharge at the outlet The flow pressure ratio is less than about 12; the heat is recovered from the turbine discharge stream by passing the turbine discharge stream through a heat exchange unit to provide a cooled turbine discharge stream; the cooled turbine discharge stream is removed from the existing One or more subordinate components of C09 are added to the cooled full wheel discharge stream to provide a purified, L·cooled turbine discharge stream; the purified portion is purified using a first compressor The cooled turbine discharge stream is compressed to a pressure above the critical pressure of (〇2 to provide a supercritical co2 circulating liquid stream; the supercritical c〇2 circulating liquid stream is cooled to a density of at least about 200 kg/n^ One temperature, Form No. A0101 100125736 Page 12 of 134 Page 1003441436-0 201213655 The supercritical, high density c〇2 circulating liquid is passed through a second compressor to pressurize the (:〇2 circulating liquid to Entering the pressure required for the burner; passing the supercritical, high-density, high-pressure C〇2 circulating liquid through the same heat exchange unit so that the recovered heat is used to increase the temperature of the (?2 circulating liquid) Supplying an additional amount of heat to the supercritical, high density, high pressure C〇2 circulating liquid to cause the temperature of the (the 〇2 circulating liquid) and the turbine for recycling to the burner leaving the heat exchange unit The difference in temperature between the exhaust streams is less than about 50 ° C; and 已 the heated, supercritical, high density (: 〇 2 circulating liquid is recovered into the combustor. In a particular embodiment, the systems and Method is especially useful It is a combination of existing power generation systems and methods (eg, conventional coal fired power plants, nuclear energy reactors, and other systems and methods that can utilize conventional boiler systems). Thus, in some embodiments, as described above Between the expanding step and the retracting step, the method of the present invention can include passing the turbine exhaust stream through a second heat exchange unit. Such a second heat exchange unit can be derived from heating using heat from the turbine exhaust stream. One or more streams of a steam power generation system (e.g., a conventional boiler system including a coal fired power plant and a nuclear power reactor). The heated vapor stream can then be passed through one or more turbines for power generation. The flow leaving the turbines can be processed by circulating back through the parts of a conventional power generation system (e.g., a boiler). In a further embodiment, the method of the invention may be characterized by one or more of the following steps: cooling the turbine discharge stream to a temperature below its water dew point; 100125736 Form No. A0101 Page 13 of 134 pages 1003441436-0 201213655 further cooling the turbine discharge stream by an ambient temperature cooling medium; condensing water with the one or more subordinate components to form HJ0, 2 4 , HNOq, HC1, and mercury One or more solutions; u pressurizing the cooled turbine discharge stream to a pressure of less than about 15 MPa; from the supercritical, high density, high pressure c〇2 cycle before passing through the primary heat exchange unit Retrieving a product c〇2 stream in the liquid stream; using a portion of the combustion product stream as a fuel; burning a carbonaceous fuel with 〇2 in the presence of a c 〇2 circulating liquid, the carbonaceous fuel, 〇2, and C The supply ratio of the 循环2 circulating liquid is such that the carbonaceous fuel is only partially oxidized to produce one, or more, including a nonflammable component, c〇2, and H2, CO, CH, H9S, and NHq. Partial oxidation of 4 L 〇 Burning the product stream; providing the carbonaceous fuel, helium 2, and (:〇2 circulating liquid in a ratio such that the temperature of the partially oxidized combustion product stream is sufficiently low such that all incombustible components in the stream are solid particles Forming the partially oxidized combustion product stream through one, more or more filters; using the filter to reduce the remaining amount of non-combustible components by at least about 2 mg/m3 of the portion of the oxidative combustion product stream; Coal, lignite, or petroleum coke is used as a fuel; a particulate form fuel is provided as a slurry having (: 〇2. In a further embodiment, the invention is described in relation to a power generation method comprising the following steps: The carbon fuel, helium 2, and a c〇2 circulating liquid are introduced into an evapotranspiration burner, the C〇2 being introduced at a pressure of at least about 8 Mpa, and at a temperature of at least about 200 ° C; burning the fuel to provide A combustion product stream comprising c〇2, which produces 100125736 Form No. A0101 Page 14 of 134 pages 1003441436-0 201213655 The stream has a temperature of at least about 80 ° C; Crossing a turbine for generating electricity, the turbine having an inlet to receive the combustion product stream, and an outlet to release a turbine exhaust stream comprising c〇2, wherein the combustion product stream at the inlet is compared to The turbine discharge stream at the outlet has a pressure ratio of less than about 12; passing the turbine discharge stream through at least two heat exchangers in series that recover heat from the turbine discharge stream and provide the C〇 recycle liquid stream;

Lt 自該(:〇2循環液體流移除存在於該循環液體流中加上c〇2 〇 的一、或更多個從屬成份; 使該(:〇2循環液體流通過串聯的至少二壓縮器,其將該 C〇2循環液體的壓力增加到至少大約8 MPa,以及將該循 環液體中的c〇2從氣體狀態轉換為一超臨界流體狀態;以 及 使該超臨界C09循環液體通過相同串聯的至少二熱交換器 ,其使用被收回的熱而將該C〇2循環液體的溫度增加到至 少大約200 °C (或可選擇地,增加至不比該渦輪排放流 ^ 的溫度少超過大約50 °C)。此特別地可包括導入來自一 外部熱源(亦即,不直接衍生自通過該(等)熱交換器 之該渦輪排放流的熱源)的額外熱。 在進一步的實施例中,本發明的特徵在於,提供在沒有 c〇2的大氣釋放的情形下從含碳燃料的燃燒進行發電的高 效方法。具體而言,該方法可包括下列步驟: 將該含碳燃料、〇2、以及一已回收c〇2循環液體以已定義 的一化學計量比率導入一蒸散冷卻燃燒器,該C〇2以至少 大約8 MPa之壓力,以及至少大約200 °C之溫度被導入 100125736 表單編號A0101 第15頁/共134頁 1003441436-0 201213655 燃燒該燃料,以提供一包括c〇2的燃燒產物流,該燃燒產 物流具有至少大約800 °C之溫度; 將該燃燒產物流擴張跨越一渦輪,以進行發電,該渦輪 具有一入口來接收該燃燒產物流,以及一出口來釋放一 包括C〇2的渦輪排放流,其中,於該入口處的該燃燒產物 流相較於在該出口處的該渦輪排放流的壓力比率少於大 約12 ; 使該渦輪排放流通過串聯的至少二熱交換器,其自渦輪 排放流收回熱,並提供該c〇2循環液體流; 使該CO/盾環液體流通過串聯的至少二壓縮器,其將該 C02循環液體的壓力增加到至少大約8 MPa,以及將該循 環液體中的c〇2從氣體狀態轉換為一超臨界流體狀態; 使該c〇2循環液體流通過一分離單元,其中,化學計量所 需量的c〇2被回收,並被導向該燃燒器,以及任何過量的 (:〇2在沒有大氣釋放的情形下進行收回;以及 使該已回收c〇2循環液體通過相同串聯的至少二熱交換器 ,其在導入該燃燒器前使用被收回的熱而將該c〇2循環液 體的溫度增加到至少大約200 °C (或可選擇地,增加至 不比該渦輪排放流的溫度少超過大約50 °C); 其中,該燃燒的效率大於50%,該效率以相對於燃燒而發 電的該含碳燃料的總低發熱值熱能而產生的淨電力的比 率來計算。 在另一方面中,本發明可敘述為提供一發電系統。具體 而言根據本發明的發電系統可包括一蒸散冷卻燃燒器、 一發電渦輪、至少一熱交換器、以及至少一壓縮器。 100125736 表單編號A0101 第16頁/共134頁 1003441436-0 201213655 在特定的實施例中,該蒸散冷卻燃燒器可具有至少一入 口來接收一含碳燃料、〇2、以及一c〇2循環液體流。該燃 燒器更可具有至少一燃燒階段,其在該C〇2循環液體存在 下燃燒該燃料,以及提供在已定義壓力(例如,至少大 約8 MPa)以及溫度(例如,至少大約800 °C)的一包 括(:〇2的燃燒產物流。 該發電渦輪可與該燃燒器進行流體溝通,並可具有一入 口來接收該燃燒產物流,以及一出口來釋放一包括〇〇2的 渦輪排放流。該渦輪可適合來控制壓降,以使得於該入 口處的該燃燒產物流的壓力相較於在該出口處的該渦輪 排放流的壓力之比率少於大約12。 該至少一熱交換器可與該渦輪進行流體溝通,以接收該 渦輪排放流。該(等)熱交換器可將來自於該渦輪排放 流的熱傳輸至該c〇2循環液體流。 該至少一壓縮器可與該至少一熱交換器進行流體溝通。 該(等)壓縮器可適合來將該(:〇2循環液體流壓縮至一所 欲壓力。 除了前述之外,根據本發明的發電系統更可包括一、或 更多分離裝置,其位在該至少一熱交換器以及該至少一 壓縮器之間。如此的(多個)分離裝置可用於移除存在 於該(:〇2循環液體中加上c〇2的一、或更多個從屬成份。 更進一步地是,該發電系統可包括一〇2分離單元,其包 括一、或更多個產生熱的零件。因此,該發電系統亦可 包括一、或更多的熱傳遞零件,其將來自該〇2分離單元 的熱傳遞至該燃燒器上游的該(:〇2循環液體。可選擇地, 該發電系統可包括一外部熱源。此舉例而言可為對冷凝 100125736 表單編號A0101 第17頁/共134頁 1003441436-0 201213655 提供熱的一低壓蒸汽供應。因此,該發電系統可包括一 、或更多熱傳遞零件,其將熱從該蒸汽傳遞至該燃燒器 上游的該c〇2循環液體。 在進一步的實施例中,本發明的發電系統可包括下列的 一、或更多個: 一第一壓縮器,適合來將該C〇2循環液體流壓縮至高於該 C〇2臨界壓力的壓力; 一第二壓縮器,適合來將該C〇2循環液體流壓縮至輸入該 燃燒器所需的壓力; 一冷卻裝置,適合來將該C〇2循環液體流冷卻至其密度大 於約200 kg/m3的一溫度; 一、或更多個熱傳遞零件,該一、或更多個熱傳遞零件 將來自一外部來源的熱傳遞至該燃燒器上游以及該第二 壓縮器下游的該c〇2循環液體; 一第二燃燒器,位在該蒸散冷卻燃燒器上游並與其進行 流體溝通; 一、或更多個過濾器或分離裝置,該一、或更多個過濾 器或分離裝置位在該第二燃燒器以及該蒸散冷卻燃燒器 之間; 一混合裝置,用以形成一微粒燃料材料與一流化介質的 一漿料;以及 一研磨裝置,以微粒化一固態燃料。 在其他實施例中,本發明可提供一發電系統,其可包括 下列:用以提供燃料的一、或更多注入器、一C〇2循環液 體、以及一氧化劑;一蒸散冷卻燃燒器,具有至少一燃 燒階段,其燃燒該燃料以及提供在至少大約800 °C之溫 100125736 表單編號A0101 第18頁/共134頁 1003441436-0 201213655 度與至少大約4 MPa (較佳地是,至少大約8 MPa)之壓 力的一排放液體流;一發電渦輪,具有一入口以及一出 口,以及其中電力在該液體流進行擴張時被產生,該渦 輪被設計來將該液體流維持在一所欲壓力,以使得該液 體流於該入口處與該出口處的壓力比率少於大約12 ; — 熱交換器,用以冷卻離開該渦輪出口的該液體流,以及 加熱該c〇2循環液體;用於將離開熱交換器的液體流分離 成(:〇2的一過更多裝置以及一、或更多個用於恢復或處置 的進一步零件。在進一步的實施例中,該發電系統亦可 包括一、或更多個用以將分離自該液體流的至少一部份 (:〇2遞送至一已加壓管路的裝置。 在特定的實施例中,根據本發明的系統可包括如此所述 隨一習知發電系統(例如,燃煤發電站、一核能反應器、 或類似者)修整的一、或更多零件。舉例而言,一發電系 統可包括二熱交換單元(例如,一主要熱交換單元,以 及一從屬熱交換單元)。該主要熱交換單元可大體上為 如此所述之其它方式的單元,從屬熱交換單元可以是有 用於將來自該渦輪排放流的熱傳遞至一、或更多的蒸汽 流的單元(例如,來自相關於該習知發電系統的鍋爐) ,以使該等蒸汽流過熱。因此,根據本發明的一發電系 統可包括一從屬熱交換單元,其位在該渦輪以及該主要 熱交換單元之間,並與該渦輪以及該主要春交換單元進 行液體溝通。相同地,該發電系統可包括經由至少一蒸 汽流而與該從屬熱交換單元液體溝通的一鍋爐。更進一 步地是,該發電系統可包括至少一進一步的發電渦輪, 其具有用以從該從屬熱交換單元接收該至少一蒸汽流的 100125736 表單編號A0101 第19頁/共134頁 1003441436-0 201213655 一入口。因此,該系統可敘述為包括一主要發電满輪以 及一從屬發電渦輪。該主要發電渦輪可為與本發明的燃 燒器液體溝通的一渦輪。該從屬發電渦輪可為與一蒸汽 流液體溝通的一渦輪,特別地是,藉由來自該主要發電 渦輪的該排放流的熱而過熱的一超臨界蒸汽流。如此之 具有來自習知發電系統的一、或更多零件的系統修整於 此進行敘述,特別是相關於第12圖以及實例2。主要發電 渦輪以及從屬發電渦輪之用語的使用不應該被理解為對 於本發明範疇的限制,並且僅是用來提供敘述的清楚性 〇 在本發明另一方面的構想中,一外部流於該熱交換器的 高溫端藉由來自該冷卻渦輪排放流的熱傳遞而進行加熱 ,而且如此的結果是,該高壓回收流將離開該熱交換器 ,並以一低的溫度進入該燃燒器。在此例子中,在該燃 燒器中燃燒的燃料量會增加,而使得該渦輪入口溫度可 獲得維持。額外燃燒的燃料的發熱值相等於強加於該熱 交換器上的額外熱負載。 在一些實施例中,本發明的特徵在於提供從一C〇2為主循 環液體之循環中產生轴動力的一處理工廠。在進一步的 實施例中,本發明提供可符合某些條件的處理。在特定 的實施例中,本發明更進一步的特徵在於一、或更多個 接下來的動作,或用來實行如此之動作的裝置: 將該C〇2循環液體壓縮至超過c〇2的臨界壓力的壓力; 在大體為純的〇2中直接燃燒一固態、液態、或氣態的含 烴燃料,以準備混合一富(:〇2超臨界回收液體,進而達成 一所需發電渦輪入口溫度,例如,大於大約500°c (或如 100125736 表單編號A0101 第20頁/共134頁 1003441436-0 201213655 於此所述的其他溫度範圍); 在隨軸電力之產生的滿輪中將由燃燒產物所形成的一超 臨界流以及已回收富⑶液體擴散,特別地是 於大約2 MPa之壓力,以及低於當該液體被冷卻至與^ 溫度冷卻裝置之使用一致的溫度時,液態%液相出現的 壓力(例如,大約7. 3-7.4 MPa); 將一渦輪排出導人—熱交換器’該渦輪排出於該熱交換 器令被冷卻,以及熱被傳遞至—已回收富cg2超臨界液體Lt from the (:〇2 circulating liquid stream removes one or more subordinate components present in the circulating liquid stream plus c〇2 ;; causing the (:〇2 circulating liquid stream to pass through at least two compressions in series) And increasing the pressure of the C〇2 circulating liquid to at least about 8 MPa, and converting c〇2 in the circulating liquid from a gaseous state to a supercritical fluid state; and passing the supercritical C09 circulating liquid through the same At least two heat exchangers in series that use the recovered heat to increase the temperature of the C〇2 circulating liquid to at least about 200 ° C (or alternatively, increase to no more than about the temperature of the turbine discharge stream) 50 ° C. This may in particular include the introduction of additional heat from an external heat source (ie, a heat source that is not directly derived from the turbine discharge stream passing through the heat exchanger). In a further embodiment, The present invention is characterized in that it provides an efficient method of generating electricity from combustion of a carbonaceous fuel without atmospheric release of c〇2. Specifically, the method may include the following steps: the carbonaceous fuel, 〇2 Take A recycled c〇2 circulating liquid is introduced into a transpiration cooling burner at a defined stoichiometric ratio, the C 〇 2 being introduced at a pressure of at least about 8 MPa and a temperature of at least about 200 ° C. 100125736 Form No. A0101 15 pages/135 pages 1003441436-0 201213655 burning the fuel to provide a combustion product stream comprising c〇2, the combustion product stream having a temperature of at least about 800 ° C; expanding the combustion product stream across a turbine to Generating power, the turbine having an inlet to receive the combustion product stream, and an outlet to release a turbine exhaust stream comprising C〇2, wherein the combustion product stream at the inlet is compared to the outlet at the outlet The turbine discharge stream has a pressure ratio of less than about 12; the turbine discharge stream is passed through at least two heat exchangers in series, which recover heat from the turbine discharge stream and provide the c〇2 circulating liquid stream; making the CO/shield liquid Flowing through at least two compressors in series, which increases the pressure of the CO 2 circulating liquid to at least about 8 MPa, and converts c〇2 in the circulating liquid from a gaseous state to an ultra-pro a fluid state; passing the c〇2 circulating liquid stream through a separation unit, wherein the stoichiometrically required amount of c〇2 is recovered and directed to the burner, and any excess (:〇2 in the absence of atmospheric release) Retrieving in the case; and passing the recovered c〇2 circulating liquid through at least two heat exchangers in the same series, which uses the recovered heat to increase the temperature of the c〇2 circulating liquid to at least before introduction into the burner Approximately 200 ° C (or alternatively, increased to no more than about 50 ° C less than the temperature of the turbine discharge stream); wherein the combustion efficiency is greater than 50%, the efficiency of the carbon-containing fuel generated relative to combustion The ratio of the net power generated by the total low calorific value of thermal energy is calculated. In another aspect, the invention can be described as providing a power generation system. In particular, a power generation system in accordance with the present invention can include an evapotranspiration burner, a power generation turbine, at least one heat exchanger, and at least one compressor. 100125736 Form No. A0101 Page 16 of 134 1003441436-0 201213655 In a particular embodiment, the evapotranspiration burner may have at least one inlet to receive a carbonaceous fuel, helium 2, and a c〇2 circulating liquid stream . The combustor may further have at least one combustion stage that combusts the fuel in the presence of the C〇2 circulating liquid, and provides at a defined pressure (eg, at least about 8 MPa) and a temperature (eg, at least about 800 ° C). One includes (: a combustion product stream of 〇2. The power generating turbine is in fluid communication with the burner and may have an inlet to receive the combustion product stream and an outlet to release a turbine discharge stream comprising 〇〇2 The turbine may be adapted to control the pressure drop such that the ratio of the pressure of the combustion product stream at the inlet to the pressure of the turbine discharge stream at the outlet is less than about 12. The at least one heat exchanger The turbine can be in fluid communication to receive the turbine exhaust stream. The heat exchanger can transfer heat from the turbine exhaust stream to the c〇2 circulating liquid stream. The at least one compressor can be coupled to the At least one heat exchanger is in fluid communication. The (equal) compressor may be adapted to compress the (:2) circulating liquid stream to a desired pressure. In addition to the foregoing, the power generating system according to the present invention One or more separation devices may be included between the at least one heat exchanger and the at least one compressor. Such separation device(s) may be used to remove the presence of the (:〇2 circulating liquid Further, the power generation system may include one or two separate units including one or more heat generating components. Therefore, the power generation system is also One or more heat transfer components may be included that transfer heat from the 〇2 separation unit to the (up to 2 circulatory liquid) upstream of the burner. Alternatively, the power generation system may include an external heat source. For example, a hot low pressure steam supply may be provided for condensing 100125736 Form No. A0101 Page 17 of 134 pages 1003441436-0 201213655. Therefore, the power generation system may include one or more heat transfer parts that will be hot The c〇2 circulating liquid is transferred from the steam to the upstream of the combustor. In a further embodiment, the power generation system of the present invention may comprise one or more of the following: a first compressor adapted to C〇2 The circulating liquid stream is compressed to a pressure higher than the critical pressure of C〇2; a second compressor adapted to compress the C〇2 circulating liquid stream to a pressure required to be input to the burner; a cooling device adapted to The C〇2 circulating liquid stream is cooled to a temperature having a density greater than about 200 kg/m3; one or more heat transfer components, the one or more heat transfer components transferring heat from an external source to the The c〇2 circulating liquid upstream of the combustor and downstream of the second compressor; a second combustor located upstream of and in fluid communication with the evaporative cooling combustor; one or more filters or separation devices, The one or more filters or separation devices are located between the second burner and the evaporative cooling burner; a mixing device for forming a slurry of particulate fuel material and a fluidized medium; and Grinding device to atomize a solid fuel. In other embodiments, the present invention can provide a power generation system that can include the following: one or more injectors for providing fuel, a C〇2 circulating liquid, and an oxidant; an evapotranspiration burner having At least one combustion stage that combusts the fuel and provides a temperature of at least about 800 ° C. 100125736 Form No. A0101 Page 18 of 134 pages 1003441436-0 201213655 degrees and at least about 4 MPa (preferably, at least about 8 MPa) a discharge liquid flow; a power generation turbine having an inlet and an outlet, and wherein the electrical power is generated as the liquid flow expands, the turbine being designed to maintain the liquid flow at a desired pressure to Having the liquid flow at the inlet to the outlet at a pressure ratio of less than about 12; - a heat exchanger for cooling the liquid stream exiting the turbine outlet, and heating the c〇2 circulating liquid; for leaving The liquid stream of the heat exchanger is separated into (one more than one device of 〇2 and one or more further parts for recovery or disposal. In a further embodiment, The electrical system may also include one or more means for delivering at least a portion (:2) from the liquid stream to a pressurized line. In a particular embodiment, in accordance with the present invention The system may include one or more components that are trimmed as described herein with a conventional power generation system (eg, a coal fired power plant, a nuclear power reactor, or the like). For example, a power generation system may include two heat exchanges. a unit (eg, a primary heat exchange unit, and a slave heat exchange unit). The primary heat exchange unit can be substantially the other manner of unit as described above, and the slave heat exchange unit can be used to discharge the flow from the turbine The heat is transferred to one or more units of steam flow (e.g., from a boiler associated with the conventional power generation system) to superheat the steam flow. Thus, a power generation system in accordance with the present invention may include a subordinate a heat exchange unit located between the turbine and the main heat exchange unit and in fluid communication with the turbine and the main spring exchange unit. Similarly, the power generation system can be packaged a boiler in fluid communication with the slave heat exchange unit via at least one vapor stream. Further, the power generation system may include at least one further power generating turbine having to receive the at least one steam from the slave heat exchange unit Flow 100125736 Form No. A0101 Page 19 of 134 Page 1003441436-0 201213655 One entry. Therefore, the system can be described as including a primary power generating full wheel and a slave power generating turbine. The primary power generating turbine can be a combustion with the present invention. A turbine that communicates with the liquid. The slave power turbine can be a turbine that communicates with a vapor stream, in particular, a supercritical steam stream that is superheated by the heat of the exhaust stream from the main power turbine. A system trimming with one or more parts from a conventional power generation system is described herein, particularly with respect to FIG. 12 and Example 2. The use of the terms of the primary power generation turbine and the slave power generation turbine should not be construed as limiting the scope of the invention, and only to provide clarity of the description. In the concept of another aspect of the invention, an external flow to the heat The high temperature end of the exchanger is heated by heat transfer from the cooled turbine discharge stream, and as a result, the high pressure recovery stream will exit the heat exchanger and enter the burner at a low temperature. In this example, the amount of fuel burned in the burner will increase, allowing the turbine inlet temperature to be maintained. The calorific value of the additional combusted fuel is equal to the additional heat load imposed on the heat exchanger. In some embodiments, the invention features a processing plant that produces shaft power from a cycle in which C〇2 is the primary circulating liquid. In a further embodiment, the invention provides a process that can meet certain conditions. In a particular embodiment, the invention is further characterized by one or more subsequent actions, or means for performing such an action: compressing the C〇2 circulating liquid to a critical value exceeding c〇2 Pressure pressure; directly burns a solid, liquid, or gaseous hydrocarbon-containing fuel in a substantially pure crucible 2 to prepare a mixture of rich (: 2 supercritical recovery liquid to achieve a desired turbine inlet temperature, For example, greater than about 500 ° C (or other temperature ranges as described herein, such as 100125736 Form No. A0101, page 20 / 134, 1003441436-0 201213655); formed by combustion products in the full wheel generated by the shaft power a supercritical flow and a reclaimed rich (3) liquid diffusion, particularly at a pressure of about 2 MPa, and below a liquid % liquid phase when the liquid is cooled to a temperature consistent with the use of the temperature cooling device Pressure (for example, about 7. 3-7.4 MPa); discharging a turbine into a heat exchanger - the turbine is discharged from the heat exchanger to be cooled, and the heat is transferred to - the recovered rich cg2 super Liquid

靠一環境溫度冷卻裝置而冷卻離開-熱交換器的—含c〇2 流’以及分離包含至少少量濃度⑶2的_液相水,以及包2 含至少—少量濃度水蒸氣的氣相co9; 以允錢態CG2以及液態水或弱酸相之間有緊密接觸的一 所欲停留時間(例如’至多1G秒)的方式實行—水分離 ,以使得牽涉S〇2、s〇3、H2〇、N〇、N〇2、〇2ieHg 的反應可發生而造成纽在4巾多於9_硫被轉換為Cooling off-heat exchanger-containing c〇2 flow by an ambient temperature cooling device and separating liquid phase water containing at least a small amount of (3) 2 liquid phase, and package 2 containing at least a small amount of water vapor; The water-phase separation is carried out in a manner in which the CG2 and the liquid water or weak acid phase are in close contact with each other (for example, 'up to 1G seconds), so that S〇2, s〇3, H2〇, N are involved. The reaction of 〇, N〇2, 〇2ieHg can occur and the nucleus is converted to more than 9 _ sulfur in 4

Hzs〇4、以及在一流中多於90%的氧化氮被轉換為HN〇3、 以及在一流中多於80%的汞被轉換為可溶性汞化合物; 藉由將氣相(:〇2冷卻至接近具氣/液相分離的該c〇2凝固點 的—溫度而分離出非冷凝成份(例如,^,Ar,以及〇2 ),而在該氣相中留下N2、Ar、以及〇為主; 在—氣體壓縮器中將一已純化氣態C〇2流壓縮至藉由環境 度冷卻裝置進行的冷卻可產生一高密度c〇液體(例如 2 ,具有至少大約200 kg/m3,較佳地是至少大約3〇〇 kg/ m或更為較佳地是至少大約400 kg/m3的密度)的壓力; 100125736 以環境冷卻手段冷卻壓縮c〇2來形成高密度超臨界流體( 表草蝙號A0101 第21頁/共134頁 1003441436-0 201213655 例如密度是至少約200 kg/m3,較佳地是至少300 kg/m3 ’或更佳地的是至少約400 kg/m3); 在一壓縮器中將一高密度CO液體壓縮至高於該c〇的臨 L 2 界壓力的壓力; 將一南壓c 〇 2流分離為二個分流,一個進入一熱交換器的 冷端’以及第二個利用在低於約250。(3可得的一外部熱 源進行加熱; 促進有效熱傳遞(包括一選擇性外部熱源的使用),以 使得進入一熱交換器的熱端的一渦輪排放流的溫度以及 離開該相同熱交換器的熱端的一回收(:〇2循環液體的溫度 間的差異少於大約5 0 °C (或如在此所述的其他溫度臨界 值); 將一C〇2循環液體壓縮到大約8 MPa至大約50 MPa的壓力 (或如在此所述的其他壓力範圍); 將一〇2流與至少一部份的一已回收C〇2循環液體流以及一 含碳燃料流相混合,以形成低於該燃料的自燃溫度的一 單獨液體流(或漿料,若使用的是粉狀、固態燃料), 以及其比率被調整,以得出大約1,200 °c至3, 500。(:( 或如在此所述的其他溫度範圍)的絕熱火焰溫度; 將至少一部份的一已回收c 0 2循環液體流與燃燒產物相混 合,以產生溫度範圍落在大約500 t至1,600 t (或如 在此所述的其他溫度範圍)的一混合液體流; 產生具有大約2 MPa至大約7. 3 MPa (或其他壓力範圍, 如在此所述)的壓力之一渦輪排放流; 利用衍生自一低溫〇2工廠(特別地是,在該絕熱模式) 的一、或更多個壓縮器、及/或一C〇2壓縮器(特別地是 100125736 表單編號A0101 第22頁/共134頁 1003441436-0 201213655 ,在該絕熱模式)之操作的壓縮熱而由外部加熱一高壓 c〇2循環液體流的一部份,該熱藉由一適當的熱傳遞液體 (包括該(:〇2液體本身)而進行傳遞; 利用在一燃燒器中燃燒的相等額外燃料而在一熱交換器 中加熱一、或更多個外部液體流,其中,該等外部液體 流的一、或更多個可包括蒸汽,其可在該熱交換器中過 熱; 使用由一外部來源所提供的冷凝流所供應的熱而由外部 加熱一已回收(:〇2循環液體流的一部份; 在一熱交換器中冷卻一含(:〇2流(其離開該熱交換器的該 冷端),以提供用以加熱一由外部提供之液體流的熱; 提供一〇2饋送流,其中,該〇2的莫耳濃度為至少大約85% (或正如在此所述之其他濃度範圍); 操作一燃燒器,以使得在離開該燃燒器(亦即,一燃燒 產物流)以及進入一渦輪的一總氣體流中的〇2濃度大於 大約0. U莫耳; 實行一發電處理,以使得僅一個發電渦輪被使用; 實行一發電處理,以使得僅一個燃燒器被使用,進而大 體完全地燃燒輸入該燃燒器的含碳燃料; 操作一燃燒器,以使得在進入該燃燒器的該〇2流中的〇2 量低於進入該燃燒器的該燃料流的化學計量燃燒所需的 量,以及因此造成在該燃燒產物流中產生h2以及一氧化 碳(CO)的其中之一、或二者; 利用二、或更多渦輪而實行一處理,每一個渦輪皆具有 一已定義排出壓力,其中,H2以及CO的其中之一、或二 者出現在離開該第一渦輪(以及若適用的時候,除了渦 100125736 表單編號A0101 第23頁/共134頁 1003441436-0 201213655 輪串聯中的最後一個渦輪以外之接續的渦輪)的排放流 中,以及H2以及C0的部份或全部藉由在該第二及接續的 渦輪之入口前添加一〇2流而進行燃燒,以將該等第二、 或更多渦輪的每一個的操作溫度上升至一較高的數值, 其造成來自最後一個渴輪的排出流中的過量〇 2,例如, 過量為高於大約0. 1%莫耳。 在進一步的實施例中,本發明可提供下列的一、或更多 靠該冷卻渦輪排放流而在一熱交換系統中對一C〇2循環液 體進行加熱,以使得該渦輪排放流被冷卻至低於其水露 點的一溫度; 靠一環境溫度冷卻媒介以及連同燃料以及包括H2S〇4、 HNOQ、HC1的燃燒衍生不純物、以及其他不純物(例如, 〇Hzs〇4, and in the first class more than 90% of the nitrogen oxides are converted to HN〇3, and in the first class more than 80% of the mercury is converted to soluble mercury compounds; by cooling the gas phase (:〇2 to The non-condensing component (for example, ^, Ar, and 〇2) is separated by the temperature of the c〇2 freezing point of the gas/liquid phase separation, leaving N2, Ar, and yttrium in the gas phase. Compressing a purified gaseous C〇2 stream to a cooling by an ambient cooling device in a gas compressor produces a high density c〇 liquid (eg, 2 having at least about 200 kg/m3, preferably a pressure of at least about 3 〇〇 kg/m or, more preferably, at least about 400 kg/m 3 ; 100125736 to cool the compressed c 〇 2 by ambient cooling means to form a high density supercritical fluid A0101 Page 21 of 134 1003441436-0 201213655 For example, the density is at least about 200 kg/m3, preferably at least 300 kg/m3' or, more preferably, at least about 400 kg/m3); in a compressor a high-density CO liquid is compressed to a pressure higher than the pressure of the L 2 boundary of the c ;; a south pressure c 〇 2 flow Divided into two splits, one entering the cold end of a heat exchanger' and the second utilizing at less than about 250. (3 available external heat source for heating; promoting efficient heat transfer (including a selective external heat source) Used) such that the temperature of a turbine discharge stream entering the hot end of a heat exchanger and the recovery from the hot end of the same heat exchanger (the difference between the temperatures of the 〇2 circulating liquid is less than about 50 °C ( Or other temperature thresholds as described herein; compressing a C〇2 circulating liquid to a pressure of from about 8 MPa to about 50 MPa (or other pressure ranges as described herein); At least a portion of the recovered C〇2 recycle liquid stream and a carbonaceous fuel stream are mixed to form a separate liquid stream (or slurry, if used in a powder, solid state, below the autoignition temperature of the fuel Fuel), and its ratio is adjusted to yield an adiabatic flame temperature of approximately 1,200 ° C to 3,500 (: (or other temperature range as described herein); at least a portion of one Recycling c 0 2 circulating liquid stream and combustion product phase Combined to produce a mixed liquid stream having a temperature ranging from about 500 t to 1,600 t (or other temperature ranges as described herein); producing from about 2 MPa to about 7.3 MPa (or other pressure range) , as described herein, one of the pressures of the turbine discharge stream; utilizing one or more compressors derived from a cryogenic helium 2 plant (in particular, in the adiabatic mode), and/or a C〇2 Compressor (especially 100125736 Form No. A0101, page 22 / 134 pages 1003441436-0 201213655, in this adiabatic mode) operates by compressing heat while externally heating a portion of a high pressure c〇2 circulating liquid stream, Heat is transferred by a suitable heat transfer liquid, including the (: 2 liquid itself); one or more external liquids are heated in a heat exchanger by equal additional fuel burned in a combustor a stream, wherein one or more of the external liquid streams may comprise steam that may be superheated in the heat exchanger; heated by external heat using heat supplied by a condensed stream provided by an external source Recycling (: 〇 2 circulating fluid a portion of the stream; cooling a (including 〇 2 stream (which exits the cold end of the heat exchanger) in a heat exchanger to provide heat for heating an externally supplied liquid stream; a 馈送2 feed stream, wherein the enthalpy 2 has a molar concentration of at least about 85% (or other concentration ranges as described herein); operating a burner such that upon exiting the burner (ie, a combustion The product stream) and the concentration of 〇2 in a total gas stream entering a turbine are greater than about 0. U mole; performing a power generation process such that only one power generating turbine is used; performing a power generation process such that only one burner Used to substantially completely burn the carbonaceous fuel input to the combustor; operating a combustor such that the amount of helium 2 in the helium stream entering the combustor is lower than the fuel stream entering the combustor The amount required for stoichiometric combustion, and thus the production of one or both of h2 and carbon monoxide (CO) in the combustion product stream; one treatment with two or more turbines, each turbine having One has been fixed Exhaust pressure, wherein one or both of H2 and CO appear to leave the first turbine (and, if applicable, in addition to vortex 100125736 Form No. A0101 Page 23 / Total 134 Page 1003441436-0 201213655 Wheel series In the exhaust stream of the succeeding turbine other than the last turbine, and some or all of H2 and C0 are burned by adding a stream of 2 to the inlet of the second and subsequent turbines to The enthalpy of the enthalpy of the effluent from the last thirsty wheel, for example, the excess is greater than about 0.1%. ear. In a further embodiment, the present invention may provide one or more of the following cooling turbine discharge streams to heat a C〇2 circulating liquid in a heat exchange system such that the turbine discharge stream is cooled to a temperature below its water dew point; cooling medium by an ambient temperature and derivatization with fuel and combustion including H2S〇4, HNOQ, HC1, and other impurities (eg, 〇

Hg以及在溶液中為離子化合物形式的其他金屬)的冷凝水 而冷卻該渦輪排放流; 在一第一壓縮器中將該已純化(:〇2循環液體壓縮至高於其 臨界壓力但低於10 Mpa的壓力; 將該循環液體冷卻至其密度大於600kg/m3的點; 在一壓縮器中將該高密度c〇2循環液體壓縮至克服系統中 壓降以及饋送該循環c〇2液體進入該燃燒腔室所需的壓力 t 移除一c〇2產物流,該(:〇2產物流包含燃燒燃料流中的碳 所形成的大體上所有C〇2,該(:〇2流是取自該第一壓縮器 、或該第二壓縮器的排放流動; 直接對該熱交換器、或藉由加熱包括該C〇2循環液體的一 側流而供應處於高於該冷卻渦輪排放流的水露點的一溫 100125736 表單編號A0101 第24頁/共134頁 1003441436-0 度水平的對於該[〇2循環液體之一額外量熱,以使得於該 熱交換器的熱端處該循環c〇2液體以及該渴輪排放間的溫 度差異少於50 °c ; 利用包括一含碳燃料的燃料以產生包括H2、CO、CH4、 H2S、NH3、以及不可燃剩餘物的一流,該具有在一蒸散 冷卻燃燒器中藉由〇2而部份氧化的不可燃剩餘物,,該 燃燒器被饋送以部份的該循環(:〇2流,以將該已部份氧化 的燃燒產物冷卻至溫度500 °c至900 °C,在此,灰燼呈 現為固態微粒,其可藉由過濾系統而完全地從出口液體 流中被移除; 在該側流流動與分離加熱的循環co9液體流動重新混合的Cooling the turbine discharge stream with condensed water of Hg and other metals in the form of ionic compounds in solution; compressing the purified (:〇2 circulating liquid to above its critical pressure but below 10 in a first compressor) Pressure of Mpa; cooling the circulating liquid to a point having a density greater than 600 kg/m3; compressing the high density c〇2 circulating liquid in a compressor to overcome the pressure drop in the system and feeding the cycle c〇2 liquid into the The pressure t required to burn the chamber removes a c〇2 product stream, which (the 〇2 product stream contains substantially all C〇2 formed by burning carbon in the fuel stream, which is taken from: a discharge flow of the first compressor or the second compressor; supplying water at a temperature higher than the cooling turbine discharge stream directly to the heat exchanger or by heating a side stream including the C〇2 circulating liquid Dew point of a temperature 100125736 Form No. A0101 Page 24 / Total 134 pages 1003441436-0 Degree level for this [〇2 cycle liquid one additional amount of heat so that the cycle at the hot end of the heat exchanger c〇2 Temperature difference between liquid and the thirsty wheel discharge Less than 50 °c; using a fuel comprising a carbonaceous fuel to produce a first class comprising H2, CO, CH4, H2S, NH3, and a non-flammable residue, having an enthalpy in an evapotranial cooling burner a portion of the oxidized non-flammable residue, the burner being fed with a portion of the cycle (: 〇 2 stream to cool the partially oxidized combustion product to a temperature of 500 ° C to 900 ° C, where The ash appears as solid particles that can be completely removed from the outlet liquid stream by the filtration system; the side stream flow is remixed with the separated heated circulating co9 liquid stream

U 點,提供該冷卻渦輪排放流以及該加熱循環〇〇2液體流之 間介於10 °c以及50 °c間的一溫度差異; 提供離開熱交換器的冷端的渦輪排放流之壓力,以使得 此流在水與雜質分離之前被冷卻的時候沒有液態(:〇2被形 成; 利用最少部份的該渦輪排放流來使衍生自相關連於習知 鍋爐系統以及核能反應器的傳統蒸汽發電系統的多個蒸 汽流過熱; 提供額外的低位熱至該循環(:〇2流,以成為處於取自一外 部蒸氣源(例如,一電力站)的一、或更多個壓力位準的 蒸汽; 利用離開該熱交換器系統的冷端的擴張器排放流而提供 對於離開該蒸汽發電系統的蒸汽冷凝器的至少部份冷凝 物的加熱; 為來自一開放循環氣體渦輪的熱排放的該循環C〇2流提供 表單編號A0101 第25頁/共134頁 201213655 額外的低位熱; 將作為燃料之加上%的部份煤氧化衍生氣〜上 為燃料而送至一第二燃燒器,以完成燒; 2 m〇2與燃料之比率而操作_單獨的燃燒器,以使 的燃料被氧化為包括c〇2、h2〇、以及s〇2的氣化產:二 =剩餘的燃料被氧化為包括h2'cG、以及H2S的成份; =被注人該第一渦輪的該排放流動中的Μ在總賴 而壓力比率之上操作二渦輪,以燃燒已減少的成份進 而在該中間壓力流通過該第二滿輪而被擴張前將該中間 壓力流重新加熱至一較高溫。 甚至進-步的實關包含於如相關於各式圖式所敎述及/ 或在此所提供發明的進一步敘述中所揭示之發明。 【實施方式】 [0004] 現在,本發明將透過對於各式實施例的參考而於之後進 行更完全的敘述。這些實施例的提供在於使此份揭示更 為完全及完整’並且對本領域具通常知識者完全傳達本 發明的範圍。的確’本發明可以許多不同的形式實施, 且不應被解釋為受限於在此所提出的實施例;反而,這 些實施例是被提供,以使得此份揭示滿足適用的法律要 求。當在說明書中以及在所附申請專利範圍中使用時, 單數的形式“一”以及“該”包括有複數個指示物,除 非上下文中另外清楚地規定。 本發明提供透過使用高效燃料燃燒器(例如,蒸散冷卻 燃燒器)的發電系統及方法,以及相關的循環液體(例 如,(:〇2循環液體)。該循環液體與適當的燃料、任何必 須的氧化劑、以及任何對高效燃燒有用的相關材料一起 100125736 表單編號Α0101 第26頁/共134頁 1003441436-0 201213655U point, providing a temperature difference between the cooling turbine discharge stream and the heating cycle 液体2 liquid flow between 10 ° C and 50 ° c; providing a pressure of the turbine discharge flow leaving the cold end of the heat exchanger to This stream is rendered liquid-free when it is cooled prior to separation of the water from the impurities (: 〇 2 is formed; a minimum portion of the turbine effluent stream is utilized to enable conventional steam power generation derived from associated boiler systems and nuclear reactors The plurality of steam streams of the system are superheated; additional low heat is provided to the cycle (: 〇2 flow to become one or more pressure levels of steam taken from an external vapor source (eg, a power station) Providing heating of at least a portion of the condensate exiting the steam condenser of the steam power generation system with a dilator discharge stream exiting the cold end of the heat exchanger system; the cycle C for heat discharge from an open cycle gas turbine 〇2 stream provides form number A0101 page 25 / 134 pages 201213655 additional low heat; part of the coal oxidized derivatized gas as fuel plus % is sent to the fuel a second burner to complete the firing; a ratio of 2 m〇2 to fuel operating _ a separate burner to oxidize the fuel to a gasification product comprising c〇2, h2〇, and s〇2: 2 = the remaining fuel is oxidized to include h2'cG, and H2S components; = the enthalpy in the discharge flow of the first turbine is operated to operate the second turbine above the total pressure ratio to reduce the combustion The component is in turn reheated the intermediate pressure stream to a higher temperature before the intermediate pressure stream is expanded through the second full wheel. Even the step-by-step implementation is included as described in relation to the various figures and / The invention disclosed in the further description of the invention is provided herein. [Embodiment] The present invention will now be described more fully hereinafter with reference to the various embodiments. This disclosure is made more complete and complete, and the scope of the present invention is fully described by those of ordinary skill in the art. The invention may be embodied in many different forms and should not be construed as being limited to the implementations set forth herein. Case These embodiments are provided so that this disclosure will satisfy the applicable legal requirements. When used in the specification and in the appended claims, the singular forms "a" Unless otherwise clearly stated in the context, the present invention provides a power generation system and method through the use of a high efficiency fuel burner (eg, an evapotranial cooling burner), and associated circulating fluids (eg, (: 〇 2 circulating liquid). The liquid is combined with the appropriate fuel, any necessary oxidant, and any related materials useful for efficient combustion. 100125736 Form No. 1010101 Page 26 of 134 Page 1003441436-0 201213655

被提供於燃燒器中。在特定的實施例中,方法可利用於 非常高溫度(例如,在大約1,600 °C至大約3,300 °c範 圍中’或其他在此所揭示的溫度範圍中)下操作的燃燒 器而實現’以及循環液體的存在可作用來缓和離開燃燒 器的液體流的溫度,以使得液體流可被利用於電力產生 的能量傳遞中。具體而言’燃燒產物流可擴張而跨越至 少一渦輪’以進行發電。擴張的氣體流可被冷卻,以移 除來自該流的各種成份,例如,水,以及由已擴張氣體 流收回的可被用來加熱該C〇2循環液體的熱。已純化的循 環液體流可接著被加壓以及加熱,以用於經由燃燒器的 回收。如果要的話,來自燃燒產物流的部份c〇2 (亦即, 由藉由含燃料碳的燃燒在氧氣存在下所形成的c〇2所產生 者)可被抽離以進行封存或其他的處置,例如,傳遞至 C〇2管線。系統及方法可利用特定的處理參數以及零件, 以最大化系統及方法的效率(特別是在避免釋放C〇至大 氣的同時)。正如在此所特別敘述的,該循環液體是藉由 使用(:02作為循環液體而進行舉例說明。在根據本發明而 使用C02循環液體是具有優勢的同時,如此的揭示並不應 該被理解為是在本發财可被使賴環液㈣範圍的必 要限制,除非有另外說明。 在某些實施例中’根據本發明的發電系統可使用包括了 co2為主的循環㈣。換言之’循環液體在立刻輸入燃燒 器之前的化學性質即為使得循環液體包括顯著量的co2。 在此情形下’用詞“顯著”可表示液體包括至少為大約 90%莫耳濃度、至少為大約91%莫耳濃度、至少為大約 92%莫耳濃度、至少為大約93%莫耳濃度、至少為大約 100125736 表早編號 A0101 97 "5" / ++ 1 Qy) s 1003441436-0 201213655 94%莫耳漠度、至少為大約95%莫耳漢度、至少為大約 96%莫耳濃度、至>、為大約m莫耳濃度、至少為大約 98%莫耳濃度、或至少為大約99%莫耳濃度的%。較佳地 疋,該循環液體在進入該燃燒器之前實質上僅包括c〇。 在此情形下,該絲“實質上僅,,可表示至少為大約2 99.1%莫耳濃度、至少為大約99 25%莫耳濃度、至少為 大約99. 5%莫耳濃度、至少為大約99 75%莫耳濃度至 ;為大約99.8%莫耳濃度、或至少為大約999%莫耳濃度 的c〇2。在燃燒器中’(;〇2可以與一、或更多可從燃料衍 生出的其他成份、任何氧化劑、以及任何燃料燃燒的衍 生物相混合。因此,離開該燃燒器的循環液體(在此可 敘述為燃燒產物流)可包括c〇2以及較少量的其他材料, 例如水(h2〇)、氧氣(〇2)、氮氣(n2) '氮(Ar)、 二氧化硫(s〇2)、三氧化硫(s〇3)、一氧化氮(N〇) 、二氧化氮(N〇2)、氯化氫(HC1)、汞(Hg)、以及 可從燃燒處理衍生出的其他成份的微量(例如,微粒, 例如,灰燼、或液化灰燼),其包括另外的可燃物。正 如接下來的更詳細敘述,燃燒處理可受到控制以使得 液體流的性質可為還原、或氧化,其可提供將特別地敛 述的益處。 本發明的系統及方法可結合對適當燃料(正如在此所敘 述者)的燃燒有幫助的一、或更多燃燒器。較佳地是, 根據本發明所使用的至少一燃燒器是能夠在一相對而言 較高的燃燒溫度下提供大體上為完整的燃燒的高效燃燒 器。高溫燃燒對提供大體上為完整的燃料燃燒特別有用 ,以及因此將效率最大化。在各式實施例中,高溫燃燒 表單編號A0101 第28頁/共134頁 1003441436-0 201213655 可表示,在至少大約1,200 °C、至少大約1,300 °C、至 少大約1,400 °C、至少大約1,500 °C、至少大約1,600 °C、至少大約1,750 °C、至少大約2, 000 °C、至少大約 2, 500 °C、或至少大約3, 000 °C之溫度的燃燒。在進一 步的實施例中,高溫燃燒可表示,在大約1,200 t至大 約 5, 000 °C、大約 1,500 °C 至大約4, 000。(:、大約' 1,600 °(:至大約3,500 °0:、大約1,700。(:至大約3,200 °C、大約 1,800 °C 至大約 3,10 0 °C、大約 1,900。(:至 大約3,000 °C、或大約2,000 °C至大約3, 000 t之溫 3 度的燃燒。 在某些實施例中,根據本發明的高溫燃燒可利用蒸散冷 卻燃燒器而被實現。可用於本發明的蒸散冷卻燃燒器的 一個實例敘述於201〇年2月26曰提出申請的美國專利申請 案第12/714,074號中,其揭示内容整體於此併入做為參 考。在一些實施例中,根據本發明的可用蒸散冷卻燃燒 器可包括一、或更多熱交換區域,一.、或更多冷卻液體 、以及一、或更多蒸散液體。 ) 根據本發明,使用蒸散冷卻燃燒器相對於習知技術而特 別具優勢地是在發電的燃料燃燒方面。舉例而言,使用 蒸散冷卻可有效阻止燃燒器中的腐蝕,污垢,以及侵蝕 。此則進一步允許燃燒器在足夠高的溫度範圍内工作, 以提供所使用燃料的完全、或至少大體上完全的燃燒。 這些,以及進一步的優點於此被進一步的敘述。 在-特殊方面中,根據本發明而有用的蒸散冷卻燃燒器 可包括至少部份由蒸散部件所定義的一燃燒腔室,其中 ’該蒸散部件至少部份為壓力抑制部件所環繞。該燃燒 1003441436-0 100125736 表單編號A0101 第29頁/共134頁 201213655 腔室可具有-人口部份錢_相對的出口部份。該燃燒 腔室的該入口部份可配置來接收含碳燃料,以在燃燒= 室中於燃燒溫度下進行燃燒,進而形成燃燒產物。_ 燒腔室可更進一步被配置來將燃燒產物導向出口部份^ 該蒸散部件可被配置將蒸散物質穿過其間而導向該燃燒 腔至,以緩衝燃燒產物以及該蒸散部件之間的相互作用 。此外,該蒸散物質可被導入該燃燒腔室中,以達成燃 燒產物的所欲出口溫度。在特別的實施例中,該蒸散物 質可至少部份包括該循環液體。 該燃燒腔室的器壁可襯以-層多孔材料,該蒸散物質(例 如,c〇2、及/或1120)藉此被導引以及流動。 在其他方面中,内部蒸散部件2332可由該蒸散部件230的 入口部份222A擴張至該出口部份222B,在一些例子中, S亥内部蒸散部件2332的穿孔/多孔結構可大體上完全地( 徑向地)由該入口部份222A擴張至該出口部份222β,以 使得该蒸散液體210被大體導入該燃燒腔室222的整個長 度中。也就是,大體上,該内部蒸散部件2332的整體可 被配置以-穿孔/多孔結構’以讓該燃燒腔室m的大體 上整個長度可受到蒸散冷卻。更特別地是,在一些方面 中,累積的穿孔/孔洞區域可大體上相等於内部蒸散部件 2332的表面積。在仍然其他方面中,該穿孔/孔洞可以適 當的密度而相間隔,以使得該蒸散物質可達成大體上均 句地從内部蒸散部件2332份佈進入該燃燒腔室m (亦即 ,沒有缺乏蒸散物質的流動或存在的“死點(心以 100125736 spots)”)。在一實例中,該内部蒸散部件m2的平 方英吋(square inch)可包括每平方英吋25〇 X 25〇 表單煸號A0101 第30頁/共134 頁 1003441436-0 201213655 之等級的一穿孔/孔洞陣列’以提供每平方英吋大約 62, 500個的孔洞,如此的穿孔/孔洞則是以大約〇. 〇〇4英 吋(0. 1 _)的距離相間隔《孔洞區域與總器壁區域的 比率孔隙率)可為,舉例而言,大約5〇%。該孔洞陣 列可變化很廣的範圍,以適合其他系統的設計參數,例 如’所欲的壓降相對於跨越該蒸散部件的流速。在一些 實例中’可使用具有孔隙率大約10%至大約80%的每英吋 大約10 X 10至大約10, 000 X 10, 〇〇〇的陣列尺寸。 透過此多孔蒸散層以及選擇性地透過額外的供應的蒸散 物質流動可被配置來達成來自燃燒器的所欲總離開液體 流出口溫度。在一些實施例中,正如在此更進一步敘述 地’如此的溫度可落在大約500 °C至大約2, 000。(:的範 圍内。此流動亦可以用來將蒸散部件冷卻至低於形成該 蒸散部件的材料的最大允許操作溫度的一溫度。該蒸散 物質亦可用來阻止可能撞擊、污染、或以其他方式損害 該等器壁之燃料中任何液態、或固態灰燼材料、或其他 污染物的影響。在如此的例子中’蒸散部件可能會需要 使用具有合理導熱性的材料,以使得入射的輻射熱可徑 向地被傳導向外而通過該多孔蒸散部件,並接著被從該 多孔層結構的表面至徑向向内通過該蒸散層的該液體的 對流熱傳遞截走。如此的架構可允許被導向通過該蒸散 部件的流的接續部份被加熱至在所欲範圍内的溫度,例 如,大約500 °C至大約1,〇〇〇 °C,且同時間亦將多孔蒸 散部件的溫度維持在對其所使用材料的設計範圍内。用 於該多孔蒸散部件的適當材料舉例而言可包括多孔陶竞 、耐火金屬纖維毯、鑽孔的圓柱區段、及/或燒結的金屬 100125736 表單编號A0101 第31頁/共134頁 1003441436-0 201213655 確^大'。的金屬粉末。該蒸散部件的第二個功能是可以 二體上平坦的热散液體控向向内流動以及縱向沿 ’燃燒☆,以達成該蒸散液體流以及該 =混合而同時間提升沿著該燃燒腔室的長=坦 體能是可以達成稀釋液 速度,以提供提供緩衝於或用其它方式攔 子燃燒產物中灰儘或其他污染物的固態、及/或液態粒 進而避免對於該蒸散層表面的衝擊,以及避免造成 Μ或其他損害。舉例而言,如此的因子可能僅在燃燒 重有剩_性不可燃殘渣的燃料(例如,煤)時才顯得 f要%繞該蒸散部件的該燃燒器壓力管線的内壁亦可 。、破、、邑熱,以隔絕該燃燒器中的高溫蒸散液體流。 二根據本發明而使用的燃燒器裝置的一個實施例示意地 明於第1圖中,該燃燒器裝置-般是由數字220所指示 在此實例中’該燃燒器裝置22G可被配置來燃燒一微粒 狀固體(例如煤)以形成一燃燒產物,雖然任何其他合適 的可燃含碳材料(正如在此所揭示者)亦可以使用做為 燃料。該燃燒腔室222可藉由蒸散部件23〇而定義,盆是 被配置來料過㈣的該錢腔室222之 尹(亦即,以有助於蒸散冷卻、及/或以緩衝該燃燒產物 以及該蒸散部件綱之間的相互作用)。本領域具通常知 識者將可賴地是,該絲料23时賴上為圓柱狀, 以定義大體上為圓柱狀且具有—人σ部份及一相 100125736 表單编號AOlOi 第32頁/共134頁 對出口部份簡的燃燒腔室222。該蒸教部件⑽可至少 部份由-壓力抑制部件㈣所環繞。物燒腔室撕的該 口部細A可被配置來接收來自―般由符號It is provided in the burner. In a particular embodiment, the method can be implemented using a burner operating at very high temperatures (eg, in the range of about 1,600 ° C to about 3,300 ° C or other temperature ranges disclosed herein). The presence of circulating liquid can act to moderate the temperature of the liquid stream exiting the combustor so that the liquid stream can be utilized in the energy transfer generated by the electrical power. Specifically, the combustion product stream can be expanded to span at least one turbine to generate electricity. The expanded gas stream can be cooled to remove various components from the stream, such as water, and heat recovered from the expanded gas stream that can be used to heat the C〇2 circulating liquid. The purified recycle liquid stream can then be pressurized and heated for recovery via the burner. If desired, the portion c〇2 from the combustion product stream (i.e., produced by c〇2 formed by the combustion of fuel-containing carbon in the presence of oxygen) may be withdrawn for storage or other Dispose of, for example, to the C〇2 line. Systems and methods can utilize specific processing parameters and parts to maximize the efficiency of the system and method (especially while avoiding the release of C to atmospheric). As specifically recited herein, the circulating liquid is exemplified by the use of (: 02 as a circulating liquid. While the use of C02 circulating liquid in accordance with the present invention is advantageous, such disclosure should not be construed as It is a necessary limitation in the scope of the present financing that can be made to the scope of the liquid (4), unless otherwise stated. In some embodiments, the power generation system according to the present invention may use a cycle including the co2 (four). In other words, the circulating liquid The chemistry immediately prior to input to the burner is such that the circulating liquid includes a significant amount of co2. In this case, the term "significantly" means that the liquid comprises at least about 90% molar concentration, at least about 91% molar. Concentration, at least about 92% molar concentration, at least about 93% molar concentration, at least about 100125736. Table early number A0101 97 "5" / ++ 1 Qy) s 1003441436-0 201213655 94% Moer Moment At least about 95% molar, at least about 96% molar, to >, about m molar, at least about 98% molar, or at least about 99% molar. of%. Preferably, the circulating liquid comprises substantially only c〇 prior to entering the burner. In this case, the filament "substantially only, may represent at least about 29.91% molar concentration, at least about 99 25% molar concentration, at least about 99.5% molar concentration, at least about 99. 75% molar concentration to; c〇2 of about 99.8% molar concentration, or at least about 999% molar concentration. In the burner '(; 〇2 can be derived from one or more fuels The other components, any oxidant, and any fuel-burning derivative are mixed. Thus, the circulating liquid leaving the burner (herein described as a combustion product stream) may include c〇2 and a smaller amount of other materials, such as Water (h2〇), oxygen (〇2), nitrogen (n2) 'nitrogen (Ar), sulfur dioxide (s〇2), sulfur trioxide (s〇3), nitric oxide (N〇), nitrogen dioxide ( N〇2), hydrogen chloride (HC1), mercury (Hg), and traces of other components that can be derived from the combustion process (eg, particulates, such as ash, or liquefied ash), which include additional combustibles. More detailed below, the combustion process can be controlled to make the properties of the liquid stream For reduction, or oxidation, it may provide benefits that will be specifically recited. The systems and methods of the present invention may incorporate one or more burners that are useful for combustion of a suitable fuel, as described herein. Preferably, at least one burner used in accordance with the present invention is a high efficiency burner capable of providing substantially complete combustion at a relatively high combustion temperature. High temperature combustion provides substantially complete fuel combustion It is particularly useful, and thus maximizes efficiency. In various embodiments, high temperature combustion form number A0101 page 28/134 pages 1003441436-0 201213655 may represent at least about 1,200 ° C, at least about 1,300 ° C, at least about 1,400 ° C, at least about 1,500 ° C, at least about 1,600 ° C, at least about 1,750 ° C, at least about 2,000 ° C, at least about 2,500 ° C, or at least about Combustion at a temperature of 3,000 ° C. In a further embodiment, high temperature combustion can be expressed at about 1,200 t to about 5,000 ° C, about 1,500 ° C to about 4,000. (: , about ' 1,600 ° (: to Approximately 3,500 °0:, approximately 1,700. (: to approximately 3,200 ° C, approximately 1,800 ° C to approximately 3,10 0 ° C, approximately 1,900. (: to approximately 3,000 ° C, or approximately 2,000 ° C Burning to a temperature of about 3 000 t. In some embodiments, high temperature combustion according to the present invention can be achieved using an evapotranial cooling combustor. One example of an evapotranspiration burner that can be used in the present invention is described in U.S. Patent Application Serial No. 12/714,074, filed on Jan. 26, 201, the entire disclosure of which is hereby incorporated by reference. In some embodiments, an available evaporative cooling burner in accordance with the present invention may include one or more heat exchange zones, one or more cooling liquids, and one or more evapotranspiration liquids. According to the present invention, the use of an evapotranial cooling burner is particularly advantageous in terms of fuel combustion for power generation relative to conventional techniques. For example, the use of evapotranspiration can effectively prevent corrosion, dirt, and erosion in the burner. This in turn allows the burner to operate over a sufficiently high temperature range to provide complete, or at least substantially complete, combustion of the fuel used. These, as well as further advantages, are further described herein. In a particular aspect, an evapotranspiration burner useful in accordance with the present invention can include a combustion chamber at least partially defined by an evapotranspiration member, wherein the evapotranspiration member is at least partially surrounded by a pressure suppression member. The combustion 1003441436-0 100125736 Form No. A0101 Page 29 of 134 201213655 The chamber can have - part of the population - relative export section. The inlet portion of the combustion chamber is configurable to receive a carbonaceous fuel for combustion at a combustion temperature in a combustion = chamber to form a combustion product. The firing chamber may be further configured to direct combustion products to the outlet portion. The transpiration member may be configured to direct evapotranic material therethrough to the combustion chamber to buffer combustion products and interactions between the transpiration members. . Additionally, the evapotranspiration material can be introduced into the combustion chamber to achieve a desired outlet temperature for the combustion product. In a particular embodiment, the evapotranspiration can comprise at least a portion of the circulating liquid. The walls of the combustion chamber may be lined with a layer of porous material whereby the evapotrans (e.g., c2, and/or 1120) are thereby directed and flow. In other aspects, the inner transpiration member 2332 can be expanded from the inlet portion 222A of the evapotranspiration member 230 to the outlet portion 222B, and in some examples, the perforated/porous structure of the sigma internal evapotranspiration member 2332 can be substantially completely The inlet portion 222A is expanded to the outlet portion 222β such that the evapotranspiration liquid 210 is substantially introduced into the entire length of the combustion chamber 222. That is, in general, the entirety of the internal transpiration member 2332 can be configured with a perforated/porous structure to allow substantially the entire length of the combustion chamber m to be subjected to evapotranspiration. More particularly, in some aspects, the cumulative perforation/hole area can be substantially equal to the surface area of the internal evapotranspiration member 2332. In still other aspects, the perforations/holes may be spaced apart at an appropriate density such that the evapotranic material can be dispensed substantially uniformly from the internal transpiration member 2332 into the combustion chamber m (i.e., without lack of evapotranspiration) The flow of matter or the presence of "dead spots (hearts are 100125736 spots)"). In one example, the square inch of the internal transpiration component m2 may include a perforation per level of 25 〇 X 25 〇 form nickname A0101 page 30 / 134 pages 1003441436-0 201213655 The hole array 'supplied to provide approximately 62,500 holes per square inch, such perforations/holes are spaced apart by a distance of approximately 〇4 吋 (0. 1 _) "hole area and the total wall The ratio porosity of the region can be, for example, about 5%. The array of holes can vary over a wide range to suit the design parameters of other systems, such as the desired pressure drop relative to the flow rate across the evapotranspiration component. In some instances, an array size of from about 10 x 10 to about 10,000 X 10, Å per inch having a porosity of from about 10% to about 80% can be used. The flow of evapotranic material through the porous evapotranspiration layer and optionally through additional supply can be configured to achieve a desired total exit liquid outlet temperature from the burner. In some embodiments, as will be described further herein, such temperatures can range from about 500 °C to about 2,000. Within the range of (: the flow may also be used to cool the transpiration member to a temperature below the maximum allowable operating temperature of the material forming the transpiration member. The evapotranspiration may also be used to prevent possible impact, contamination, or otherwise Damage to any liquid or solid ash material, or other contaminants in the fuel of such walls. In such an example, 'evaporable components may require the use of materials with reasonable thermal conductivity so that incident radiant heat can be radial The ground is conducted outwardly through the porous evaporative component and is then intercepted by convective heat transfer from the surface of the porous layer structure to the liquid radially inward through the vaporized layer. Such an architecture may allow for being directed through the The contiguous portion of the stream of the transpiration member is heated to a temperature within the desired range, for example, from about 500 ° C to about 1, 〇〇〇 ° C, and at the same time maintaining the temperature of the porous evapotranture at its location Suitable materials for the porous evaporative component may include, for example, porous ceramics, refractory metal fiber blankets, drilled holes. Column section, and/or sintered metal 100125736 Form No. A0101 Page 31 of 134 Page 1003441436-0 201213655 Metal powder. The second function of the ET component is that it can be flat on both sides. The heat dispersing liquid is controlled to flow inwardly and longitudinally along the 'combustion ☆ to achieve the evapotranspiration liquid flow and the = mixing while simultaneously increasing the length along the combustion chamber = the body energy is available to achieve the diluent speed to provide Solid, and/or liquid particles that are buffered or otherwise blocked to burn off ash or other contaminants in the product to thereby avoid impact on the surface of the transpiration layer and to avoid enthalpy or other damage. For example, such factors It may only be possible to burn the fuel (eg, coal) with a residual flammable residue (% of the coal) to the inner wall of the burner pressure line of the transpiration component. The high temperature evapotranspiration stream in the burner. An embodiment of a burner apparatus for use in accordance with the present invention is schematically illustrated in Figure 1, which is generally indicated by numeral 220. In the example, the burner assembly 22G can be configured to combust a particulate solid (e.g., coal) to form a combustion product, although any other suitable combustible carbonaceous material (as disclosed herein) can also be used as a fuel. The combustion chamber 222 can be defined by an evaporative component 23, which is configured to feed the (4) of the money chamber 222 (i.e., to facilitate evapotranspiration cooling, and/or to buffer the combustion). The product and the interaction between the evaporative component classes. It will be appreciated by those of ordinary skill in the art that the wire 23 is cylindrical in shape to define a generally cylindrical shape with a human sigma portion And one phase 100125736 Form No. AOlOi Page 32 of 134 is a simple combustion chamber 222 for the outlet portion. The steaming component (10) can be at least partially surrounded by a pressure suppression member (four). The mouth thin A of the torn chamber can be configured to receive symbols from the general

Amm «Γ on . _ 1003441436-0 201213655 的此合設置(mixing arrangement)的一燃料混合物 。在其他的實施例中,可能會缺少如此的混合設置,而 一、或更多個輸入該燃燒器中的材料可經由獨立的入口 而分離地加入。根據特別的實施例,該燃料混合物可在 該燃燒腔室222中以特殊的燃燒溫度進行燃燒以形成燃 燒產物,其中’該燃燒腔室222可進-步地配置來將該燃 燒產物導向該出口部份222B。-熱移除裝置2350 (請參 閱,例如’第2圖)可關連於該壓力抑制部件2338以及被 配置來控制其溫度。在特定的例子中,該熱移除裝置 〕 2350可包括至少部份由相對於該壓力抑制部件2338的一 器壁2336所定義的—熱傳遞外套,其中,一液體可在其 間所定義的水循環外套2337中循環。在一實施例中,該 循環液體可以是水。 在特殊方面中,該多孔内部蒸散部件2332因此被配置 來將該無散液體導入該燃燒腔室222之中,以使得該蒸散 物質210以大體上相對於該内部蒸散部件2挪的内表面呈 直角(9G )的角度進人該燃燒腔室222 »除了這些優點 β 之外Μ散物質210以大體上相對於該内部蒸散部件 2332呈直角的導入亦有助於、或者以其它方式強化將爐 /查液〜《固態炫滴、或其他污染物、或熱燃燒液體漩 满自該内部蒸散部件2332的内表面導開的效果 。當爐渣 液體或口體炫滴間沒有接觸時,就可避免該等溶滴聚 結成為較大的炫滴或群體,這在習知技術中已知是在熔 滴或粒子與固態器壁間接觸後馬上發生。以大體上相對 於》亥内Κ散部件2332呈直角的方式將該蒸散物質導 1003441436-0 入4有助於 <以其它方式可強化阻止可能撞擊並損害 100125736 表單編號A0101 第33頁/共134頁 201213655 该内部蒸散部件之具有垂直於且相鄰於該内部蒸散部件 的足夠速度的燃燒液體璇涡的形成的效果。在如此的例 子中,該外部蒸散部件2331、該壓力抑制部件2338、該 熱傳遞外套2336、及/或該絕熱層2339可被配置(個別 地、或共同地)來提供相關於蒸散物質/液體21 〇到達且 牙過謔内部瘵散部件2332並進入該燃燒腔室222的遞送的 多樣的效果(亦即,提供大體上均勻分佈的供應 )。也就是說,該蒸散物質21〇進入該燃燒腔室222的大 體上均勻的供應(依照流速、壓力、或任何其他合適且 適當的測量)可藉由配置該外部蒸散部件2331、該壓力 抑制部件2338、該熱傳遞外套2336、及/或該絕熱層 2339而達成,進而提供均勻供應的該蒸散物質21〇至該内 部洛散部件2332,或者,該蒸散物f21()有關於該内部蒸 散部件2 3 3 2的外表面的供應可特別地客製化,並配置為 可達成該燃燒腔室222中該蒸散物質21〇的大體上均勻分 佈。如此的大體上均勻分佈可避免藉由非均勻蒸散液體 與燃燒液體流動的相互作用而以其它方式形成以及可能 撞擊以及損害内部蒸散部件的熱燃燒液體旋渦的形成。 該混合設置250 (當存在時)可被配置來混合含碳燃料 254以及富氧(enriched oxygen) 242與一循環液體 236,以形成一燃料混合物。該含碳燃料254的提供形式 可以是固態含碳燃料、液態含碳燃料、及/或氣態含碳燃 料。該富氧242可以是具有莫耳純度高於大約85%的氧。 該富氧242的供應,舉例而言,可藉由習知技術中已知的 任何空氣为離系統/技術,例如,舉例而言,可以執行低 溫空氣分離處理、或咼溫離子穿透膜氧分離處理(自空 100125736 表單編號 A0101 第 34 頁/共 134 頁 ιηΜ/) 氣)。正如在此所敘述’該循環液體236可以為二氧化碳 。在該含碳燃料254為微粒固體的例子中(例如,粉煤 254A) ’该混合设置250可以更進一步地配置來混合該微 粒固態含碳燃料254A以及一液化物質255。根據一方面’ 該微粒固態碳燃料254A可具有介於大約50微米至大約 200微米之間的平均粒子尺寸,根據又另一方面,該液化 物質255可包括水,及/或液態C〇2,其密度介於大約450 kg/m3至大約11〇〇 kg/m3之間。更特別地是,該液化物 質255可與該微粒固態含碳燃料254A配合而形成,例如, 介於該微粒固態含碳燃料254A的重量百分比大約25至大 約55之間的漿料250A。雖然在第1圖中,該氧242顯示為 在導入該燃燒腔室222之前是與該燃料254以及該循環液 體236相混合,但本領域具通常知識者將可理解地是,在 一些例子中,當必須或想要時,該氧242可分離地被導入 該燃燒腔室222之中。 該混合設置250,在某些方面中,可包括,舉例而言,間 隔分離的注入喷嘴(未顯示)陣列,其可設置在關連於 該圓柱狀燃燒腔室222的入口部份222A的該蒸散部件230 的端壁223附近。以此方法將該燃料/燃料混合物注入進 入該燃燒腔室222可提供,舉例而言,大表面積的已注入 燃料混合入口流,此接著有助於藉由輻射而對該已注入 燃料混合入口流進行快速熱傳遞。因此’該已注入燃料 混合物的溫度可快速地增加至該燃料的點燃溫度,以及 可因此造成緊密的燃燒。雖然這些數值是取決於許多因 子,例如,特定注入喷嘴的架構,但該燃料混合物的注 入速度可落在,舉例而言,大約1〇 m/sec至大約40 m/ 表單編號A0101 第35頁/共134頁 1〇〇 201213655Amm «Γ on . _ 1003441436-0 201213655 This fueling mixture of this mixing arrangement. In other embodiments, such a mixing arrangement may be absent, and one or more of the materials input into the burner may be separately added via separate inlets. According to a particular embodiment, the fuel mixture can be combusted in the combustion chamber 222 at a particular combustion temperature to form a combustion product, wherein 'the combustion chamber 222 can be configured further to direct the combustion product to the outlet Part 222B. A heat removal device 2350 (see, for example, 'Fig. 2) can be associated with the pressure suppression component 2338 and configured to control its temperature. In a particular example, the heat removal device 2350 can include a heat transfer jacket defined at least in part by a wall 2336 relative to the pressure suppression member 2338, wherein a liquid can be defined by a water cycle therebetween The jacket 2337 circulates. In an embodiment, the circulating liquid can be water. In a particular aspect, the porous internal evapotranspiration member 2332 is thus configured to introduce the non-dispersive liquid into the combustion chamber 222 such that the evapotranspiration 210 is present in an interior surface that is generally offset relative to the internal evapotranspiration member 2. A right angle (9G) angle into the combustion chamber 222 » in addition to these advantages β, the diffusion of the substance 210 at a right angle relative to the internal transpiration member 2332 also facilitates, or otherwise enhances, the furnace /Check liquid ~ "Solid solid droplets, or other contaminants, or hot combustion liquid swirls from the inner surface of the internal evapotranspiration member 2332. When there is no contact between the slag liquid or the mouth droplets, the droplets can be prevented from coalescing into larger droplets or groups, which are known in the prior art to be between droplets or particles and solid walls. It happens immediately after contact. The evapotranspiration material guide 1003441436-0 is generally at a right angle to the diverging member 2332. This helps to <in other ways enhances the possible impact and damages 100125736 Form No. A0101 Page 33 / Total 134 pages 201213655 The internal transpiration member has the effect of forming a turbulent flow of combustion liquid at a sufficient velocity perpendicular to and adjacent to the internal transpiration member. In such an example, the external transpiration member 2331, the pressure suppression member 2338, the heat transfer jacket 2336, and/or the insulation layer 2339 can be configured (individually, or collectively) to provide an associated evapotranible substance/liquid The various effects of the delivery of 21 〇 reaching and over the internal distracting component 2332 and entering the combustion chamber 222 (i.e., providing a substantially evenly distributed supply). That is, the substantially uniform supply of the evapotranspiration material 21〇 into the combustion chamber 222 (according to flow rate, pressure, or any other suitable and appropriate measurement) can be configured by configuring the external evapotranspiration component 2331, the pressure suppression component 2338, the heat transfer jacket 2336, and/or the heat insulating layer 2339 is achieved, thereby providing a uniformly supplied evapotranspiration 21 〇 to the internal loose component 2332, or the effluent f21() is related to the internal transpiration component The supply of the outer surface of the 2 3 3 2 may be specifically customized and configured to achieve a substantially uniform distribution of the evapotranspiration 21 in the combustion chamber 222. Such a substantially uniform distribution avoids the formation of hot combustion liquid vortices that otherwise form and possibly impinge and damage internal transpiration components by the interaction of the non-uniform evapotranic liquid with the flow of the combustion liquid. The mixing arrangement 250, when present, can be configured to mix the carbonaceous fuel 254 with enriched oxygen 242 and a circulating liquid 236 to form a fuel mixture. The carbonaceous fuel 254 can be provided in the form of a solid carbonaceous fuel, a liquid carbonaceous fuel, and/or a gaseous carbonaceous fuel. The oxygen enriched 242 can be oxygen having a molar purity greater than about 85%. The supply of oxygen-enriched 242, for example, can be performed by any air known in the art as a system/technique, such as, for example, a cryogenic air separation process, or a temperature ion-permeable membrane oxygenation can be performed. Separation process (from the air 100125736 form number A0101 page 34 / 134 page ιηΜ /) gas). As described herein, the circulating liquid 236 can be carbon dioxide. In the example where the carbonaceous fuel 254 is particulate solids (e.g., pulverized coal 254A)', the mixing arrangement 250 can be further configured to mix the particulate solid carbonaceous fuel 254A and a liquefied material 255. According to one aspect, the particulate solid carbon fuel 254A can have an average particle size of between about 50 microns and about 200 microns, and according to still another aspect, the liquefied material 255 can comprise water, and/or liquid C〇2, Its density is between about 450 kg/m3 and about 11 〇〇kg/m3. More specifically, the liquefied material 255 can be formed in conjunction with the particulate solid carbonaceous fuel 254A, for example, slurry 250A between about 25 and about 55 percent by weight of the particulate solid carbonaceous fuel 254A. Although in FIG. 1, the oxygen 242 is shown to be mixed with the fuel 254 and the circulating liquid 236 prior to introduction into the combustion chamber 222, those of ordinary skill in the art will understand that, in some instances, The oxygen 242 is detachably introduced into the combustion chamber 222 when necessary or desired. The mixing arrangement 250, in some aspects, can include, for example, an array of spaced apart injection nozzles (not shown) that can be disposed in the evapotranspiration associated with the inlet portion 222A of the cylindrical combustion chamber 222. Near the end wall 223 of the component 230. Injecting the fuel/fuel mixture into the combustion chamber 222 in this manner can provide, for example, a large surface area injected fuel mixed inlet stream, which in turn facilitates mixing the injected fuel inlet stream by irradiation Perform fast heat transfer. Thus the temperature of the injected fuel mixture can be rapidly increased to the ignition temperature of the fuel, and thus can result in tight combustion. Although these values are dependent on a number of factors, such as the architecture of a particular injection nozzle, the injection rate of the fuel mixture can fall, for example, from about 1 〇 m/sec to about 40 m / Form No. A0101, page 35 / Total 134 pages 1〇〇201213655

Sec間的範圍。如此的 式。舉例而言,該注二=置可以採用許多不同的形 〇.5㈣大約括,例如’直捏介於約 的燃料以介於大約i/咖U_’其中’該已注八 其間。 m s至大約40 m/s的速度注入穿過 正:在第2圖所更特別顯示地 条散部件230而進行定差 褥由该 到—壓力抑制部件233L該蒸散部件230可至少部份受 抑制部件2338可進1 &圍°在一些例子中’該壓力 的包圍,其中,祕傳^少部份受到一熱傳遞外套如6 伽配合而於其Pb1遞外套2336可與該壓力抑制部件 壓水流就可進行料 或更多通道2337,藉此,低 因此可用來控制及/或透過一蒸發機制,該循環的水 度,舉例而言1在、、持該壓力抑制部件2338的選擇溫 。在—些方面中,絶J100 W。。的範圍内 及該魔力抑制部件2338a 2339可安置在該蒸散部件230以 ::::::二一,言,-外 部件2332被安置為自;;内部蒸散部件2332,該内部蒸散 蒸散部件則,壓力抑制部件2338起相對該外部 件訓可由任何適合燒腔室222。該外部蒸散部 言,鋼以及鋼合金,包::料構成’例如,舉例而 匕括不銹鋼以及鎳合金。在一些例 =厚該外部蒸散部件咖可配置來定義自其相鄰-於該 39的表面至其相鄰於該内部蒸散部件2332的表 面而擴張通過其間的第—蒸散液體供應通路2333A。在- 100125736 些例子中,該第一蒸散液體供應通可對應於該壓 表草編號麵 第36頁/共丨34頁 10034^ 201213655 力抑制部件2338、該熱傳遞外套2336、及/或該絕熱層 233 9所定義的第二蒸散液體供應通路233 3B。該等第一 以及第二蒸散液體供應通路2333A,2333B可因此被配置 為合作將通過其間的一蒸散液體導向該内部蒸散部件 2332。在一些例子中,正如在第1圖中所示,舉例而言, 该瘵散液體210可包括該循環液體236,以及可獲得自與 其相關連的相同來源《該等第一以及第二蒸散液體供應 通路2333A,2333B,若必須時,可進行絕熱,以用於遞 送足夠供應量以及足夠壓力的該蒸散液體21〇 (亦即, ^ coo ,進而使得該蒸散液體21〇被引導穿過該内部蒸散 部件2332,並且進入該燃燒腔室222。如此之牽涉到該蒸 散部件230以及相關連蒸散液體21〇 (正如在此所揭示) 的方法可允許該燃燒器裝置22〇在相對而言較高的壓力以 及相對而言較高的溫度下以此處所揭露不同方式進行操 作。 在這方面,該内部蒸散部件2332的構成舉例而言可為多 孔㈣材料、穿孔材料、層騎料、在二維㈣定向^ ☆第三維被順序化纖維所構成的多孔毯、或任何其他合 適的材料、或其展現如在此所揭㈣所需特徵的結合, 亦即,多個流動通路或孔洞或其他合適的開口 23扣,以 接收以及引導通過該内部蒸散部件2332的 多孔陶究以及其他合適用於如此之蒸散冷卻系统的益限 制實例包括氧化鋁、氧化鍅、轉換韌化氧化锆(trans_ formation—t〇Ughened zirc〇nium)、鋼、鉬、:、 滲銅鎢(C〇Pper-infiltrated tungsten)、鎢塗覆 顧(tungSten-C〇ated m〇lybdenum)、鎢塗覆銅( 100125736 表單編號A0101 第37頁/共134頁 201213655 tungsten-coated copper)、各種高溫鎳合金、銖護 套或塗覆材料(rhenium-sheathed or coated materials) 。 適合材料的來源舉例而言包 Inc. (Golden, CO) (^) ;UltraMet AdvancedThe range between Sec. This way. For example, the note 2 = can be used in a number of different forms. 5 (d) is about, for example, 'spinning between about a fuel of about i / coffee U_' where it has been noted. A velocity of ms to about 40 m/s is injected through the positive: the stripping member 230, which is more particularly shown in Fig. 2, is subjected to a constant value, and the pressure reducing member 230 is at least partially suppressed. The part 2338 can be surrounded by 1 & in some examples 'the pressure is surrounded, wherein the secret part is subjected to a heat transfer jacket such as 6 gamma fit and the Pb1 transfer sleeve 2336 can be pressed with the pressure suppression member The water stream can be fed or more channels 2337 whereby the low level can therefore be used to control and/or transmit through an evaporation mechanism, the degree of water of the cycle, for example, at the selected temperature of the pressure suppression component 2338. In some respects, J100 W. . And within the scope of the magic suppression member 2338a 2339 can be disposed on the evapotranspiration member 230 with :::::: 21, the outer member 2332 is disposed as; the internal evapotranspiration member 2332, and the internal evapotranspiration member The pressure suppression member 2338 is operative from any suitable firing chamber 222 relative to the outer member. The external transpiration portion, steel, and steel alloy, includes: a material composition, for example, including stainless steel and a nickel alloy. In some instances, the outer evapotranspiration member is configurable to define a first evapotranspiration supply passage 2333A extending therebetween from its adjacent surface to the surface of the internal evapotranspiration member 2332. In some examples - 100125736, the first evapotranspiration supply may correspond to the embossed surface number 36 pages/total 34 pages 10034^201213655 force suppression component 2338, the heat transfer jacket 2336, and/or the thermal insulation The second evapotranspiration liquid supply passage 233 3B defined by the layer 233 9 . The first and second evapotranspiration liquid supply passages 2333A, 2333B can thus be configured to cooperate to direct an evapotranspiration liquid therebetween through the internal evapotranspiration member 2332. In some examples, as shown in FIG. 1, for example, the squirting liquid 210 can include the circulated liquid 236, and the same source from which it can be associated with the first and second evapotranspiration liquids. Supply passages 2333A, 2333B, if necessary, may be adiabatic for delivering sufficient supply and sufficient pressure of the evapotranspiration liquid 21〇 (ie, ^coo, such that the evapotranspiration liquid 21〇 is directed through the interior Evaporating component 2332 and entering combustion chamber 222. The method involving the evaporative component 230 and associated evapotranspiration 21 (as disclosed herein) may allow the burner assembly 22 to be relatively high. The pressure and relatively high temperatures operate in different ways as disclosed herein. In this regard, the internal transpiration member 2332 can be constructed of, for example, a porous (tetra) material, a perforated material, a layer ride, in two dimensions. (4) Orientation ^ ☆ a three-dimensional porous carpet composed of sequential fibers, or any other suitable material, or a combination thereof that exhibits the desired features as disclosed herein, ie A plurality of flow passages or holes or other suitable openings 23 to receive and guide the porous ware through the internal evapotranspiration member 2332 and other suitable limitations for such evapotranspiration cooling systems include alumina, yttria, conversion Toughened zirconia (trans_ formation-t〇Ughened zirc〇nium), steel, molybdenum,:, copper-plated tungsten (C〇Pper-infiltrated tungsten), tungsten coated (tungSten-C〇ated m〇lybdenum), tungsten Coated copper (100125736 Form No. A0101, page 37 / 134 pages, 201213655 tungsten-coated copper), various high temperature nickel alloys, rhenium-sheathed or coated materials. Suitable sources of materials, for example Package Inc. (Golden, CO) (^) ; UltraMet Advanced

Materials Solutions (Pacoima,CA)(耐火金屬塗 層),0rsam Sylvania(Danvers,MA)(鎢/銅); 以及MarkeTech International,lnc. (port Townsend, WA) (鎢 ) 。 適合用於如此之蒸散冷卻系統的穿 孔材料的實例包括上述所有的材料以及供應者(其中, 穿孔末端結構可藉由利用習知製造技術中的已知方法對 起始無孔結構進行穿孔而獲得適當的層壓材料的實 例包括上述所有的材料以及供應者(其中,層壓末端結 構可藉由,舉例而言,利用f知製造技術_的已知方法 而達成所欲末端孔料的方式,來對無孔或部份有孔結 構進行層壓而獲得)。 100125736 表單編號A0101 第38頁/共134頁 第3A圖以及第3B圖示明在燃燒器裝置22〇的一方面中定 義該燃燒腔室222的結構可透過該蒸散部件23〇以及該環 繞、、、。構(例如’安置於該蒸散部件23{)以及該壓力抑制部 ㈣38間的該虔力抑制部件2338或該絕熱層2339 )間的 :、:熱”介面裝配而形成。舉例而言,當相對而言較 冷時,该热散部件230的尺寸可相對於該環繞壓力抑 制部件2338而為更小、為徑向、及/或為軸向。這樣,, 插入該壓力抑制部件2338中時,徑向、及/或軸向間隙就 可出現於其間(請參閲,例如,第3A圖)。當然,如此 的^寸差異可有助於該蒸散部件聊插人顧力抑制部件 然而’舉例而言’當朝向操作溫度進行加熱時 笛狀百/u — 100344 201213655 以=散部件23Q可被配置為朝後向、及/或轴向伸展, 。浐媒μ %參閱,例如,第3Β圖) 绝樣做,就可以在該蒸散部 ^ 仵230以及该壓力抑制部件 一—,成—干涉轴向及/或獲向裳配。在-此例子中, 錢部件230涉及”卜部蒸散部件23心及—内部蒸散 ΓΓΓ,繼«件觀置 於壓縮下。這樣,適合的高溫 "^皿抗性易碎材料(例如,多孔 陶幻可被用來形成該内部蒸散部件2332。Materials Solutions (Pacoima, CA) (refractory metal coating), 0rsam Sylvania (Danvers, MA) (tungsten/copper); and MarkeTech International, lnc. (port Townsend, WA) (tungsten). Examples of perforated materials suitable for use in such an evapotranspiration cooling system include all of the materials described above, as well as suppliers (wherein the perforated end structures can be obtained by perforating the initial non-porous structure using methods known in the art of fabrication). Examples of suitable laminates include all of the materials described above, as well as the supplier (wherein the laminated end structure can be achieved by, for example, using known methods of manufacturing techniques) to achieve the desired end aperture. This is obtained by laminating a non-porous or partially perforated structure.) 100125736 Form No. A0101, page 38/134, pp. 3A and 3B illustrate the definition of the combustion in an aspect of the burner assembly 22〇 The structure of the chamber 222 is permeable to the evapotranspiration member 23 and the surrounding force suppression member 2338 or the heat insulating layer 2339 (for example, disposed between the transpiration member 23{) and the pressure suppression portion (4) 38. The :::thermal" interface is formed. For example, when relatively cold, the size of the heat dissipating component 230 can be more relative to the surrounding pressure suppressing component 2338. In the radial direction, and/or in the axial direction, when inserted into the pressure suppressing member 2338, a radial, and/or axial gap may occur therebetween (see, for example, Fig. 3A). Of course, such a difference in the inch can help the evapotranspiration component to intervene in the force-suppressing component. However, 'for example, when heating toward the operating temperature, the flute can be used as the scatter component 23Q can be configured. For backwards and/or axial extension, see , μ % 例如 例如 例如 例如 例如 例如 例如 例如 例如 例如 例如 例如 以及 以及 以及 以及 以及 以及 以及 以及 以及 以及 以及 以及 以及 以及 以及 以及 以及 以及 以及 以及 以及 以及 以及 以及 以及 以及 以及 以及In this case, the money component 230 relates to the "heart" of the evapotranspiration component 23 and the internal evapotranspiration, which is placed under compression. Thus, a suitable high temperature "^ resistant fragile material (e.g., porous ceramics can be used to form the internal evapotranspiration 2332).

藉由該内部蒸散部件2332如此的配置,該蒸散物質210可 包括,舉例而言,被導向通過該内部蒸散部件2332的二 氧化碳(即,來自與該循環液體236相同的來源),以使 得該蒸散物質2U)立即在該燃燒腔室奶内部形成緊鄰於 該内部蒸散部件2332的-緩衝層231 (亦即,—“蒸汽壁With such an arrangement of the internal transpiration member 2332, the evapotranspiration 210 can include, for example, carbon dioxide directed through the internal transpiration member 2332 (i.e., from the same source as the circulated liquid 236) to cause the evapotranspiration. Substance 2U) immediately forms a buffer layer 231 adjacent to the internal evapotranspiration member 2332 within the combustion chamber milk (i.e., - "Steam Wall

),其中該緩衝層231可被配置來緩衝該内部蒸散部件 2332與相關連於該燃燒產物的液化不可燃元件以及熱之 間的相互作用。也就是說,在—些例子中,該蒸散液體 210可以被遞送通過該内部蒸散部件2332,舉例而言,至 少在該燃燒腔室222内的壓力下,其中,該蒸散液體21〇 進入該燃燒腔室222的流速(即,c〇2流)足以使該蒸散 液體210與該燃燒產物相混合以及對該燃燒產物進行冷卻 ,進而形成關於接續下游處理的入口需求而處於足夠溫 度的離開液體混合物(即,一渦輪可能需要例如大約 1’ 225 C的一入口溫度),但其中,該離開液體混合物仍 足夠南來在流體、或液體狀態的該燃料中維持爐渣熔滴 或其他污染物。該燃料的該等不可燃元件的液體狀態可 有助於,舉例而言,如此之污染物從液體形式之該燃燒 100125736 表單編號A0101 第39頁/共134頁 1003441436-0 201213655 產物中分離,較佳地是,以自由流動、低黏度形式,其 將較不可能阻礙或以其它方式損害為了如此的分離而執 行的任何移除系統。實際上,如此的需求可能取決於各 種的因子,例如,所使用的固態含碳燃料(亦即,煤) 的型態,以及形成在該燃燒處理中的爐渣的特別特徵。 也就是說,在該燃燒腔室222中的燃燒溫度可使得在該含 碳燃料中的任何不可燃元件在該燃燒產物中被液化。 在特別方面中,該多孔内部蒸散部件2332因此被配置來 以徑向向内的方式將該蒸散液體引導進入該燃燒腔室222 ,進而形成一液體屏障壁、或緩衝層231,該液體屏障壁 、或緩衝層231相關於定義該燃燒腔室222的該内部蒸散 部件2332的表面(請參閱,例如,第2圖)。該内部蒸散 部件2 3 3 2的表面亦會受到燃燒產物的加熱。就此而論, 該多孔内部蒸散部件2332就可被配置為具有適當的導熱 性,以使得通過該内部蒸散部件2332的該蒸散液體210被 加熱,而該多孔内部蒸散部件2332同時被冷卻,造成定 義該燃燒腔室222的該内部蒸散部件2332的表面的溫度落 在最高燃燒溫度範圍中,大約,舉例而言,1,000 °C。 藉由該蒸散液體210與該内部蒸散部件2332配合所形成的 該液體屏障壁或緩衝層2 31因此緩衝了該内部蒸散部件 2332與該高溫燃燒產物以及爐渣或其他污染物粒子間的 相互作用,以及因此而使該内部蒸散部件2332缓衝免於 接觸、污染、或其他損害。再者,該蒸散液體210能以一 方式經由該内部蒸散部件2332而被導入該燃燒腔室222中 ,以調節所欲溫度(例如,大約500 °C至大約2,000 °C )的該燃燒腔室222的該出口部份222B周圍之該蒸散液體 100125736 表單編號A0101 第40頁/共134頁 1003441436-0 201213655 210以及該燃燒產物的一離開混合物。 Ο 在特定的實施例中,該燃燒器裝置220因此可以被配置為 能夠在如在此所敘述之相對而言較高的操作溫度提供一 燃料254之相對而言較完整的燃燒的—高效 燒器裝置。在-些例子中.如此的—燃燒器裝 灯- ' 或更多冷卻液體’及/或-、或更多蒸散液體21〇 。额外的零件亦可㈣連於該燃脑|置22㈣被執行。 舉例而言,一空氣分離單元可提供來分離%以及〇 ,以 及-燃料注入器裝置可提供來自該空氣分離2單元接2收〇 以及將Ο?與一C〇2循環液體以及包括—氣體、_液體、2一 超臨界液體、或-在高密度CG2_t呈衆狀的固態微粒 狀燃料的一燃料流相結合。 在另-方面中,該蒸散冷卻燃燒器袭置22〇可包括一燃料 注入器,以將-加壓的燃料流注入該燃燒器裝置22〇的該 燃燒腔室222之中,其中,該燃料流可包括一已處理的含 碳燃料254、-流化介質255 (其可包括該循環液體咖 ’正如在此所討論)、以及氧242 1(富)氧如以及 該Cl循環液體236可結合成為一同質超臨界混合物。所 存在的氧的量足以燃燒該燃料,以及產生具有所欲組成 的燃燒產物。該燃燒器裝置220亦可包括一燃燒腔室222 ,其被配置成為-高壓、高溫燃燒容積,以接收該燃料 流,以及通過定義該燃燒腔室222的一多孔蒸散部件23〇 而進入該燃燒容積的-蒸散液體210。該蒸散液體21〇的 饋送速率可被用來將該燃燒器裝置出口部份/渦輪入口部 份溫度控制至-所欲數值,及/或將該蒸散部件23〇冷卻 至相容於形成該蒸散部件230的材料的溫度。透過該蒸散 100125736 表單編號Λ0101 第41頁/共134頁 、 1003441436-0 201213655 部件230而被導向的該蒸散液體21 0在定義該燃燒腔室 222的該蒸散部件230的表面處提供一液體/緩衝層,其中 ,該液體/緩衝層可避免因某些燃料燃燒所造成的灰燼或 液態爐渣的粒子與該蒸散部件230之暴露的器壁相互作用 〇 該燃燒腔室222可更進一步被配置為使該燃料流(以及該 循環液體236 )可以在比燃燒發生時的壓力更大的壓力下 被注入,或以其它方式被導入該燃燒腔室222之中。該燃 燒器裝置220可包括至少部份環繞定義該燃燒腔室222的 該蒸散部件230的一壓力抑制部件2338,其中,一絕熱部 件2339可被安置於該壓力抑制部件2338以及該蒸散部件 230之間。在一些例子中,一熱移除裝置2350,例如,定 義水循環外套2337的外套式水冷卻系統,可與該壓力抑 制部件2338相結合(亦即,外接於形成該燃燒器裝置220 的“殼”的該壓力抑制部件2338 ),連結該燃燒器裝置 220的該蒸散部件230而被施行的該蒸散液體210,舉例 而言,可以是與少量Η 0、及/或一惰性氣體(例如,\或 U Ld 氬)混合的C〇2,該蒸散部件230可包括,舉例而言,一多 孔金屬、一陶曼、一合成矩陣(composite matrix) 、層疊歧管(layered manifold)、任何其他合適的 結構、或其結合。在一些方面中,在該燃燒腔室222内的 燃燒可產生一高壓、高溫燃燒產物流,其可接續地被引 導至一電力產生裝置,例如,一渦輪,以進行與其相關 的擴張,正如於此的更全面敘述。 在此所揭示的一燃燒器裝置的實施例所執行的該相對而 言較高的壓力可作用來在一最小容積中將藉此所產生的 100125736 表單編號A0101 第42頁/共134頁 1003441436-0 201213655 能量濃縮為相對而言較高的強度,其本質上造成相對而 言較高的能量密度。該相對而言較高的能量密度使得此 能量的下游處理能夠以比在較低壓力時更有效率的方式 執行,以及因此提供了用於技術的可行性因子。因此, 本份揭示的各方面提供了強度等級大於現有發電廠的能 量密度(亦即,10-100倍)。該較高的能量密度增加了 處理的效率,但亦降低了執行自熱能至電力的能量轉換 所需設備的成本(藉由降低該設備的尺寸以及質量,因此 降低該設備的成本)。 正如以其它方式在此所討論的,在本發明方法及系統中 所使用的該燃燒器裝置可用於燃燒各種不同的含碳燃料 源。在特定的實施例中,該含碳燃料可大體上完全地燃 燒,以使得該燃燒產物流中不會包括液態、或固態不可 燃材料。然而,在一些實施例中,可使用於本發明的一 固態含碳燃料(例如,煤)可能導致不可燃材料的出現 。在特定實施例中,該燃燒器裝置可包括達成造成在該 固態含碳燃料中的該等不可燃元件於該燃燒處理期間被 液化的一燃燒溫度的能力。在如此的例子中,可應用移 除該液化不可燃元件的方式。移除的完成可以,舉例而 言,利用氣旋式分離器、撞擊式分離器、或設置在環形 架構中的分級耐火顆粒狀過濾器床、或其結合。在特別 實施例中,熔滴可藉由一串聯的氣旋式分離器(例如,舉 例而言,在第4圖中所顯示的一分離器裝置2340 )而自該 高溫循環液體流中被移除。一般而言,本份揭示所執行 的如此一氣旋式分離器的各方面可包括複數個串聯設置 的離心分離裝置1〇〇(包括一入口離心分離器裝置100A, 100125736 表單編號A0101 第43頁/共134頁 1003441436-0 201213655 其被配置來接收該燃燒產物/離開液體流以及與其相關連 的該等液化不可燃元件),以及一出口離心分離器裝置 1 008,其被配置為排出燃燒產物/離開液體流,該燃燒產 物/離開液體流具有大體上從其移除的該等液化不可燃元 件。每一個離心分離器裝置100包括複數個離心分離器元 件、或氣旋1,其可操作地設置為與一中央收集管路2平 行,其中每一個離心分離器元件、或氣旋1被配置為可自 該燃燒產物/離開液體流中移除至少一部份的該等液化不 可燃元件,以及將該等液化不可燃元件的已移除部份引 導至一污水坑20。如此的一分離器裝置2340可被配置來 在一升高的壓力下操作,以及,因此,可更進一步包括 一承壓殼體(pressure-containing housing),其 被配置來收藏該等離心分離器裝置以及該污水坑。根據 如此方面,該承壓殼體125可以是該壓力抑制部件238(其 亦環繞該燃燒器裝置220 )的延伸,或者,該承壓殼體125 可以是能夠與關連於該燃燒器裝置2 2 0的該壓力抑制部件 2338相結合的一分離部件。在任一例子中,由於該分離 器裝置2340經由該離開液體流所體驗到的該升高的溫度 ,該承壓殼體125亦可包括可操作地與其相結合來移除自 其產生的熱的一散熱系統,例如,一具有液體於其中循 環的熱傳遞外套(未顯示)。在一些方面中,一熱恢復 裝置(未顯示)能夠可操作地與該熱傳遞外套相結合, 其中,該熱恢復裝置可被配置來接收在該熱傳遞外套中 所循環的液體,以及重新獲得來自該液體的熱能。 在特別的實施例中,該(爐渣移除)分離氣裝置2340 ( 顯示於第4圖中)可被配置為在其出口部份222B周圍而與 100125736 表單編號A0101 第44頁/共134頁 1003441436-0 201213655 該燃燒職置220串聯設置,以自其接收該離雜體流/ 燃燒產物。來自該燃燒器裝置22()職蒸散冷卻離開液體 流,與其中的該等液態爐渣(不可燃元件)炫滴-起可 被引導而經由一圓錐狀漸縮管1〇進入該入口離心分離器 裝置10GA的-中央收集提供2A。在—方面中,該分離器 裝置2340可包括三個離心分離器裝置1〇〇A、i〇〇b、 100C (雖然本領域具通常知識者將可理解的是,一分離The buffer layer 231 can be configured to buffer the interaction between the internal evapotranspiration component 2332 and the liquefied non-combustible component associated with the combustion product and heat. That is, in some examples, the evapotranspiration liquid 210 can be delivered through the internal evapotranspiration component 2332, for example, at least under pressure within the combustion chamber 222, wherein the evapotranspiration liquid 21 〇 enters the combustion The flow rate of chamber 222 (i.e., c〇2 flow) is sufficient to mix the effluent liquid 210 with the combustion product and to cool the combustion product to form an exiting liquid mixture at a sufficient temperature for the inlet demand for subsequent downstream processing. (i.e., a turbine may require an inlet temperature of, for example, about 1 '225 C), but wherein the leaving liquid mixture is still sufficiently south to maintain slag droplets or other contaminants in the fluid, or liquid state of the fuel. The liquid state of the non-combustible elements of the fuel may contribute, for example, to the separation of such contaminants from the liquid form of the combustion 100125736 Form No. A0101 Page 39 / Total 134 pages 1003441436-0 201213655 Preferably, in a free flowing, low viscosity form, it will be less likely to impede or otherwise damage any removal system performed for such separation. In practice, such a demand may depend on various factors, such as the type of solid carbonaceous fuel (i.e., coal) used, and the particular characteristics of the slag formed in the combustion process. That is, the combustion temperature in the combustion chamber 222 can cause any non-combustible elements in the carbonaceous fuel to be liquefied in the combustion products. In a particular aspect, the porous internal transpiration member 2332 is thus configured to direct the evapotranic liquid into the combustion chamber 222 in a radially inward manner, thereby forming a liquid barrier wall, or buffer layer 231, the liquid barrier wall The buffer layer 231 is associated with the surface of the internal evapotranspiration member 2332 that defines the combustion chamber 222 (see, for example, Figure 2). The surface of the internal evapotranspiration member 2 3 3 2 is also heated by the products of combustion. In this connection, the porous internal transpiration member 2332 can be configured to have suitable thermal conductivity such that the evapotranspiration liquid 210 passing through the internal transpiration member 2332 is heated while the porous internal transpiration member 2332 is simultaneously cooled, resulting in a definition The temperature of the surface of the internal transpiration member 2332 of the combustion chamber 222 falls within the highest combustion temperature range, approximately, for example, 1,000 °C. The liquid barrier wall or buffer layer 2 31 formed by the combination of the evapotranspiration liquid 210 and the internal esteam component 2332 thus buffers the interaction of the internal evapotranspiration component 2332 with the high temperature combustion products and slag or other contaminant particles, And thus the internal transpiration member 2332 is buffered from contact, contamination, or other damage. Furthermore, the evapotranspiration liquid 210 can be introduced into the combustion chamber 222 via the internal esteam component 2332 in a manner to adjust the combustion chamber at a desired temperature (eg, from about 500 ° C to about 2,000 ° C). The evapotranspiration liquid 100125736 around the outlet portion 222B of 222 is shown in Form No. A0101, page 40 of 134, 1003441436-0 201213655 210, and an exiting mixture of the combustion products. In a particular embodiment, the burner assembly 220 can thus be configured to provide a relatively complete combustion of a fuel 254 at a relatively high operating temperature as described herein - efficient burning Device. In some examples, such a burner burner - 'or more cooling liquid' and / or - or more evapotranspiration 21 〇 . Additional parts can also be (4) connected to the burning brain | set 22 (four) is executed. For example, an air separation unit may be provided to separate % and enthalpy, and - a fuel injector device may provide for the collection of the unit from the air separation unit 2 and the circulation of the liquid and the gas, _Liquid, 2 - supercritical liquid, or - a fuel stream of solid particulate fuel in the form of high density CG2_t combined. In another aspect, the evapotranspiration burner set 22 can include a fuel injector to inject a pressurized fuel stream into the combustion chamber 222 of the burner assembly 22, wherein the fuel The stream may include a treated carbonaceous fuel 254, a fluidizing medium 255 (which may include the circulating liquid coffee 'as discussed herein), and oxygen 242 1 (rich) oxygen such as the Cl circulating liquid 236 may be combined Become a homogeneous supercritical mixture. The amount of oxygen present is sufficient to combust the fuel and produce a combustion product having the desired composition. The burner assembly 220 can also include a combustion chamber 222 configured to - a high pressure, high temperature combustion volume to receive the fuel stream, and enter the porous venting member 23 by defining a combustion chamber 222 Combustion volume - evapotranic liquid 210. The feed rate of the evapotranspiration liquid 21〇 can be used to control the temperature of the burner unit outlet portion/turbine inlet portion to a desired value, and/or to cool the evapotranspiration member 23 to be compatible with forming the evapotranspiration The temperature of the material of component 230. The evapotranspiration liquid 210 directed through the evapotranspiration 100125736 Form No. Λ0101, page 41/134, 1003441436-0 201213655 component 230 provides a liquid/buffer at the surface of the evapotranspiration member 230 defining the combustion chamber 222. a layer, wherein the liquid/buffer layer prevents particles of ash or liquid slag from interacting with the exposed walls of the evaporative component 230 due to combustion of certain fuels. The combustion chamber 222 can be further configured to The fuel stream (and the circulating liquid 236) may be injected at a pressure greater than the pressure at which the combustion occurs, or otherwise introduced into the combustion chamber 222. The burner assembly 220 can include a pressure suppression component 2338 that at least partially surrounds the evapotranspiration member 230 defining the combustion chamber 222, wherein a thermal insulation component 2339 can be disposed to the pressure suppression component 2338 and the evapotranspiration component 230 between. In some examples, a heat removal device 2350, for example, a jacketed water cooling system defining a water circulation jacket 2337, can be combined with the pressure suppression member 2338 (i.e., circumscribed to the "shell" forming the burner assembly 220. The pressure suppression member 2338), the evapotranspiration liquid 210 to which the transpiration member 230 of the burner device 220 is coupled, may be, for example, a small amount of Η0, and/or an inert gas (for example, \or U Ld argon mixed C 〇 2, the transpiration member 230 may comprise, for example, a porous metal, a terrarium, a composite matrix, a layered manifold, any other suitable Structure, or a combination thereof. In some aspects, combustion within the combustion chamber 222 can produce a high pressure, high temperature combustion product stream that can be subsequently directed to a power generating device, such as a turbine, for expansion associated therewith, as in A more comprehensive description of this. The relatively higher pressure performed by the embodiment of a burner apparatus disclosed herein can be applied to generate a 100125736 form number A0101 in a minimum volume. Page 42 of 134 pages 1003441436- 0 201213655 Energy concentration is a relatively high intensity which essentially results in a relatively high energy density. This relatively high energy density enables downstream processing of this energy to be performed in a more efficient manner than at lower pressures, and thus provides a feasibility factor for the technology. Thus, aspects of this disclosure provide a level of strength greater than that of an existing power plant (i.e., 10-100 times). This higher energy density increases the efficiency of the process, but also reduces the cost of the equipment required to perform the energy conversion from self-heating to electrical power (by reducing the size and quality of the device, thereby reducing the cost of the device). As discussed herein in other ways, the burner apparatus used in the method and system of the present invention can be used to combust a variety of different carbonaceous fuel sources. In a particular embodiment, the carbonaceous fuel can be substantially completely combusted such that the combustion product stream does not include a liquid, or solid, incombustible material. However, in some embodiments, a solid carbonaceous fuel (e.g., coal) useful in the present invention may result in the appearance of non-combustible materials. In a particular embodiment, the burner assembly can include the ability to achieve a combustion temperature that causes the non-combustible elements in the solid carbonaceous fuel to be liquefied during the combustion process. In such an example, the manner in which the liquefied non-combustible component is removed can be applied. The completion of the removal may, for example, utilize a cyclonic separator, an impact separator, or a graded refractory particulate filter bed disposed in a toroidal configuration, or a combination thereof. In a particular embodiment, the droplets may be removed from the high temperature circulating liquid stream by a series of cyclonic separators (e.g., a separator device 2340 shown in Figure 4). . In general, aspects of such a cyclonic separator as disclosed herein may include a plurality of centrifugal separators 1 in series (including an inlet centrifugal separator device 100A, 100125736, Form No. A0101, page 43 / 134 pages 1003441436-0 201213655 which are configured to receive the combustion product/outflow liquid stream and associated liquefied non-combustible elements thereof, and an outlet centrifugal separator device 008 configured to discharge combustion products/ Leaving the liquid stream, the combustion product/exit liquid stream has such liquefied non-combustible elements that are substantially removed therefrom. Each centrifugal separator device 100 includes a plurality of centrifugal separator elements, or a cyclone 1, operatively disposed in parallel with a central collection line 2, wherein each centrifugal separator element, or cyclone 1, is configured to be self-contained The combustion product/exit liquid stream removes at least a portion of the liquefied non-combustible elements and directs the removed portions of the liquefied non-combustible elements to a sump 20. Such a separator device 2340 can be configured to operate at an elevated pressure and, thus, can further include a pressure-containing housing configured to collect the centrifugal separators The device and the sump. According to such an aspect, the pressure bearing housing 125 can be an extension of the pressure suppression member 238 (which also surrounds the burner assembly 220), or the pressure bearing housing 125 can be associated with the burner device 2 2 A pressure separating member 2338 of 0 is combined with a separate member. In either case, due to the elevated temperature experienced by the separator device 2340 via the exiting liquid stream, the pressure bearing housing 125 can also include a operatively coupled therewith to remove heat generated therefrom. A heat dissipation system, for example, a heat transfer jacket (not shown) having a liquid circulating therein. In some aspects, a heat recovery device (not shown) can be operatively coupled to the heat transfer jacket, wherein the heat recovery device can be configured to receive liquid circulated in the heat transfer jacket and regain Thermal energy from the liquid. In a particular embodiment, the (slag removal) separation gas unit 2340 (shown in Figure 4) can be configured to be around its outlet portion 222B and with 100125736 Form No. A0101 Page 44 of 134 Page 1003441436 -0 201213655 The combustion station 220 is placed in series to receive the dew flow/combustion product therefrom. The effluent from the burner unit 22 is cooled to exit the liquid stream, and the liquid slag (non-combustible elements) therein can be guided to enter the inlet centrifugal separator via a conical reducer 1 The central collection of device 10GA provides 2A. In the aspect, the separator device 2340 can include three centrifugal separator devices 1A, i〇〇b, 100C (although it will be understood by those of ordinary skill in the art that a separation

器裝置可包括一、二、三、或更多離心分離器裝置當 必須或有想要時)。在此例子中,可操作地被設置為串 聯的該三個離心分離器裝置1〇〇A、1〇〇B、1〇叱提供了一 3階段氣旋分離單元。每—個離心分離器裝置包括,舉例 而言’複數個離心分離器元件(氣旋n,其設置在該相The device may include one, two, three, or more centrifugal separator devices when necessary or desired. In this example, the three centrifugal separator devices 1A, 1B, 1A operatively arranged in series provide a 3-stage cyclone separation unit. Each of the centrifugal separator devices includes, by way of example, a plurality of centrifugal separator elements (cyclonic n, which are disposed in the phase

對應中央收集管路2的周圍’該入口離心分離器裝置l〇〇A 的該等中央收集提供2A以及該等中央收集管路2,以及該 中間離心分離器裝置藏每—㈣在其出口末端處為密 封。在該些例子中,該離開液想流被引導進人對應於分 別的離心分離器裝置UO的該等離心分離器元件(氣旋】 )的每一個的分支通道11。該等分支通道11被配置為與 分別的氣旋1的入口末端相結合,以為其形成一正切入口 (tangentiai inlet)(其造成,舉例而言,螺旋流 中進入該氣旋1的該離開液體流與該氣旋i的器壁產生相 互作用)。來自每-個氣旋1的該出口通道3接著按照路 線進入該分別離心分離器裝置1〇〇的該中央收集管路2的 該入口部份。在該出口離心分離器I置1_處,該離開 液體流(具有大體上與其分離之不可燃元件)從該出口 100125736 離心分離器裝置100Β的該中央收集管路 表單編號Α0101 第45頁/共134頁 以及經由一收 1003441436-0 201213655 集管路12以及一出口喷嘴5而被引導,以使得該“乾淨 的”離開液體流可接著被導向一接續處理,例如,相關 連該轉換裝置者。因此,示範性的三階段氣旋分離設置 使得在該離開液體流中的爐渣可被移除而降至,舉例而 言,按質量的5 ppm以下。 在該分離器裝置2340的每一個階段,已分離的液態爐渣 從該等氣旋1的每一個經由延伸向一污水坑20的出口管4 而被引導。該已分離的液態爐渣接著被導入延伸自該污 水坑20以及該承壓殼體125的一出口喷嘴或管路14,以自 其中移除、及/或重新獲得成份。在實現該爐渣的移除時 ,該液態爐渣可被導向通過一水冷區段6、或否則通過一 具有高壓、冷水連接的區段,其中,與水的相互作用造 成該液態爐渣固化、及/或形成粒狀。固化的爐渣與水的 混合物可接著在一管線(收集提供)7中被分離為一爐渣 /水液體混合物,其可通過一適當的閥門9而被移除,特 別是在壓降之後,同時間,任何剩餘的氣體可經由一分 離的線8而被移除。在一些實施例中,順序操作的相關系 統之一對管線可允許系統的連續操作。 由於該分離器裝置2340可與相對而言較高溫度的燃燒產 物流(亦即,在足以使該等不可燃元件以較低黏度維持 在液體形式的溫度)一起執行,在一些例子中可能想要 的是暴露至該燃燒產物/離開液體流以及與其相關連的該 等已液化不可燃元件的其中之一的該分離器裝置2340之 表面可以由配置為具有高溫抗性,高腐蝕抗性,以及低 導熱性的其中之一的材料所構成。如此之材料的實例可 包括,氧化鍅以及氧化鋁,雖然如此的實例並非意欲於 100125736 表單編號A0101 第46頁/共134頁 1003441436-0 201213655 作為任何型式的限制。因此,在某些方面中,該分離器 裝置2340可被配置為自該燃燒產物/離開液體流中大體上 移除該等已液化不可燃元件,以及將該等不可燃元件維 持在低黏度液態形式,至少直到其自該污水坑2〇的移除 。當然,在使用非固態燃料以及不可燃材料不被包括在 該燃燒產物流中的實施例中,就不需要額外增加該爐渣 分離器。Corresponding to the central collection line 2, the central collection of the inlet centrifugal separator device 10A provides 2A and the central collection line 2, and the intermediate centrifugal separator device stores each (4) at its outlet end The place is sealed. In these examples, the exiting liquid stream is directed into a branch passage 11 of each of the centrifugal separator elements (cyclones) corresponding to the respective centrifugal separator devices UO. The branch channels 11 are configured to be combined with the inlet ends of the respective cyclones 1 to form a tangentiai inlet (which causes, for example, the exiting liquid flow into the cyclone 1 in the spiral flow) The wall of the cyclone i interacts). The outlet passage 3 from each of the cyclones 1 then enters the inlet portion of the central collection line 2 of the respective centrifugal separator device 1 in accordance with the route. At the outlet centrifugal separator I, at the outlet, the exiting liquid stream (having a substantially non-combustible element separated therefrom) from the outlet 100125736, the central collection line of the centrifugal separator device 100A, Α0101, page 45/total Page 134 and via a collection 1003441436-0 201213655 collection line 12 and an outlet nozzle 5 are directed such that the "clean" exit liquid stream can then be directed to a subsequent process, for example, associated with the conversion device. Thus, an exemplary three-stage cyclonic separation arrangement allows the slag in the exiting liquid stream to be removed and reduced, for example, by less than 5 ppm by mass. At each stage of the separator device 2340, the separated liquid slag is guided from each of the cyclones 1 via an outlet pipe 4 extending to a sump 20. The separated liquid slag is then introduced into an outlet nozzle or line 14 extending from the sump 20 and the pressure bearing housing 125 to remove, and/or re-acquire, components therefrom. In effecting the removal of the slag, the liquid slag may be directed through a water-cooled section 6, or otherwise through a section having a high pressure, cold water connection, wherein the interaction with water causes the liquid slag to solidify, and/ Or form granular. The mixture of solidified slag and water can then be separated into a slag/water liquid mixture in a line (collection provided) 7, which can be removed by a suitable valve 9, especially after the pressure drop, at the same time Any remaining gas can be removed via a separate line 8. In some embodiments, one of the sequential operational phase pairs may allow for continuous operation of the system. Since the separator device 2340 can be executed with a relatively higher temperature combustion product stream (i.e., at a temperature sufficient to maintain the non-flammable elements at a lower viscosity in liquid form), in some instances it may be desirable It is desirable that the surface of the separator device 2340 exposed to the combustion product/outflow liquid stream and one of the liquefied non-combustible elements associated therewith can be configured to have high temperature resistance, high corrosion resistance, And a material composed of one of low thermal conductivity. Examples of such materials may include cerium oxide and aluminum oxide, although such an example is not intended to be 100125736 Form No. A0101 Page 46 of 134 1003441436-0 201213655 as a limitation of any type. Thus, in certain aspects, the separator device 2340 can be configured to substantially remove the liquefied non-combustible elements from the combustion product/exit liquid stream and maintain the non-combustible elements in a low viscosity liquid state Form, at least until it is removed from the sump. Of course, in embodiments where a non-solid fuel is used and the non-combustible material is not included in the combustion product stream, there is no need to additionally add the slag separator.

ϋ 在一些實施例中,該分離器裝置2340可被用來從任何會 產生一不可燃固態殘渣的燃料(例如,煤)的燃燒中分 離微粒狀固態灰燼殘渣《舉例而言,該煤可被磨碎成為 所欲的尺寸(例如,使得少於微粒狀、或粉末狀煤的按 重量之1%可包括尺寸大於100 μιη的粒子的尺寸)並利用 液態(:〇2形成漿料。在特定的實施例申,該液態(^〇2的溫 度可處於大約-40 C至大約-18 C。該浆料可包括大約 40%至大約按重量的60%的煤。接著,該漿料可受壓至所 需的燃燒壓力。請參閱第1圖,該回收流236可相關於進 入該燃燒器220的模式而分離。一第一部份(流236a)可 經由該混合設置250而被輸入該燃燒器220之中,以及一 第二部份(流236b)可藉由穿越該蒸散冷卻層230而被輸 入該燃燒器220之中。正如前述,其有可能以造成還原氣ϋ In some embodiments, the separator device 2340 can be used to separate particulate solid ash residues from the combustion of any fuel (eg, coal) that produces a non-combustible solid residue. For example, the coal can be Grinding to a desired size (for example, such that less than 1% by weight of the particulate or powdered coal may include the size of the particles having a size greater than 100 μm) and using a liquid (: 〇 2 to form a slurry. The embodiment may have a temperature of from about -40 C to about -18 C. The slurry may include from about 40% to about 60% by weight of coal. The slurry may then be subjected to Pressurized to the desired combustion pressure. Referring to Figure 1, the recovery stream 236 can be separated in relation to the mode of entering the burner 220. A first portion (stream 236a) can be input via the mixing arrangement 250. A second portion (stream 236b) of the combustor 220 can be introduced into the combustor 220 by traversing the evaporative cooling layer 230. As mentioned above, it is possible to cause a reducing gas.

體混合物(例如’包括,Η,CHj,CO,H„S,及/或NH Z 4 2 3 )形式的〇2與燃料比率而操作該燃燒器220。透過該蒸散 冷卻層而進入該燃燒器的流236的部份可被用來將該等燃 燒氣體與該co2循環液體的混合物冷卻至大體上低於該灰 燼固化溫度的一溫度(例如,落在大約500 °C至大約900 °0的範圍内)。來自該分離器裝置2340的總氣體流5可通 100125736 表單編號A0101 第47頁/共134頁 1003441436-0 201213655 過一過遽單兀’其可將該剩餘固態灰燼微粒的等級降至 非常低的數值(例如,低於通過該過濾器之氣體的大約2 mg/m )。此乾淨的氣體接著在一第二燃燒器中進行燃燒 ’在此’其可利用另外部份的回收液體流236進行稀釋。 在运樣的實施例中,該回收液體流236依需要可被分配於 二個燃燒器間。 根據本發明’任何含碳材料都可被使用做為燃料。特別 地是’由於在本發明的方法及系統中所使用之以氧做為 燃料的燃燒器裝置所維持的高壓以及高溫,可用的燃料 包括’但不限於’各種等級以及型態的煤、木頭、油、 燃料油、天然氣、以煤為基底的燃料氣體,來自焦油砂 的焦油’瀝青(bitumen),生質體,藻類、分級的可燃 固態廢棄垃圾、柏油(aSpha 11)、廢舊輪胎、柴油、汽 油、噴氣燃料(jet fuel ) ( JP- 5,JP- 4)、衍生 自含烴材料的汽化、或熱解的氣體、乙醇、固態及液體 的生質燃料。此可被視為是與習知系統及方法重要差別 。舉例而言,已知用來燃燒固態燃料(例如,煤)的習知 系統比起用來燃燒非固態燃料(例如,天然氣)的系統需 要相當不同的設計。 燃料可以進行適當的處理,以允許以足夠的速度以及以 高於該燃燒腔室内的壓力注入該燃燒裝置中。如此的燃 料可為,在環境溫度或在升高的溫度下具有適當流動性 以及黏度的液態、漿料、膠狀、或糊狀形式。舉例而言 ,該燃料可被提供於大約30 °C至大約500。(:、大約40 °C至大約450 °C、大約50 °C至大約425。(3、或大約75 ° C至大約4 0 0 °C的溫度。任何固態燃料材質皆可進行研 100125736 表單编號A0101 第48頁/共134頁 1003441436-0 201213655 磨、或切碎,或另外地,進行處理,以適當地降低顆粒 尺寸。有需要時,可添加流體化、或漿料化媒介,以達 成適當的形式以及符合高壓幫浦的流動需求。當然,取 決於該燃料的形式(亦即,液態、或氣態),一流化介 質是可能不被需要。同樣地,在一些實施例中,已循環 的循環液體可被使用作為該流化介質。 ΟThe burner 220 is operated at a ratio of 〇2 to fuel in the form of a bulk mixture (eg, 'including, Η, CHj, CO, H„S, and/or NH Z 4 2 3 ). The chilled cooling layer is passed through the burner The portion of stream 236 can be used to cool the mixture of combustion gases and the co2 circulating liquid to a temperature substantially below the solidification temperature of the ash (eg, falling between about 500 ° C and about 900 ° 0) In the range), the total gas flow 5 from the separator device 2340 can pass 100125736 Form No. A0101 Page 47 / Total 134 pages 1003441436-0 201213655 After a single pass, it can lower the level of the remaining solid ash particles To a very low value (for example, about 2 mg/m below the gas passing through the filter). This clean gas is then burned in a second burner 'here' it can be recycled with another part The liquid stream 236 is diluted. In the illustrated embodiment, the recovered liquid stream 236 can be distributed between two burners as desired. Any carbonaceous material can be used as a fuel in accordance with the present invention. 'Because of the method in the present invention And the high pressure and high temperature maintained by the oxygen-fueled burner unit used in the system. The available fuels include, but are not limited to, various grades and types of coal, wood, oil, fuel oil, natural gas, coal. Fuel gas for the base, tar from the tar sand, bitumen, biomass, algae, classified flammable solid waste, tar (aSpha 11), used tires, diesel, gasoline, jet fuel ( JP-5, JP-4), vaporized, or pyrolyzed gas, ethanol, solid and liquid biomass fuels derived from hydrocarbonaceous materials. This can be considered as an important difference from conventional systems and methods. It is known that conventional systems for burning solid fuels (e.g., coal) require quite different designs than systems for burning non-solid fuels (e.g., natural gas). The fuel can be properly treated to allow for adequate The velocity is injected into the combustion apparatus at a higher pressure than the combustion chamber. Such a fuel may be suitably fluid at ambient or elevated temperatures. And a liquid, slurry, gel, or paste form of viscosity. For example, the fuel can be supplied from about 30 ° C to about 500. (:, about 40 ° C to about 450 ° C, about 50 ° C to approximately 425. (3, or a temperature of approximately 75 ° C to approximately 400 ° C. Any solid fuel material can be ground 100125736 Form No. A0101 Page 48 / Total 134 pages 1003441436-0 201213655 Grinding, or Shredding, or otherwise, processing to properly reduce the particle size. Fluidization, or slurrying media may be added as needed to achieve the proper form and to meet the flow requirements of the high pressure pump. Of course, depending on the form of the fuel (i.e., liquid, or gaseous), a fluidized medium may not be needed. Likewise, in some embodiments, recycled circulating liquid can be used as the fluidizing medium. Ο

根據本發明,適合於一燃燒器中使用的蒸散液體可包括 能夠以足夠的量以及壓力流過該内襯而形成該蒸汽壁的 任何液體。在本實施例中,c〇2可為理想的蒸散液體,因 為所形成的蒸汽壁具有良好的熱絕緣特性以及可見光與 UV光吸收特性。C〇2可被使用作為超臨界液體。蒸散液體 的其他實例包括\0、自下游回收的已冷卻燃燒產物氣體 、氧氣、虱氣、天然氣、曱烧、以及其他輕質烴。燃料 尤其可以在該燃燒器的起始期間被使用作為蒸散液體, 以在主要燃料源注入前在該燃燒器十達成適當的操作溫 度以及壓力。燃料亦可以被使用作為蒸散液體,以在主 要燃料源間的切換期間(例如,當由煤切換為生質體作為 主要燃料時)調整該燃燒器的操作溫度以及壓力。在一些 實施例中,可使用二、或更多蒸散液體。再者,不同的 蒸散液體可被使用在沿著該燃燒器的不同位置。舉例而 言,一第一蒸散液體可被使用在一高溫熱交換區域,以 及一第二蒸散液體可被使用在一較低溫熱交換區域。該 蒸散液體可針對由該蒸散液體形成該蒸汽壁的該燃燒腔 室的溫度以及壓力條件進行最佳化。在本實例中,該蒸 散液體是預先加熱的回收C〇2。 在一方面中,本發明提供發電的方法。特別地是,該等 100125736 表單编號A0101 第49頁/共134頁 1003441436-0 201213655 方法使用c〇2循環液體,其較佳地是如此所述而透過該方 法回收。本發明的方法亦使用高效燃燒器,例如,正如 前述的蒸散冷卻燃燒器。在某些實施例中,方法通常是 關連於第5圖所顯示的流程圖而進行敘述。正如可於其中 看出,提供有一燃燒器220,以及亦於其中提供有各種輸 入。一含碳燃料254以及02242 (依需要)可與一循環液 體236 (在本實施例中為⑶^ 一起被導入該燃燒器22〇之 中。由虛線所闡明的一混合設置250指示了此零件是選擇 性的出現。特別地是,二、或所有三種材料(燃料、 以及c〇2循環液體)的任何結合皆可在導入該燃燒器 220之前,先在該混合設置250中進行結合。 在各種實施例甲,所想要的是,進入該燃燒器的材料展 現出特定的有助於該發電方法的所欲、有效率操作的物 理特徵。舉例而言,在某些實施例中,所想要的是,在 C〇2循環液體中的(:〇2以已定義的壓力、及/或溫度被導入 該燃燒器中。特別地,有益的是對被導入該燃燒器中的 該C〇2 ’具有至少大約8 MPa的壓力。在另外的實施例中 ,被導入該燃燒器中的(:〇2可處在至少大約1〇 MPa、至少 大約12 MPa、至少大約14 MPa、至少大約1 5 MPa、至 少大約16 MPa、至少大約18 MPa、至少大約20 MPa、 至少大約22 MPa、至少大約24 MPa、或至少大約25 Mpa的壓力。在其他的實施例中,該壓力可為大約8 MPa 至大約50 MPa、大約12 MPa至大約50 MPa、大約15 MPa至大約50 MPa、大約20 MPa至大約50 MPa、大約22 MPa至大約50 MPa、大約22 MPa至大約45 MPa、大約22 MPa至大約40 MPa、大約25 MPa至大約40 MPa、或大約 100125736 表單編號A0101 第50頁/共134頁 1003441436-0 201213655 25 MPa至大約35 MPa。再者,對被導入該燃燒器中的該 C〇2而言,有益的是,具有至少大約200 °C的溫度。在另 外的實施例中,被導入該燃燒器中的(:〇2可處於至少大約 250 2、至少大約30 0 2 、至少大約350 2、至少大約 400 e、至少大約450 2 、至少大約500 2、至少大約 550 Q、至少大約600 2 、至少大約650 2、至少大約 700 2、至少大約750 2 、至少大約800 2、至少大約 850 Q、或至少大約900 2的溫度。 在一些實施例中,所想要的是,被導入該燃燒器中的燃 料是被提供在特定的條件下。舉例而言,在某些實施例 中,所想要的是,該含碳燃料在一已定義壓力、及/或溫 度下被導入該燃燒器中。在一些實施例中,該含碳燃料 是在與該(:〇2循環液體的條件相等於、或大體上類似的條 件下被導入該燃燒器中。該用詞“大體上類似的條件” 可表示一條件參數是落在於此所敘述的參考條件參數( 例如,C〇2循環液體的條件參數)的5%内、4%内、3%内、 2%内、或1%内。在某些實施例中,該含碳燃料在導入該 燃燒器前可先與該(:〇2循環液體相混合。在如此的實施例 中,可預期地是,該含碳燃料以及該(:〇2循環液體會處於 相同、或大體上類似的條件(其特別地可包含相關於c〇2 循環液體而敘述的條件)。在其他實施例中,該含碳燃 料可與該c〇2循環液體分離而被導入該燃燒器中。在如此 的情形下,該含碳燃料仍會是在如相關於c〇2循環液體所 敘述的壓力下被導入。在一些實施例中,有用的是,在 導入該燃燒器前,將該含碳燃料維持在與該(:〇2循環液體 不同的溫度。舉例而言,該含碳燃料能在大約30 °C至大 100125736 表單編號A0101 第51頁/共134頁 1003441436-0 201213655 約800 t:、大約35 °C至大約700 °C '大約40。<:至大約 600 °C、大約45 °C至大約500 °C、大約50。(:至大約 400 °C、大約55 °C至大約300 t:、大約60 °C至大約 200 °C、大約65 °C至大約175 °C、或大約70。(:至大約 150 C的溫度被導入該燃燒器。 在其他實施例中,所想要地是,被導入該燃燒器中的〇2 疋被提供在特定’的條件下。如此的條件可伴隨著該提供 〇2的方法。舉例而言,所想要的是提供處於特定壓力的 02。具體而言,對被導入該燃燒器中的該〇2而言,有益 的是具有至少大約8 MPa的壓力。在進一步的實施例中, 被導入該燃燒器中的〇2所處的壓力可為至少大約1〇 Mpa 、至少大約12 MPa、至少大約14 MPa、至少大約1 5 MPa、至少大約16 MPa、至少大約18 MPa、至少大約2〇 MPa、至少大約22 MPa、至少大約24 MPa、至少大約25 MPa、至少大約30 MPa、至少大約35 MPa、至少大約4〇 MPa、至少大約45 MPa、或至少大約50 MPp 〇2的提供 可包含使用一空氣分離器(或氧氣分離器),例一 低溫02濃縮器、-〇2傳送分離器 '或任何類似的裝置, 例如’用來從環境空氣中分離出^的—^離子傳送分離 器。正如前述&的提供可分別或與其結合而包括對該 加壓’以違到所需的壓力。如此的動作可造成、的加熱 。在-些實施例中,想要的是,〇2處於與藉加壓2氣體而 固有地達狀溫度不同的溫度。例如,想要㈣被提供 至該燃燒器的g2的溫度為大約3Q 約_ t、大約 35 °C至大約800。(:、大約40 r至大約7〇〇它、大約 100125736 45 °C至大約600 °C '大約5Q 〇c至大約咖t '大約 1003441436-0 表單編號A0101 第52頁/共134頁 201213655 Ο 55 °C至大約400 °C、大約60它至大約3〇〇它、大約 65 °C至大約250 °C、或大約70 〇c至大約2〇〇 ι。再者 ,在一些實施例中,該&能在與該⑶〗循環液體、及/或 該含碳燃料的條件相等於、或大體上類似的條件下被導 入該燃燒器中。這可能起因於在導入該燃燒器前的各種 成份的混合、或可能起因於準備導入該燃燒器的、的特 定方法。在特別的實施例中,該〇2可與已定義莫耳比率 量的C〇2相結合,以使得〇2的提供溫度可與該c〇循環液 體相同。舉例而言,當燃燒可在低於100 r的溫度下實 行的同時,該C〇2可處於一超臨界壓力。此消除了由於 C〇2稀釋效應之關連於單獨對純〇2加熱的燃燒的危險性。 如此的混合物可為大約1:2至大約5:1、大約1:1至大約 4 :1、或大約1 :1至大約3 :1的CO /0比率。 2 2 Ο 在一些實施例中,有用地是,供應至該燃燒器的〇2被大 體上純化(亦即,就相關於自然出現在空氣中的其他成 份的莫耳_含量之方面而提升〇2)。在某些實施例中,該 〇2所具有的純度可大於約50%莫耳、大於約60%莫耳、大 於約70%莫耳、大於約80%莫耳、大於約85%莫耳、大於 約90%莫耳、大於約95%莫耳、大於約96%莫耳、大於約 97%莫耳、大於約98%莫耳、大於約99%莫耳、或大於約 99. 5%莫耳。在其他的實施例中,該〇2所具有的莫耳純度 可為大約85%至大約99. 6%、大約85%至大約99%、大約 90%至大約99%、大約90%至大約98%、或大約90%至大約 97%。回收自燃料中的碳的所有C〇2皆有助於在至少大約 99. 5%莫耳範圍的較高純度使用。 100125736 該(:〇2循環液體可在該燃燒器的入口處與該〇2以及該含碳 表單編號A0101 第53頁/共134頁 201213655 燃料-起被導人該雜” n正如先前 散冷卻燃燒器的敘述,該c〇2循環液體亦可透過 ^ 蒸散冷卻減器中的-、或更多蒸散液體供應通^該 導入該蒸散冷卻燃制中1料被導人該蒸散= 的蒸散冷卻液體的所有、或部份。在„些根據本I 實施例中,該〇)2彳《液體可在該燃燒器的人祐月的 該燃燒器(亦即,與該〇2以及燃料一起),以及;導入 環液體亦可透過該蒸散部件而被導入該燃燒器二作f 所有、或部份的蒸散冷卻液體。在其他實施例中為 循環液體可《過該蒸散部件㈣導人魏燒器中 作為所有、或部份㈣蒸散冷卻㈣(亦即,沒有C 與該02以及該燃料被導入該燃燒器入口)。 2 在-些實施例中,本發明的特徵是相關於被導入該燃燒 腔室的各種成料tt率。為了達到最线燒效率,有用 地是在高溫下燃燒該含碳燃料。然而,燃燒的溫度以及 離開祕燒器的燃燒產物流的溫度可能需要被控制在已 定義參數内。為此,有用地是針對燃料提供特殊比率的 該(:〇2循裱液體’以使得在燃燒溫度、及/或渦輪入口溫 度可被控制在所欲範圍内,同時亦可最大化可被轉換為 電力的能量的量。在特定的實施例中,此可藉由調整該 燃料中該(:〇2循環液體流與碳的比率而達成。正如在此所 更完整敘述的’該所欲的比率可受到所欲渦輪入口溫度 以及位在熱交換器的熱端(hot end)處的入口與出口流 間溫度差異的影響。該比率可特別地被敘述為在該(;〇2循 環液體中的C〇2與在該含碳燃料中所存在的碳的比率’為 了決定被導入該燃燒器中的C〇2的莫耳量,在一些實施例 100125736 表單編號A0101 第54頁/共134頁 201213655 中,被提供至該燃燒器的整體c〇2含量(亦即,與燃料及 ο?在入口處被導入者,以及任何被使用作為一蒸散冷卻 液體的C〇2)被包含於計算中。然而,在特定的實施例中 ,該計算可單獨地依據在該燃燒器入口處被導入的C0的 2 ΟIn accordance with the present invention, an effluent liquid suitable for use in a combustor can include any liquid that can flow through the liner in a sufficient amount and pressure to form the vapor wall. In the present embodiment, c 〇 2 may be an ideal evapotran liquid because the formed vapor wall has good thermal insulating properties as well as visible light and UV light absorbing properties. C〇2 can be used as a supercritical liquid. Other examples of effluent liquids include \0, cooled combustion product gases recovered from downstream, oxygen, helium, natural gas, helium, and other light hydrocarbons. The fuel can be used, inter alia, as an effluent liquid during the initial period of the burner to achieve an appropriate operating temperature and pressure at the burner 10 prior to injection of the primary fuel source. Fuel can also be used as an effluent liquid to adjust the operating temperature and pressure of the burner during switching between primary fuel sources (e.g., when switching from coal to biomass as the primary fuel). In some embodiments, two or more evapotranible liquids can be used. Furthermore, different effluent liquids can be used at different locations along the burner. For example, a first evapotranspiration liquid can be used in a high temperature heat exchange zone, and a second evapotranspiration liquid can be used in a lower temperature heat exchange zone. The effluent liquid can be optimized for the temperature and pressure conditions of the combustion chamber from which the vapor wall forms the vapor wall. In this example, the effluent liquid is a preheated recovery C 〇 2 . In one aspect, the invention provides a method of generating electricity. In particular, these 100125736 Form No. A0101 Page 49 of 134 1003441436-0 201213655 The method uses a c〇2 circulating liquid which is preferably recovered as such by the method. The method of the present invention also uses a high efficiency burner, such as, for example, the evapotranspiration burner described above. In some embodiments, the method is generally described in relation to the flow chart shown in Figure 5. As can be seen therein, a burner 220 is provided and various inputs are also provided therein. A carbonaceous fuel 254 and 02242 (as needed) may be introduced into the burner 22(R) together with a circulating liquid 236 (in this embodiment, (3)^. A hybrid arrangement 250 as indicated by the dashed line indicates the part. It is optional to occur. In particular, any combination of two or all three materials (fuel, and c〇2 circulating liquid) can be combined in the mixing arrangement 250 prior to introduction into the burner 220. Various embodiments A, it is desirable that the material entering the burner exhibits specific physical characteristics that are desirable for efficient operation of the power generation method. For example, in some embodiments, It is desirable that (in the C 〇 2 circulating liquid (: 〇 2 is introduced into the burner at a defined pressure, and/or temperature. In particular, it is beneficial to the C that is introduced into the burner) 〇 2 ' has a pressure of at least about 8 MPa. In further embodiments, the 被 2 can be introduced into the burner (: 〇 2 can be at least about 1 MPa, at least about 12 MPa, at least about 14 MPa, at least about 1 5 MPa, at least approximately 16 MPa, Less than about 18 MPa, at least about 20 MPa, at least about 22 MPa, at least about 24 MPa, or at least about 25 Mpa. In other embodiments, the pressure can be from about 8 MPa to about 50 MPa, about 12 MPa. Up to about 50 MPa, from about 15 MPa to about 50 MPa, from about 20 MPa to about 50 MPa, from about 22 MPa to about 50 MPa, from about 22 MPa to about 45 MPa, from about 22 MPa to about 40 MPa, from about 25 MPa to about 40 MPa, or approximately 100125736 Form No. A0101 Page 50 of 134 Page 1003441436-0 201213655 25 MPa to approximately 35 MPa. Further, for the C〇2 introduced into the burner, it is beneficial to have a temperature of at least about 200 ° C. In further embodiments, (: 〇 2 may be at least about 250 2, at least about 30 0 2 , at least about 350 2, at least about 400 e, at least About 450 2 , at least about 500 2, at least about 550 Q, at least about 600 2 , at least about 650 2, at least about 700 2, at least about 750 2 , at least about 800 2, at least about 850 Q, or at least about 900 2 Temperature. In some In an embodiment, it is desirable that the fuel introduced into the combustor is provided under specific conditions. For example, in certain embodiments, it is desirable that the carbonaceous fuel is in a The pressure, and/or temperature has been defined to be introduced into the combustor. In some embodiments, the carbonaceous fuel is introduced under conditions that are equal to, or substantially similar to, the conditions of the (2) circulating liquid. In the burner. The term "substantially similar conditions" may mean that a conditional parameter falls within 5%, within 4%, within 3% of the reference condition parameter (eg, the condition parameter of the C〇2 circulating liquid) as recited herein. Within 2%, or within 1%. In certain embodiments, the carbonaceous fuel may be first mixed with the (?2) circulating liquid prior to introduction into the combustor. In such an embodiment, it is contemplated that the carbonaceous fuel and the (: The 〇2 circulating liquid may be in the same, or substantially similar, condition (which may specifically include conditions described in relation to the c〇2 circulating liquid). In other embodiments, the carbonaceous fuel may be cycled with the c〇2 The liquid is separated and introduced into the burner. In such a case, the carbonaceous fuel will still be introduced at a pressure as described in relation to the c〇2 circulating liquid. In some embodiments, it is useful, The carbonaceous fuel is maintained at a different temperature than the (?2) circulating liquid prior to introduction into the burner. For example, the carbonaceous fuel can range from about 30 ° C to a large 100125736 Form No. A0101 Page 51 / A total of 134 pages 1003441436-0 201213655 about 800 t:, about 35 ° C to about 700 ° C 'about 40. <: to about 600 ° C, about 45 ° C to about 500 ° C, about 50. (: to About 400 ° C, about 55 ° C to about 300 t:, about 60 ° C to large 200 ° C, about 65 ° C to about 175 ° C, or about 70. (: to a temperature of about 150 C is introduced into the burner. In other embodiments, desirably, is introduced into the burner The 〇2 疋 is provided under a specific condition. Such a condition may be accompanied by the method of providing 〇 2. For example, it is desirable to provide 02 at a specific pressure. Specifically, the pair is introduced into the For the crucible 2 in the combustor, it is beneficial to have a pressure of at least about 8 MPa. In a further embodiment, the crucible 2 introduced into the combustor can be at a pressure of at least about 1 〇Mpa, at least About 12 MPa, at least about 14 MPa, at least about 15 MPa, at least about 16 MPa, at least about 18 MPa, at least about 2 MPa, at least about 22 MPa, at least about 24 MPa, at least about 25 MPa, at least about 30 MPa. Providing at least about 35 MPa, at least about 4 MPa, at least about 45 MPa, or at least about 50 MPp 〇 2 may comprise using an air separator (or oxygen separator), such as a cryogenic 02 concentrator, -〇2 Transfer separator 'or any similar device For example, 'the ion transport separator used to separate the air from the ambient air. As provided in the foregoing & the <RTI ID=0.0> Heating, in some embodiments, it is desirable that the crucible 2 is at a temperature that is different from the inherent temperature of the pressurized gas. For example, it is desirable to provide (d) to the g2 of the burner. The temperature is about 3Q about _t, about 35 °C to about 800. (:, about 40 r to about 7 〇〇 it, about 100125736 45 ° C to about 600 ° C 'about 5Q 〇 c to about coffee t 'about 1003441436-0 Form No. A0101 Page 52 / Total 134 pages 201213655 Ο 55 From °C to about 400 ° C, about 60 it to about 3 〇〇 it, about 65 ° C to about 250 ° C, or about 70 〇 c to about 2 〇〇. Further, in some embodiments, & can be introduced into the burner under conditions equivalent to, or substantially similar to, the (3) circulating liquid, and/or the carbonaceous fuel. This may result from various components prior to introduction into the burner. Mixing, or may result from a particular method of preparing to introduce the burner. In a particular embodiment, the crucible 2 may be combined with a defined molar ratio of C〇2 to provide a temperature of the crucible 2 It may be the same as the c〇 circulating liquid. For example, when the combustion can be carried out at a temperature lower than 100 r, the C〇2 can be at a supercritical pressure. This eliminates the correlation due to the C〇2 dilution effect. The danger of burning purely 〇2 heating alone. Such a mixture can be large A ratio of CO / 0 of from about 1:2 to about 5:1, from about 1:1 to about 4:1, or from about 1:1 to about 3:1. 2 2 Ο In some embodiments, usefully, supply The crucible 2 to the burner is substantially purified (i.e., elevated in relation to the molar content of other components naturally present in the air). In certain embodiments, the crucible 2 Having a purity greater than about 50% molar, greater than about 60% molar, greater than about 70% molar, greater than about 80% molar, greater than about 85% molar, greater than about 90% molar, greater than about 95% Moth, greater than about 96% Mo, greater than about 97% Mo, greater than about 98% Mo, greater than about 99% Mo, or greater than about 99.5% Mo. In other embodiments, the 〇 2 may have a molar purity of from about 85% to about 99.6%, from about 85% to about 99%, from about 90% to about 99%, from about 90% to about 98%, or from about 90% to about 97. %. All C〇2 recovered from the carbon in the fuel contributes to higher purity in the range of at least about 99.5% Mo. 100125736 The (:〇2 circulating liquid can be at the inlet of the burner with The crucible 2 and the carbonaceous table No. A0101 Page 53 of 134 201213655 Fuel - starting from the conductor. n As described in the previous cooling burner, the c〇2 circulating liquid can also pass through the ^ evapotranspiration cooler - or more The evapotranspiration supply is introduced into the evapotranspiration, and the effluent is ignited by all or part of the evapotranspiration liquid. In some embodiments according to this I, the 液体The burner of the burner of the burner (i.e., together with the crucible 2 and the fuel), and the introduction of the loop liquid may also be introduced into the burner 2 through the evaporative component to make all or part of the burner Evapotranspiration of the cooling liquid. In other embodiments, the circulating liquid may be passed through the transpiration member (4) as a whole or part (4) evapotranspiration cooling (4) (ie, no C and 02 and the fuel is introduced into the burner inlet) . 2 In some embodiments, the invention features a variety of tt rates associated with being introduced into the combustion chamber. In order to achieve the most efficient burning efficiency, it is useful to burn the carbonaceous fuel at a high temperature. However, the temperature of the combustion and the temperature of the combustion product stream leaving the combustor may need to be controlled within defined parameters. To this end, it is useful to provide a special ratio of this (: 〇 2 circulatory liquid) to the fuel so that the combustion temperature, and/or the turbine inlet temperature can be controlled within the desired range, while also maximizing the conversion The amount of energy that is electrical. In a particular embodiment, this can be achieved by adjusting the ratio of the liquid flow to the carbon in the fuel. As described more fully herein, the desired The ratio may be affected by the desired turbine inlet temperature and the temperature difference between the inlet and outlet streams at the hot end of the heat exchanger. This ratio may be specifically recited as being in the (〇2 circulating liquid) The ratio of C〇2 to carbon present in the carbonaceous fuel 'in order to determine the amount of moles of C〇2 introduced into the burner, in some embodiments 100125736 Form No. A0101 Page 54 of 134 In 201213655, the overall c〇2 content supplied to the burner (ie, the fuel and the inlet at the inlet, and any C〇2 used as an esteam cooling liquid) are included in the calculation. However, in a particular embodiment This calculation may be separately introduced based on C0 in the burner inlet 2 Ο

100125736 量(亦即,排除任何被使用作為一蒸散冷卻液體的c〇2) 。在c〇2被導入該燃燒器中僅作為一蒸散冷卻液體的實施 例中,该計异是依據被導入該燃燒器中作為該蒸散冷卻 液體的C〇2的含量。因此,該比率可敘述為相關於輸入該 燃燒器的燃料中的碳的輸入至該燃燒器入口的c〇2的莫耳 含量。替代地,該比率亦可敘述為相關於輸入至該燃燒 器的燃料中的碳之透過該蒸散冷卻液體輸入至該燃燒器 的C〇2的莫耳含量。 在某些實施例中,C〇2循環液體與被導入燃燒器的燃料中 碳的比率(以莫耳為基礎)可為大約10至大約50 (亦即, 燃料中每1莫耳碳對大約10莫耳的C0至燃料中每i莫耳碳 對大約50莫耳的C〇2)。在進一步的實施例中,在該循環 液體中的c〇2與在燃料中的碳的比率可為大約15至大約5〇 、大約20至大約50、大約25至大約50、大約30至大約50 、大約15至大約45、大約20至大約45、大約25至大約45 、大約30至大約45、大約15至大約40、大約20至大約40 、大約25至大約40、或大約30至大約40。在其他實施例 中’在該循環液體中的(:〇2與在燃料中的碳的比率可為至 少大約5、至少大約10、至少大約15、至少大約2〇、至少 大約25、或至少大約30。 被導入該燃燒器中的c〇2與出現在該含碳燃料申碳的莫耳 比率可對整體系統的熱效率具有重要的衝擊。此對於效 表單編琥A0101 第55頁/共134頁 201213655 率的衝擊亦受到系統進一步零件(包括熱交換器、水分 離~ «及加壓單元)的設計以及功能的衝擊。在此所 述之系統及方法的各.種元件的結合導致了達鈔此所述 特殊CO/c比率之高熱效率的能力。先前已知不包括在此 所敘述的各式元件的系統及方法典型會 需要的c〇2/c莫耳 比率會顯著低於在本發明所使用之⑶2/c莫耳比率,以達 成接近在此所敘述的該些的效率。然而,本發明已辨別 用於回收C〇2的高效系統及方法,其讓遠超過習知技術中 之C〇2/C莫耳比率的使用為可行。根據本發明之高C〇2/C # 莫耳比率的使用的進一步優勢在於稀釋該燃燒流中的不 純物。不純物(例如,氣化物以及硫)對於系統零件的 腐蝕、或侵蝕效應可因此而大大地被減少。現今,高氯 、及/或尚硫的煤無法被使用於已知的系統中因為來自 如此之煤的燃燒產物(其包括HC1以及H/0 )對於發電 廠零件的腐蝕以及侵蝕過大而無法承受。許多其他的不 純物(例如,固態灰燼粒子以及包含如鉛、碘、銻、汞 #元件的揮發性材料)亦可以在高溫下對發電薇零件造 成嚴重内部損害,回收C〇2的稀釋效應可大大地改善、或 消除如此的不純物對於發電廠零件的有害影響。接著, c〇2/c莫耳比率的選擇可牽涉到的複雜考量,其有關於效 率以及工廠零件侵蝕以及腐蝕的影響,以及有關於c〇2回 收系統零件及功能的設計。本發明在伴隨著習知技術所 無法預期的高熱效率的情形下’使c〇2的高效回收,以及 因此增加的CO/c莫耳比率可行。謗高c〇 /c莫异比率因 此傳達了至少先述的優點。 類似地,有用地是控制被導入該燃埯器中的〇的含量。 100125736 表單煸號 A0101 第 56 1/共 134 頁 2 ι〇〇3441436-〇 201213655A quantity of 100,125,736 (ie, excluding any c〇2 used as an evapotranspiration cooling liquid). In the embodiment in which c〇2 is introduced into the burner as only one evaporative cooling liquid, the measurement is based on the content of C〇2 introduced into the burner as the evaporative cooling liquid. Thus, the ratio can be described as the molar content of c 〇 2 associated with the input of carbon into the fuel entering the combustor to the burner inlet. Alternatively, the ratio can also be described as the molar content of C 〇 2 that is input to the burner through the chilled cooling liquid through the carbon in the fuel input to the burner. In certain embodiments, the ratio of C 〇 2 circulating liquid to carbon in the fuel introduced into the combustor (on a molar basis) may be from about 10 to about 50 (ie, about 1 mole per carbon pair in the fuel) 10 moles of C0 to about 50 moles of C〇2) per i mole of carbon in the fuel. In a further embodiment, the ratio of c〇2 to carbon in the fuel in the circulating liquid can be from about 15 to about 5, about 20 to about 50, about 25 to about 50, about 30 to about 50. From about 15 to about 45, from about 20 to about 45, from about 25 to about 45, from about 30 to about 45, from about 15 to about 40, from about 20 to about 40, from about 25 to about 40, or from about 30 to about 40. In other embodiments 'the ratio of (〇2 to carbon in the fuel in the circulating liquid may be at least about 5, at least about 10, at least about 15, at least about 2, at least about 25, or at least about 30. The ratio of c〇2 introduced into the burner to the molar ratio of carbon present in the carbonaceous fuel can have an important impact on the thermal efficiency of the overall system. This is the effect of the form A0101, page 55 of 134 The impact of the 201213655 rate was also impacted by the design and function of further parts of the system, including heat exchangers, water separation ~ «and pressurizing units. The combination of the various components of the systems and methods described herein resulted in the banknotes The ability of the special CO/c ratio to have high thermal efficiency. The systems and methods previously described that do not include the various elements described herein typically would require a c〇2/c molar ratio that would be significantly lower than in the present invention. The (3) 2/c molar ratio is used to achieve efficiencies similar to those described herein. However, the present invention has identified an efficient system and method for recovering C〇2 that far exceeds that of the prior art. C〇2/C molar ratio Use is feasible. A further advantage of the use of the high C〇2/C# molar ratio according to the present invention is the dilution of impurities in the combustion stream. Corrosion or erosion effects of impurities (eg, vapors and sulfur) on system parts It can therefore be greatly reduced. Today, high-chlorine, and/or still-sulphur coal cannot be used in known systems because of the combustion products from such coals (which include HC1 and H/0) for power plant parts. Corrosion and erosion are too large to withstand. Many other impurities (for example, solid ash particles and volatile materials containing components such as lead, iodine, antimony, and mercury #) can also cause serious internal damage to power generation parts at high temperatures. The dilution effect of recycling C〇2 can greatly improve, or eliminate, the harmful effects of such impurities on power plant components. Next, the choice of c〇2/c molar ratio can involve complex considerations regarding efficiency and plant The effects of parts erosion and corrosion, as well as the design of the parts and functions of the c〇2 recycling system. The present invention is not accompanied by conventional techniques. In the case of high thermal efficiency, 'Efficient recovery of c〇2, and thus increased CO/c molar ratio is feasible. The high c〇/c molar ratio thus conveys at least the advantages described first. Similarly, usefully Is to control the amount of cesium that is introduced into the burner. 100125736 Form nickname A0101 Page 56 of 1 134 Page 2 ι〇〇3441436-〇201213655

此可特別取決於燃燒器的操作本質。正如在此更完全的 敘述’本發明的方法以及系統可允許完全氧化模式,完 全還原模式、或兩者變化的操作。在完全氧化模式中, 提供至該燃燒器的〇2的量較佳地是至少為達成含碳燃料 的完全氧化所必須的化學計量。在某些實施例中,所提 供的〇2的量可超過所提到化學計量的至少大約01%莫耳 、至少大約0. 2 5 %莫耳 '至少大約〇. 5 %莫耳、至少大約 1 %莫耳、至少大約2%莫耳、至少大約3%莫耳、至少大約 4%莫耳、或至少大約5%莫耳,在其他實施例中’所提供 的〇2的量可超過所提到化學計量的大約〇. 1%莫耳至大約 5%莫耳、大約〇. 25%莫耳至大約4%莫耳、或大約〇. 5%莫 耳至大約3%莫耳。在完全還原模式中,提供至該燃燒器 的〇2的量較佳地是將該含碳燃料轉換為成份!] CO、CH Z 4This may depend in particular on the operational nature of the burner. As described more fully herein, the method and system of the present invention may allow for a full oxidation mode, a full reduction mode, or both. In the fully oxidized mode, the amount of ruthenium 2 provided to the burner is preferably at least the stoichiometric amount necessary to achieve complete oxidation of the carbonaceous fuel. In some embodiments, the amount of 〇2 provided may exceed at least about 01% mole of the stoichiometric amount, at least about 0.25% Moir' at least about 5. 5 % mole, at least about 1% molar, at least about 2% molar, at least about 3% molar, at least about 4% molar, or at least about 5% molar, in other embodiments 'the amount of 〇2 provided may exceed A stoichiometric amount of from about 1% by mole to about 5% by mole, from about 25% by mole to about 4% by mole, or from about 5% by mole to about 3% by mole. In the full reduction mode, the amount of helium 2 supplied to the burner is preferably converted to a component of the carbonaceous fuel!] CO, CH Z 4

、H2S、以及NH3所必須的化學計量加上至少大約〇. 1%莫 耳、至少大約0. 25%莫耳、至少大約〇. 5%莫耳、至少大 約1%莫耳、至少大約2%莫耳、至少大約3%莫耳、至少大 約4%莫耳、或至少大約5%莫耳的過量。在其他的實施例 中’所提供的02的量可超過所提到化學計量大約0. 1%莫 耳至大約5%莫耳、大約0. 25%莫耳至大約4%莫耳、或大 約0. 5%莫耳至大約3%莫耳β 在一些實施例中’本發明的方法的特徵在於相關於在處 理中各個步驟從頭至尾之C(^的物理狀態。c〇 2可取決於 材料的物體條件而被辨識為以各種狀態存在。C〇在 2 〇. 518 MPa以及、56. 6 °C 有三相點,但(:〇2在7. 38 MPa 以及31.1 C亦具有一臨界壓力以及溫度。在越過此臨界 點後’ c〇2即以超臨界液體存在,以及本發明已實現藉由 100125736 表單編號A0101 第57頁/共134頁 1003441436-0 201213655 在循%中的特殊點處將%保持在特殊狀態而最大化發電 政率的月匕力。在特定實施例中,被導入該燃燒器中的⑶ 較佳地為超臨界液體的形式。 2 ^也對於發電系統或方法的效率的瞭解在於敘述系 統或方法的月b畺輸出與輸入系統或方法的能量間的比率 在電力產生系統或方法的情形下,效率通常被敘述為 ,輸出至該燃燒器格的電力或動力(例如,百萬瓦特或The stoichiometric amount necessary for H2S, and NH3 plus at least about 0.1% Mo, at least about 0.25% Mo, at least about 〇. 5% Mo, at least about 1% Mo, at least about 2% Mohr, at least about 3% molar, at least about 4% molar, or at least about 5% molar excess. The amount of 02 provided in other embodiments may exceed the mentioned stoichiometry from about 0.1% molar to about 5% molar, about 0.25% molar to about 4% molar, or about 0. 5% mol to about 3% Mo in some embodiments 'The method of the invention is characterized by a physical state of C (^) from the beginning to the end of each step in the process. c〇2 may depend on The material condition of the material is recognized as being present in various states. C〇 has a triple point at 2 〇. 518 MPa and 56.6 °C, but (: 〇2 also has a critical pressure at 7.38 MPa and 31.1 C And the temperature. After crossing this critical point, 'c〇2 exists as a supercritical liquid, and the present invention has been implemented by 100125736 Form No. A0101 Page 57/134 Page 1043441436-0 201213655 At a special point in % Keeping % in a special state to maximize the power of the power generation. In a particular embodiment, the (3) introduced into the burner is preferably in the form of a supercritical liquid. 2 ^ Also for power generation systems or methods The understanding of efficiency lies in the monthly output and input system or method of the narrative system or method. Ratio of energy between methods In the case of a power generation system or method, efficiency is often described as the power or power output to the burner grid (eg, megawatts or

Mw)與燃燒來產生電力(或動力)的燃料的總低發熱值 熱能(total l〇wer heating value thermal en_ ergy )間的比率。接著,此比率被稱為淨系統或方法效 率(以LHV的基礎)。此效率可考慮到内部系統或方法處 理所需的所有能量,包括已純化氧的產生(例如經由空氣 分離單元)、為了將co2傳送至一 C〇2已加壓管線的加壓、 以及需要能量輸入的其他系統或方法條件。 在各種實施例中,本發明的系統及方法利用c〇為主作為 2 一循環中的工作液體,在此循環中,一含碳燃料在超過 c〇2臨界壓力的壓力下於大體上純的〇2中進行燃燒(亦即 ,在一燃燒器中),以產生燃燒產物流。此流擴張跨越 一/尚輪’並接著穿過一復熱交換器(recuperator heat exchanger)。在該熱交換器中,該渦輪排出預熱 處於超臨界狀態的一回收(:〇2循環液體。此已預熱、已回 收c〇2循環液體被輸入該燃燒器中。在該燃燒器中,其與 來自燃燒該含碳燃料的產物相混合,以在一已定義最大 渴輪入口溫度下提供一總流動。由於確認了最小化在該 復熱交換器的熱端處的溫度差異所呈現的優勢,因此本 發明至少可以部份地提供極佳的效率。此最小化可藉由 100125736 表單編號A0101 第58頁/共134頁 1003441436-0 201213655 使用一低溫水平的熱源在導入該燃燒器之前加熱回收c 部份而達成。在這些低溫水平,超臨界c〇2的比熱以及 岔度非常的向,且此額外加熱可允許該渦輪拼出流將該 p Λ ΟMw) The ratio between the total l发热wer heating value thermal en_ergy of the fuel that is burned to produce electricity (or power). This ratio is then referred to as the net system or method efficiency (based on LHV). This efficiency may take into account all of the energy required for internal system or method processing, including the production of purified oxygen (eg, via an air separation unit), pressurization to deliver co2 to a C〇2 pressurized line, and energy required. Other system or method conditions entered. In various embodiments, the system and method of the present invention utilizes c〇 primarily as a working fluid in a cycle in which a carbonaceous fuel is substantially pure at a pressure exceeding a critical pressure of c〇2. Combustion (i.e., in a combustor) is carried out in crucible 2 to produce a combustion product stream. This stream expands across the first/nine round and then passes through a recuperator heat exchanger. In the heat exchanger, the turbine discharges a recovery (: 〇 2 circulating liquid) that is preheated in a supercritical state. The preheated, recovered c 〇 2 circulating liquid is introduced into the burner. In the burner And mixing with the product from the combustion of the carbonaceous fuel to provide a total flow at a defined maximum thirst inlet temperature, as it is confirmed that the temperature difference at the hot end of the complex heat exchanger is minimized. The advantages of the present invention, therefore, at least partially provide excellent efficiency. This minimization can be achieved by using a low temperature level heat source prior to introduction into the burner by 100125736 Form No. A0101 Page 58 / Total 134 Page 1003441436-0 201213655 Heat recovery of part c. At these low temperature levels, the specific heat of the supercritical c〇2 and the twist are very positive, and this additional heating allows the turbine to flow out the p Λ

100125736 2預熱至一尚上許多的溫度,以及,此可顯著地降低在 °亥復熱交換器的熱端處的溫度差異◊在特定實施例中的 有用低溢熱源是使用在隔熱操作的低溫空氣分離工廠中 的空氣壓縮器 '或來自習知氣體渦輪的熱排出流。在本 發明的特定實施例中,在該復熱交換器的熱端處的溫度 差異可少於大約50。(:,以及較佳地是落在大約10 °C至 大約30 °c的範圍内。低壓力比率(例如,低於大約1 2 ) 的使用則是可以增加效率的進一步因子。將與低壓力耦 合的c〇2使用作為工作液體在將冷卻渦輪排出的壓力上升 至該回收壓力的時候降低能量耗損。進一步的優點是, 以來自燃料之接近100%的碳捕獲而用非常小額外的寄生 電源消耗來將燃料中被轉換為c〇2t—定量(:〇2產生為高 於管路壓力之C〇2的超臨界壓力(典型地,大約1〇 MPa至 大約20 MPa)的一高壓液體的能力。如此的系統以及方 法參數更進一步地在此有更為詳細的敘述。 回到第5圖’與該〇2242以及該(:〇2循環液體一起被導入該 燃燒器220的該含碳燃料254被燃燒,以提供一燃燒產物 流4〇。在特定的實施例中,例如前述,該燃燒器220是一 蒸散冷卻燃燒器。燃燒溫度可取決於特定的處理參數而 變化,例如,所使用的含碳燃料的種類、如被導入該燃 燒器的燃料中(:〇2與碳的莫爾比率、及/或被導入該燃燒 器的0〇2與〇2的莫爾比率。在特定實施例中,如上述’該 燃燒溫度是相關於該蒸散冷卻燃燒器的欽述而被描述的 表單編號A0101 第59頁/共134頁 1〇〇 201213655 '皿度在特別較佳的實施例中,如在此所述,超過大約 °c的燃燒溫度是具有優勢的。 亦有用的是,控制燃燒溫度,以使得離開該燃燒器的燃 I產物具有所欲的溫度。舉例而言,有用的是,離開該 燃燒器的燃燒產物流所具有的溫度為至少大約7〇〇 T、 至)大約750。〇至少大約800 。〇至少大約850 °C 、至少大約900 °c、至少大約950 °C、至少大約1000 C、至少大約1〇5〇 。^、至少大約11〇〇。匚、至少大約 1200 °C、至少大約1300飞、至少大約1400 «C、至少 大約1 500 。(:、或至少大約16〇〇 〇c。在一些實施例中, 該燃燒產物流可具有的溫度為大約7〇〇 t至大約丨,6〇{) C、大約800 °c至大約1,6〇〇。(:、大約850 t至大約 1,500 C、大約 900 °C 至大約 1,400 t、大約 950 °C 至大約1,350 °C、或大約looo °c至大約1300 °C。 正如上述,在整個電源產生循環期間,該c〇的壓力可以 2 是最大化電源循環效率的關鍵參數。當對被導入該燃燒 器中的材料而言具有特別定義的壓力是很重要的同時, 對燃燒產物流而言具有已定義的壓力也同樣重要。具體 而言,該燃燒產物流的壓力可以相關於被導入該燃燒器 的該C〇2循環液體的壓力。在特定的實施例中,該燃燒產 物流的壓力可為被導入該燃燒器的該C02的壓力的至少大 約90%,亦即,在該循環液體中。在進一步的實施例中, 該燃燒產物流的壓力可為被導入該燃燒器的c〇2的壓力的 至少大約91%、至少大約92%、至少大約93%、至少大約 94%、至少大約95%、至少大約96%、至少大約97%、至少 大約98% '或至少大約99%。 100125736 表單編號A0101 第60頁/共134頁 1003441436-0 201213655 離開該燃燒器的該燃燒器產物流的化學補給(c h e m i c a 1 makeup)可取決於所使用的含碳燃料的型態而變化。重 要地,該燃燒產物流將包括被回收且被重新導入該燃燒 器或進一步循環中的c〇2。再者,過量的c〇2 (包括燃料 的燃燒所產生的c〇2)可以是取自用於封存或不包括釋放 至大氣的其他處置的該(:〇2循環液體(特別是處於適合直 接傳遞至一c〇2管線的壓力)。在進一步的實施例中,該 燃燒產物流可包括水蒸氣、S〇2、S〇3、HCI、NO、N〇2、100125736 2 preheats to a much higher temperature, and this can significantly reduce the temperature difference at the hot end of the helium complex heat exchanger. The useful low heat source in certain embodiments is used in thermal insulation operations. An air compressor in a cryogenic air separation plant' or a hot exhaust stream from a conventional gas turbine. In a particular embodiment of the invention, the temperature difference at the hot end of the multiple heat exchanger can be less than about 50. (:, and preferably falls within the range of about 10 ° C to about 30 ° C. The use of a low pressure ratio (eg, less than about 1 2 ) is a further factor that can increase efficiency. The coupled c〇2 is used as a working fluid to reduce energy consumption when the pressure discharged from the cooling turbine is raised to the recovery pressure. A further advantage is that a very small additional parasitic power source is used with nearly 100% carbon capture from the fuel. Consumption of a high pressure liquid that is converted to c〇2t-quantitative in the fuel (: 〇2 is produced as a supercritical pressure (typically, about 1 MPa to about 20 MPa) above C管路2 of the line pressure) The system and method parameters are further described in more detail herein. Returning to Figure 5, the carbonaceous fuel introduced into the burner 220 along with the crucible 2242 and the (2) circulating liquid 254 is combusted to provide a combustion product stream. In a particular embodiment, such as previously described, the burner 220 is an evapotranspiration burner. The combustion temperature may vary depending on particular processing parameters, for example, The type of carbonaceous fuel used, such as the fuel introduced into the burner (the Mohr ratio of 〇2 to carbon, and/or the Mohr ratio of 0〇2 and 〇2 introduced into the burner. In the embodiment, as described above, the combustion temperature is described in relation to the transpiration-cooling burner. Form No. A0101, page 59 / 134, 1 〇〇 201213655, in a particularly preferred embodiment As described herein, a combustion temperature in excess of about ° C is advantageous. It is also useful to control the combustion temperature such that the fuel I product exiting the burner has a desired temperature. For example, useful Yes, the combustion product stream exiting the combustor has a temperature of at least about 7 Torr, to about 750. 〇 at least about 800. 〇 at least about 850 ° C, at least about 900 ° C, at least about 950 ° C. At least about 1000 C, at least about 1〇5〇.^, at least about 11〇〇.匚, at least about 1200 °C, at least about 1300 fly, at least about 1400 «C, at least about 1,500. (:, or at least Approximately 16 〇〇〇 c. In some embodiments The combustion product stream can have a temperature of from about 7 〇〇t to about 丨, 6 〇{) C, from about 800 ° C to about 1,6 〇〇. (:, about 850 t to about 1,500 C, approximately 900 ° C to about 1,400 t, about 950 ° C to about 1,350 ° C, or about looo °c to about 1300 ° C. As mentioned above, the pressure of the c〇 can be 2 during the entire power generation cycle It is a key parameter to maximize power cycle efficiency. While it is important to have a specifically defined pressure for the material introduced into the burner, it is equally important to have a defined pressure for the combustion product stream. In particular, the pressure of the combustion product stream can be related to the pressure of the C〇2 circulating liquid introduced into the combustor. In a particular embodiment, the pressure of the combustion stream can be at least about 90% of the pressure of the CO 2 introduced into the burner, i.e., in the circulating liquid. In a further embodiment, the pressure of the combustion product stream can be at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95 of the pressure of c〇2 introduced into the combustor. %, at least about 96%, at least about 97%, at least about 98% 'or at least about 99%. 100125736 Form No. A0101 Page 60 of 134 1003441436-0 201213655 The chemical replenishment of the combustor product stream exiting the combustor may vary depending on the type of carbonaceous fuel used. Importantly, the combustion product stream will include c〇2 that is recovered and reintroduced into the burner or further cycle. Furthermore, an excess of c〇2 (including c〇2 produced by the combustion of the fuel) may be taken from other treatments used for sequestration or not including release to the atmosphere (: 〇2 circulating liquid (especially in a suitable direct Passed to a pressure of a c〇2 line. In a further embodiment, the combustion product stream may include water vapor, S〇2, S〇3, HCI, NO, N〇2.

Hg '過量〇2、N2、Ar、以及出現在進行燃燒的燃料中的 可能其他污染物的其中之一、或更多個。而除非被移除( 例如,藉由在此所敘述的處理),否則這些出現在該燃燒 產物流中的材料可能在該c〇2循環液體流中持續。加上 C 0 2之出現的如此材料在此可稱之為“從屬成份”。 正如在第5圖中可見,該燃燒產物流40可被導向一渦輪 320,其中,該燃燒產物流40會擴張而產生電源(例如, Ο 經由一產生器來產生電力,其未顯示於圖例中)。該渦 輪320可具有一入口來接收該燃燒產物流40以及一出口來 釋放包括C〇2的渦輪排放流50。雖然是單一的渦輪320顯 示於第5圖中,但可理解地是,也可以使用多於一個渦輪 ,多個渦輪可串聯連接,或可選擇地藉由一、或更多進 一步的零件而分離,例如,進一步的燃燒零件、一壓縮 零件、一分離器零件、或類似者。 再次,處理參數可在此步驟中進行緊密的控制,以最大 化循環效率。現行的天然氣發電廠效率關鍵地取決於渦 輪入口溫度。舉例而言,已進行了花費大量成本的廣泛 工作來達成允許入口溫度高至大約1,350 °C的渦輪技術 100125736 表單編號A0101 第61頁/共134頁 1003441436-0 201213655 。渴輪入口的溫度越高,發電廢的效率就越高,但渴輪 也就越貴,而潛在地,使射緣也越短。—些公司即畏 怯於付出更高價格以及具魏短有效期之風險。雖然^ 一些實施例中’本發明可利用如此的渦輪來更進一步增 加效率’但这並非為需要的。在特定的實施例中,本發 明的系統及方法可達成所欲效率,同時制處於低上許 多的溫度範_的渦輪人口溫度。因此,本發明的特徵 可以是如此所述之達成-特定效率,同時將—燃燒產物 流提供至處於已定義溫度的_渦輪人σ (正如在此所述 )’其可顯著地小於習知技術中所認可以相同燃料達成 相同效率所需要的溫度。 正如先前所提及,離開該燃燒器220的該燃燒產物流4〇所 具有的壓力較佳地與進入該燃燒器22〇的該c〇2循環液體 236的壓力緊密配合。因此’在特定實施例中2,該燃燒產 物流40的溫度以及壓力使得出現在該流中的⑶^處於超臨 界液體狀態。當該燃燒產物流4〇擴張跨越該渦輪32〇時, 該流的壓力被降低。較佳地是,此壓降受到控制而使得 該燃燒產物流40的壓力與該渦輪排放流5〇的壓力間處於 一已疋義的比率。在某些實施例中,位在該渦輪的入口 處的6亥燃燒產物流相較於位在該渦輪的出口處的該渦輪 排放流的壓力比率少於大約12 ^此可被定義為入口壓力 (Ip)與出π壓力(〇p)比率(亦即,、/(^)。在另外 的實施例中,壓力比率可少於大約丨丨、少於大約1〇、少 於大約9、少於大約8、或少於大約7。在其他的實施例中 ,於該渦輪處的該入口壓力與出口壓力比率可為大約15 至大約12、大約2至大約12、大約3至大約12、大約4至 100125736 表單編號Α0101 第62頁/共134頁 1003441436-0 201213655 大約12、大約2至大約11、大約2至大約ι〇、大約2至大 約9、大約2至大約8、大約3至大約11、大約3至大約1〇 、大約3至大約9、大約3至大約8、大約4至大約π、大約 4至大約10、大約4至大約9、或大約4至大約8。Hg 'excess 〇 2, N 2 , Ar, and one or more of the possible other contaminants present in the fuel being burned. Unless removed (e.g., by the treatments described herein), the materials present in the combustion product stream may continue in the c〇2 circulating liquid stream. Such a material with the appearance of C 0 2 may be referred to herein as a "subordinate component." As can be seen in Figure 5, the combustion product stream 40 can be directed to a turbine 320 where the combustion product stream 40 expands to produce a power source (e.g., via a generator to generate electricity, which is not shown in the legend). ). The turbine 320 can have an inlet to receive the combustion product stream 40 and an outlet to release a turbine discharge stream 50 comprising C〇2. Although a single turbine 320 is shown in FIG. 5, it will be appreciated that more than one turbine may be used, multiple turbines may be connected in series, or alternatively separated by one or more further parts. For example, a further burning part, a compression part, a separator part, or the like. Again, processing parameters can be tightly controlled in this step to maximize cycle efficiency. The efficiency of current natural gas power plants is critically dependent on the turbine inlet temperature. For example, extensive work has been carried out at a significant cost to achieve a turbine technology that allows an inlet temperature of up to approximately 1,350 °C. 100125736 Form No. A0101 Page 61 of 134 Page 1003441436-0 201213655. The higher the temperature at the entrance to the thirsty wheel, the higher the efficiency of power generation waste, but the more expensive the thirsty wheel, and potentially the shorter the shot edge. Some companies are afraid to pay higher prices and have a short period of validity. Although in some embodiments the invention may utilize such a turbine to further increase efficiency ', this is not required. In a particular embodiment, the system and method of the present invention achieves the desired efficiency while producing a turbine population temperature that is at a much lower temperature range. Thus, the features of the present invention can be achieved as described above - a specific efficiency while providing a combustion product stream to a turbine σ at a defined temperature (as described herein) which can be significantly smaller than conventional techniques The temperature required to achieve the same efficiency with the same fuel. As previously mentioned, the combustion product stream 4's exiting the combustor 220 preferably has a pressure that closely matches the pressure of the c2 circulating fluid 236 entering the combustor 22''. Thus, in a particular embodiment 2, the temperature and pressure of the combustion stream 40 is such that the (3)^ present in the stream is in a supercritical liquid state. As the combustion product stream expands across the turbine 32, the pressure of the stream is reduced. Preferably, the pressure drop is controlled such that the pressure of the combustion product stream 40 is at a depreciated ratio to the pressure of the turbine discharge stream 5〇. In certain embodiments, the ratio of the 6 Hz combustion product stream at the inlet of the turbine to the turbine effluent stream at the outlet of the turbine is less than about 12 ^. This can be defined as the inlet pressure. (Ip) to π pressure (〇p) ratio (ie, /(^). In other embodiments, the pressure ratio may be less than about 丨丨, less than about 1 〇, less than about 9, less At about 8, or less than about 7. In other embodiments, the inlet pressure to outlet pressure ratio at the turbine can be from about 15 to about 12, from about 2 to about 12, from about 3 to about 12, about 4 to 100125736 Form Number Α 0101 Page 62 / Total 134 Page 1003441436-0 201213655 About 12, about 2 to about 11, about 2 to about ι, about 2 to about 9, about 2 to about 8, about 3 to about 11 About 3 to about 1 Torr, about 3 to about 9, about 3 to about 8, about 4 to about π, about 4 to about 10, about 4 to about 9, or about 4 to about 8.

在特殊實施例中,想要地是,該渦輪排放流所處的條件 可使得在該流中的c〇2不再處於超臨界液體狀態,而是處 於氣體狀態。舉例而言,提供處於氣體狀態的可有助 於移除任何的從屬成份。在一些實施例中,該渦輪排放 流所具有的壓力低於該C〇2可處於一超臨界狀態的壓力。 較佳地是’該渦輪排放流所具有的壓力少於大約7. 3 Mpa ’少於或等於大約7 MPa,少於或等於大約6. 5 MPa,少 於或等於大約6 MPa,少於或等於大約5. 5 MPa,少於或 等於大約5 MPa,少於或等於大約4. 5 MPa,少於或等於 大約4 MPa,少於或等於大約3. 5 MPa,少於或等於大約 3 MPa,少於或等於大約2· 5 MPa,少於或等於大約2 MPa,或少於或等於大約i s MPa,在其他實施例中,該In a particular embodiment, it is desirable that the turbine discharge stream be at a condition such that c 〇 2 in the flow is no longer in a supercritical liquid state but in a gaseous state. For example, providing a gaseous state can help remove any dependent components. In some embodiments, the turbine discharge stream has a pressure that is lower than the pressure at which C〇2 can be in a supercritical state. Preferably, the turbine discharge stream has a pressure of less than about 7.3 MPa, less than or equal to about 7 MPa, less than or equal to about 6.5 MPa, less than or equal to about 6 MPa, less than or 5 MPa。 Less than or equal to about 4.5 MPa, less than or equal to about 4 MPa, less than or equal to about 3. 5 MPa, less than or equal to about 3 MPa. Less than or equal to about 2.5 MPa, less than or equal to about 2 MPa, or less than or equal to about is MPa, in other embodiments,

G 滿輪排放流的壓力可為大約1. 5 MPa至大約7 MPa,大約 3 MPa至大約7 MPa或大約4 MPa至大約7 MPa。較佳地 是’該渦輪排放流的壓力少於c〇遭遇該流的冷卻溫度時G The full wheel discharge stream may have a pressure of from about 1.5 MPa to about 7 MPa, from about 3 MPa to about 7 MPa or from about 4 MPa to about 7 MPa. Preferably, the pressure of the turbine discharge stream is less than c〇 when the cooling temperature of the stream is encountered.

U 的冷凝壓力(例如,環境冷卻),因此,根據本發明較 佳地是,該渦輪320下游的C〇2 (以及,較佳地是,該加 壓單元620上游的C〇2)被維持在氣體狀態,且不允許達 到可形成液態CO的條件。 L· 雖然通過該渦輪的該燃燒產物流可能導致一些溫度降低 ’但該调輪排放流典型地將具有可阻止出現在該燃燒產 物流中的任何從屬成份的移除的溫度。舉例而言,該渦 100125736 表單編號A0101 第63頁/共134頁 1003441436-0 201213655 輪排放流所具有的溫度可為大約500 °C至大約1 000 °C ’大約600 °C至大約1 000 °C,大約700。(:至大約1000 °C,或大約800 °C至大約1 000 °C。因為該燃燒產物流 的相對較高的溫度,有益地是,用來形成該渦輪的材料 能夠承受如此的溫度。其亦可能有用的是,該渦輪包括 提供對出現在該燃燒產物流中的從屬材料的型態具良好 化學抗性的材料。 因此,在一些實施例中,有用地是,將該渦輪排放流5〇 通過至少一熱交換器420,其可冷卻該渦輪排放流5〇以及 提供具有落在已定義範圍内的溫度的C〇循環液體流60, L· 在特殊的實施例中,離開該熱交換器420 (或是當使用二 、或多個熱交換器時串聯中的最後一個熱交換器)的該 CO/盾環液體60所具有的溫度少於大約2〇〇艺,少於大約 150 °C,少於大約125 °C,少於大約1〇〇 °c,少於大約 95 °C,少於大約90 °C,少於大約85 t,少於大約80 °C,少於大約75 °C,少於大約70 °C,少於大約65 °C ’少於大約6 0 °C,少於大約5 5 °C,少於大約5 0。〇 , 少於大約45 °C,或少於大約40 t:。 正如刖面所提及,有益地是,該渦輪排放的壓力與該燃 燒產物流的壓力有一特定的比率》在特殊的實施例中, 該渴輪排放流將會在不通過該系統任何額外的零件的情 形下,直接通過在此所敘述的一或更多個熱交換器。因 此,該壓力比率亦可敘述為該燃燒產物流離開該燃燒器 時的壓力比上該流進入該熱交換器的熱端(或是當使用 一串聯熱交換器時的第一個熱交換器)時的壓力的比率 。再次’此壓力比較佳地是少於大約12,在另外的實施 100125736 1003441436-0 表單編號A0101 第64頁/共134頁 201213655 例令’該燃燒產物流與進入該熱交換器的該流間的壓力 比可少於大約11,少於大約10,少於大約9,少於大約8 ,或少於大約7 ’在其他實施例中,此壓力比可為大約 1. 5至大約1 〇 ’大約2至大約9,大約2至大約8,大約3至 大約8 ’或大約4至大約8。The condensing pressure of U (e.g., ambient cooling), therefore, in accordance with the present invention, C 〇 2 downstream of the turbine 320 (and, preferably, C 〇 2 upstream of the pressurizing unit 620) is maintained. In the gaseous state, conditions that can form liquid CO are not allowed to be reached. L. While the combustion product stream passing through the turbine may cause some temperature reduction' but the wheel discharge stream will typically have a temperature that prevents removal of any subordinate components that are present in the combustion stream. For example, the vortex 100125736 Form No. A0101 Page 63 / Total 134 Page 1003441436-0 201213655 The wheel discharge stream can have a temperature of from about 500 ° C to about 1 000 ° C 'about 600 ° C to about 1 000 ° C, about 700. (: to about 1000 ° C, or about 800 ° C to about 1 000 ° C. Because of the relatively high temperature of the combustion product stream, it is beneficial that the material used to form the turbine can withstand such temperatures. It may also be useful that the turbine includes a material that provides good chemical resistance to the pattern of dependent materials present in the combustion product stream. Thus, in some embodiments, usefully, the turbine discharge stream 5 〇 passing through at least one heat exchanger 420, which cools the turbine discharge stream 5 〇 and provides a C 〇 circulating liquid stream 60 having a temperature falling within a defined range, L· in a particular embodiment, leaving the heat exchange The CO/shield ring liquid 60 of the 420 (or the last heat exchanger in series when two or more heat exchangers are used) has a temperature of less than about 2 ,, less than about 150 °. C, less than about 125 ° C, less than about 1 ° C, less than about 95 ° C, less than about 90 ° C, less than about 85 t, less than about 80 ° C, less than about 75 ° C, less than about 70 ° C, less than about 65 ° C 'less than about 60 ° C Less than about 5 5 ° C, less than about 50. 〇, less than about 45 ° C, or less than about 40 t: As mentioned in the face, it is beneficial that the pressure of the turbine discharges and the combustion The pressure of the product stream has a specific ratio. In a particular embodiment, the thirsty wheel discharge stream will pass through one or more of the heat exchanges described herein without passing through any additional parts of the system. Thus, the pressure ratio can also be described as the pressure at which the combustion product stream exits the burner as compared to the hot end of the stream entering the heat exchanger (or the first heat when using a series heat exchanger) The ratio of the pressure at the time of the exchanger. Again 'this pressure is better than less than about 12, in the other implementation 100125736 1003441436-0 Form No. A0101 Page 64 / Total 134 pages 201213655 Order 'The combustion product flow and entry The inter-flow pressure ratio of the heat exchanger can be less than about 11, less than about 10, less than about 9, less than about 8, or less than about 7'. In other embodiments, the pressure ratio can be about 1. 5 to about 1 〇 'about 2 to large 9, from about 2 to about 8, from about 3 to about 8 'or from about 4 to about 8.

在蒸散冷卻燃燒器的使用允許高熱燃燒的同時,本發明 的系統及方法的特徵在於具有的能力是將一渦輪排放流 提供至所處溫度足夠低來降低關連於系統的成本,增加 該(等)熱交換器的使用期限,以及改善系統的效能以 及穩定度,的熱交換器。在特殊實施例中,在根據本發 明的系統或方法中熱交換器的最熱工作溫度為少於大約 Ο 1,100 °C,少於大約1,〇〇〇。〇,少於大約975。(:,少 於大約950 °C,少於大約925。(:,或少於大約900 °C。 在某些實施例中,特別有用地是,該熱交換器42〇包括有 串聯的至少一熱交換器,以接收該滿輪排放流5 〇以及將 其冷卻至一所需溫度,所使用的熱交換器型態可取決於 進入該熱交換器的該流的條件而變化。舉例而言,該渦 輪排放流50可處於相對而言較高的溫度,如上所述,並 且,因此有用地是,設計以承受嚴苛條件的高效能材料 所开> 成的該熱交換器直接接收該渦輪排放流5 〇 ^舉例而 言,在該熱交換器串中的第一個熱交換器可包括一 IN_ CONEL合金或類似的材料。較佳地是,在串接中的該第 一熱交換器包括的材料所能夠連續承受的工作溫度為至 少大約700 °C ’至少大約750 t,至少大約800 ,至 少大約850 °C ’至少大約900。(:,至少大約95〇。(:,至 100125736 少大約1 000 °C ’至少大約1,1〇〇乞,或至少大約 表單編號A0101 第65頁/共134頁 1003441436-0 201213655 1,200 °C。亦有用地是,該等熱交換器的其中之一或更 多包括對出現在該燃燒產物流中的從屬材料的型態具良 好化學抗性的材料,INCONEL®合金可得自Special Metals Corporation,以及一些實施例可包括奥氏鎳 鉻基合金(austenitic nickel-chromium-based alloys),可使用的合金的實例包括,INCONEL'OO, INC0NEL®6(H , INCONEL®601GC , INCONEL®603C〇9I , INCONEL®617,INCONEL®625,INCONEL®625LCF,IN-CONEL®686 , INCONEL®690 , INC0NEL®693 , INCONEL® 706 , INC0NEL®718 , INC0NEL®718SPF™ , INCONEL® 722,INCONEL®725,INCONEL®740,INCONEL®C〇2-750 , INC0NEL®751 , INC0NEL®MA754 , INCONEL® MA758 , INC0NEL®783 , INCONEL®903 , INCONEL® N06230 , INC0NEL®C-276 , INC0NEL®G-3 , INCONEL® HC〇2,INCONEL®22。有利的熱交換器設計的實例為以高 溫材料製造、在板中具化學研磨鰭的擴張結合緊密板熱 交換器(diffusion bonded compact plate heat exchanger)。適合的熱交換器可包括在商標名HEAT-RIC® (可得自 Meggitt USA,Houston,TC〇2)下可得 者。 較佳地是,串聯交換器中的第一個可充分地從該渦輪排 放流傳遞熱,以使得出現在串聯交換器中的一或更多個 其他交換器可由更為習知的材料製成,例如,不銹鋼, 在特殊的實施例中,至少二個熱交換器、或至少三個熱 交換器被串聯使用來將該渦輪排放流冷卻至所需溫度。 特別地是,使用串聯的多個熱交換器的用處可於接下來 100125736 表單編號A0101 第66頁/共134頁 1003441436-0 201213655 關於將來自該渦輪排放流的熱傳遞至該c〇2循環液體 在該循環液體被導入該燃燒器之前進行重新加熱的敘述 中看出。While the use of an evapotranial cooling burner allows for high heat combustion, the system and method of the present invention is characterized by the ability to provide a turbine exhaust stream to a temperature that is sufficiently low to reduce the cost associated with the system, increasing the Heat exchangers, as well as heat exchangers that improve the efficiency and stability of the system. In a particular embodiment, the heat exchanger has a hottest operating temperature of less than about Ο 1,100 ° C, less than about 1, 〇〇〇 in the system or method according to the present invention. Oh, less than about 975. (:, less than about 950 ° C, less than about 925. (:, or less than about 900 ° C. In certain embodiments, it is particularly useful that the heat exchanger 42 includes at least one in series A heat exchanger to receive the full wheel discharge stream 5 〇 and to cool it to a desired temperature, the type of heat exchanger used may vary depending on the conditions of the stream entering the heat exchanger. The turbine discharge stream 50 can be at a relatively high temperature, as described above, and, therefore, usefully, the heat exchanger designed to withstand harsh conditions is Turbine discharge stream 5 举例 ^ For example, the first heat exchanger in the heat exchanger train may comprise an IN_CONEL alloy or similar material. Preferably, the first heat exchange in the series connection The material included is capable of continuously withstanding an operating temperature of at least about 700 ° C 'at least about 750 t, at least about 800, at least about 850 ° C 'at least about 900. (:, at least about 95 〇. (:, to 100125736 Less than 1 000 °C 'at least about 1 1〇〇乞, or at least approximately form number A0101, page 65 / 134 pages 1003441436-0 201213655 1,200 ° C. It is also useful that one or more of the heat exchangers are included in the combustion The material of the subordinate material in the stream is a chemically resistant material, INCONEL® alloy is available from Special Metals Corporation, and some embodiments may include austenitic nickel-chromium-based alloys, which may be used. Examples of alloys include INCONEL'OO, INC0NEL®6 (H, INCONEL® 601GC, INCONEL® 603C〇9I, INCONEL® 617, INCONEL® 625, INCONEL® 625LCF, IN-CONEL® 686, INCONEL® 690, INC0NEL® 693 , INCONEL® 706 , INC0NEL®718 , INC0NEL®718SPFTM , INCONEL® 722, INCONEL®725, INCONEL® 740, INCONEL® C〇2-750, INC0NEL®751 , INC0NEL®MA754 , INCONEL® MA758 , INC0NEL®783 , INCONEL®903 , INCONEL® N06230 , INC0NEL®C-276 , INC0NEL®G-3 , INCONEL® HC〇2, INCONEL®22. An example of an advantageous heat exchanger design is a diffusion bonded compact plate heat exchanger made of a high temperature material with chemically ground fins in the plate. Suitable heat exchangers can be included under the trade name HEAT-RIC® (available from Meggitt USA, Houston, TC 〇 2). Preferably, the first of the series exchangers is sufficient to transfer heat from the turbine discharge stream such that one or more other exchangers present in the series exchanger may be made of more conventional materials. For example, stainless steel, in a particular embodiment, at least two heat exchangers, or at least three heat exchangers, are used in series to cool the turbine discharge stream to a desired temperature. In particular, the use of multiple heat exchangers in series can be used in the next 100125736 Form No. A0101 Page 66 / Total 134 pages 1003441436-0 201213655 Regarding the transfer of heat from the turbine discharge stream to the c〇2 circulating liquid It is seen in the description that the circulating liquid is reheated before being introduced into the burner.

在一些實施例中,方法以及系統的特徵在於,其可為如 階段的燃燒方法或系統。此可透過使用高效率燃繞器而 達成,例如,前述的蒸散冷卻燃燒器。必要地是,撚料 可以在該單獨的燃燒器中大體上完全地燃燒,以使得其 不必要提供一串聯的燃燒器來完全燃燒該燃料。據此、 在一些實施例中,本發明的方法及系統可敘述為該蒸散 冷卻燃燒器是唯一的燃燒器。在另外的實施例中, 该等 方法及系統可敘述為在該排放流通過進入該熱交換器吁 ,該燃燒僅發生在該單獨的蒸散冷卻燃燒器之中。在仍 然其他的實施例中,方法及方法可敘述為,該渦輪排放 流在不通過另外的燃燒器的情形下,直接通過進入該熱 交換器。 、 …In some embodiments, the method and system are characterized in that they can be a staged combustion method or system. This can be achieved by using a high efficiency burner, such as the aforementioned transpiration cooling burner. It is essential that the dip can be substantially completely combusted in the separate combustor such that it is not necessary to provide a combustor in series to completely combust the fuel. Accordingly, in some embodiments, the method and system of the present invention can be described as the sole burner of the evapotranspiration burner. In further embodiments, the methods and systems can be described as passing the effluent stream into the heat exchanger, the combustion occurring only in the separate evapotranial cooling combustor. In still other embodiments, the method and method can be described as the turbine exhaust stream passing directly into the heat exchanger without passing through another burner. , ...

100125736 在冷卻後,離開該至少一熱交換器的該c〇2循環液體流 可經歷更進一步的處理,以從該燃料的燃燒中分離出留 在該C〇2循環液體流60中的任何從屬成份。正如在第5圖 中所顯示,該C〇2循環液體流60可被導向一或更多個分離 單元520。正如之後更詳細的討論,特別地是,本發明的 特徵在於提供在不釋放c〇2至大氣的情形下利用含碳燃料 燃燒的高效發電方法的能力,此可至少部分藉由將形成 在該含碳燃料的燃燒中的CO?使用作為電源產生循環中的 循環液體而達成。在一些實施例中,雖然,連續的燃燒 以及回收C〇2作為該循環液體可能造成c〇2於系統中的累 積,在如此的情形下,有用地是,放棄至少部分來自該 1003441436-0 表單編號A0101 第67頁/共134頁 以 201213655 循環液體的c〇2 (例如,量大約相等於從該含碳燃料的燃 燒所衍生的(:〜量)’如此放棄的%可藉由任何適合的 方法進行處置。在特殊的實施例中,該c〇2可被導向利用 適當方式進行封存或處置的管路,正如接下來敘述者。 所需要的(:〇2管路系統的規格是,該c〇2進入該管路時可 大體上不需要水,以避免侵蝕管路所使用的碳鋼,雖然 濕的’’ c〇2可直接被導入不銹鋼c〇2管路中,但並非總 為可犯事實上,基於成本考量,可更想要使用碳鋼管 路。據此’在某些實施例中,存在於co2循環液體中的水 (例如,在該含碳燃料燃燒期間所形成,以及維持在燃 ? 燒產物流、該渴輪排放流、以及該C02循環液體流中的水 ),可大部分被移除,以作為來自該已冷卻⑶卩循環液體 机的液‘4相,在特殊的實施例中,此可藉由在氣相混合 物利用環境溫度冷卻方式而被冷卻至最低溫度時,提供 壓力低於出現在該氣相混合物中的c〇2發生液化的壓力點 的匸〇2循環液體(例如,氣態)而達成,舉例而言特別地 疋’該C〇2循環液體在分離從屬成份期間可被以少於7. 38 MPa的壓力被提供。若使用的是低環境溫度範圍、或大體 上低於環境溫度的冷卻方式時,可能需要甚至更低的壓 力。此使得水能夠以液態的形式被分離,並且,亦可最 小化離開該分離單元的該已純化⑶…衰祕的污染物, 此亦可將該涡輪排放壓力限制至少於該渦輪排出氣體的 臨界壓力的-數值。真實的魔力可取決於可得環境冷卻 方式的溫度。舉例而言’若水分離發生在⑽τ,則7 MPa的壓力允許對於C〇2冷凝壓力的〇· 38 Mpa的限度。在 一些實施例中,離開該熱交換器以及進入該分離單元的 100125736 表單編號 A0101 第 68 頁/共 134 頁 1003441436-0 201213655 忒C〇2循環液體可以如下壓力被提供··大約2 Mpa至大約7 MPa ’ 2. 25 MPa至大約7 MPa,2. 5 MPa至大約7 Mpa, 75 MPa至大約7 MPa,3 MPa至大約7 MPa,3. 5 MPa 至大約7 MPa,4 MPa至大約7 MPa,或4 MPa至大約6 。在另一實施例中,該壓力可大體上與在渦輪出口的 壓力相同。100125736 After cooling, the c〇2 circulating liquid stream exiting the at least one heat exchanger may undergo further processing to separate any subordinates remaining in the C〇2 circulating liquid stream 60 from the combustion of the fuel. Ingredients. As shown in Figure 5, the C〇2 circulating liquid stream 60 can be directed to one or more separation units 520. As will be discussed in more detail later, in particular, the present invention features the ability to provide an efficient power generation method utilizing combustion of a carbonaceous fuel without releasing c〇2 to the atmosphere, which may be at least partially formed by The CO in combustion of a carbon-containing fuel is achieved as a circulating liquid in a power generation cycle. In some embodiments, although continuous combustion and recovery of C〇2 as the circulating liquid may cause accumulation of c〇2 in the system, in such cases, it is useful to abandon at least part of the form from the 1003441436-0 No. A0101, page 67 of 134, with 201213655 circulating liquid c〇2 (for example, the amount is approximately equal to the (:~ amount) derived from the combustion of the carbonaceous fuel' so the % waived by any suitable The method is carried out. In a particular embodiment, the c〇2 can be directed to a line that is sealed or disposed of in an appropriate manner, as described below. The required (: 〇 2 piping system specification is that When c〇2 enters the pipeline, water is generally not needed to avoid eroding the carbon steel used in the pipeline, although the wet ''c〇2 can be directly introduced into the stainless steel c〇2 pipeline, but not always In fact, based on cost considerations, it may be more desirable to use a carbon steel pipe. According to this, in certain embodiments, water present in the co2 circulating liquid (eg, formed during combustion of the carbonaceous fuel, and Maintain burning The product stream, the thirsty wheel discharge stream, and the water in the CO 2 recycle liquid stream may be largely removed as a liquid '4 phase from the cooled (3) helium circulating liquid machine, in a particular embodiment By providing a 匸〇2 circulating liquid at a pressure lower than the pressure point at which c〇2 occurs in the gas phase mixture when the gas phase mixture is cooled to the lowest temperature by the ambient temperature cooling method (for example) , in a gaseous state, for example, in particular, the C〇2 circulating liquid can be supplied at a pressure of less than 7.38 MPa during the separation of the subordinate components. If a low ambient temperature range is used, or substantially At lower temperatures than ambient temperatures, even lower pressures may be required. This allows water to be separated in liquid form and, to minimize, the purified (3) fading contaminants leaving the separation unit, This may also limit the turbine discharge pressure to at least the value of the critical pressure of the turbine exhaust gas. The true magical power may depend on the temperature at which the ambient cooling mode is available. For example, if the water is separated At (10) τ, a pressure of 7 MPa allows a limit of 〇 38 Mpa for the C 〇 2 condensing pressure. In some embodiments, leaving the heat exchanger and entering the separation unit 100125736 Form No. A0101 Page 68 of 134 Page 1003441436-0 201213655 忒C〇2 circulating liquid can be supplied at a pressure of about 2 Mpa to about 7 MPa ' 2. 25 MPa to about 7 MPa, 2. 5 MPa to about 7 Mpa, 75 MPa to about 7 MPa , 3 MPa to about 7 MPa, 3.5 MPa to about 7 MPa, 4 MPa to about 7 MPa, or 4 MPa to about 6. In another embodiment, the pressure may be substantially the same as the pressure at the turbine outlet.

在特殊實施例中,分離水後的該已純化c〇2循環流65,其 不包括水蒸氣,或大體上不包括水蒸氣。在一些實施例 中,该已純化(:〇2循環流的特徵是,所包括的水蒸氣僅少 於莫耳基礎下的1. 5%,少於莫耳基礎下的125%,少於 莫耳基礎下的1%,少於莫耳基礎下的〇 9%,少於莫耳基 礎下的0.8%,少於莫耳基礎下的〇.7%,少於莫耳基礎下 的〇. ,少於莫耳基礎下的〇. 5%,少於莫耳基礎下的 〇. 4%,少於莫耳基礎下的〇. 3%,少於莫耳基礎下的〇.In a particular embodiment, the purified c〇2 recycle stream 65 after separation of water, which does not include water vapor, or substantially does not include water vapor. In some embodiments, the purified (: 〇 2 recycle stream is characterized by a water vapor comprising less than 1.5% under the Mohr base, less than 125% under the Mohr base, less than Mohr 1% under the foundation, less than 9% under the Mohr foundation, less than 0.8% under the Mohr base, less than the 〇.7% under the Mohr foundation, less than the 莫. 5% under 莫. 5%, less than 莫. 4% under Mohr's foundation, less than 〇 under 莫. 3%, less than 莫 under Mohr.

’或少於莫耳基礎下的〇. 1%。在一些實施例中,該已純 化C〇2循環液體流所包括的水蒸氣的量可僅為莫耳基礎下 的大約G.Q1%至大社5%,莫耳基礎下的大狀m至大 約1%,莫耳基礎下的大約〇.〇1%至大約〇75%,莫耳基礎 下的大約G.m至大約〇.5%,莫耳基礎下的大制〇1%至 大約〇.25% ’莫耳基礎下的大約U5%至大約〇.5%,或莫 耳基礎下的大約0· 05%至大約〇. 25%。 100125736 可具尚度優勢地是’提供處於上述定義溫度以及壓力條 件的c〇2循觀體’以有助於從屬成份(例如幻的分離 循環液體,以提供以維持處於所需條件下該C0 = 2循環液趙中的C〇2以及水在分離::::助於?::態,提供處― ^ 第69頁/共134頁 的 1003441436-0 201213655 該(:〇2循環液體,該液體流的溫度可被降低至讓在該流中 的水將處於液態以及因此更容易被從氣態C〇2中分離的點 〇 在某些實施例中,想要的是,提供更進一步的乾燥條件 ,以使得該已純化C〇2循環液體可完全地、或大體上為無 水。正如先前所提及,根據材料中相位的不同而從該C〇2 循環液體中分離出水可能在該(:〇2循環液體中留下小部分 (亦即,低濃度)的水。在一些實施例中,可接受的是 ,讓該C〇2循環液體繼續具有少部分的水殘留其中。在其 他的實施例中,有用地是,使該C〇2循環液體進行更進一 步的處理,以有助於移除剩餘水的所有、或部分。舉例 而言,低濃度的水可藉由乾燥劑乾燥機(desiccant dryer)或依照本案揭露而為合適的其他方式來移除。 特別地是,提供處於已定義壓力的該(:〇2循環液體至該等 分離單元可有助於再次地最大化電源循環的效率。具體 而言,提供處於該已定義壓力範圍的(:〇2循環液體可使得 處於氣相的該已純化c〇2循環液體在總電源消耗最小的情 形下被壓縮至一高壓。正如先前所敘述,有需要如此的 加壓,以使得部分的該已純化(:〇2循環液體被回收到燃燒 器,且部分被供應在所需管路壓力(例如,大約10 MPa 至大約20 MPa)。此更進一步地闡明了最小化該擴散渦 輪的入口與出口壓力比的好處,正如前述。此作用來增 加總體的循環效率,以及亦允許來自該渦輪的排放壓力 落在前述所要的範圍,以用於從該C〇2循環液體中分離水 以及其他從屬成份。 該C〇2循環液體通過一分離單元520的流動的實施例闡明 100125736 表單編號A0101 第70頁/共134頁 1003441436-0 201213655‘or less than 莫. 1% under Mohr’s foundation. In some embodiments, the amount of water vapor included in the purified C〇2 circulating liquid stream may be only about G.Q1% to Dashe 5% under the Mohr basis, and the large shape m to about Mohr. 1%, about 〇.〇1% to about 〇75% under the Mohr base, about Gm to about 〇.5% under the Mohr base, and 1% to about 〇25% under the Mohr base. 'About U5% to about 〇.5% under Mohr's base, or about 0. 05% to about 〇. 25% under Mohr's base. 100125736 may be superior in that it provides 'c〇2 a viewant' at the above defined temperature and pressure conditions to aid in the subordinate composition (eg, a magical separation of the circulating liquid to provide for maintaining the C0 under the desired conditions). = 2 Circulating Fluid Zhao Zhong C 〇 2 and water in separation :::: Help ?:: state, provide - ^ Page 69 / Total 134 pages of 1003441436-0 201213655 This (: 〇 2 circulating liquid, the The temperature of the liquid stream can be lowered to a point where the water in the stream will be in a liquid state and thus more readily separated from the gaseous C〇2. In certain embodiments, it is desirable to provide further drying. The conditions are such that the purified C〇2 circulating liquid can be completely, or substantially anhydrous, as previously mentioned, water may be separated from the C〇2 circulating liquid depending on the phase in the material (: A small portion (i.e., low concentration) of water is left in the 循环2 circulating liquid. In some embodiments, it is acceptable to have the C〇2 circulating liquid continue to have a small portion of water remaining therein. In other implementations In an example, it is useful to make the C〇2 circulating fluid Further processing is performed to help remove all or part of the remaining water. For example, low concentrations of water may be by a desiccant dryer or other means suitable in accordance with the disclosure herein. In particular, providing this at a defined pressure (: 〇 2 circulating liquid to the separate units may help to maximize the efficiency of the power cycle again. Specifically, providing the defined pressure range (: 〇 2 circulating liquid can cause the purified c 〇 2 circulating liquid in the gas phase to be compressed to a high pressure with a minimum total power consumption. As previously described, such pressurization is required to make part of The purified (: 〇 2 circulating liquid is recovered to the burner and is partially supplied at the required line pressure (eg, from about 10 MPa to about 20 MPa). This further clarifies that the inlet of the diffusion turbine is minimized. The benefit of the ratio to the outlet pressure, as mentioned above. This effect increases the overall cycle efficiency and also allows the discharge pressure from the turbine to fall within the aforementioned range for use in The C〇2 separating the circulating liquid water, and other ingredients slave The circulating liquid C〇2 Form Number 100125736 elucidated by way of example a flow separation unit 520 A0101 page 70/134 Total 201 213 655 1003441436-0

於第6圖1ί7。正如可見,來自該熱交換器的該c〇2循環液 體流60可通過使用水來更進一步從該C〇2循環液體6〇中移 除熱的一冷水熱父換益530 (或任何類似功能的裝置), 以及排放混合相的C〇2循環液體61,其中,該c〇維持為 氣體,而在該c〇2循環液體中的水已被轉換為液相。舉例 而言,該C〇2循環液體60通過該冷水熱交換器53〇可使該 C02循環液體冷卻至溫度少於大約50 °c,少於大約55 t ,少於大約40 °C,少於大約45 t,少於大約4〇。(:, 或少於大約30 °C。較佳地是,該C〇2循環液體的壓力大 體上不受通過該冷水熱交換器530而改變。混合相的c〇 循環液體61被導向一水分離單元540,其中,液態水流 62a從該分離器520排出。而且,離開該水分離單元“ο 的是富二氧化碳(enriched C02)循環液體流62b,此 富二氧化碳流可直接離開該分離器520,以作為已純化 C〇2循環液體流65。在替代實施例中(正如虛線所代表流Figure 6 Figure 1 ί7. As can be seen, the c〇2 circulating liquid stream 60 from the heat exchanger can be further removed from the C〇2 circulating liquid 6〇 by using water to further remove the hot cold water heat father 530 (or any similar function). The apparatus), and the C〇2 circulating liquid 61 discharging the mixed phase, wherein the c〇 is maintained as a gas, and the water in the c〇2 circulating liquid has been converted into a liquid phase. For example, the C〇2 circulating liquid 60 can be cooled by the cold water heat exchanger 53 to a temperature of less than about 50 ° C, less than about 55 t, less than about 40 ° C, less than about 50 ° C. About 45 t, less than about 4 〇. (:, or less than about 30 ° C. Preferably, the pressure of the C 〇 2 circulating liquid is substantially not changed by the cold water heat exchanger 530. The c 〇 circulating liquid 61 of the mixed phase is directed to a water Separation unit 540, wherein liquid water stream 62a is discharged from the separator 520. Also, leaving the water separation unit "o is an enriched C02 circulating liquid stream 62b, which may exit the separator 520 directly, As a purified C〇2 circulating liquid stream 65. In an alternative embodiment (as indicated by the dotted line)

以及零件所闡明者),該富二氧化碳循環液體流62b可被 導向一或更多個額外的分離單元55〇,以移除更多的從屬 成份,正如接下來更全面的敘述。在特殊的實施例中, 該c〇2循環液體的任何更多的從屬成份可在移除水之後被 移除。接著,該c〇2循環液體離開該一或更多個額外的分 離器單元,以作為該已純化C02循環液體65。然而,在一 些實施例中,該混合相C〇2循環液體61可首先被導向而在 移除水之前先移除一或更多個從屬成份,以及該已部分 純化的流可接著被導向該水分離單以4Q。瞭解本案所揭 露的本領域具通•知識者將能夠想像所需要的分離器的 各種結合,以及所有如此的結合是被併入本發明之中的 100125736 1003441436-0 表單編號A0101 第71頁/共134頁 201213655 正如先前所提及,除了水以外,該c〇2循環液體亦可包含 其他的從屬成份,例如,燃料衍生的、燃燒衍生的、以 及氧氣衍生的不純物,如此的從屬成份亦可以在及大約 分離水分時的同時從該已冷卻、氣相(:〇2循環液體中移除 。舉4列而言,除了水II·氣以夕卜,如S09、S0q、HCI、NO、 N〇2、Hg以及過量〇2、N2以及Ar的從屬成份亦可被移除。 該c〇2循環液體的這些從屬成份(通常被視為不純物、或 污染物)可利用適當的方法而從該已冷卻c〇2循環液體中 完全被除(例如,在美國專利申請公開第2008/02265 1 5 號以及歐洲專利申請案第EP1952874號以及第 EP1 953486號中所定義的方法,其整體於此併入做為參 考)。在S09以及801?可100%被轉換為硫酸的同時,>95% 的NO以及肋2可被轉換為硝酸。在該(:〇2循環液體中任何 過量的氧氣可被分離作為一富氧流,以具選擇性地回收 至該燃燒器。任何出現的惰性氣體(例如,N2以及Ar) 可在低壓排出至大氣,在某些實施例中,該(:〇2循環液體 可因此被純化,以使得衍生自該燃料中進行燃燒的碳的 c〇2可於最終以高密度、純化流的形式遞送。在特殊的實 施例中,該已純化c〇2循環液體所包括的c〇2濃度可為至 少98. 5%莫耳,至少99%莫耳,至少99. 5%莫耳,或至少 99. 8%莫耳。再者,該(:〇2循環液體可被提供在所需的壓 力,以被直接輸入一C〇2管線中,例如,至少大約10 MPa ,至少大約15 MPa,或至少大約20 MPa。 作為前述的總結,該含碳燃料254在〇2242以及一C〇2循環 液體236的存在下,於一蒸散冷卻燃燒器中的燃燒可形成 100125736 表單編號A0101 第72頁/共134頁 1003441436-0 201213655 Ο 具有一相對而言較高溫度以及壓力的燃燒產物流4〇。此 包括相對而S較大量C〇2的燃燒產物流4〇可通過一渦輪 320,以擴張该燃燒產物流40,藉此減少該流的壓力以及 發電。離開該渦輪320的出〇的該渦輪排放流5Q是處於一 減低的壓力,但仍處於相對而言較高的溫度。由於在該 燃燒產物流中的污染物以及不純物,有益地是,在將該 c〇2循環液體回收人系統前先分離出如此的污染物以及不 純物。為了達成此分離,該涡輪排放流5Q藉由通過該一 或更多個熱交鮮42〇而進行冷卻。料制產物(例如 ,水以及任何其他的污染物以及不純物)的分離可被達 成。正如前述’為了回收該⑶,環液體回該燃燒器必 須對該C02循環液體進行重新加熱料重新加壓。在某此 實施例中,本發明的特徵在於,在執行特殊的處理步驟― 來最大化發電循環的效率的同時,亦避免將污染 如,C02)排放至大氣I此特料見於對於離開該分離 單兀的該已冷卻及純化CO,環液趙的重新加熱以及重新And as illustrated by the part, the carbon dioxide rich recycle liquid stream 62b can be directed to one or more additional separation units 55A to remove more subordinate components, as described more fully below. In a particular embodiment, any more subordinate components of the c〇2 circulating liquid can be removed after removal of the water. Next, the c〇2 circulating liquid leaves the one or more additional separator units as the purified CO 2 circulating liquid 65. However, in some embodiments, the mixed phase C〇2 circulating liquid 61 may be first directed to remove one or more dependent components prior to removal of water, and the partially purified stream may then be directed to the The water is separated by 4Q. It will be appreciated that those skilled in the art disclosed herein will be able to imagine various combinations of separators as desired, and all such combinations are incorporated in the present invention by 100125736 1003441436-0 Form No. A0101 Page 71 of 134 pages 201213655 As mentioned previously, in addition to water, the c〇2 circulating liquid may also contain other subordinate components, such as fuel-derived, combustion-derived, and oxygen-derived impurities, such subordinate components may also be And when the moisture is separated, it is removed from the cooled, gas phase (: 〇 2 circulating liquid. For the four columns, in addition to water II · gas, such as S09, S0q, HCI, NO, N〇 2. The subordinate components of Hg and excess 〇2, N2 and Ar may also be removed. These subordinate components of the c〇2 circulating liquid (usually considered as impurities or contaminants) may be extracted from the appropriate method. The cooling c〇2 circulating liquid is completely removed (for example, the method defined in US Patent Application Publication No. 2008/02265 No. 5 and European Patent Application No. EP 1 952 874 and EP 1 953 486, the entire This is incorporated herein by reference.) While S09 and 801 can be 100% converted to sulfuric acid, >95% of NO and rib 2 can be converted to nitric acid. Any excess in this (:〇2 circulating liquid) The oxygen can be separated as an oxygen-rich stream for selective recovery to the burner. Any inert gases present (e.g., N2 and Ar) can be vented to the atmosphere at low pressure, in some embodiments, The 〇2 circulating liquid can thus be purified such that c 〇 2 derived from the carbon in the fuel for combustion can be ultimately delivered in a high density, purified stream. In a particular embodiment, the purified c 液体The 循环 液体 包括 2 2 2 2 2 2 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 2 Circulating liquid can be supplied at the desired pressure to be directly fed into a C〇2 line, for example, at least about 10 MPa, at least about 15 MPa, or at least about 20 MPa. As a summary of the foregoing, the carbonaceous fuel 254 in the presence of helium 2242 and a C〇2 circulating liquid 236 in an evapotranspiration burner The combustion can be formed into 100125736 Form No. A0101 Page 72 / Total 134 Page 1003441436-0 201213655 Ο A combustion product flow with a relatively high temperature and pressure is 4〇. This includes the combustion of the relatively large amount of C〇2 The stream 4 can be passed through a turbine 320 to expand the combustion product stream 40, thereby reducing the pressure of the stream and generating electricity. The turbine discharge stream 5Q exiting the turbine 320 is at a reduced pressure but still at Relatively high temperature. Due to the contaminants and impurities in the combustion product stream, it is beneficial to separate such contaminants as well as impurities prior to recycling the c〇2 recycle liquid to the human system. To achieve this separation, the turbine discharge stream 5Q is cooled by passing the one or more heats. Separation of the product (e. g., water and any other contaminants as well as impurities) can be achieved. As described above, in order to recover the (3), the ring liquid is returned to the burner and the C02 circulating liquid must be reheated by reheating. In a certain embodiment, the invention is characterized in that, while performing a special processing step - to maximize the efficiency of the power generation cycle, it also avoids the emission of pollution, such as CO 2 ), to the atmosphere. The cooled and purified CO of the single crucible, the reheating of the liquid liquid Zhao and the re-heating

一輝月,離開該等-或更多個分離 單元520的該已純化C〇2循環液體65可通過_或更多 壓單元62G (例如’幫浦,壓縮器,或類似者)加 該已純化c〇2循環液體65的壓力。在某些實施例中^加 純化循環液體65可被壓縮至至少大約7. 5 該已 約8 MPa的壓力。在-些實施例巾,—單獨的大 被用來將該已純化c〇2循環液體的壓力增加至在* 元可 導入該燃燒器220所需的麼力。 所延之 100125736 表單煸號Α0101 第73頁/共134頁 .λα απι m 妨加— 1〇〇3441436~〇 201213655 在特殊的實施例中’加壓可利用在該加壓單元62〇中串聯 的二或更多個壓縮器(例如,幫浦)來實行。一個如此 的實施例顯不於第7圖中,其中,該已純化c〇2循環液體 65通過一第一壓縮器63〇,以將該已純化循環液體65 壓縮為一第一壓力(其較佳地是高於該⑶丨的臨界壓力) ,以及因此形成流66。流66可被導向可收回熱(例如, 该第一壓縮器的該加壓動作所形成的熱)以及因此形成 流67的一冷卻水熱交換器64(),其較佳是在接近環境的溫 度下。流67可被導向被用來將該c〇2循環液體加壓至大於 该第一壓力的一第二壓力的一第二壓縮器65〇。正如前述 ,該第二壓力可大體上類似於該c〇2循環液體輸入(或回 收)至該燃燒器時所需的壓力。 在特殊的實施例中,該第一壓縮器63〇可被用來增加該已 純化(:〇2循環液體65的壓力,以使得該已純化c〇2循環液 體可由氣相狀態轉變為超臨界液體狀態。在特殊的實施 例中,該已純化c〇2循環液體可在該第一壓縮器630中被 加壓至壓力大約7. 5 MPa至大約20 MPa,大約7. 5 MPa 至大約15 MPa,大約7. 5 MPa至大約12 MPa,大約7. 5 MPa至大約1〇 MPa,或大約8 MPa至大約1〇 MPa。接著 ,離開該第一壓縮器630的該流66 (其處於超臨界液體狀 態)通過可將該(:〇2循環液體冷卻至足以形成可更有效地 被泵打至甚至更高壓力的一高密度液體的溫度的該冷卻 水熱交換器6 4 0 (或任何類似作用的裝置)。而依照被回 收而被使用作為該循環液體的c〇2的大體積來看,這是重 要的’對處於超流體狀態的大體積co2進行泵打可說是系 統中重要的能量汲取,然而,本發明實現可藉由增密該 100125736 表單編號A0101 第74頁/共134頁 1003441436-0 201213655 C〇2以及因此降低超臨界C〇2 (其被泵打回該燃燒器以用 於回收)的總體積而提供之具優勢的效率增加。在特殊 的實施例中,在從該冷卻水熱交換器640排出後(以及為The purified C〇2 circulating liquid 65 leaving the - or more separation units 520 may be added by _ or more pressure units 62G (eg, 'pumps, compressors, or the like). C〇2 The pressure of the circulating liquid 65. In some embodiments, the purified recycle liquid 65 can be compressed to at least about 7.5. The pressure of about 8 MPa. In some embodiments, a separate large is used to increase the pressure of the purified c〇2 circulating liquid to the force required to introduce the burner 220 at *. Extending 100125736 Form Α Α 0101 Page 73 / 134 pages. λα απι m — - 1〇〇3441436~〇201213655 In a special embodiment, 'pressurization can be used in series in the pressurizing unit 62〇 Two or more compressors (eg, pumps) are implemented. One such embodiment is not shown in Figure 7, wherein the purified c〇2 circulating liquid 65 is passed through a first compressor 63 to compress the purified circulating liquid 65 to a first pressure (which is Preferably, the critical pressure is above (3) ,, and thus the stream 66 is formed. Stream 66 can be directed to recoverable heat (e.g., heat formed by the pressurization of the first compressor) and thus a cooling water heat exchanger 64() that forms stream 67, preferably in proximity to the environment. At temperature. Stream 67 can be directed to a second compressor 65A that is used to pressurize the c〇2 circulating liquid to a second pressure greater than the first pressure. As previously mentioned, the second pressure can be substantially similar to the pressure required to input (or retract) the c〇2 circulating liquid to the burner. In a particular embodiment, the first compressor 63 can be used to increase the pressure of the purified (?2) circulating liquid 65 such that the purified c〇2 circulating liquid can be converted from a gaseous state to a supercritical 5 MPa至约15。 The singularity of the singularity of the singularity of the singly MPa, from about 7.5 MPa to about 12 MPa, from about 7.5 MPa to about 1 MPa, or from about 8 MPa to about 1 MPa. Then, the stream 66 exiting the first compressor 630 (which is in the super Critical liquid state) by cooling the (:〇2 circulating liquid to a temperature sufficient to form a high-density liquid that can be pumped more efficiently to even higher pressures. Similar to the effect of the device.) According to the large volume of c〇2 used as the circulating liquid, it is important to pump the large volume of co2 in the superfluid state, which is important in the system. Energy harvesting, however, the present invention can be achieved by densifying 100125736 Form No. A0101 Page 74 of 134 Page 1003441436-0 201213655 C〇2 and therefore the superior efficiency provided by reducing the total volume of supercritical C〇2 (which is pumped back to the burner for recovery) Increased. In a particular embodiment, after being discharged from the chilled water heat exchanger 640 (and

了加熱而通過該熱交換單元420前),該C09循環液體所 提供的密度可為至少大約200 kg/m3,至少大約250 kg/ m3,至少大約300 kg/m3,至少大約350 kg/m3,至少大 約400 kg/m3,至少大約450 kg/m3,至少大約500 kg/ m3,至少大約550 kg/m3,至少大約600 kg/m3,至少大 約650 kg/m3,至少大約700 kg/m3,至少大約750 kg/ m3,至少大約800 kg/m3,至少大約850 kg/m3,至少大 約900 kg/m3,至少大約950 kg/m3,或至少大約1000 kg/m。在另外的實施例中,該密度可為大約150 kg/m3 至大約1,100 kg/m3,大約200 kg/m3至大約1,000 kg/m ,大約400 kg/m3至大約 950 kg/m3,大約500 kg/m3至大約900 kg/m3,或大約500 kg/m3至大約800 kg/m3 。The C09 circulating liquid can provide a density of at least about 200 kg/m3, at least about 250 kg/m3, at least about 300 kg/m3, at least about 350 kg/m3, prior to passing through the heat exchange unit 420. At least about 400 kg/m3, at least about 450 kg/m3, at least about 500 kg/m3, at least about 550 kg/m3, at least about 600 kg/m3, at least about 650 kg/m3, at least about 700 kg/m3, at least Approximately 750 kg/m3, at least approximately 800 kg/m3, at least approximately 850 kg/m3, at least approximately 900 kg/m3, at least approximately 950 kg/m3, or at least approximately 1000 kg/m. In further embodiments, the density may range from about 150 kg/m3 to about 1,100 kg/m3, from about 200 kg/m3 to about 1,000 kg/m, from about 400 kg/m3 to about 950 kg/m3. , from about 500 kg/m3 to about 900 kg/m3, or from about 500 kg/m3 to about 800 kg/m3.

在特殊實施例中,該流66通過該冷卻水熱交換器640可將 該(:〇2循環液體冷卻至溫度少於大約6〇力,少於大約50 °C,少於大約40 t,或少於大約30 °C。在其他的實施 例中’該C〇2循環液體離開該冷卻水熱交換器640成為流 67的溫度可為大約15 °c至大約5〇°C,大約2(TC至大約 45°C ’或大約2〇°C至大約4(TC。較佳地是,在進入該第 二壓縮器650的流67中的該C〇2循環液體處於有助於能量 效率的條件’將該流泵打至將該c〇2循環液體導入該燃燒 器中的所需壓力。舉例而言,已加壓、超臨界⑶循環液 2 體流70可更進一步地被加壓至壓力至少大約12 Mpa,至 100125736 表單編號A0101 第75頁/共134頁 1003441436-0 201213655 少大約1 5 MPa,至少大約1 6 MPa,至少大約1 8 MPa, 至少大約20 MPa,或至少大約25 MPa。在一些實施例中 ,已加壓的超臨界C〇2循環液體流70可再被加壓至壓力大 約15 MPa至大約50 MPa,大約20 MPa至大約45 MPa, 或大約25 MPa至大約40 MPa。能夠在所提及的壓力下工 作以及能夠達成所述壓力的任何型態壓縮器皆可以使用 ,例如,一高壓多段幫浦。 離開該一或更多個加壓單元620的該已加壓(:〇2循環液體 流70可被導回先前被用來冷卻該渦輪排放流50的該等熱 交換器。正如在第5圖中所顯示的,該已加壓C〇2循環液 體流70首先通過一分流器720,以形成C〇2管路液體流80 以及C〇2循環液體流85 (其大體上相等於C〇2循環液體流 70,除了在該流中所存在的C〇2真實量以外)。因此,在 一些實施例中,在該已加壓c〇2循環液體流中的至少一部 份(:〇2會被導入用於封存的一已加壓管路中。從該(:〇2循 環液體流所移除的以及被導向該管路的(或者其他封存 或處置裝置)c〇2的量可取決於被導入該燃燒器中的c〇2 的所需内容物而變化,以控制燃燒溫度以及出現在離開 該燃燒器的該燃燒排放流中的(:〇2的真實量。在一些實施 例中,被收回的c 〇 2量,正如前述,可大體上為在該燃燒 器中的該含碳燃料的燃燒所形成的(:〇2量。 為了達成高效率操作,有幫助地是,離開該已加壓單元 620的該CO/盾環液體被加熱至該超臨界液體具有低上許 多之比熱的溫度。此相等於在相對較低的溫度範圍内提 供一非常大的熱輸入。使用外部熱源(例如,相對而言 較低溫度的熱源)來提供對於一部份該已回收C〇2循環液 100125736 表單編號A0101 第76頁/共134頁 1003441436-0 201213655 體的額外加熱,使得該熱交換器單元42〇能夠在渦輪排放 流50以及在该熱交換器單元420 (或是當使用一串聯的二 或多個熱交換器時在該第—熱交換器)熱端的已回收c〇 L· 循環液體流236間溫度差異小的情形下操作。在特殊的實 施例中’該已加壓c〇2循環液體通過該一或更多個熱交換 器對將該已加壓C〇2循環液體流加熱至該已加壓c〇2循環 液體流進入該燃燒器所需的溫度而言是有用的。在某些 實施例中,在該c〇2循環液體流輸入該燃燒器前,該已加 壓C〇2循環液體流被加熱至溫度至少大約2〇〇 ,至少大 Ο 約300 °C ’至少大約4〇〇,至少大約5〇〇。(:,至少大 約600 °C ’至少大約7〇〇 t,或至少大約8〇〇 °C。在一 些實施例中,可加熱至溫度大約5〇〇至大約1,200 °C ,大約550 °C至大約1,〇〇〇 °c,或大約6〇〇 °c至大約 950 〇C。 . Ο 第8圖闡明一熱交換器單元420的一實施例,其中,三個 個別的熱交換器被串聯使用,以從該渦輪排放流50收回 熱’進而提供處於適合用於移除從屬成份的條件的〇〇2循 環液體流60 ’以及同時在回收該c〇2循環液體流236以及 將其導入該燃燒器之前先增加熱至該已加壓、超臨界c〇2 循環液體流70 (或85)。正如先前更進一步敘述地,本 發明的系統與方法可用來對習知電力系統(例如,燃煤 發電廠)進行修整,以增加效率、及/或其輸出。在一些 實施例中’如接下來所敘述的該熱交換器單元420可因此 在如此的一修整中被稱之為主要熱交換單元,在此亦使 用一從屬熱交換單元(正如在第12圖中所闡明)。該次 級熱交換單元舉例而言,因此可被用來過熱(super- 100125736 表單編號A0101 第77頁/共134頁 1003441436-0 201213655 heat) —蒸汽流。該等用詞主要熱交換單元以及從屬熱 交換單元的使用並不應被理解為是對本發明範圍的限制 ,以及僅疋為了提供清楚的敘述而使用。 在第8圖所包含的實施例中,該渦輪排放流5〇首先藉由通 過該第一熱交換器430而進入該熱交換器串聯42〇,以提 供將具有比該渦輪排放流5〇的溫度更低的溫度的流52。 當該第一熱父換器430接收串聯中最熱的流(亦即,該渦 輪排放流50)以及因此傳遞該熱交換器串聯42〇中落在最 尚溫度範圍内的熱時,其可被敘述為一高溫熱交換器。 正如前述,接收相對而言較高溫的渦輪排放流5〇的該第 一熱交換器430可包括可用來使該熱交換器適合收回所提 及的溫度的特殊合金或其他材料,該渦輪排放流5〇的温 度可藉由通過該第一熱交換器43〇而顯著地降低(其亦可 應用於使用少於三個、或多於三個個別熱交換器的其他 實施例)。在某些實施例中,離該該第一熱交換器4 3 〇的 該流52的溫度可以比該渦輪排放流5〇的溫度低上至少大 約100 °C,至少大約200它,至少大約30〇 ,至少大 約400 °C,至少大約450 t,至少大約500。(:,至少大 約550 °C ’至少大約575°C,或至少大約600 t,在特 殊的實施例中,流52的溫度可為大約10〇 〇c至大約8〇〇 。(:,大約150 °C至大約600 °c,或大約200。(:至大約 500 C。在較佳的實施例中,離開該第一熱交換器43〇的 該流52的壓力大體上類似於該渦輪排放流5〇的壓力。特 別地是,離開該第一熱交換器430的該流52的壓力可以為 該渦輪排放流50的壓力的至少9〇%,至少91%,至少92〇/0 ,至少93%,至少94%,至少95%,至少96%,至少97%, 1003441436-0 100125736 表單編號A0101 第78頁/共134頁 201213655 至少98%,至少99%,至少99. 5%,或至少99. 8%。 Ο Ο 離開該第一熱交換器430的該流52通過該第二熱交換器 440 ’以產生流56,其所具有的温度小於進入該第二熱交 換器440的該流52的溫度。當該第二熱交換器440傳遞落 在中間溫度範圍(亦即,小於第一熱交換器430但大於第 三熱交換器450大的範圍)内的熱的時候,其可被敘述為 一中間溫度熱交換器。在一些實施例中,該第一流52以 及該第二流56之間的溫度差異可大體上小於該渦輪排放 流50以及離開該第一熱交換器430的該流52間的溫度差異 。在一些實施例中,離開該第二熱交換器440的該流56的 溫度可比進入該第二熱交換器440的該流52的溫度低上大 約10 °C至大約200 °C,大約20 °C至大約175°C,大約 30 °C至大約150 t,或大約40 °C至大約140 t。在特 殊的實施例中,流56的溫度可為大約75°C至大約600 °C ,大約100°C至大約400 °C,或大約l〇〇°C至大約300 °C 。再次,可為較佳地是,離開該第二熱交換器440的流56 的壓力大體上類似於進入該第二熱交換器440的該流52的 壓力。特別地是,離開該第二熱交換器440的流56的壓力 可為進入該第二熱交換器440的流52的壓力的至少90%, 至少91%,至少92%,至少93%,至少94% ’至少95%,至 少96%,至少97%,至少98% ’至·少99% ’至少99. 5%,或 至少99. 8%。 離開該第二熱交換器440的該流56通過該第三熱交換器 450,以產生溫度低於進入該第三熱交換器450的流56的 溫度的該C09循環液體流60。當該第三熱交換器450傳遞In a particular embodiment, the stream 66 can be cooled by the chilled water heat exchanger 640 to a temperature of less than about 6 Torr, less than about 50 ° C, less than about 40 Torr, or Less than about 30 ° C. In other embodiments, the temperature of the C 〇 2 circulating liquid leaving the chilled water heat exchanger 640 to stream 67 may range from about 15 ° C to about 5 ° C, about 2 (TC). Up to about 45 ° C ' or about 2 ° C to about 4 (TC. Preferably, the C 〇 2 circulating liquid in the stream 67 entering the second compressor 650 is in a condition that contributes to energy efficiency. 'The pump is pumped to the desired pressure to introduce the c〇2 circulating liquid into the burner. For example, the pressurized, supercritical (3) circulating fluid 2 stream 70 can be further pressurized to pressure At least about 12 Mpa, to 100125736 Form No. A0101, page 75, 134, 1003441436-0 201213655, less than about 15 MPa, at least about 16 MPa, at least about 18 MPa, at least about 20 MPa, or at least about 25 MPa. In some embodiments, the pressurized supercritical C〇2 circulating liquid stream 70 can be repressurized to a pressure of approximately 15 MP. a to about 50 MPa, from about 20 MPa to about 45 MPa, or from about 25 MPa to about 40 MPa. Any type of compressor that can operate at the pressures mentioned and that can achieve the pressure can be used, for example, a high pressure multi-stage pump. The pressurized (the 〇2 circulating liquid stream 70 exiting the one or more pressurizing units 620 can be directed back to the heat exchangers previously used to cool the turbine exhaust stream 50 As shown in Figure 5, the pressurized C〇2 circulating liquid stream 70 is first passed through a splitter 720 to form a C〇2 line liquid stream 80 and a C〇2 circulating liquid stream 85 (generally Equal to C 〇 2 circulating liquid stream 70, except for the actual amount of C 〇 2 present in the stream. Thus, in some embodiments, at least one of the pressurized c 〇 2 circulating liquid streams Part (: 〇 2 will be introduced into a pressurized line for storage. From this (: 〇 2 circulating liquid flow removed and directed to the pipeline (or other storage or disposal device) c The amount of 〇2 may vary depending on the desired content of c〇2 introduced into the burner to control The combustion temperature and the true amount of 〇2 present in the combustion effluent stream exiting the burner. In some embodiments, the amount of c 〇 2 recovered, as previously described, may generally be at the burner In the combustion of the carbonaceous fuel formed (: 〇 2 amount. To achieve high efficiency operation, it is helpful that the CO/shield ring liquid leaving the pressurized unit 620 is heated to the supercritical liquid A temperature that is much lower than the heat of the heat. This is equivalent to providing a very large heat input in a relatively low temperature range. Using an external heat source (eg, a relatively low temperature heat source) to provide additional heating for a portion of the recovered C〇2 circulating fluid 100125736 Form No. A0101 Page 76 of 134 pages 1003441436-0 201213655 The heat exchanger unit 42 can be recovered in the turbine discharge stream 50 and at the hot end of the heat exchanger unit 420 (or when using a two or more heat exchangers in series) 〇L· Operates in the case where the temperature difference between the circulating liquid streams 236 is small. In a particular embodiment, the pressurized c〇2 circulating liquid is heated by the one or more heat exchanger pairs to pressurize the pressurized C〇2 circulating liquid stream to the pressurized c〇2 circulating liquid stream It is useful to enter the temperature required for the burner. In certain embodiments, the pressurized C〇2 circulating liquid stream is heated to a temperature of at least about 2 Torr, at least about 300 ° C ' at least before the c 〇 2 circulating liquid stream is fed to the burner. About 4 inches, at least about 5 inches. (:, at least about 600 ° C 'at least about 7 〇〇 t, or at least about 8 ° C. In some embodiments, it can be heated to a temperature of about 5 〇〇 to about 1,200 ° C, about 550 ° C to about 1, 〇〇〇 ° c, or about 6 〇〇 ° c to about 950 〇 C. Ο Figure 8 illustrates an embodiment of a heat exchanger unit 420 in which three individual heat exchangers Used in series to recover heat from the turbine discharge stream 50 to provide a 〇〇2 circulating liquid stream 60' in a condition suitable for removing subordinate components and to simultaneously recover the c〇2 circulating liquid stream 236 and to Heating is introduced to the pressurized, supercritical c〇2 circulating liquid stream 70 (or 85) prior to introduction into the burner. As described further above, the systems and methods of the present invention can be used with conventional power systems (e.g., , a coal-fired power plant) is trimmed to increase efficiency, and/or its output. In some embodiments, the heat exchanger unit 420, as described below, may thus be referred to as primary in such a trim. Heat exchange unit, here also uses a subordinate heat exchange The unit (as illustrated in Figure 12). The secondary heat exchange unit can, for example, be used for overheating (super-100125736 Form No. A0101 Page 77 / Total 134 Page 1003441436-0 201213655 heat) - Steam The use of the terms primary heat exchange unit and the dependent heat exchange unit is not to be construed as limiting the scope of the invention, and only to provide a clear description. The embodiment included in Fig. 8 The turbine exhaust stream 5〇 first enters the heat exchanger series 42〇 through the first heat exchanger 430 to provide a stream 52 that will have a lower temperature than the turbine discharge stream 5〇. When the first hot parent converter 430 receives the hottest stream in the series (ie, the turbine exhaust stream 50) and thus transfers heat in the heat exchanger series 42 落 in the most extreme temperature range, Illustrated as a high temperature heat exchanger. As previously mentioned, the first heat exchanger 430 receiving a relatively higher temperature turbine discharge stream 5 can include a heat exchanger that can be used to adapt the heat exchanger to recover the temperature mentioned. Special alloy Or other materials, the temperature of the turbine discharge stream 5 显 can be significantly reduced by passing through the first heat exchanger 43 (which can also be applied to the use of less than three, or more than three individual heat exchangers) Other embodiments). In certain embodiments, the temperature of the stream 52 from the first heat exchanger 43 may be at least about 100 ° C lower than the temperature of the turbine exhaust stream 5 ,, at least about 200 It is at least about 30 Torr, at least about 400 ° C, at least about 450 t, at least about 500. (:, at least about 550 ° C 'at least about 575 ° C, or at least about 600 t, in a particular embodiment, The temperature of stream 52 can range from about 10 〇〇c to about 8 Torr. (:, about 150 ° C to about 600 ° C, or about 200. (: to about 500 C. In a preferred embodiment, the pressure of the stream 52 exiting the first heat exchanger 43 is substantially similar The pressure of the turbine discharge stream 5 。. In particular, the pressure of the stream 52 exiting the first heat exchanger 430 may be at least 9%, at least 91%, at least 92 压力 of the pressure of the turbine discharge stream 50. /0, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, 1003441436-0 100125736 Form No. A0101 Page 78 of 134 pages 201213655 At least 98%, at least 99%, at least 99. 5 %, or at least 99.8%. 该 该 the stream 52 leaving the first heat exchanger 430 passes through the second heat exchanger 440' to produce a stream 56 having a temperature less than entering the second heat exchanger The temperature of the stream 52 of 440. When the second heat exchanger 440 transfers heat within an intermediate temperature range (i.e., less than the first heat exchanger 430 but larger than the third heat exchanger 450) , which can be described as an intermediate temperature heat exchanger. In some embodiments, the first stream 52 and the second stream 56 The temperature difference between the two may be substantially less than the temperature difference between the turbine discharge stream 50 and the stream 52 exiting the first heat exchanger 430. In some embodiments, the stream 56 exiting the second heat exchanger 440 The temperature may be about 10 ° C to about 200 ° C lower than the temperature of the stream 52 entering the second heat exchanger 440, about 20 ° C to about 175 ° C, about 30 ° C to about 150 t, or about From 40 ° C to about 140 t. In a particular embodiment, the temperature of stream 56 can range from about 75 ° C to about 600 ° C, from about 100 ° C to about 400 ° C, or from about 10 ° C to about 300 ° C. Again, it may be preferred that the pressure of the stream 56 exiting the second heat exchanger 440 is substantially similar to the pressure of the stream 52 entering the second heat exchanger 440. In particular, leaving The pressure of the stream 56 of the second heat exchanger 440 may be at least 90%, at least 91%, at least 92%, at least 93%, at least 94% 'at least 95% of the pressure of the stream 52 entering the second heat exchanger 440. % 。 。 The second heat exchanger 440, at least 96%, at least 97%, at least 98% 'to the less than 99%', at least 99.5%, or at least 99.8%. The stream 56 passes through the third heat exchanger 450 to produce the C09 circulating liquid stream 60 having a temperature lower than the temperature of the stream 56 entering the third heat exchanger 450. When the third heat exchanger 450 passes

U 100125736 在該熱交換器串聯420中最低溫範圍内的熱時’其可被敘 表單編號A0101 第79頁/共134頁 1003441436-0 201213655 述為 ' 一低ba熱父換。在一些實施例中,離開該第三熱 交換器450的C〇2循環液體流60的溫度可比進入該第三熱 交換器4 5 0的流5 6的溫度低上大約1 〇 至大約2 5 〇 , 大約15°C至大約20 0 °C ’大約20 °C至大約175°C,或大 約25°C至大約150 °C。在特殊實施例中,流60的溫度可 為大約40 °C至大約200 °C,大約40 °C至大約1〇〇 t, 或大約40 °C至大約90 °C。再次,可為較佳地是,離開 該第三熱交換器450的C〇2循環液體流6〇的壓力大體上類 似於進入該第三熱交換器450的流56的壓力。特別地是, 離開該第三熱交換器450的該C〇2循環液體流的壓力可 為進入該第三熱交換器450的流56的壓力的至少90%,至 少91 %,至少92%,至少93%,至少94%,至少95%,至少 96%,至少97% ’至少98% ’至少99%,至少99. 5%,或至 少 99. 8% ° 進入該第三熱交換器450 (以及因此離開熱交換器單元 420,一般而言)的該C〇2循環液體流60可被導向一或更 多個分離單元520。亦如上所述,該⑶循環液體流可經 L· 歷一或更多種型態的分離,以自該流中移除從屬成份, 接著被加壓以返回該燃燒器作為該已回收的循環液體( 可選擇地具有分離出之(:02的一部份,以在不排出至大氣 的情形下進入一C〇2管路或其他封存或處置裝置)。 回到第8圖,該已加壓C〇2循環液體流70 (或85,若首先 通過一分離裝置時,如在第5圖中所顯示)可被引導回去 通過相同的三個熱交換器串聯,因此,原先經由該等熱 交換器所收回的熱可被用來在進入該燃燒器22〇前將熱授 予至該已加壓C〇2循環液體流7〇。典型地,藉由通過該三 100125736 表單編號細1 * 8〇 S/* 134 ^ 1003441436-0 201213655 個熱交換器( 450,440,以及430 )而被授予至該已加 壓C〇2循環液體流70的熱可相對而言與該等熱交換器所收 回的熱的量(正如上述)成比率。 在某些實施例中,本發明的特徵在於離開以及進入該熱 乂換器(或串聯中的最後—個熱交換器)的流之間的溫 度差異。請參閱第8圖,此特別地相關於流60以及70之間 的溫度差異。特別地是,該等流在(串聯中的最後一個 熱交換器的)該熱交換器的冷端處的溫度差異大於零’ 以及範圍可為大約2 °C至大約50。(:,大約3。(:至大約 4〇 °C’大約4 °C至大約30。0,或大約5 至大約20 °C。 在一些實施例中,該已加壓CO循環液體流70可直接通過 2 串聯的該三個熱交換器。舉例而言,該已加壓C〇2循環液 體流7 0 (亦即,在相對而言較低的溫度者)可通過該第 三熱交換器450,以形成處於增加的溫度的流71,其可直 接通過該第二熱交換器440,以形成處於增加的溫度的流 73 ’其可直接通過該第一熱交換器430,以形成可導入該 燃燒器220的該高溫、已加壓CO循環液體流236。 然而,在特別的實施例中,本發明的特徵在於,使用外 部熱源來更進一步增加該已回收(:〇2循環液體的溫度。舉 例而言,正如在第8圖中所闡明,在該已加壓CO循環液 體流70通過該第三熱交換器450後,所形成的流71,取代 直接通過該第二熱交換器440,可通過將流71分為二個流 71b以及72a的一分流零件460。流71b可通過該第二熱交 換器440。如前述,流72a可通過被用來在該等熱交換器 本身授予的熱之外,另外對該已加壓C〇2循環液體流70授 100125736 表單编號A0101 第81頁/共134頁 1003441436-0 201213655 予額外量的熱的側加熱器4 7 0。 來自該流71的該已加壓(:〇2循環液體流中被導向該第二埶 * *、、、 交換器440以及該側加熱器470的量可取決於該系統的工 作條件以及該已加壓c〇2循環液體流為了進入該燃燒器 220的所需最终溫度而變化。在某些實施例中,流71匕中 被導向該第二熱交換器440的c〇2以及該流72a中被導向該 側加熱器470的C02間的莫耳比可為大約1:2至大約2〇:1 (亦即,大約流72a中每2莫耳的c〇2對上流莫耳 的C〇2,至大約流72a中每1莫耳的C〇2對上流71b中2〇莫 耳的c〇2)。在另外的實施例中,流71b中被導向該第二 熱交換器440的002以及該流72a中被導向該側加熱器47() 的c〇2間的莫耳比可為大約1:1至大約20:1,大約21至 大約16:1,大約2:1至大約12:1,大約2:1至大約1〇:1 ,大約2:1至大約8:1,或大約4:1至大約6:1。 該側加熱器可包括可用來將熱授予給該循環液體的任 何裝置。在一些實施例中,該側加熱器所提供的能量( 亦即,熱)可從一外面來源被輸入進該系統。然而,在 根據本發明的特別實施例中,該循環的效率可藉由利用 產生在該循環中一或多個點處的廢熱而獲得增加。舉例 而言,用來輸入該燃燒器的〇2的產生可產生熱。已知的 空氣分離單元可產生熱作為該分離處理的副產品。再者 ,有用地是,該〇2可以增加的壓力被提供,例如上述, 以及該氣體的如此加壓亦可產生熱作為一副產品。舉例 而言’ 〇2可藉由操作低溫空氣分離處理而產生,其中, 氧在處理中藉由泵打保存冷卻的液態氧(其已被充分加 100125736 熱至環境溫度 表單編號A0101 而受到加壓。如此的低溫氧栗打工薇可 第82頁/共134頁 1003441436-0 具有二個空氣壓縮器,其皆可絕熱地以無段冷卻(no inter-stage cooling)的方式操作,因此,該熱的、 已加壓的空氣的溫度可被向下冷卻至接近及/或高於該外 部源所加熱的該流(例如,流72a,在第8圖中)的溫度 。在習知技術的設定中,,當次級冷卻系統需要來消除該 副產品熱時,如此的熱不被利用,或可實際地作為系統 上的消耗。然而,在本發明中,冷卻劑可被用來從該空 氣分離處理中收回已產生的熱,以及將該熱提供至在第8 圖中所闡明的該側加熱器,在其他的實施例中,該侧加 熱器其本身可為該空氣分離單元(或一相關連的裝置) ,以及該CO/盾環液體(例如,在第8圖中的流72a)其本 身可直接透過該空氣分離單元上或與其相關的一冷卻劑 系統而進行循環,以收回在該空氣分離處理中所產生的 熱,更特別地是,所添加的熱的獲得可藉由絕熱地操作 該C〇2壓縮器以及移除在後冷卻器(after-cooler)中 的壓縮熱來對抗傳遞壓縮熱來加熱部分該高壓c〇2循環液 體的一循環熱傳遞液體而達成,或是藉由直接熱傳遞至 該高壓已回收C09循環液體流(例如,第8圖中的流72a)U 100125736 is the heat in the lowest temperature range of the heat exchanger series 420. It can be described as Form No. A0101, page 79 / 134 pages 1003441436-0 201213655, which is described as 'a low ba hot father change. In some embodiments, the temperature of the C〇2 circulating liquid stream 60 exiting the third heat exchanger 450 may be about 1 〇 to about 2 5 lower than the temperature of the stream 56 entering the third heat exchanger 450. 〇, about 15 ° C to about 20 ° C 'about 20 ° C to about 175 ° C, or about 25 ° C to about 150 ° C. In a particular embodiment, stream 60 may have a temperature of from about 40 ° C to about 200 ° C, from about 40 ° C to about 1 ° t, or from about 40 ° C to about 90 ° C. Again, it may be preferred that the pressure of the C〇2 circulating liquid stream 6〇 exiting the third heat exchanger 450 is substantially similar to the pressure of the stream 56 entering the third heat exchanger 450. In particular, the pressure of the C〇2 circulating liquid stream exiting the third heat exchanger 450 may be at least 90%, at least 91%, at least 92% of the pressure of the stream 56 entering the third heat exchanger 450, At least 93%, at least 94%, at least 95%, at least 96%, at least 97% 'at least 98%', at least 99%, at least 99.5%, or at least 99.8% ° entering the third heat exchanger 450 ( And thus the C〇2 circulating liquid stream 60, which generally exits the heat exchanger unit 420, can be directed to one or more separation units 520. As also described above, the (3) circulating liquid stream can be separated by one or more types of L· to remove the subordinate component from the stream, and then pressurized to return to the combustor as the recycled cycle. Liquid (optionally separated (: part of 02 to enter a C〇2 line or other storage or disposal device without discharge to the atmosphere). Back to Figure 8, the added The pressure C 〇 2 circulating liquid stream 70 (or 85, if first passed through a separation device, as shown in Figure 5) can be directed back through the same three heat exchangers in series, thus, originally through the heat The heat recovered by the exchanger can be used to impart heat to the pressurized C〇2 circulating liquid stream 7 进入 prior to entering the burner 22. Typically, the number is 1 * 8 by the number through the three 100125736 forms. 〇S/* 134 ^ 1003441436-0 201213655 heat exchangers (450, 440, and 430) and the heat imparted to the pressurized C〇2 circulating liquid stream 70 may be relatively opposite to the heat exchangers The amount of heat recovered (as described above) is proportional. In certain embodiments, the invention is The difference in temperature between the flow leaving and entering the thermal converter (or the last heat exchanger in the series). See Figure 8, which is specifically related to the temperature difference between streams 60 and 70. In particular, the temperature difference at the cold end of the heat exchanger (of the last heat exchanger in the series) is greater than zero' and the range may be from about 2 ° C to about 50. (:, approximately 3. (: to about 4 ° C 'about 4 ° C to about 30. 0, or about 5 to about 20 ° C. In some embodiments, the pressurized CO circulating liquid stream 70 can be directly passed through 2 in series The three heat exchangers, for example, the pressurized C〇2 circulating liquid stream 70 (i.e., at a relatively lower temperature) can pass through the third heat exchanger 450 to form Stream 71 at an increased temperature, which may pass directly through the second heat exchanger 440 to form a stream 73' at an increased temperature that may pass directly through the first heat exchanger 430 to form an extractable burner 220 The high temperature, pressurized CO recycle liquid stream 236. However, in a particular embodiment The invention is characterized in that an external heat source is used to further increase the temperature of the recovered (: 〇 2 circulating liquid. For example, as illustrated in Figure 8, the pressurized CO circulating liquid stream 70 passes After the third heat exchanger 450, the formed stream 71, instead of passing directly through the second heat exchanger 440, can be split into a splitting portion 460 of the two streams 71b and 72a by splitting the stream 71. The stream 71b can pass through Second heat exchanger 440. As previously described, stream 72a may be passed through the heat imparted by the heat exchangers themselves, in addition to the pressurized C〇2 circulating liquid stream 70, 100125736 Form No. A0101 81 pages / total 134 pages 1003441436-0 201213655 Additional amount of hot side heaters 4 7 0. The amount of the pressurized (: 〇 2 circulating liquid stream directed to the second 埶**, , the exchanger 440, and the side heater 470 from the stream 71 may depend on the operating conditions of the system and the The pressurized c〇2 circulating liquid stream changes in order to enter the desired final temperature of the combustor 220. In some embodiments, the flow 71匕 is directed to c〇2 of the second heat exchanger 440 and the stream 72a The molar ratio between C02 directed to the side heater 470 can be from about 1:2 to about 2 〇:1 (i.e., about every 2 moles of c〇2 in stream 72a versus C of the upper streamer) 2, to approximately 2 耳 C 〇 2 of the flow 72a to 2 〇 的 c 〇 2) of the upper flow 71b. In a further embodiment, the flow 71b is directed to the second heat exchanger 440 002 And the molar ratio between c〇2 of the stream 72a directed to the side heater 47() can be from about 1:1 to about 20:1, from about 21 to about 16:1, from about 2:1 to about 12 :1, from about 2:1 to about 1〇:1, from about 2:1 to about 8:1, or from about 4:1 to about 6:1. The side heater can include a heat that can be used to impart heat to the circulating liquid Any device. In some embodiments, The energy (i.e., heat) provided by the side heater can be input into the system from an external source. However, in a particular embodiment in accordance with the invention, the efficiency of the cycle can be generated in the cycle by utilization. The increase in waste heat at one or more points is increased. For example, the generation of crucible 2 for input to the burner can generate heat. Known air separation units can generate heat as a by-product of the separation process. Usefully, the helium 2 can be provided with increased pressure, such as described above, and such pressurization of the gas can also generate heat as a by-product. For example, '〇2 can be produced by operating a cryogenic air separation process, wherein Oxygen is pumped to save the cooled liquid oxygen during processing (it has been fully pressurized by adding 100125736 heat to ambient temperature form number A0101. Such a low temperature oxygen pumping work can be page 82 / 134 pages 1003441436 - 0 has two air compressors, all of which can be operated adiabatically in a no inter-stage cooling manner, so that the temperature of the hot, pressurized air can be cooled down But approaching and/or above the temperature of the stream (e.g., stream 72a, in Figure 8) heated by the external source. In the prior art settings, when the secondary cooling system is needed to eliminate the byproduct When hot, such heat is not utilized, or can be practically consumed as a system. However, in the present invention, a coolant can be used to recover the heat generated from the air separation process, and to provide the heat. To the side heater illustrated in FIG. 8, in other embodiments, the side heater itself may be the air separation unit (or an associated device), and the CO/shield ring liquid ( For example, stream 72a) in Figure 8 can itself be circulated directly through a coolant system on or associated with the air separation unit to recover heat generated in the air separation process, more particularly The added heat can be obtained by adiabatically operating the C〇2 compressor and removing the heat of compression in an after-cooler against the transfer of heat of compression to heat a portion of the high pressure c〇2 circulating liquid. One cycle heat transfer fluid And reached, or passed directly to the high pressure heat recovered by circulating the liquid C09 stream (e.g., FIG. 8 on stream 72a)

U 而達成。再者,如此的熱添加ϋ不需要限制為相關於第8 圖所述的位置,而是可以在該等從屬成份自該c〇2循環液 體分離後(但較佳地是在該C0循環液體通過直接位在該U is achieved. Furthermore, such hot addition enthalpy need not be limited to the position described in relation to Figure 8, but may be after the sub-components are separated from the c〇2 circulating liquid (but preferably in the C0 circulating liquid) By directly in the

U 燃燒器輸入的上游處的該熱交換器之前)的任何點處被 輸入至該循環,當然,任何利用在電力產生循環中所產 生的廢物的類似方法皆亦可被包含在本案揭露内容之中 ,例如’利用處於適當溫度的一供應流,或來自習知開 放式循環氣體渦輪的熱排放氣體。 表單編號A0101 第83頁/共134頁 201213655 該侧加熱器4 7 0所授予的熱的量可取決於所使用的材料與 裝置以及該CO2循環液體流2 3 6為了進入該燃燒器2 2 〇所需 達到的最終溫度而變化。在一些實施例中,該側加熱器 4 7 0有效地使該流7 2 a的溫度增加至少大約1 〇 °c,至少 大約20 °C,至少大約30 °C,至少大約40。(:,至少大 約50 °C ’至少大約60 °C,至少大約70 °C,至少大約 80 °C ’至少大約90 °C,或至少大約l〇(TC。在其他的 實施例中’該侧加熱器470有效地使該流72a的溫度增加 至少大約10 °C至大約200 °C,至少大約50 r至大約 175°C ’或至少大約75°C至大約150 °C。在特殊的實施 例中,該側加熱器470使流72a溫度的增加範圍落在離開 熱交換器440的流73的溫度的至少大約15 t内,至少大 約12°C内,至少大約l〇°C内,至少大約7。(:内,或至少大 約5 °C内。 藉由此另外熱源的增加,若該流中的c〇2量被引導通過該 第二熱交換器440時’則離開該第三熱交換器450的流71 可在該第二熱交換器440中可獲得的熱對流71進行加熱的 能力外另外進行過加熱。藉由對該流進行分流,在該第 二熱交換器440中可獲得的熱可完全地授予給流71b中的 〇〇2循极液體的部分内容物的同時,可得自該側加熱器 470的熱亦可完全地被授予至流72a中的該CO循環液體的 部分内容物。因此,可見地是,若流71中的所有量(:〇2循 環液體皆被導向該第二熱交換器440,而不是被分流且分 離地進行加熱(如上所述),則當利用替代的分流方法 時’進入該第一熱交換器430的結合流的溫度可大於離開 該第二熱交換器440的流73的溫度。在一些實施例中,藉 100125736 表單編號A0101 第84頁/共134頁 1003441436-0 201213655 由S玄分流方法所獲得的熱增加的重要性足以限制該c〇揭 環液體流236是否已在進入該燃燒器前充分加熱。 正如在第8圖中可見,離開該分流器46〇的流7lb通過該第 二熱交換器440,以形成流73,其被導向混合器480,以 將流73與排放自該側加熱器47〇的流72b相結合。接著, 所結合流74通過該第一熱交換器430,以在進入該第—熱 交換器430時將該c〇2循環液體的溫度加熱至大體上接近 該渦輪排放流的溫度。液體流在該第一熱交換器的熱端 處溫度上的接近可應用於本發明其他使用少於三個或多 於三個熱交換器的實施例,並且可應用於自該渦輪排出 後的c〇2循環液體所通過的該第一熱交換器。達成液體留 在該第一熱交換器的熱端處溫度上的接近的能力可以是 本發明實現所需效率位準的關鍵特徵。在某些實施例中 ’來自該渦輪的渦輪排放流進入排列中的該第一熱交換 器的溫度(亦即,在擴張進該渦輪後)與該(:〇2循環液體 離開該熱交換器以回收進入該燃燒器的溫度間的差異可 少於大約80 °C,少於大約75°C,少於大約°C,少於 大約65°C,少於大約60 t,少於大約55°C,少於大約 50 °C ’少於大約45°C,少於大約40 °C,少於大約35。(: ,少於大約30 °C,少於大約25°C,少於大約20。(:,或 少於大約15°C » 正如從前述可看出,本發明的系統及方法的效率可藉由 精準的控制該渦輪排放流50以及該已回收C〇2循環液體流 236間於熱交換器420 (或在第8圖所闡明的串聯中的該第 一熱交換器430 )熱端處的差異而顯著地獲益。在較佳的 實施例中,此溫度差異少於50 t。雖然並不希望受到理 100125736 表單編號A0101 第85頁/共134頁 1003441436-0 201213655 論的束缚,但已經發現,根據本發明,用於加熱該已回 收(:〇2循環液體的可獲得的熱(例如,從在一或更多個熱 交換器中的該渦輪排放流所收回的熱)可能不足以對已 回收c〇2循環液體的全部流進行充分加熱。本發明已瞭解 ,已可藉由對流71進行分流而獲得克服,因此,流71 b進 入該熱交換器440,以及流72a進入該外部熱源470,其 中,該外部熱源470提供額外、外部的熱來源而使離開該 外部熱源470的流72b的溫度上升至大體上接近離開該熱 交換器440的流73的溫度,正如先前已經敘述者。接著, 流72b以及73結合形成流74,流71b (以及流72a)的流 速可受到在熱交換器440的冷端處的溫度差異的控制。克 服上述熱不足所需的外部熱的量可藉由讓流56的溫度盡 可能的低以及最小化該熱交換器440的冷端溫度差異而最 小化。出現在流56中產生自燃燒產物的水蒸氣會於取決 於流56的成份以及其壓力的一溫度到達其露點。低於此 溫度,水冷凝大大地增加流56至流60的有效mCp,以及提 供將總回收流70加熱至流71所需的所有熱。離開該熱交 換器4 4 0的流5 6的溫度較佳地是可以在流5 6的露點的大約 5 °C範圍内。較佳地是,流56以及71間於熱交換器440 冷端處的溫度差異可為至少大約3 °C,至少大約6°C,至 少大約9°C,至少大約12°C,至少大約15°C,至少大約18 °C,或至少大約20°C。 回到第5圖,該(:〇2循環液體236可在被回收進入該燃燒器 220之前先進行預熱,例如相關於接收通過該擴散渦輪 320後的該熱渦輪排放流50的該至少一熱交換器420所敘 述者。為了最大化循環的效率,有用地是,在與構成熱 100125736 表單編號A0101 第86頁/共134頁 1003441436-0 201213655 氣體入口路徑以及高度受應力的渦輪葉片的可用材料一 致之盡可能高入口溫度下,以及在與系統操作壓力一致 之該熱交換器420中所允許的最大溫度下,操作該擴散渦 輪320。該渦輪入口流的該熱入口路徑以及渦輪葉片的第 一排可藉由任何有用的方式冷卻。在一些實施例中,可 藉由使用部分的該高壓、回收(:〇2循環液體而最大化效率 。特別地是,該較低溫(:〇2循環液體(例如,落在大約50 t至大約200 °C範圍内)可在該熱交換器420的冷端前自 該循環,或當使用串聯的多個熱交換器單元時自該熱交 換器420的中間點(例如,來自第8圖中的流71,72a, 71b,72b,73,或74)被收回。該葉片冷卻液體可從該 渦輪葉片中的洞排出,並且可直接輸入該渦輪流中。 高效燃燒器(例如,在此所述的蒸散冷卻燃燒器)的操作 可產生的燃燒氣體是具有過量氧濃度(例如,在大約 0. 1 %至大約5%莫耳的範圍内)的氧化氣體。替代地,該 燃燒器可產生的燃燒氣體是還原氣體,該還原氣體具有 某些濃度的h2,CO,ch4,h2s,以及〇3的一或更多種。 此特別有益地是,根據本發明,其變得有可能使用具有 僅一個渦輪單元、或一串聯渦輪單元(例如,2、3或更 多單元)的電力渦輪。有益地是,在使用一串聯單元的 特殊實施例中,所有的單元皆可以相同的入口溫度操作 ,並且,此使得既定第一渦輪饋送壓力與總體壓力間比 值的電力輸出能夠被最大化。 處於還原模式之利用串聯操作的二個渦輪330,340的渦 輪單元320的實例顯示於第9圖中。正如在此所見,該燃 燒產物流40被導向該第一渦輪330。在如此的實施例中, 100125736 表單編號A0101 第87頁/共134頁 1003441436-0 201213655 該燃燒產物流40被設計為(例如,透過控制所使用的燃 料,所使用的〇2量,以及燃燒器的操作條件)是具有一 或更多個燃燒成份於其中的還原氣體,正如前述,該燃 燒產物流40擴張跨越該第一渦輪330,以產生電力(例如 ,相關連一發電機,未顯示於此圖例中),以及形成一 第一排放流42。再導入該第二渦輪340之前,一預定量的 〇2可被添加進入該第一渦輪排放流42之中,以燃燒出現 在該第一渦輪排放流42中的可燃成份,此在留下過量的 氧的同時,亦會將該第二渦輪單元340的入口溫度上升至 大體上與該第一渦輪單元330相同的數值。舉例而言,來 自該第一渦輪單元330的該排放流42的溫度可落在大約 500 °C至大約1,000 °C的範圍。當在還原模式時,在此 溫度將〇2添加至該排放流42可造成流中的氣體可藉由過 量燃料氣體的燃燒而被加熱至大約700 °C至大約1,600 °C的溫度範圍,其大體上與離開該燃燒腔室220且進入該 第一渦輪單元330前的燃燒產物流40的溫度範圍相同。換 言之,在該二個渦輪的每一個的入口處的操作溫度大體 上是相同的。在特殊的實施例中,在該等渦輪的入口處 的操作溫度的差異不超過大約10%,不超過大約9%,不超 過大約8 % ^不超過大約7 % ’不超過大約6 % *不超過大約 5°/〇,不超過大約4%,不超過大約3%,不超過大約2%,或 不超過大約1 %。用於另外渦輪單元的類似重新加熱步驟 亦可被實行至留下的程度剩餘燃料。若有需要時,燃燒 可藉由在氧氣饋送燃燒空間中使用適當的催化劑而進行 強化。 在某些實施例中,正如於此所敘的電力循環可被用來修 100125736 表單編號A0101 第88頁/共134頁 1003441436-0 201213655 整現存的發電站,例如,藉由將高溫、高壓加熱液體(例 如此處所描述的渦輪排放流)導入習知郎肯循環(Rank-ine cycle)發電站的蒸汽過熱循環中。此可以是具有 沸水反應器(BWR)、或壓水式反應器(pressurized water reactor) (PWR)熱循環的煤點火、或核能發 電站。此是藉由將該蒸汽過熱至比現有系統中所產生的 已過熱蒸汽的溫度高上許多的溫度,而有效地增加該蒸 汽郎肯發電站的效率以及電力輸出。若使用燃粉煤鍋爐 (pulverized coal fired boiler),在蒸汽溫度目 〇 前高至最大大約600 °C的同時,在核能發電站中的蒸汽 條件通常高至大約320 °C。利用可能伴隨著本發明的系 統及方法中的熱交換的過熱,蒸汽溫度可上升至超過700 °C。此導致熱能直接轉換為額外的軸動力(shaft power),這是由於燃燒來過熱該蒸汽的額外燃料在不增 加冷凝蒸汽量的情形下,被轉換為基於蒸汽的發電站中 的額外電力,此可藉由提供從屬熱交換單元而達成。舉 例而言,正如另外在此所敘述,相關於本發明方法及系 ^ 統所敘述的該渦輪排放流可在通過該主要熱交換單元前 先被引導通過該從屬熱交換器。在該從屬熱交換單元中 所獲得的熱可被用來過熱來自該鍋爐的蒸汽。正如前述 ,該已過熱蒸汽可被導向一或更多個渦輪,以進行發電 。在通過該從屬熱交換單元後,該渦輪排放流可接著被 導向該主要熱交換單元,正如另外在此所述。如此的系 統及方法敘述於實例2以及闡明於第12圖之中。此外,有 可能地是,取來自該最終蒸汽渦輪的入口的低壓蒸汽, 並用它來加熱部分的該已回收(:〇2循環液體,正如前述。 100125736 表單編號A0101 第89頁/共134頁 1003441436-0 201213655 在特殊的實施例中,來自該蒸汽發電站的冷凝物可在利 用離開該熱交換單元冷端的該c〇2循環液體流而進行脫氣 (de-aeration)前,先被加熱至-中間溫度(舉例而 言,在一些實施例中,在大約80 °c的溫度)。此加熱正 常地使用取自最終LP蒸汽渦輪階段的入口的分供蒸汽( bleed steam) ’因此’對於現今側蒸汽加熱不足的蒸 汽發電站效率的淨效應可藉由對於冷凝的預加熱而獲得 補償,其保存了分供蒸汽。 上述一般的發電方法(亦即,發電循環)可根據本發明 而利用在此所述之適當的發電系統來執行。一般而言, 根據本發明的發電系統可包括在此相關於該發電方法而 敘述的任何零件。舉例而言,一發電系統可包括用於在 〇2以及c〇2循環液體存在下燃燒一含碳燃料的燃燒器。特 別地是’該燃燒器可為如此處所描述的一蒸散冷卻燃燒 器’然而,也可以使用能夠在另外於此所敘述的條件下 操作的其他燃燒器。特別地是,該燃燒器的特徵可相關 於其操作的燃燒條件以及該燃燒器本身的特殊零件。在 一些實施例中,該系統可包括為該含碳燃料(以及具選 擇性地,一流化介質)提供該〇2以及該C〇2循環液體的一 或更多個注入器。該系統可包括用於移除液態爐渣的零 件。該燃燒器可在一溫度產生燃料氣體,處於該溫度, 固態灰燼粒子可有效地從該氣體中濾出,以及該氣體可 與淬火(quench) (:02相混合以及在一第二燃燒器中燃燒 。該燃燒器可包括在該(:02循環液體存在下燃燒該含碳燃 料的至少一燃燒階段,以提供包括處於在此處所述之壓 100125736 力以及溫度的C〇2的一燃燒產物流。 表單編號A0101 第90頁/共134頁 1003441436-0 201213655 該系統可進一步包括與該燃燒器進行流體溝通的一發電 渦輪,該渴輪可具有接收該燃燒產物流的一入口,以及 釋放包含(:〇2的一渦輪排放流的一出口。電力可被產生在 該液體流擴張的時候。該渦輪被設計來將該液體流維持 在一所需壓力比(I /0 ),正如在此所述。Any point at the upstream of the heat exchanger at the upstream of the U burner input is input to the cycle. Of course, any similar method that utilizes the waste generated in the power generation cycle can also be included in the disclosure of this case. For example, 'utilize a supply stream at an appropriate temperature, or a hot exhaust gas from a conventional open-cycle gas turbine. Form No. A0101 Page 83 of 134 201213655 The amount of heat imparted by this side heater 470 may depend on the materials and equipment used and the CO2 circulating liquid stream 2 3 6 in order to enter the burner 2 2 〇 It varies with the final temperature that needs to be achieved. In some embodiments, the side heater 470 effectively increases the temperature of the stream 72 a by at least about 1 〇 ° C, at least about 20 ° C, at least about 30 ° C, at least about 40. (:, at least about 50 ° C 'at least about 60 ° C, at least about 70 ° C, at least about 80 ° C 'at least about 90 ° C, or at least about l 〇 (TC. In other embodiments 'the side The heater 470 effectively increases the temperature of the stream 72a by at least about 10 ° C to about 200 ° C, at least about 50 r to about 175 ° C ' or at least about 75 ° C to about 150 ° C. In a particular embodiment The side heater 470 causes the temperature increase of the stream 72a to fall within at least about 15 seconds of the temperature of the stream 73 exiting the heat exchanger 440, at least about 12 ° C, at least about 10 ° C, at least about 7. (within, or at least about 5 ° C. By this additional heat source, if the amount of c〇2 in the flow is directed through the second heat exchanger 440, then the third heat exchange is exited Stream 71 of vessel 450 may additionally be heated in addition to the ability of heat convection 71 available in the second heat exchanger 440. By splitting the stream, it may be obtained in the second heat exchanger 440 The heat can be completely granted to the portion of the 〇〇2 circulatory liquid in stream 71b, which is available at the same time. The heat of the side heater 470 can also be fully delegated to a portion of the contents of the CO circulating liquid in stream 72a. Thus, it can be seen that if all of the amount in stream 71 (: 〇2 circulating liquid is directed to the The second heat exchanger 440, rather than being shunted and separately heated (as described above), may have a temperature greater than the exiting second when entering the first heat exchanger 430 when utilizing an alternate splitting method The temperature of stream 73 of heat exchanger 440. In some embodiments, borrowing 100125736 Form No. A0101 Page 84 / Total 134 Page 1003441436-0 201213655 The importance of the increase in heat obtained by the S-Side shunt method is sufficient to limit the c〇 Whether the uncoiled liquid stream 236 has been sufficiently heated prior to entering the burner. As can be seen in Figure 8, the stream 7 lb exiting the splitter 46 通过 passes through the second heat exchanger 440 to form a stream 73 which is directed Mixer 480 to combine stream 73 with stream 72b discharged from the side heater 47. Next, combined stream 74 passes through the first heat exchanger 430 to enter the first heat exchanger 430 The temperature of the c〇2 circulating liquid plus To a temperature substantially close to the turbine discharge stream. The proximity of the liquid stream at the hot end of the first heat exchanger can be applied to other embodiments of the invention that use less than three or more than three heat exchangers. And can be applied to the first heat exchanger through which the c〇2 circulating liquid exits the turbine. The ability to achieve a liquid near the temperature at the hot end of the first heat exchanger can be the present invention. A key feature that achieves the desired efficiency level. In some embodiments, the turbine discharge stream from the turbine enters the temperature of the first heat exchanger in the array (i.e., after expansion into the turbine) and : 〇 2 circulating liquid leaving the heat exchanger to recover the difference between the temperatures entering the burner may be less than about 80 ° C, less than about 75 ° C, less than about ° C, less than about 65 ° C, less At about 60 t, less than about 55 ° C, less than about 50 ° C 'less than about 45 ° C, less than about 40 ° C, less than about 35. (:, less than about 30 ° C, less than about 25 ° C, less than about 20. (:, or less than about 15 ° C » As can be seen from the foregoing, the efficiency of the system and method of the present invention can be borrowed The turbine discharge stream 50 and the recovered C〇2 circulating liquid stream 236 are precisely controlled at the hot end of the heat exchanger 420 (or the first heat exchanger 430 in the series illustrated in Figure 8). Significantly benefiting from the difference. In the preferred embodiment, this temperature difference is less than 50 t. Although it is not desirable to be bound by the theory of 100125736 Form No. A0101, page 85 / 134, 1003441436-0 201213655, It has been found that, according to the present invention, the heat available for heating the recovered (: 2 circulated liquid (eg, heat recovered from the turbine discharge stream in one or more heat exchangers) may not be sufficient The entire stream of recycled c〇2 circulating liquid is sufficiently heated. It is understood that the present invention can be overcome by splitting the convection 71 so that stream 71b enters the heat exchanger 440 and stream 72a enters the exterior. a heat source 470, wherein the external heat source 470 provides The external and external sources of heat cause the temperature of stream 72b exiting the external heat source 470 to rise to a temperature substantially close to stream 73 exiting heat exchanger 440, as previously described. Next, streams 72b and 73 combine to form a stream. 74, the flow rate of stream 71b (and stream 72a) can be controlled by the temperature difference at the cold end of heat exchanger 440. The amount of external heat required to overcome the aforementioned heat deficiency can be achieved by allowing the temperature of stream 56 to be as high as possible. Minimizing and minimizing the difference in cold junction temperature of the heat exchanger 440. The water vapor generated in the stream 56 from the combustion products will reach its dew point at a temperature that depends on the composition of the stream 56 and its pressure. At this temperature, water condensation greatly increases the effective mCp of stream 56 to stream 60, as well as providing all of the heat required to heat the total recovered stream 70 to stream 71. The temperature of stream 56 leaving the heat exchanger 410 is preferably preferred. The ground may be in the range of about 5 ° C of the dew point of stream 56. Preferably, the difference in temperature between streams 56 and 71 at the cold end of heat exchanger 440 may be at least about 3 ° C, at least about 6 °. C, at least about 9 ° C, at least about 12 ° C, Less than about 15 ° C, at least about 18 ° C, or at least about 20 ° C. Returning to Figure 5, the (: 〇 2 circulating liquid 236 can be preheated before being recycled into the combustor 220, such as Illustrated by the at least one heat exchanger 420 of the hot turbine discharge stream 50 after passing through the diffusion turbine 320. To maximize the efficiency of the cycle, usefully, in conjunction with the composition of heat 100125736, Form No. A0101, page 86 / 134 pages 1003441436-0 201213655 The gas inlet path and the material available for the highly stressed turbine blades are as high as possible at the inlet temperature and at the maximum temperature allowed in the heat exchanger 420 consistent with the system operating pressure, The diffusion turbine 320 is operated. The hot inlet path of the turbine inlet stream and the first row of turbine blades can be cooled by any useful means. In some embodiments, the efficiency can be maximized by using a portion of the high pressure, recovery (: 〇 2 circulating liquid. In particular, the lower temperature (: 〇 2 circulating liquid (eg, falling at about 50 t to about The cycle may be from the cold end of the heat exchanger 420 before the cold end of the heat exchanger 420, or from the intermediate point of the heat exchanger 420 when multiple heat exchanger units in series are used (eg, from Figure 8 The stream 71, 72a, 71b, 72b, 73, or 74) is withdrawn. The blade cooling liquid can be drained from the holes in the turbine blade and can be directly fed into the turbine stream. High efficiency burners (eg, here) The operation of the evapotranial cooling burner can produce an oxidizing gas having an excess oxygen concentration (for example, in the range of about 0.1% to about 5% mole). Alternatively, the burner can produce The combustion gas is a reducing gas having certain concentrations of h2, CO, ch4, h2s, and one or more of 〇3. It is particularly advantageous that, according to the present invention, it becomes possible to use Only one turbine unit, or a series vortex An electric turbine of a wheel unit (eg, 2, 3 or more units). Advantageously, in a particular embodiment using a series unit, all units can operate at the same inlet temperature, and this makes the first The power output of the turbine feed pressure to the overall pressure ratio can be maximized. An example of a turbine unit 320 in a reduction mode utilizing two turbines 330, 340 operating in series is shown in Figure 9. As seen herein, the combustion The product stream 40 is directed to the first turbine 330. In such an embodiment, 100125736 Form No. A0101 Page 87 of 134 Page 1003441436-0 201213655 The combustion product stream 40 is designed (eg, by controlling the fuel used) The amount of helium used, and the operating conditions of the combustor, are reducing gases having one or more combustion components therein, as previously described, the combustion product stream 40 expands across the first turbine 330 to produce electricity ( For example, a related generator is not shown in this illustration), and a first exhaust stream 42 is formed. Before being introduced into the second turbine 340, Quantitative helium 2 may be added to the first turbine exhaust stream 42 to combust combustible components present in the first turbine exhaust stream 42 which may also leave the second turbine while leaving excess oxygen The inlet temperature of unit 340 rises to substantially the same value as the first turbine unit 330. For example, the temperature of the exhaust stream 42 from the first turbine unit 330 can fall from about 500 °C to about 1,000 °C. The range of addition of 〇2 to the effluent stream 42 at this temperature can cause the gas in the stream to be heated to a temperature of from about 700 ° C to about 1,600 ° C by combustion of excess fuel gas while in the reduction mode. The range is substantially the same as the temperature range of the combustion product stream 40 that exits the combustion chamber 220 and enters the first turbine unit 330. In other words, the operating temperatures at the inlet of each of the two turbines are substantially the same. In a particular embodiment, the difference in operating temperatures at the inlets of the turbines is no more than about 10%, no more than about 9%, no more than about 8%, no more than about 7%, no more than about 6%. More than about 5°/〇, no more than about 4%, no more than about 3%, no more than about 2%, or no more than about 1%. A similar reheating step for the additional turbine unit can also be carried out to the extent remaining fuel remaining. If desired, combustion can be enhanced by the use of a suitable catalyst in the oxygen feed combustion space. In some embodiments, the power cycle as described herein can be used to repair 100125736 Form No. A0101 Page 88 / Total 134 Page 1003441436-0 201213655 Complete existing power station, for example, by heating at high temperature and high pressure The liquid, such as the turbine discharge stream described herein, is introduced into the steam superheat cycle of a conventional Rank-ine cycle power plant. This may be a coal fired, or nuclear power plant with a boiling water reactor (BWR), or a pressurized water reactor (PWR) thermal cycle. This is effective in increasing the efficiency and power output of the steaming power plant by superheating the steam to a temperature much higher than the temperature of the superheated steam generated in the prior system. If a pulverized coal fired boiler is used, the steam conditions in a nuclear power plant are typically as high as about 320 °C, up to a maximum of about 600 °C before the steam temperature target. The steam temperature can rise above 700 °C using superheating that may be accompanied by heat exchange in the systems and methods of the present invention. This causes the thermal energy to be directly converted into additional shaft power, which is the additional fuel that is converted to a steam-based power station without increasing the amount of condensed steam due to the extra fuel that is superheated by the combustion. This can be achieved by providing a slave heat exchange unit. For example, as further described herein, the turbine discharge stream described in connection with the method and system of the present invention can be directed through the slave heat exchanger prior to passage through the primary heat exchange unit. The heat obtained in the slave heat exchange unit can be used to superheat steam from the boiler. As previously mentioned, the superheated steam can be directed to one or more turbines for power generation. After passing through the slave heat exchange unit, the turbine discharge stream can then be directed to the primary heat exchange unit, as otherwise described herein. Such systems and methods are described in Example 2 and illustrated in Figure 12. Furthermore, it is possible to take the low pressure steam from the inlet of the final steam turbine and use it to heat part of the recovered (: 〇 2 circulating liquid, as mentioned above. 100125736 Form No. A0101 Page 89 / 134 pages 1003441436 -0 201213655 In a particular embodiment, condensate from the steam power plant may be heated to before de-aeration with the c〇2 circulating liquid stream leaving the cold end of the heat exchange unit - intermediate temperature (for example, in some embodiments, at a temperature of about 80 ° C.) This heating normally uses bleed steam from the inlet of the final LP steam turbine stage 'so' for today The net effect of the efficiency of the steam power station with insufficient side steam heating can be compensated by preheating the condensation, which preserves the partial steam supply. The above general power generation method (ie, power generation cycle) can be utilized in accordance with the present invention. The appropriate power generation system described herein is implemented. In general, the power generation system according to the present invention may include any of the zeros described herein in relation to the power generation method. For example, a power generation system can include a combustor for burning a carbonaceous fuel in the presence of a helium 2 and c〇2 circulating liquid. In particular, the burner can be an evapotranspiration burner as described herein. 'However, other burners that can operate under otherwise described conditions may also be used. In particular, the characteristics of the burner may be related to the combustion conditions in which it operates and the particular parts of the burner itself. In embodiments, the system can include one or more injectors for providing the carbon dioxide fuel (and, optionally, a fluidization medium) the helium 2 and the C〇2 circulating liquid. The system can include Removing the parts of the liquid slag. The burner generates a fuel gas at a temperature at which solid ash particles can be effectively filtered out of the gas, and the gas can be mixed with quenching (: 02) Burning in a second burner. The burner may include at least one combustion stage in which the carbonaceous fuel is combusted in the presence of the :02 circulating liquid to provide inclusion including A combustion product stream of pressure C 〇 2 of 100125736 and temperature. Form No. A0101 Page 90 of 134 1003441436-0 201213655 The system may further comprise a power generating turbine in fluid communication with the burner, the thirst The wheel may have an inlet for receiving the flow of combustion products and an outlet for releasing a turbine discharge stream of: (〇2). The electricity may be generated as the liquid stream expands. The turbine is designed to maintain the liquid flow At a desired pressure ratio (I / 0), as described herein.

P P 更進一步’該系統可包括與該渦輪進行流體溝通的至少P P goes further' The system may include at least fluid communication with the turbine

100125736 一熱父換器,以接收該渦輪排放流以及冷卻該流,進而 形成一冷卻的c〇2循環液體流。相同地,該至少一熱交換 器可被用來加熱輪人該燃燒器的該⑶2循環液體,特別地 是,該(等)熱交換器的特徵是相關於允許在如此所述 的特殊條件下進行操作的建構材料。 違系統亦可包括用來將離開該熱交換器的該⑶2循環液體 流分離為〇)2以及—或更多個用於恢復或處置的其他另外 成份。特職m統可包㈣於將水(或其他在此 所钦述料純物)從該⑶一環液體射分離的裝置。 I系統可進步包括一或更多個裝置(例如,壓縮器) ,其與該至少—熱交換器進行流趙溝通(及/或與-或更 多個分離裝置進行流體溝通),以壓縮純化的〇)2循環液 體。再者’該系統可包括將物2循環液體分離為二個流 的裝置其中帛一個流通過該熱交換器並進入該燃燒 器,以及第二個流遞送進I已加壓管路(或其他用來 封存、及/或處置該c〇2的襄置)中 在一實施例中’甚至更壤一步的零件可被包括在該系 統之中舉例而δ,該系統可包括分離單元,以將 02遞送進人_燒器(或〜—注人器或將 或箪更二Γ材料相混合的類似裝置)。在-些實施例 1003441436-0 表單編被Α0101 第91頁/共134頁 201213655 中,該空氣分離單元可產生熱。因此’對該系統而言, 有用地是進一步包括一或更多個熱傳遞零件,以將熱從 該空氣分離單元傳遞至該職器上游的糊2循環液體流 。在另外的實施例中’根據本發明的系統可包括在此相 關於該發電循環以及該發電方法而另外敘述的任何及所 有零件。 在另外的實施例中,本發明包含在利用於燃燒時會留下 不可燃殘渣的燃料的發電中特別有用的系統及方法。在 某些實施例中,如此的不可燃材料可透過使用一適當的 裝置,例如,在第4圖中所闡明的一污染物移除裝置,而 從该燃燒產物流中被移除。然而,在其他的實施例中, 具有用處地是,透過使用一多燃燒器系統及方法,例如 在第10圖中所闡明者,而管理不可燃材料。 正如在第10圖令所顯示,該煤燃料254可通過一研磨裝置 900,以&供一粉末狀煤。在其他的實施例中,該煤燃料 254可被提供在一特別的條件。在特殊的實施例中,該煤 可具有平均粒子尺寸為大約1〇⑽至大約5〇〇 μιη,大約 25 μιη至大約400 μηι’或大約5〇 至大約2〇〇 μιη。在 其他實施例中,該煤可敘述為比具有平均尺寸少於大約 500 μιη « 450 μη, » 400 Mra , 350 μπι > 300 μιη · 250 μ m ’ 200 _ ’ 150 μιη,或 1〇〇 μιη的煤粒子大上5〇%, 60% , 70% , 80% ’ 90% , 91% , 92% , 93% , 94% , 95% , 96% ’ 97% ’ 98% ’ 99% ’或99. 5%。該粉狀煤可與一液化 物質相混合,以提供漿料形式的煤.在第丨〇圖中,該粉 狀煤在混合器91 0中與來自該已回收c〇循環液體的一c〇 2 2 側抽取(side draw) 68相結合。在第1〇圖中,該c〇側 100125736 1003441436-0 表單編號A0101 第92頁/共134頁 201213655100125736 A hot parent exchanger to receive the turbine discharge stream and to cool the stream to form a cooled c〇2 recycle liquid stream. Similarly, the at least one heat exchanger can be used to heat the CD (2) circulating liquid of the burner, in particular, the heat exchanger is characterized by being allowed to be subjected to the special conditions so described. Construction material for operation. The offending system may also include separating the (3) 2 circulating liquid stream exiting the heat exchanger into 〇) 2 and - or more other additional components for recovery or disposal. A special job may include (iv) a device for separating water (or other pure material described herein) from the (3) ring liquid. The I system can progress to include one or more devices (eg, compressors) that communicate with the at least one heat exchanger (and/or with - or more of the multiple separation devices) for compression and purification 〇) 2 circulating liquid. Furthermore, the system may include a device for separating the circulating liquid of the product 2 into two streams, wherein one stream passes through the heat exchanger and enters the burner, and the second stream is delivered into the I-pressurized line (or other In an embodiment of the apparatus for sequestering and/or disposing of the c〇2, an even more step-wise part may be included in the system by way of example, δ, the system may include a separation unit to 02 Delivered into a burner (or ~ - an injector or a similar device that mixes or licks two materials). In some embodiments 1003441436-0 Form Compilation Α0101 Page 91 of 134 201213655, the air separation unit can generate heat. Thus, it is useful for the system to further include one or more heat transfer components to transfer heat from the air separation unit to the paste 2 circulating liquid stream upstream of the service. In other embodiments, the system according to the present invention may include any and all of the components described herein separately with respect to the power generation cycle and the power generation method. In other embodiments, the present invention encompasses systems and methods that are particularly useful in power generation for use in fuels that leave incombustible residues upon combustion. In certain embodiments, such non-combustible material can be removed from the combustion product stream using a suitable device, such as a contaminant removal device illustrated in Figure 4. However, in other embodiments, it is useful to manage the non-combustible material by using a multi-burner system and method, such as illustrated in Figure 10. As shown in Figure 10, the coal fuel 254 can be passed through a grinding device 900 to <a powdered coal. In other embodiments, the coal fuel 254 can be provided under a particular condition. In a particular embodiment, the coal may have an average particle size of from about 1 Torr (10) to about 5 Å μηη, from about 25 μηη to about 400 μηι' or from about 5 η to about 2 〇〇 μηη. In other embodiments, the coal may be described as having an average size of less than about 500 μηη « 450 μη, » 400 Mra , 350 μπι > 300 μιη · 250 μ m ' 200 _ ' 150 μιη, or 1 〇〇 μιη Coal particles larger than 5〇%, 60%, 70%, 80% '90%, 91%, 92%, 93%, 94%, 95%, 96% '97% ' 98% '99% ' or 99 .5%. The pulverized coal may be mixed with a liquefied material to provide coal in the form of a slurry. In the figure, the pulverized coal is in a mixer 910 and a c 来自 from the recycled c 〇 circulating liquid 2 2 side draw (side draw) 68 combination. In the first diagram, the c〇 side 100125736 1003441436-0 Form No. A0101 Page 92 of 134 201213655

抽取68從已、!歷了提供處於超臨界、高密度狀態的⑶2循 環液體的處理的該流67中被收回^在特殊的實施例中2, 用來形成該煤漿料的C〇2可具有大約45〇 kg/m3至大約 1,100 kg/m的岔度。更特別地是,該c〇2侧抽取68可與 該微粒煤相配合,以形成,舉例而言,具有介於該微粒 煤的大約10重量百分比至大約75重量百分比之間、或大 約25重量百分比至大約55重量百分比之間的—漿料225。 再者’被用來形成該漿料之來自該側抽取68的該c〇2所處 的溫度可少於大約〇 °C,少於大約-1 〇’少於大約-20 °C,或少於大約-30。(:。在另外的實施例中,被用來 形成該漿料之來自該側抽取68的該C〇2所處的溫度可為大 約0 °C至大約-60 °C,大約-10 °C至大約-50 °C,或大 約-18°C至大約-40 °C。Extract 68 from,! The stream 67 which has been subjected to the treatment of the (3) 2 circulating liquid in a supercritical, high density state is recovered. In a particular embodiment 2, the C〇2 used to form the coal slurry may have a volume of about 45 〇 kg/ M3 to a twist of about 1,100 kg/m. More particularly, the c〇2 side draw 68 can be mated with the particulate coal to form, for example, between about 10 weight percent to about 75 weight percent, or about 25 weights of the particulate coal. Percentage to between about 55 weight percent - slurry 225. Further, the temperature at which the c〇2 from the side draw 68 is used to form the slurry may be less than about 〇 ° C, less than about -1 〇 ' less than about -20 ° C, or less. At about -30. (: In other embodiments, the C〇2 from the side draw 68 used to form the slurry may be at a temperature of from about 0 °C to about -60 °C, about -10 °C. To about -50 ° C, or about -18 ° C to about -40 ° C.

該粉狀煤/C〇2漿料255經由幫浦920而從該混合器910被 傳送至一部份氧化燃燒器930。如此處所描述的,一〇2流 可利用將空氣241分離為已純化〇2的一空氣分離單元30而 形成。該〇2流被分離成為被導向該部分氧化燃燒器930的 0。流243,以及被導向該燃燒器220的09流242。在第10 圖的實施例中,一〇〇2流86自該已回收C〇2循環液體流85 中被收回,以用於冷卻該部分氧化燃燒器930。在另外的 實施例中,用於冷卻該部分氧化燃燒器930的C02可取自 流236,以取代流86 ’或者該0〇2可取自流86以及流236 兩者。較佳地是,被收回的。〇2的量足以冷卻流256的溫 度,以使得灰燼呈現可安全地被移除的固態形式’正如 另外於此所述。該c〇2煤以及〇2被提供至該部分氧化燃燒 器930的比率使得該煤僅部分地氧化,以產生包括C02以 100125736 表單編號A0101 第93頁/共134頁 1003441436-0 201213655 及H2,CO,CH4,H‘2S,以及NH3的其令之一或更多的一部 份氧化燃燒產物流256。該CO ,煤,以及ο亦以必要的 Ζ 2 比率而被導入該部分氧化燃燒器930,使得該部分氧化燃 燒產物流2 5 6的溫度夠低到讓出現在該流2 5 6中的所有灰 燼皆處於可簡單地藉由一或更多個氣旋分離器、及/或過 濾器而被移除的固態粒子形式。第1 〇圖的實施例闡明了 經由過濾器940移除灰燼。在特殊的實施例中,該部分氧 化燃燒流2 5 6的溫度可少於大約1,1 〇 〇艺,少於大約 1,000 °C,少於大約900 °C ’少於大約8〇〇 °c,或少於 大約700 °C。在另外的實施例中’該部分氧化燃燒流256 的溫度可為大約300 °C至大約1,〇〇〇 ^,大約4〇〇。〇至 大約950 °C,或大約500 °C至大約9〇〇 ^。 該已過滤、部分氧化的燃燒流257可直接被輪入該第二燃 燒器220,其可以是蒸散冷卻燃燒器,正如£ a 夂如另外在此所述 。此輸入與該0。流242以及該已回收C0 μ伴+ 2 2倾%<液體流236 — 起提供。在此點的燃燒可以類似於另外在+ & 仕此所述的方式 進行。在該部分氧化燃燒流2 5 6中的該等可概:_ 以及C〇2的存在下於該燃燒器220中進行燃繞,、 2 言玄 燃燒流40。此流被擴張跨越一渦輪320,w Α ' 乂產生電力(例 如,經由發電機12 0 9 )。該渦輪排放流5 〇 项過一埶交換 器單元420 (其可是串聯的熱交換器,例如 ^ 、 ' 相關於第8 圖的敘述)。該C〇2循環液體流60通過該冷卻水熱、 530,以形成流61,其通過用於移除流62中的w、又、器 的從屬成份( 例如,Η20 ’ S02 ’ S04,ν〇2,ν〇3 ’以及Hg) 口口 540。該分離器540可大體上類似於接下决^ B " 相關於第12圖 的敘述中的管柱1330。較佳地是,該分離努c 表單編號A0101 第94頁/共134頁 離^40包括一反 100125736 1003441436-0 201213655 應器,其提供具有足夠停留時間的接觸器,以使得該等 不純物可與水反應形成容易移除的材料(例如,酸)。The pulverized coal/C 2 slurry 255 is transferred from the mixer 910 to a portion of the oxidation burner 930 via the pump 920. As described herein, one 〇 2 stream can be formed using an air separation unit 30 that separates air 241 into purified enthalpy 2. The 〇 2 stream is separated into 0 which is directed to the partial oxidation burner 930. Stream 243, and 09 stream 242 directed to the combustor 220. In the embodiment of Fig. 10, a stream 2 of 86 is withdrawn from the recovered C2 circulating liquid stream 85 for cooling the partial oxidation burner 930. In other embodiments, CO 2 for cooling the partial oxidation burner 930 may be taken from stream 236 to replace stream 86 ' or both 0 and 2 may be taken from stream 86 and stream 236. Preferably, it is retrieved. The amount of 〇2 is sufficient to cool the temperature of stream 256 such that the ash presents a solid form that can be safely removed' as otherwise described. The ratio of the c〇2 coal and the crucible 2 being supplied to the partial oxidation burner 930 is such that the coal is only partially oxidized to produce a composition including CO 2 at 100125736 Form No. A0101 Page 93/134 pages 1003441436-0 201213655 and H2, CO, CH4, H'2S, and a portion of the oxidized combustion product stream 256 of one or more of NH3. The CO, coal, and ο are also introduced into the partial oxidation burner 930 at a necessary Ζ 2 ratio such that the temperature of the partially oxidized combustion product stream 256 is sufficiently low to allow all of the occurrences in the stream 256 The ash is in the form of solid particles that can be removed simply by one or more cyclone separators, and/or filters. The embodiment of Figure 1 illustrates the removal of ash via filter 940. In a particular embodiment, the temperature of the partially oxidized combustion stream 2 5 6 can be less than about 1,1 〇〇, less than about 1,000 ° C, less than about 900 ° C 'less than about 8 〇〇 °c, or less than about 700 °C. In other embodiments, the temperature of the partially oxidized combustion stream 256 can range from about 300 °C to about 1, 〇〇〇^, about 4 Torr. 〇 to about 950 ° C, or about 500 ° C to about 9 〇〇 ^. The filtered, partially oxidized combustion stream 257 can be directly introduced into the second combustor 220, which can be an evapotranspiration combustor, as described herein. This input is with this 0. Stream 242 and the recovered C0 μ with + 2 2 pour % < liquid stream 236 are provided. The combustion at this point can be carried out in a manner similar to that described additionally in + & The combustor 220 is ignited in the presence of the oxidative combustion stream 2 5 6 in the presence of the sulphur-like combustion stream 256 and the enthalpy combustion stream 40. This stream is expanded across a turbine 320, which produces electricity (e.g., via generator 1209). The turbine discharge stream 5 passes through a stack of exchanger units 420 (which may be heat exchangers in series, such as ^, 'as described in relation to Figure 8). The C〇2 circulating liquid stream 60 is passed through the cooling water heat 530 to form a stream 61 which is passed through the slave component for removing the w, again, and the gas in the stream 62 (for example, Η20 'S02 'S04, ν〇 2, ν 〇 3 ' and Hg) mouth 540. The separator 540 can be substantially similar to the tubular string 1330 in the description of Fig. 12. Preferably, the separation form number A0101 page 94/134 pages from ^40 includes a counter 100125736 1003441436-0 201213655, which provides a contactor with sufficient dwell time to allow such impurities to be The water reacts to form a material that is easily removed (eg, an acid).

該已純化C〇2循環液體流65通過一第一壓縮器630以形成 流6 6,其藉由冷卻水熱交換器6 4 0進行冷卻,以提供該超 臨界、高密度C〇2循環液體流67。正如前述,一部份的流 67可被收回作為流68,以使用作為在該混合器910中的流 化介質,進而形成該煤漿料流2 5 5。進一步地,該超臨界 、高密度C〇2循環液體流67另外在壓縮器650中加壓,以 形成該已加壓、高臨界、高密度C〇2循環液體流70。流70 中一部份的C〇2會在點720處被收回,正如在此相關於第5 圖以及第11圖的敘述,以提供流80至一C〇2管路、或其他 封存裝置。該c〇2的剩餘部分繼續成為已加壓、超臨界、 高密度C〇2循環液體流85,其一部份可被收回作為流86, 以用於冷卻該部分氧化燃燒器930,正如上述。另外,該 流85回到該熱交換器420 (或熱交換器的串聯,如相關於 第8圖的敘述),以對該流進行加熱,並最終形成輸入至 該燃燒器220的該已回收C〇2循環液體流236。正如前述, 一外部熱源可用來與熱交換器單元420相結合,以提供必 要的效率。相同地,其他系統以及方法參數,正如另外 在此所述,可被應用於根據第10圖的系統及方法,例如 ,流溫度以及壓力,以及該渦輪單元320,該熱交換器單 元420,該分離單元520,以及該壓縮器單元630的其他 操作條件。 實驗 接下來,本發明將進一步地相關於特殊實例而進行敘述 ,該等實例是提供來闡明本發明的某接實施例,且不應 100125736 表單編號A0101 第95頁/共134頁 1003441436-0 201213655 被理解為對本發明的限制。 實例1 採用一已回收(:〇2循環液體的曱烷燃燒發電系統及方法 根據本發明的系統及方法的一特殊實例闡明於第11圖中 ,接下來的敘述内容敘述了相關於在利用電腦模擬的特 殊條件下的一特殊循環的系統。 在此方法中,於導入一蒸散冷卻燃燒器220之前,溫度 134 °C以及壓力30. 5 MPa的一曱烷(CH,)燃料流254 與溫度860 °C以及壓力30.3 MPa (以及因此處於超臨界 流體狀態)的一已回收C〇2循環液體流236於一混合器252 中相結合。一空氣分離單元30被用來提供溫度105°C以及 壓力30. 5 MPa的濃縮〇2242。該空氣分離單元亦產生熱 (Q),其會被抽離而用於處理中。該〇2242在該燃燒器 22 0中與該曱烷燃料流254以及該(:〇2循環液體236相結合 ,並於此發生燃燒,以提供溫度1189°C以及壓力30 MPa 的燃燒產物流40。該C〇2、〇2以及甲烷被提供的莫耳比率 約為35:2:1 (亦即,lbmol/hr,每小時榜莫耳(pound moles per hour))。在此實施例中的燃燒使用的能量 輸入率為344,935 Btu/hr ( 363,932 kJ/hr)。 該燃燒產物流40被擴張跨越該渦輪320,以產生溫度885 °0以及壓力5 MPa的該渦輪排放流50 (在該渦輪排放流 50中的C〇2為氣態狀態),該燃燒產物流40擴張跨越該渦 輪320而產生電力的速率為每小時83.5千瓦(kW/hr)。 接著,該渦輪排放流50通過串聯的三個熱交換器,以連 續地冷卻該流,進而移除從屬成份。通過該第一熱交換 器430可產生溫度237°C以及壓力5 MPa的流52,流52通 100125736 表單編號A0101 第96頁/共134頁 1003441436-0 201213655 過該第二熱交換器440 ’以產生溫度i23°C以及壓力5 MPa的流56 ’流56通過該第三熱交換器450,以產生溫度 80°C以及壓力5 MPa的流60。 在該C〇2循環液體通過熱交換器的串聯後,該流60可藉由 通過一冷卻水熱交換器530而進一步被冷卻。溫度24°C的 水(C)透過該冷卻水熱交換器530進行循環,以將該C〇2 循環液體流60冷卻至溫度27°C,以及因此冷凝在該(:〇2循 環液體流中所出現的任何水。接著,該已冷卻的c〇2循環 液體流61通過一水分離單元540,以使得液態水被移除, 〇 並排放成為流62a。從該水分離單元540中所排放的是溫 度34°C以及壓力3 MPa的該“已乾燥的” C〇2循環液體流 65 〇 該乾燥C〇2循環液體流65 (其仍處於氣態狀態)接下來在 二個步驟的加壓規劃中通過一第一壓縮單元630。該C〇2 循環液體流被加壓至8 MPa,其同樣地使該〇〇2循環液體 流的溫度上升至78 °C。此需要5.22 kW/hr的電力輸入 。接著,此超臨界液體CO循環液體流66通過一第二冷卻 〇 2 V 水熱交換器640,在此,該超臨界液體C02循環液體流66 受到溫度24 °C的水的冷卻,以產生溫度27°C、壓力8 MPa、以及密度762 kg/m3的一已冷卻超臨界液體CO循 L· 環液體流67。此流接著通過一第二壓縮單元650,以形成 溫度69°C以及壓力30. 5 MPa的該已加壓C〇2循環液體流 70。此需要8. 23 kW/hr的電力輸入。此流通過一管路分 流器720’藉此,1 1 bmo 1的CO經由流而被導向一已 加壓管路,以及34. 1 lbmol的C09被引導作為流85而回 ί* 到串聯的三個熱交換器,以在進入該燃燒器220前重新加 100125736 表單編號A0101 第97頁/共134頁 1003441436-0 201213655 熱該c〇2循環液體流。 該已加壓C〇2循環液體流85通過該第三熱交換器450而形 成溫度114 °C以及壓力3 0. 5 Μ P a的流71,流71通過分流 器460,以使得27. 3 Ibmol的CO/皮引導成為到達該第二 熱交換器440的流71b,以及6.8 1 bmo 1的(]〇2被導向通 過一側加熱器4 7 0的流7 2 a中。流71 b以及流7 2 a的每一個 皆為溫度114 °C以及壓力30. 5 MPa。該側加熱器470使 用來自該空氣分離單元30的熱(Q),以對該C〇2循環液 體流提供額外的熱。流71b通過該第二熱交換器440可產 生溫度224°C以及壓力30. 5 MPa的流73。流72a通過該 側加熱器470形成流72b,其同樣的為溫度224°C以及壓 力30. 4 MPa。流73以及72b在混合器480中相結合而形 成溫度224°C以及壓力30. 3 MPa的流74,接著,流74通 過該第一熱交換器430,以在回到該燃燒器220的入口提 供溫度860°C以及壓力30. 0 MPa的該已回收(:〇2循環液體 流236。 前述模擬循環的效率的計算是基於所產生的能量與甲烷 燃料的LHV以及輸入該系統的額外能量間比較,正如上述 。在所模擬的條件下,可達成大約53. 9%的效率,此特別 令人驚訝的是,在達成如此之絕佳效率的同時,亦避免 了任何C 0 2 (特別是由於該含碳燃料燃燒所生成的任何 C02)的大氣排放。 實例2 使用已回收c〇2循環液體的粉煤發電站修整的發電系統及 方法 根據本發明的系統及方法的另一個特殊實例闡明於第1 2 100125736 表單編號A0101 第98頁/共134頁 1003441436-0 201213655 圖中,接下來的敘述内容敘述了相關於在利用電腦模擬 的特殊條件下的一特殊循環的系統。 在此模擬中,所闡明的是對習知燃粉煤發電站的系統及 方法的修整能力。 壓力30. 5 MPa的一〇2流1 056與壓力30. 5 MPa的一含碳 燃料10 5 5 (例如,部分氧化所產生的煤衍生氣體)以及 壓力30. 5 MPa的一C〇2循環液體流1 053 —起被導入一蒸 散冷卻燃燒器220中。該〇2可接收自一空氣分離器、或可 產生熱(Q)(其可被抽離而用於系統中)的類似裝置, 例如,以產生擴張的流、或增加熱至一已冷卻c〇2循環液 體流。燃料在該燃燒器220中的燃燒產生溫度1,150°C以 及壓力30. 0 MPa的一燃燒產物流1054,此流擴張越過一 渦輪320 (其一般而言可被稱為一主要發電渦輪),以藉 由驅動一發電機1 029而產生電力。溫度775°C以及壓力大 約3. 0 MPa的該擴散渦輪排放流1001被導入一熱交換器 110的熱端,在此,來自該渦輪排放流1001的熱被用來過 熱習知燃粉煤發電站1 800中所產生的該高壓流流動1 031 以及該中壓流流動1 032。鍋爐饋送的水1810以及煤1810 被輸入至該發電站1800,以藉由燃燒該煤1810而產生流 流動1031以及1032。在該熱交換器中的熱的傳遞使得該 等流流動1031以及1 032從溫度大約550 °C過熱至溫度大 約750 °C,以形成流流動1 033以及1 034,其會回到該發 電站(如下所述)。此方法在不需要於習知電力站於接 近大氣壓力燃燒煤的大型蒸汽鍋爐中使用昂貴的高溫合 金的情形下,達成了非常高的蒸汽溫度。該等流流動 1033以及1034擴張進入一三階段渦輪1200 (其一般而言 100125736 表單編號A0101 第99頁/共134頁 1003441436-0 201213655 稱之為.從屬發電渴輪)中,以驅動一發電機m 。離 開該渦輪1 200的流1〇35在冷凝器丨220中進行冷凝。經處 理的冷凝物1 036利用一饋送水幫浦123〇而被泵打至高壓 力,並接著在該燃煤鍋爐1800中進行蒸汽化以及過熱, 以排放入5玄熱交換器1 1 00中,正如前述。此系統被用來 增加一現存燃煤發電站的電力輪出以及效率。 該熱交換器100是具典型地由高溫、高鎳含量合金(例如 ’ 617合金)所建構的化學研磨通道的Heatric式擴散結 合板(Heatrictype diffusion bonded plate)熱 交換器,其中,該合金能夠掌控使於氧化條件下的重要 過熱以及操作成為可能的而壓以及高溫,此熱交換器是 對所有液體皆具高熱傳遞係數的高效熱傳遞單元。 在第12圖中所闡明的系統及方法的剩餘部分,其結構及 操作皆類似另外於此所敘述的系統及方法。特別地是, 該擴散渦輪排放流1001是在該熱交換器11〇〇中被冷卻, 並離開該熱交換器1100的冷端成為排放流1 037,其溫度 為575 C。此流1037接著通過一第二熱交換器〗3〇〇,在 此,其被冷卻至溫度90 °C以及壓力2. 9 MPa,以形成流 1 0 3 8。此流更進一步地憑藉來自該發電站冷凝器丨2 3 〇的 該冷凝物1057的一部份而在一第三熱交換器丨31〇中被冷 卻至溫度4 0 C,以形成流1 0 3 9,其更進一步憑藉在一冷 卻水熱交換器1 3 2 0中的冷卻水而被冷卻至溫度2 7 °C,以 形成壓力2. 8 7 MPa的流1 0 4 0。該熱交換器13 〇 〇可以是 Heatric 310不錢鋼擴散結合單元(Heatric 310 stainless steel diffusion bonded unit) ° 30 °C的該已冷卻流1 040被饋送進入一封裝管柱丨330的 100125736 表單編號A0101 第100頁/共134頁 1003441436-0 201213655 基部,其配備有一循環幫浦1340,該循環幫浦134〇可提 供一逆流弱酸循環流,以供給該進入氣體以及該洗滌弱 酸之間的逆流接觸。S〇2、S〇3、NO以及NO被轉換為 HN〇3以及H2S04,並與冷凝水以及任何其他水溶成份一起 被液體吸收,來自該管柱1330的净液態產物於線1042中 被移除,以及壓力被降低至大氣壓力,然後進入一分離 器1360。溶解的(:〇2於線1043中被閃蒸出來(f lashes off),利用一幫浦1350而壓縮至壓力2.85 MPa,以及 流動成為流1044 ’以加入離開管柱1 330頂端的流1 〇45。 Ο 這些結合的流形成將會再回收進入該燃燒器的該(;〇2循環 液體。於水中稀釋的1125〇4以及HN〇3從該分離器1360的基 部離開成為流1046,濃度取決於在該接觸器管柱1 330中 的該燃料組成以及溫度。要注意地是,較佳地是,硝酸 出現在該酸流1 046中,因為硝酸將可與任何出現的水銀 反應,並完全地移除此不純物。The purified C〇2 circulating liquid stream 65 is passed through a first compressor 630 to form a stream 66 which is cooled by a cooling water heat exchanger 6040 to provide the supercritical, high density C〇2 circulating liquid. Stream 67. As previously described, a portion of stream 67 can be withdrawn as stream 68 for use as a fluidized medium in the mixer 910 to form the coal slurry stream 2 5 5 . Further, the supercritical, high density C〇2 circulating liquid stream 67 is additionally pressurized in a compressor 650 to form the pressurized, high critical, high density C〇2 circulating liquid stream 70. A portion of stream C of stream 70 will be withdrawn at point 720, as described herein with respect to Figures 5 and 11, to provide stream 80 to a C〇2 conduit, or other storage device. The remainder of the c〇2 continues to be a pressurized, supercritical, high density C〇2 circulating liquid stream 85, a portion of which can be withdrawn as stream 86 for cooling the partial oxidation burner 930, as described above . Additionally, the stream 85 is returned to the heat exchanger 420 (or series of heat exchangers, as described in relation to Figure 8) to heat the stream and ultimately form the recovered input to the burner 220. C 〇 2 circulates liquid stream 236. As previously mentioned, an external heat source can be used in conjunction with the heat exchanger unit 420 to provide the necessary efficiency. Similarly, other systems and method parameters, as described herein, may be applied to the system and method according to FIG. 10, such as flow temperature and pressure, and the turbine unit 320, the heat exchanger unit 420, Separation unit 520, as well as other operating conditions of the compressor unit 630. EXPERIMENTAL Next, the present invention will be further described with respect to specific examples which are provided to clarify an embodiment of the present invention and should not be 100125736 Form No. A0101 Page 95 / Total 134 Page 1003441436-0 201213655 It is to be understood that the invention is limited. Example 1 Using a recovered (: 2 circulatory liquid decane combustion power generation system and method A specific example of the system and method according to the present invention is illustrated in Figure 11, and the following description relates to the use of a computer A special cycle system under special conditions of the simulation. In this method, before introducing an evapotranspiration burner 220, a temperature of 134 ° C and a pressure of 30.5 MPa of a decane (CH,) fuel stream 254 and temperature A recovered C〇2 circulating liquid stream 236 at 860 ° C and a pressure of 30.3 MPa (and thus in a supercritical fluid state) is combined in a mixer 252. An air separation unit 30 is used to provide a temperature of 105 ° C and Concentrated crucible 2242 at a pressure of 30.5 MPa. The air separation unit also generates heat (Q) which is extracted for processing. The crucible 2242 is in the combustor 22 with the decane fuel stream 254 and The (: 循环 2 circulating liquid 236 combines and is combusted there to provide a combustion product stream 40 at a temperature of 1189 ° C and a pressure of 30 MPa. The C 〇 2, 〇 2, and methane are provided at a molar ratio of about 35:2:1 (ie, lbmol/hr, each Pound moles per hour. The energy input used in this embodiment is 344,935 Btu/hr (363,932 kJ/hr). The combustion product stream 40 is expanded across the turbine 320 to produce The turbine discharge stream 50 at a temperature of 885 ° 0 and a pressure of 5 MPa (where C 〇 2 in the turbine discharge stream 50 is in a gaseous state), the rate at which the combustion product stream 40 expands across the turbine 320 to generate electricity is 83.5 per hour. Kilowatts (kW/hr) Next, the turbine discharge stream 50 passes through three heat exchangers in series to continuously cool the stream, thereby removing the subordinate components. The first heat exchanger 430 can generate a temperature of 237 ° C. And the flow 52 of the pressure 5 MPa, the flow 52 pass 100125736 Form No. A0101 page 96 / 134 pages 1003441436-0 201213655 Pass the second heat exchanger 440 ' to generate a flow of i23 ° C and a pressure of 5 MPa flow 56 'flow 56 passes through the third heat exchanger 450 to produce a stream 60 having a temperature of 80 ° C and a pressure of 5 MPa. After the C 〇 2 circulating liquid passes through the series of heat exchangers, the stream 60 can be heated by a cooling water The exchanger 530 is further cooled. The temperature is 24 ° C Water (C) is circulated through the chilled water heat exchanger 530 to cool the C 〇 2 circulating liquid stream 60 to a temperature of 27 ° C, and thus condense any water present in the 〇 2 circulating liquid stream The cooled c〇2 circulating liquid stream 61 is then passed through a water separation unit 540 such that the liquid water is removed and discharged into stream 62a. Discharged from the water separation unit 540 is the "dried" C〇2 circulating liquid stream 65 at a temperature of 34 ° C and a pressure of 3 MPa. The dry C 〇 2 circulating liquid stream 65 (which is still in a gaseous state) Next, a first compression unit 630 is passed through the two-step pressurization plan. The C 〇 2 circulating liquid stream was pressurized to 8 MPa, which likewise raised the temperature of the 〇〇 2 circulating liquid stream to 78 °C. This requires 5.22 kW/hr of power input. Next, the supercritical liquid CO recycle liquid stream 66 is passed through a second cooled 〇2 V water heat exchanger 640 where the supercritical liquid CO 2 recycle liquid stream 66 is cooled by water at a temperature of 24 ° C to produce a temperature. A cooled supercritical liquid CO at a temperature of 27 ° C, a pressure of 8 MPa, and a density of 762 kg/m 3 follows the L·ring liquid stream 67. This stream is then passed through a second compression unit 650 to form the pressurized C〇2 circulating liquid stream 70 at a temperature of 69 ° C and a pressure of 30.5 MPa. This requires an electrical input of 8.23 kW/hr. This flow is passed through a line splitter 720' whereby a 1 1 bmo 1 CO is directed to a pressurized line via a stream, and 34.1 lbmol of C09 is directed as stream 85 and back to ί* to the series Three heat exchangers to re-add 100125736 before entering the burner 220 Form No. A0101 Page 97 / Total 134 pages 1003441436-0 201213655 Heat the c〇2 circulating liquid stream. The flow of the filtered liquid C 〇 2 circulating liquid stream 85 through the third heat exchanger 450 to form a temperature of 114 ° C and a pressure of 3 0. 5 Μ P a, the flow 71 through the shunt 460, so that 27. 3 The CO/sheath of Ibmol is directed to flow 71b to the second heat exchanger 440, and 〇1 of 6.8 1 bmo 1 is directed through stream 7 2 a of one side heater 470. Stream 71 b and Each of the streams 7 2 a has a temperature of 114 ° C and a pressure of 30.5 MPa. The side heater 470 uses heat (Q) from the air separation unit 30 to provide additional flow to the C 〇 2 circulating liquid stream. The stream 71b can generate a stream 73 having a temperature of 224 ° C and a pressure of 30.5 MPa through the second heat exchanger 440. The stream 72a forms a stream 72b through the side heater 470, which is also at a temperature of 224 ° C and pressure. 30. 4 MPa. Streams 73 and 72b combine in a mixer 480 to form a stream 74 having a temperature of 224 ° C and a pressure of 30.3 MPa, and then stream 74 passes through the first heat exchanger 430 to return to the The inlet of the burner 220 provides a temperature of 860 ° C and a pressure of 30. 0 MPa of the recovered (: 〇 2 circulating liquid stream 236. Calculation of the efficiency of the aforementioned simulated cycle Based on the comparison between the generated energy and the LHV of the methane fuel and the additional energy input to the system, as described above, an efficiency of about 53.9% can be achieved under the simulated conditions, which is particularly surprising in that This excellent efficiency also avoids any atmospheric emissions of C 0 2 (especially due to any CO 2 produced by the combustion of the carbonaceous fuel). Example 2 Pulverized coal power station finishing with recycled c〇2 circulating liquid Power Generation System and Method Another special example of a system and method in accordance with the present invention is set forth in the first 1 2 100125736 Form No. A0101, page 98 / 134, page 1003441436-0 201213655, the following description describes A special cycle system under special conditions simulated by a computer. In this simulation, the trimming ability of the system and method for a conventional pulverized coal power station is illustrated. The pressure of 30.5 MPa is 1 〇 2 flow 1 056 and a pressure of 30. 5 MPa of a carbon-containing fuel 10 5 5 (for example, a coal-derived gas produced by partial oxidation) and a pressure of 30. 5 MPa of a C 〇 2 circulating liquid stream 1 053 Evaporatively cooling the burner 220. The crucible 2 can be received from an air separator, or a similar device that can generate heat (Q) that can be extracted for use in the system, for example, to produce an expanded stream, or The heat is increased to a cooled c〇2 circulating liquid stream. The combustion of the fuel in the combustor 220 produces a combustion product stream 1054 at a temperature of 1,150 ° C and a pressure of 30.0 MPa, which flow expands over a turbine 320 ( It may be referred to as a primary power generating turbine in general to generate electricity by driving a generator 1 029. The diffusion turbine discharge stream 1001 at a temperature of 775 ° C and a pressure of about 3.0 MPa is introduced into the hot end of a heat exchanger 110 where the heat from the turbine discharge stream 1001 is used to superheat the conventional coal-fired power generation. The high pressure stream generated in station 1 800 flows 1 031 and the medium pressure stream flows 1 032. Boiler fed water 1810 and coal 1810 are input to the power station 1800 to generate flow flows 1031 and 1032 by burning the coal 1810. The heat transfer in the heat exchanger causes the equal stream flows 1031 and 1 032 to be superheated from a temperature of about 550 ° C to a temperature of about 750 ° C to form flow streams 1 033 and 1 034 which will return to the power station. (described below). This method achieves a very high steam temperature without the need for a conventional power station to use expensive high temperature alloys in large steam boilers that burn coal near atmospheric pressure. The flow streams 1033 and 1034 are expanded into a three-stage turbine 1200 (generally 100125736 Form No. A0101 Page 99 / Total 134 pages 1003441436-0 201213655 called. Subordinate power thirteen) to drive a generator m. Stream 1 〇 35 leaving the turbine 1 200 is condensed in condenser crucible 220. The treated condensate 1 036 is pumped to a high pressure using a feed water pump 123, and then vaporized and superheated in the coal-fired boiler 1800 to be discharged into the 5 Xuan heat exchanger 1 00, As mentioned above. This system is used to increase the power rotation and efficiency of an existing coal-fired power station. The heat exchanger 100 is a Heatric type diffusion bonded plate heat exchanger having a chemical polishing channel typically constructed of a high temperature, high nickel content alloy (eg, '617 alloy), wherein the alloy is capable of control This heat exchanger is a high-efficiency heat transfer unit with a high heat transfer coefficient for all liquids, enabling significant overheating and operation under oxidizing conditions, as well as pressure and high temperatures. The remainder of the systems and methods illustrated in Figure 12 are similar in construction and operation to the systems and methods described herein. In particular, the diffusion turbine discharge stream 1001 is cooled in the heat exchanger 11 and exits the cold end of the heat exchanger 1100 as a discharge stream 1 037 having a temperature of 575 C. This stream 1037 is then passed through a second heat exchanger, where it is cooled to a temperature of 90 ° C and a pressure of 2.9 MPa to form a stream 1 0 3 8 . This stream is further cooled to a temperature of 40 C in a third heat exchanger crucible 31 by virtue of a portion of the condensate 1057 from the condenser 丨2 3 该 of the power station to form a stream 10 3 之间。 Further, it is further cooled by a cooling water in a cooling water heat exchanger 1 3 2 0 to a temperature of 27 ° C, to form a pressure of 1. 8 7 MPa of 1 0 4 0. The heat exchanger 13 〇〇 may be a Heatric 310 stainless steel diffusion bonded unit ° 30 ° C. The cooled flow 1 040 is fed into a packaged column 丨 330 100125736 Form No. A0101 Page 100 of 134 pages 1003441436-0 201213655 Base, equipped with a circulation pump 1340, which provides a countercurrent weak acid circulation stream to supply countercurrent contact between the incoming gas and the weak acid wash . S〇2, S〇3, NO, and NO are converted to HN〇3 and H2S04, and are absorbed by the liquid together with the condensed water and any other water-soluble components, and the net liquid product from the column 1330 is removed in line 1042. And the pressure is reduced to atmospheric pressure and then enters a separator 1360. Dissolved (: 〇2 is flashed off in line 1043, compressed to a pressure of 2.85 MPa using a pump 1350, and flowed into stream 1044' to join the stream exiting the top of column 1 330. 45. Ο The combined flow formation will re-recycle the liquid into the burner (1 〇 2 circulating liquid. 1125 〇 4 and HN 〇 3 diluted in water exit from the base of the separator 1360 to flow 1046, depending on the concentration The fuel composition and temperature in the contactor column 1 330. It is noted that, preferably, nitric acid is present in the acid stream 1 046 because nitric acid will react with any mercury present and is completely Remove this impurity.

進入該壓縮器1 380的該已回收(:〇2循環液體流首先在一乾 燥劑乾燥機中被乾燥至大約-60 °C的露點,並接著進行 純化,以利用低溫分離方案而移除〇2、N2以及Ar,例如 在歐洲專利申請案第EP1952874 A1號所顯示,其於此併 入作為參考。 離開壓縮器1380、壓力8. 5 MPa的已壓縮、已回收(:〇2循 環液體流1047憑藉一冷卻水熱交換器1370中的27 °C冷 卻水而進行冷卻’進而形成密集、超臨界co2循環液體 1048,其在幫浦1390中被泵打至壓力30. 5 MPa以及溫 度74°C,以形成高壓、已回收C02循環液體流1050 °該 100125736 (:〇2的一部份從該流1〇50中被移除,以作為一c〇2產物流 表單編號A0101 第101頁/共134頁 1003441436-0 201213655 1049,其將在不排放至大氣的情形下被封存或進行其他 處置。在此實施例中,該%產物流1〇49的壓力被降低至 大約20 MPa的所需管路壓力,並通過進入一⑶2管路。 該高壓、已回收〇)2循環液體流(現為流1〇51)2的剩餘部 分進入該熱交換器1 300的冷端。為處於74<>(:的密集超臨 界液體的此流必須接收相當大量的低位熱〇〇w grade heat),以將其轉換為溫度237 Q、具低上許多之比熱 的液體。在此實施例中,如此的低位熱是藉由取自進入 習知發電站的低壓蒸汽渦輪的蒸汽流之壓力為〇 65 Mpa 的一LP蒸汽流1 052,以及衍生自供應該流1〇56的低溫 氧工廠中的空氣壓縮器的壓縮絕熱熱(adiabatic heat )所一起提供。該低壓流離開該熱交換器13〇〇成為流 1301。選擇地’所有的熱皆可藉由使用來自該燃煤發電 站之壓力至多3. 8 MPa的一些可得蒸汽流而提供。此能量 亦可提供自該空氣分離單元所形成的該熱(Q),正如前 述。對部分的該回收c〇2流進行加熱的侧流提供了在該熱 交換器1 300的冷端所需要的大部分熱,並允許在該熱交 換器1300熱端僅大約25 °C的小溫度差異,其全面地增加 效率。 該高壓、高溫、已回收C〇2循環液體流1053離開該熱交換 器1 300時溫度550 °C ’並且進入該燃燒器220,其被用 來冷卻衍生自燃燒一天然氣流1 055以及97%莫耳氧氣流 1 056的燃燒氣體(在此實施例中),以產生燃燒產物流 1 054,正如上述。在此實施例中,該渦輪熱路徑以及渦 輪葉片的第一排利用取自該幫浦排放流1 050、溫度74 °C 的一 〇〇2流1〇58進行冷卻。 100125736 表單編號A0101 第102頁/共134頁 1003441436-0 201213655 若上述系統被操作為利用由純(:114所模擬的天然氣燃料的 單獨發電站,則該已回收(]〇2流1〇53以溫度大約750 °C 進入該燃燒器,以及該渦輪排出1 〇〇 1以溫度大約775°C進 入該熱交換器1300。 Ο 在此實施例中的該單獨發電系統的效率為53. 9% ( LHV ) 。此構圖包括該低溫〇2工廠以及天然氣饋送以及〇壓縮 器的電力消耗。若燃料模擬為具有發熱值27.92 Mj/kg 的煤(例如,利用在第一燃燒器以及過濾單元中被移除 的灰爐而進行部分氧化’緊接著在第二燃燒器中該燃料 氣體以及C〇2混合物的燃燒),則效率將會是54% (LHV) 。在兩個例子中’衍生自該燃料中的碳的c〇2的幾乎100% 可被產生為20 MPa管路壓力。 上述及闊明於第12圖中採用煤燃料的系統及方法,特徵 在於可應用於具下述特殊參數的發電站,根據本發明, 轉換燃私煤發電站的效果計算如下·· 蒸汽條件 HP蒸汽:16. 6 MPa,565 °C ’ 流動:473 14 kg/secThe recovered liquid entering the compressor 1 380 (: 〇 2 circulating liquid stream is first dried in a desiccant dryer to a dew point of about -60 ° C, and then purified to remove the hydrazine using a cryogenic separation scheme 2, N2 and Ar, as shown in, for example, European Patent Application No. EP 1 952 874 A1, which is hereby incorporated by reference. ??? ??? ??? ??? ??? ??? ??? 5 MPa和温度74°。 The pumping is carried out in a pump 1390 to a pressure of 30. 5 MPa and a temperature of 74 ° by means of a cooling water in a cooling water heat exchanger 1370 for cooling, and then forming a dense, supercritical co2 circulating liquid 1048, which is pumped to a pressure of 30. 5 MPa and a temperature of 74 ° C, to form a high pressure, recovered CO 2 circulating liquid stream 1050 ° 100125736 (: a part of 〇 2 is removed from the stream 1 〇 50, as a c 〇 2 product stream form number A0101 page 101 / A total of 134 pages 1003441436-0 201213655 1049, which will be stored or otherwise disposed of without being released to the atmosphere. In this embodiment, the pressure of the % product stream 1〇49 is reduced to approximately 20 MPa. Line pressure and pass through a (3) 2 line The remainder of the high pressure, recovered helium 2 circulating liquid stream (now stream 1〇51) 2 enters the cold end of the heat exchanger 1 300. This stream is at 74<> (: dense supercritical liquid) A relatively large amount of low-grade heat must be received to convert it to a temperature of 237 Q, which has a much lower specific heat. In this embodiment, such low heat is taken from the conventional The steam flow of the low-pressure steam turbine of the power station has a pressure of 〇65 Mpa, an LP steam stream 1 052, and a compressed adiabatic heat derived from an air compressor in a low-temperature oxygen plant supplying the stream 1〇56. Provided. The low pressure stream exits the heat exchanger 13 and becomes a stream 1301. Optionally, all of the heat may be provided by using some of the available steam streams from the coal-fired power station at a pressure of up to 3.8 MPa. This energy can also provide the heat (Q) formed from the air separation unit, as previously described. The side stream that heats a portion of the recovered c〇2 stream provides for the cold end of the heat exchanger 1 300. Most of the heat and allowed in the hot The hot end of the 1300 has a small temperature difference of only about 25 ° C, which increases overall efficiency. The high pressure, high temperature, recovered C 〇 2 circulating liquid stream 1053 leaves the heat exchanger 1 300 at a temperature of 550 ° C ' and enters A burner 220 is used to cool the combustion gases (in this embodiment) derived from the combustion-natural gas stream 1 055 and the 97% molar oxygen stream 1 056 to produce a combustion product stream 1 054, as described above. In this embodiment, the turbine heat path and the first row of turbine blades are cooled using a stream 2 〇 58 taken from the pump discharge stream 1 050 at a temperature of 74 °C. 100125736 Form No. A0101 Page 102 of 134 Page 1003441436-0 201213655 If the above system is operated to utilize a separate power station consisting of pure (: 114 simulated natural gas fuel, then the recovered () 〇 2 flow 1〇53 The temperature is about 750 ° C into the burner, and the turbine discharges 1 〇〇 1 into the heat exchanger 1300 at a temperature of about 775 ° C. The efficiency of the single power generation system in this embodiment is 53.9% ( LHV). This composition includes the low temperature 〇2 plant and the power consumption of the natural gas feed and the helium compressor. If the fuel is simulated as coal with a calorific value of 27.92 Mj/kg (for example, using the first burner and the filter unit) The partial oxidation of the ash furnace followed by the combustion of the fuel gas and the C 〇 2 mixture in the second burner will result in an efficiency of 54% (LHV). In both cases, 'derived from the fuel Almost 100% of the carbon c2 in the carbon can be generated as a line pressure of 20 MPa. The above-described system and method using coal fuel in Fig. 12 is characterized in that it can be applied to power generation with the following special parameters. Station, according to the invention The effect of converting the burning coal power station is as follows: · Steam condition HP steam: 16.6 MPa, 565 °C ’ Flow: 473 14 kg/sec

LP蒸汽:4. 02 MPa,565 °C ’ 流動:371.62 kg/sec 淨電力輸出:493. 7.Mw 用於現存發電站的煤: 1256.1 Mw 效率淨值:39. 31% c〇2捕獲% : 0 現存發電站併入本發明揭示的系統及方法而升級後的已 轉換工廠: 100125736 表單編號A0101 第1〇3頁/共134頁 1003441436-0 201213655 cc^電力系統淨電力輸出: 371. 7 Mw 現存發電站淨電力:639. 1LP steam: 4. 02 MPa, 565 °C ' Flow: 371.62 kg/sec Net power output: 493. 7.Mw Coal used in existing power stations: 1256.1 Mw Net efficiency: 39. 31% c〇2 capture %: 0 Existing power plant incorporating the system and method disclosed in the present invention and upgraded factory: 100125736 Form No. A0101 Page 1 of 3 / Total 134 Page 1003441436-0 201213655 cc^Power System Net Power Output: 371. 7 Mw Existing power station net power: 639.1

Mw 總淨電力:1010. 8Mw 用於c〇2電力系統的煤: 1053.6 Mw 用於現存發電站的煤:1 256. 1Mw Total net power: 1010. 8Mw Coal for c〇2 power system: 1053.6 Mw Coal for existing power stations: 1 256. 1

Mw 整體效率淨值:43. 76°/〇 C〇2捕獲% : 45. 6% * *需注意地是,在此實例中,沒有c〇2自該現有發電站被 捕獲。 本發明許多的修飾以及其他實施例對本領域具通常知識 者而言將可理解地是,本發明所具有的是前述敘述以及 相關圖式所呈現的教示的優勢。因此,可瞭解地是,本 發明並不受限於所揭示的特殊實施例,以及該些修飾以 及其他實施例是意欲於被包括在所附申請專利範圍的範 疇中。雖然在此使用了特殊的詞語,但其使用僅是作為 一般且敘述形式,並非為了限制的目的。 【圖式簡單說明】 [0005] 在已經以一般用語描述本發明後,現在將以所附圖式作 為參考,其不需依比率繪製且其中: 第1圖為可根據本揭示某些實施例而使用的蒸散冷卻燃燒 器裝置的示意圖; 100125736Mw Overall net worth: 43. 76°/〇 C〇2 capture %: 45. 6% * * Note that in this example, no c〇2 was captured from the existing power station. Numerous modifications and other embodiments of the invention will be apparent to those of ordinary skill in the art. Therefore, it is understood that the invention is not limited to the specific embodiments disclosed, and the modifications and other embodiments are intended to be included in the scope of the appended claims. Although specific terms are used herein, they are used in a generic and statistic format and not for the purpose of limitation. BRIEF DESCRIPTION OF THE DRAWINGS [0005] Having described the invention in a general term, reference will now be made to the accompanying drawings, which Schematic diagram of the evapotranspiration burner device used; 100125736

第2圖為可使用於本揭示某些實施例中的燃燒器裝置裡面 表單編號A0101 第104頁/共134頁 1003441436-0 201213655 蒸散部件的器壁的示範性剖面示意圖; 第3A圖以及第3B圖示意性示出可使用於本揭示某些實施 例中的燃燒器裝置的蒸散部件集合的熱裝配(hot fit) 處理; 第4圖示意性示出根據本揭示某些實施例而可用的燃燒產 物污染移除裝置; 第5圖為示出根據本揭示一實施例之電力循環的流程圖; 第6圖為示出根據本揭示一實施例之CO/盾環液體通過分 離單元之流動的流程圖;Figure 2 is an exemplary cross-sectional view of a wall of an evapotranable part that can be used in a burner apparatus in some embodiments of the present disclosure, Form No. A0101, page 104, 134, pp. 1003441436-0 201213655; Figure 3A and Section 3B The figure schematically illustrates a hot fit process that can be used for a collection of evapotranic components of a burner apparatus in certain embodiments of the present disclosure; FIG. 4 is a schematic illustration of that available in accordance with certain embodiments of the present disclosure. Combustion product pollution removal device; FIG. 5 is a flow chart showing power cycling according to an embodiment of the present disclosure; FIG. 6 is a diagram showing flow of CO/shield ring liquid through a separation unit according to an embodiment of the present disclosure; Flow chart

第7圖為示出根據本揭示一實施例之利用在加壓單元中一 串聯的二、或更多個壓縮器或幫浦的加壓的流程圖; 第8圖為示出根據本揭示一實施例之熱交換器單元的流程 圖,其中,三個個別的熱交換器是以串聯方式使用; 第9圖為示出根據本揭示一實施例之利用於還原模式中以 串聯方式操作之二渦輪的一渦輪單元的流程圖; 第1 0圖為示出根據本揭示一實施例之使用二燃燒器的發 電系統及方法的流程圖;7 is a flow chart showing the pressurization of two or more compressors or pumps connected in series in a pressurizing unit according to an embodiment of the present disclosure; FIG. 8 is a view showing one according to the present disclosure. A flow chart of a heat exchanger unit of an embodiment, wherein three individual heat exchangers are used in series; and FIG. 9 is a diagram showing operation in series in a reduction mode in accordance with an embodiment of the present disclosure. Flowchart of a turbo unit of a turbine; FIG. 10 is a flow chart showing a power generation system and method using a two burner according to an embodiment of the present disclosure;

G 第11圖為示出根據本揭示一實施例之發電系統及方法的 特定實例的流程圖;以及 第12圖:為示出根據本揭示一實施例之結合習知燃煤鍋 爐(coal fired boiler)的發電系統及方法的另一實 例的流程圖。 【主要元件符號說明】 [0006] 220燃燒器裝置 222燃燒腔室 100125736 222A入口部份 表單編號A0101 第105頁/共134頁 1003441436-0 201213655 2 2 2 B出口部份 223端壁 2338壓力抑制部件 236、61、65循環液體 236a、236b、52、56、62、74、73、71、71b、72a、 72b 、 1044 、 1045 、 1039 、 1038 、 1301 、 1035 流 254、1 055含碳燃料 250A漿料 254A粉煤 255液化物質 250混合設置 242氧 230蒸散部件 2331外部蒸散部件 2332内部蒸散部件 231緩衝層 2339絕熱部件 2350熱移除裝置 2336器壁 210蒸散物質 2337通道 2333A第一蒸散液體供應通路 2333B第二蒸散液體供應通路 2335多個流動通路或孔洞或其他合適的開口 2A中央收集提供 100、100A、100B、100C離心分離器裝置 100125736 表單編號A0101 第106頁/共134頁 1003441436-0 201213655 2中央收集管路 4出口管 12收集管路 5出口喷嘴 6水冷區段 9閥門FIG. 11 is a flow chart showing a specific example of a power generation system and method according to an embodiment of the present disclosure; and FIG. 12 is a view showing a coal fired boiler according to an embodiment of the present disclosure. A flow chart of another example of a power generation system and method. [Main component symbol description] [0006] 220 burner device 222 combustion chamber 100125736 222A inlet portion form number A0101 page 105 / 134 pages 1003441436-0 201213655 2 2 2 B outlet portion 223 end wall 2338 pressure suppression member 236, 61, 65 circulating liquids 236a, 236b, 52, 56, 62, 74, 73, 71, 71b, 72a, 72b, 1044, 1045, 1039, 1038, 1301, 1035 stream 254, 1 055 carbon fuel 250A slurry Feed 254A pulverized coal 255 liquefied material 250 mixed set 242 oxygen 230 evapotranspiration 2331 external transpiration member 2332 internal transpiration member 231 buffer layer 2339 heat insulating member 2350 heat removal device 2336 wall 210 evapotranspiration 2337 channel 2333A first evapotranspiration liquid supply passage 2333B Second Evapotranic Liquid Supply Path 2335 Multiple Flow Paths or Holes or Other Suitable Openings 2A Central Collection Provide 100, 100A, 100B, 100C Centrifugal Separator Unit 100125736 Form No. A0101 Page 106 / Total 134 Page 1003441436-0 201213655 2 Central Collection line 4 outlet tube 12 collection line 5 outlet nozzle 6 water-cooled section 9 valve

7管線 8分離的線 14出口喷嘴或管路 20污水坑 1氣旋 3出口通道 11分支通道 125承壓殼體 2340分離器裝置 85、60、62b、70、67 ' 66循環液體流 80管路液體流7 line 8 separated line 14 outlet nozzle or line 20 sump 1 cyclone 3 outlet channel 11 branch channel 125 pressure housing 2340 separator device 85, 60, 62b, 70, 67 ' 66 circulating liquid stream 80 pipe liquid flow

720管路分流器 620加壓單元 520分離單元 420熱交換器 50渦輪排放流 320擴散渦輪 530、640、1 370、1 320冷卻水熱交換器 540、1 360分離器 550分離單元 100125736 表單編號A0101 第107頁/共134頁 1003441436-0 201213655 6 2 a液態水流 650、1 380壓縮器 630第一壓縮器 430第一熱交換器 440第二熱交換器 450、1310第三熱交換器 480、910、252混合器 460分流器 470侧加熱器 40、1 054燃燒產物流 330、340 渦輪 42第一排放流 30空氣分離單元 241空氣 900研磨裝置 256冷卻流 930氧化燃燒器 920、1 390、1 350 幫浦 68側抽取 940過濾器 86、1 058(:〇2流 257燃燒流 80 C09管路液體流 1 209、1210發電機 Q熱 1 056氧氣流 100125736 表單編號A0101 第108頁/共134頁 1003441436-0 201213655 1 053、1051、1 047C〇2循環液體流 1049 C〇2產物流 1050幫浦排放流 1048 (:〇2循環液體 1042 、 1043 線 1 046酸流 1340循環幫浦 1 330管柱 1 040已冷卻流 1001 1100擴散渦輪排放流 1037排放流 1031高壓流流動 1 800發電站 1 057、1 036冷凝物 1052 LP蒸汽流 1 032中壓流流動 10 3 3流流動 1 200三階段渦輪 1220冷凝器 1230饋送水幫浦 1810 煤 100125736 表單編號A0101 第109頁/共134頁 1003441436-0720 line splitter 620 pressurizing unit 520 separation unit 420 heat exchanger 50 turbine discharge stream 320 diffusion turbine 530, 640, 1 370, 1 320 cooling water heat exchanger 540, 1 360 separator 550 separation unit 100125736 Form No. A0101 Page 107 / 134 pages 1003441436-0 201213655 6 2 a liquid water stream 650, 1 380 compressor 630 first compressor 430 first heat exchanger 440 second heat exchanger 450, 1310 third heat exchanger 480, 910 252 mixer 460 splitter 470 side heater 40, 1 054 combustion product stream 330, 340 turbine 42 first exhaust stream 30 air separation unit 241 air 900 grinding device 256 cooling stream 930 oxidation burner 920, 1 390, 1 350 Pump 68 side extraction 940 filter 86, 1 058 (: 〇 2 flow 257 combustion flow 80 C09 pipeline liquid flow 1 209, 1210 generator Q heat 1 056 oxygen flow 100125736 Form No. A0101 Page 108 / 134 pages 1003441436 -0 201213655 1 053, 1051, 1 047C〇2 circulating liquid stream 1049 C〇2 product stream 1050 pump discharge stream 1048 (: 〇 2 circulating liquid 1042, 1043 line 1 046 acid stream 1340 cycle pump 1 330 column 1 040 has cooled flow 1001 1100 expansion Turbine discharge stream 1037 discharge stream 1031 high pressure flow 1 800 power station 1 057, 1 036 condensate 1052 LP steam flow 1 032 medium pressure flow 10 3 3 flow 1 200 three-stage turbine 1220 condenser 1230 feed water pump 1810 Coal 100125736 Form No. A0101 Page 109 / Total 134 Page 1003441436-0

Claims (1)

201213655 七、申請專利範圍: 1 . 一種發電方法,包括: 將一燃料、〇2、以及一〇〇2循環液體導入一燃燒器,該 C02以至少大約12 MPa的一壓力,以及至少大約4 00 °C 的一溫度被導入; 燃燒該燃料,以提供包括(:〇2的一燃燒產物流,該燃燒產 物流具有至少大約800 °C的一温度; 將該燃燒產物流擴張跨越一渦輪,以進行發電,該渦輪具 有一入口,用以接收該燃燒產物流,以及一出口,用以釋 放包括(:〇2的一渦輪排放流,其中,於該入口處的該燃燒 產物流相較於在該出口處的該渦輪排放流的壓力比少於大 約12 ; 藉由將該渦輪排放流通過一主要熱交換單元而從該渦輪排 放流收回熱,進而提供一已冷卻渦輪排放流; 自該已冷卻渦輪排放流移除存在於該已冷卻渦輪排放流中 除了 c〇2以外的一或更多個從屬成份,以提供一已純化、 已冷卻渦輪排放流; 利用一第一壓縮器將該已純化、已冷卻渦輪排放流壓縮至 高於該c〇2臨界壓力的一壓力,以提供一超臨界c〇2循環液 體流; 將該超臨界C〇2循環液體流冷卻至其密度至少大約200 kg/m3的一溫度; 使該超臨界、高密度c〇2循環液體通過一第二壓縮器,以 將該c〇2循環液體加壓至輸入至該燃燒器所需的壓力; 使該超臨界、高密度、高壓c〇2循環液體通過相同的主要 100125736 表單編號A0101 第110頁/共134頁 1003441436-0 201213655 熱交換單元,以使得被收回的熱被用來增加該c〇2循環液 體的溫度; 供給一額外量的熱至該超臨界、高密度、高壓c〇環液 L 體,因此,為了回收至該燃燒器而離開該主要熱交換單元 的6亥C〇2循環液體的溫度以及該渦輪排放流的溫度間的差 異少於大約50 °c ;以及 回收該已加熱、超臨界、高密度c〇2循環液體至該燃燒器 D 如申請專鄕圍第1項所述的方法,其中,該收回步驟將 該渦輪排放流冷卻至低於其水露點的一溫度。 如申請專利範圍第i項所述的方法,其中,該移除步驟更 包括’憑藉-環境溫度冷卻媒介而進—步冷卻該渴輪排放 流。 如申請專職圍第3項所述的方法,其中,該更進一步冷 部冷凝了與該-錢多個從屬成份在—起的水,以形成包 括1^。4、HN〇3、HC1以及采的其中之_或更多的一溶液 〇 Ο 如申請專鄉圍第丨項所述的方法,其中,制用該第一 壓縮器的·縮將該已冷㈣輪排放流加壓至少於大約12 MPa的一壓力。 如申請專利範圍第1項所述的方法,其中,在通過該主要 熱交換單先自該超臨界、高錢、高⑽ 體流中收回一產物CO流。 2 如申請專利範圍第6項所述的方法 括在該含碳燃料中的碳燃燒所形成 如申請專利範圍第6項所述的方法 100125736 ’其中,該產物(:〇2流包 的大體上所有的CO 。 L· ’其中,該產物co9流處 1003441436-0 表單編號A0101 第m頁/共134頁 201213655 ίο 12 13 14 15 16 17 100125736 於相容於直接輸人至-高壓⑶#路的—壓力。 如申請專利範圍第1項所述的方法,其中,該燃燒是於大 約^00 °C至大約5肩〇 t的-溫度而實行。、 如申請專利範圍第1項所述的方法,其中,該_包括_ 部分燃燒產物流。 11 ·如申請專利範圍第10項所述的方法,包括,在一⑶循尸 液體的存在下與〇2一起燃燒一含碳燃料,該含碳“、: 以及C〇2循環液體的提供比率使得該含碳燃料僅部分地氧2 化’以產生包括一不可_成份、ΓΛ 、絲 co2以及H2、co、CH、 ㈣以及⑽3的其中之—或更多的部分氧化燃燒產物济二 如申請專利範圍第η項所述的方法,其中,該含碳辦料、 〇2以及oy«液_提供轉使得該部錄化燃燒產物 流的該溫度足夠低,,以讓該流中的所有不可燃成份為固 態粒子形式。 如申請專利範圍第12項所述的方法,1^ π/ίΓ ’其中’該部分氧化婵 燒產物流的該溫度大約500 t至大約9〇〇它。 如申請專職㈣12項㈣㈣法,Μ括㈣部分氧化 燃燒產物流通過一或更多個過濾器。 如申請專利範圍第U項所述的方法,其中,該 可燃成份的剩餘量少於該部分氧化燃燒產物的大約; mg/m3。 如申請專利範圍第1丨項所述的方法, 、褐煤或石油焦。 纟中,该燃料包括煤 ^申請專職圍第_所述的方法,其中,_料呈一微 粒形式,以及與C〇2一起被提供為—漿料。 如令請專利範圍第17項所述的方法,1 表單編號麵 請頁/共⑶頁〃中’趟燃料使得 18 201213655 Ο 19 . 20 . 21 . 22 . 23 . 24 . 25 . 大於90%的粒子具有少於大約5〇〇 _的—平均尺寸。 如申請專職圍第18項所述的方法,其中,大於99%的粒 子具有少於大約100 μm的_平均尺寸。 如申請專利範圍第i項所述的方法,其中,該%循環液體 以至少大約1 5 MPa的一壓力被導入。 如申請專利龍第丨項所述的方法,其中,該义循環液體 以至少大約20 MPa的一壓力被導入。 如申請專利翻第丨項所述的方法,其中,環液體 以至少大約6 0 0 C的一溫度被導入。 如申請專利第!項所述的方法,其中,脚一環液體 以至少大約700 °C的一溫度被導入。 如申請專利範圍第i項所述的方法,其中,該燃燒產物流 具有至少大約1,〇 〇 〇 °C的一溫度。 如申請專利範圍第1項所述的方法,其中,該燃燒產物流 具有被導入該燃燒器的C02的壓力的至少大約90%的一壓 力0 26 .如申請專利範圍第25項所述的方法,其中,該燃燒產物流 具有被導入該燃燒器的C〇2的壓力的至少大約娜的一壓 力。 如申請專利範圍第i項所述的方法,其中,該燃燒產物流 於6亥入口的壓力相較於該渦輪排放流於該出口的愿力的壓 力比為大約1. 5至大約1〇。 28 .如申請專利範圍第27項 吓延的方法,其中,該燃燒產物流 於該入口的壓力相較於該渦輪排放流於該出口的壓力的壓 力比為大約2至大約8。 100125736 如申請專利範圍第1項所述的方法 表單編號A0101 第113頁/共134頁 ’其中,該燃料為一含 1003441436-0 29 . 201213655 兔燃料’以及其中,在該%循環液體中的%與在被導入 該燃燒器的該燃料中的碳的比率基於莫耳是大約1〇至大約 30 31 32 33 34 35 如申請專觀圍⑽項所述的方法,其中,在糊循環 液體中的⑶声在被導人該燃燒器的&的比率基於莫耳是 大約10至大約30。 ' 如申請專聽圍第㈣所—方法,其中,在㈣輪排放 流中的C02為一氣態。 如申請專㈣圍第31項所述的紐,其中,㈣輪排放流 具有少於或等於7 MPa的一魔力。 ^申請專利範圍W項所述的方法,其中,該主要熱交換 單元包括串聯的至少三個熱交換器。 如申請專職圍第33項魏的綠,其中,在該串聯中的 第—熱交換器接收該渦輪排放流,以及降低其溫度,該第 —熱交換器是由可承受至少大約7〇()气的一溫度的一高 溫合金所形成。 如申請專利範圍第1項所述的方法,其中,該超臨界、高 密度c〇2循環液體流在通過該第二壓縮器後具有至少大約 15 MPa的一壓力。 如申請專利範圍第35項所述的方法,其中,該超臨界、高 密度C 02循環液體流在通過該第二壓縮器後具有至少大約 25 MPa的一壓力。 如申請專利範圍第1項所述的方法,其中,該超臨界⑶卩循 環液體流被冷卻至其密度至少大約4〇〇 kg/ms的一溫度。 如申請專利範圍第1項所述的方法,其中,該額外量的熱 包括自一 〇2分離單元收回的熱。 1003441436 表單編號A0】01 第頁/共]34頁 201213655 159 ·如申凊專利範圍第!項所述的方法,其中,該的提供量 使件部分的該燃料被氧化為包括⑶2,%〇,以及S〇2的其 中之-或更多的氧化產物,以及該燃料的剩餘部分被氧化 為或更夕個可燃成份,該一或多個可燃成份是選自^、 0 CH4、H2S、NH3以及其結合所組成的群組。 40 . Μ請專利範圍㈣項所述的方法,其中,㈣輪包括二 個單元,其每一個皆具有—入口以及一出口以及其中, 在每一單元的該入口的該操作溫度大體上相同。 41 · Μ請專職圍㈣項所述的方法,包括添加—%至在 該第一渦輪單元的該出口的該液體流。 2 42 ·如申請專利範圍第!項所述的方法,其中,該渦輪排放流 為包括過量〇2的一氧化液體。 .如申明♦利範圍第1項所述的方法,其中,該c〇2循環液體 被導入該蒸散冷卻燃燒器,以與該〇2以及該燃料的其中之 —或二者相混合。 44 . 45 .201213655 VII. Patent application scope: 1. A power generation method comprising: introducing a fuel, helium 2, and a helium 2 circulating liquid into a burner having a pressure of at least about 12 MPa and at least about 400 a temperature of °C is introduced; the fuel is combusted to provide a combustion product stream comprising: (〇2, the combustion product stream having a temperature of at least about 800 ° C; expanding the combustion product stream across a turbine to Generating electricity, the turbine having an inlet for receiving the combustion product stream, and an outlet for releasing a turbine discharge stream comprising: (〇2, wherein the combustion product stream at the inlet is compared to The turbine discharge stream at the outlet has a pressure ratio of less than about 12; recovering heat from the turbine discharge stream by passing the turbine discharge stream through a primary heat exchange unit to provide a cooled turbine discharge stream; The cooled turbine exhaust stream removes one or more subordinate components present in the cooled turbine exhaust stream other than c〇2 to provide a purified, cooled turbine exhaust stream Compressing the purified, cooled turbine discharge stream to a pressure above the critical pressure of c〇2 using a first compressor to provide a supercritical c〇2 circulating liquid stream; circulating the supercritical C〇2 liquid Cooling to a temperature having a density of at least about 200 kg/m3; passing the supercritical, high-density c〇2 circulating liquid through a second compressor to pressurize the c〇2 circulating liquid to the burner The required pressure; the supercritical, high-density, high-pressure c〇2 circulating liquid is passed through the same main 100125736 Form No. A0101, page 110 / 134 pages 1003441436-0 201213655 heat exchange unit, so that the recovered heat is used To increase the temperature of the c〇2 circulating liquid; to supply an additional amount of heat to the supercritical, high-density, high-pressure c-ring liquid L body, thus leaving the main heat exchange unit for recovery to the burner 6 The difference between the temperature of the circulating fluid and the temperature of the turbine discharge stream is less than about 50 ° C; and recovering the heated, supercritical, high-density c〇2 circulating liquid to the burner D. The method of claim 1, wherein the retracting step cools the turbine discharge stream to a temperature below its water dew point. The method of claim i, wherein the removing step further comprises 'Through the ambient temperature cooling medium to further cool the thirsty wheel discharge stream. For example, the method described in the third paragraph of the full-time application, wherein the further cold part condenses with the multi-subordinate component of the money Water to form a solution comprising 1^.4, HN〇3, HC1, and _ or more of which are collected, such as the method described in the application for the hometown, wherein the first The compressor shrinks the cold (four) wheel discharge stream to a pressure of at least about 12 MPa. The method of claim 1, wherein a product CO stream is withdrawn from the supercritical, high-money, high (10) body stream by the primary heat exchange unit. 2 The method of claim 6, wherein the carbon combustion in the carbonaceous fuel is formed by the method 100125736 as described in claim 6 wherein the product (the 〇2 stream package is substantially All CO. L· 'Where, the product co9 flow is 1003441436-0 Form No. A0101 Page m / 134 pages 201213655 ίο 12 13 14 15 16 17 100125736 Compatible with direct input to high pressure (3) #路The method of claim 1, wherein the combustion is carried out at a temperature of from about 00 ° C to about 5 shoulders t. The method of claim 1 Wherein the _ includes a portion of the combustion product stream. 11. The method of claim 10, comprising combusting a carbonaceous fuel together with hydrazine 2 in the presence of a (3) corpse liquid, the carbonaceous ", and the supply ratio of the C〇2 circulating liquid is such that the carbonaceous fuel is only partially oxidized to produce a non-component, ΓΛ, silk co2, and H2, co, CH, (4), and (10)3 - Or more partial oxidation combustion The method of claim 2, wherein the carbonaceous material, 〇2, and oy« liquid provide a temperature that is low enough to allow the portion of the recorded combustion product stream to be All non-combustible components in the stream are in the form of solid particles. As in the method of claim 12, 1^ π/ίΓ 'where the temperature of the portion of the cerium oxide product stream is from about 500 t to about 9 〇〇. The method of claim 4, wherein the fourth embodiment of the flammable combustion product is less than the A method of partially oxidizing a combustion product; mg/m3, as described in the first aspect of the patent application, lignite or petroleum coke. In the middle, the fuel includes the method of applying the full-time application of the coal, wherein The material is in the form of a particle and is supplied as a slurry together with C〇2. For the method described in the scope of the patent, item 1 of the form number page, please refer to the page (total) (3) 201213655 Ο 19 . 20 . 21 22 . 23 . 24 . 25 . More than 90% of the particles have an average size of less than about 5 〇〇 _. The method of claim 18, wherein more than 99% of the particles have less than about The method of claim i, wherein the % circulating liquid is introduced at a pressure of at least about 15 MPa, as in the method of claim No. The circulating liquid is introduced at a pressure of at least about 20 MPa. The method of claim 2, wherein the ring liquid is introduced at a temperature of at least about 6,000 C. Such as applying for a patent! The method of item wherein the foot-ring liquid is introduced at a temperature of at least about 700 °C. The method of claim 4, wherein the combustion product stream has a temperature of at least about 1, 〇 〇 °C. The method of claim 1, wherein the combustion product stream has a pressure of at least about 90% of the pressure of the CO 2 introduced into the burner. The method of claim 25 is disclosed in claim 25. Wherein the combustion product stream has a pressure of at least about a pressure of C〇2 introduced into the burner. 5至约1〇。 The pressure ratio of the pressure of the combustion product to the inlet of the turbine is about 1.5 to about 1 〇. 28. The method of claim 27, wherein the pressure ratio of the combustion product to the inlet is from about 2 to about 8 compared to the pressure of the turbine discharge at the outlet. 100125736, as described in the scope of claim 1 of the patent application form No. A0101, page 113 / page 134 'where the fuel is one containing 1003441436-0 29 . 201213655 rabbit fuel 'and therein, % in the % circulating liquid The ratio of carbon to the fuel introduced into the burner is from about 1 Torr to about 30 31 32 33 34 35 as described in the application of the subject matter (10), wherein in the paste circulating liquid (3) The ratio of the sound of the burner to the burner is about 10 to about 30 based on the mole. For example, if you apply for the special listening section (4), the CO2 in the (four) round of discharge is a gaseous state. For example, if the application is specifically (4), the New Zealand, as described in Item 31, has a magical power of less than or equal to 7 MPa. The method of claim 4, wherein the primary heat exchange unit comprises at least three heat exchangers in series. For example, applying for the green of the 33rd item of the full-time division, wherein the first heat exchanger in the series receives the turbine discharge flow and lowers the temperature thereof, the first heat exchanger is capable of withstanding at least about 7 〇 () A high temperature alloy of gas is formed at a temperature. The method of claim 1, wherein the supercritical, high density c〇2 circulating liquid stream has a pressure of at least about 15 MPa after passing through the second compressor. The method of claim 35, wherein the supercritical, high density C 02 circulating liquid stream has a pressure of at least about 25 MPa after passing through the second compressor. The method of claim 1, wherein the supercritical (3) 卩 circulating liquid stream is cooled to a temperature having a density of at least about 4 〇〇 kg/ms. The method of claim 1, wherein the additional amount of heat comprises heat recovered from the separation unit. 1003441436 Form No. A0] 01 Page / Total] Page 34 201213655 159 ·If you apply for the patent scope! The method of the present invention, wherein the supply amount is such that the fuel of the part is oxidized to include - or more of oxidation products of (3) 2, % 〇, and S 〇 2, and the remainder of the fuel is oxidized For one or more combustible components, the one or more combustible components are selected from the group consisting of ^, 0 CH4, H2S, NH3, and combinations thereof. 40. The method of claim 4, wherein the (four) wheel comprises two units, each of which has an inlet and an outlet, and wherein the operating temperature at the inlet of each unit is substantially the same. 41 · The method described in the full-time division (4), including adding -% to the liquid stream at the outlet of the first turbine unit. 2 42 · If you apply for a patent scope! The method of item wherein the turbine discharge stream is an oxidizing liquid comprising an excess of cerium 2 . The method of claim 1, wherein the c〇2 circulating liquid is introduced into the evaporative cooling burner to mix with the crucible 2 and the fuel or both. 44 . 45 . 如申請專利範圍第1項所述的方法,其中,該燃燒器包括 一蒸散冷卻燃燒器》 如申清專利H圍第1項所述的方法,其中,該⑶2循環液體 被導入錢散冷雜燒器’以作為_蒸散冷卻液體的所有 或部分,進而被引導穿過形成在該蒸散冷卻燃燒器中的一 46 . 47 . 48 . 100125736 或更多個蒸散液體供應通道。 如申請專利範圍第1項所述的方法,其中 大約1,300 °c的一溫度實行。 如申請專利範圍第1項所述的方法,其中 1200 °C至大約5, 000。(:的一溫度實行。 如申請專利範圍第1項所述的方法,其中 表單編號A0101 第115頁/共134頁 ,該燃燒在至少 ,該燃燒在大約 ,該〇2被提供為 1003441436-0 201213655 —流,其中,該〇2的莫耳濃度為至少85%。 49.如申請專利範圍第48項所述的方法,其中,該 莫耳濃 Cl 度為大約85%至大約99. 8%。 5 〇 .如申請專利範圍第丨項所述的方法,其中,該渦輪排放流 在不通過一另外燃燒器的情形下,直接通過進入該主要熱 交換單元。 51 .如申請專利範圍第丨項所述的方法,其中,該燃燒的效率 大於50%,該效率被計算為相關於燃燒發電的該含碳燃料 的總低發熱值熱能而產生的淨電力的比率。 52 ·如申請專利範圍第丨項所述的方法,其包括在該燃燒步 驟以及該擴張步驟之間,使該燃燒產物流通過用來移除一 固體或液體狀態之污染物的至少一裝置。 53 .如申請專利範圍第丨項所述的方法,其包括,在該擴張步 驟以及該收回步驟之間,使該渦輪排放流通過一從屬熱交 換單元。 54 .如申請專利範圍第53項所述的方法,其中,該從屬熱交換 單元利用來自該渦輪排放流的熱而加熱衍生自一蒸汽發電 系統的一或更多個流。 55 .如申請專利範圍第54項所述的方法,其中,該蒸汽發電系 統包括一習知鍋爐系統。 56 ·如申請專利範圍第55項所述的方法,其中,該習知鋼爐系 統包括一燃煤發電站。 57 .如申請專利範圍第54項所述的方法,其中,該習知銷爐系 統包括一核能反應器。 58 .如申請專利範圍第54項所述的方法,其中,該—或更多個 已加熱蒸汽流通過一或更多個渦輪,以進行發電。 100125736 1003441436-0 表單編號A0101 第116頁/共134頁 201213655 59. —種發電方法,包括: 將一含碳燃料,0,一(^。循環液體導入一蒸散冷卻燃燒 乙 L· 器,該C〇2以至少大約8 Mpa的一壓力,以及至少大約200 °C的一溫度被導入; 燃燒該燃料,以提供包括(:〇2的一燃燒產物流,該燃燒產 物流具有至少大約8 0 0 °c的一溫度;以及 將該燃燒產物流擴張跨越一渦輪,以進行發電,該渦輪具 有一入口’用以接收該燃燒產物流,以及一出口,用以釋 放包括CO的一渦輪排放流’其中,於該入口的該燃燒產 Γ) 物流相較於在該出口的該渦輪排放流的壓力比少於大約12 60 61 62 〇 63 64 如申請專利範圍第59項所述的方法,其中,該c〇循環液 2 體以至少大約2〇MPa的一壓力被導入。 如申請專利範圍第59項所述的方法,其中,該c〇2循環液 體以至少大約7 0 0 °C的一溫度被導入。 如申相專利範’ 5 9項所述的方法,其巾,該燃燒產物流 具有至少大約1,〇 〇 〇乞的一溫度。 如申請專利範圍第59項所述的方法,其中,該燃燒產物流 於該入σ㈣力相較於該渦輪排放流於該出口的壓力的壓 力比為大約1. 5至大約1 〇。 如申請專利範圍㈣項所述的方法,其中,在該 液體中的〇)2與在被導人該燃燒器的燃料中的碳的比率基 於莫耳為大約10至大約50。 100125736 6566 如申請專利範圍第59項所述的方法,其中 流中的c〇2為一氣態。 如申請專利範圍第65項所述的方法,其中 表單編號A0101 第1Π頁/共134頁 在該渦輪排放 該渦輪排放流 1003441436-0 201213655 具有少於或等於7 MPa的一壓力。 67 .如申睛專利範圍第59項所述的方法,更包括,使該满輪排 放机通過-主要熱交換單元,以自該渴輪排放流收回熱, 以及提供具有少於大約200。〇的一溫度的一循 流。 68 .如申請專利範圍第67項所述的方法,其中,該主要熱交換 單元包括串聯的至少二個熱交換器。 Μ ·如申請專利範圍第67項所述的方法,更包括,對該%猶 環液體流執行-或更多個分離步驟,以移除存在於該^環 液體流中除了(:〇2以外的一或更多個從屬成份。 .如申請專利範圍第69項所述的方法,更包括,利用„第— 魔縮器將該已純化、C〇2循環液體流壓縮至高於該%臨界 壓力的一壓力,以提供一超臨界c〇^盾環液體流。 71 .如申請專利範圍第7〇項所述的方法,更包括,將該超臨界 CO?循環液體流冷卻至其密度至少大約2〇〇 kg/m3的一溫 度。 72 .如申晴專利範圍第7〇項所述的方法,更包括,使該超臨界 、尚密度C〇2循環液體通過一第二壓縮器,以將該⑶^循環 液體加壓至輸入至該燃燒器所需的壓力。 73 .如申睛專利範圍第72項所述的方法,更包括,使該超臨界 、鬲密度、高壓(:〇2循環液體通過相同的主要熱交換單元 ,以使得被收回的熱被用來增加該C〇2循環液體的溫度。 74 .如申晴專利範圍第73項所述的方法,更包括,供給一額外 量的熱至該超臨界、高密度、高壓c〇2循環液體,因此, 為了回收至該燃燒器而離開該主要熱交換單元的該〔(^循 環液體的溫度以及該渦輪排放流的溫度間的差異少於大約 100125736 表單編號A0101 第118頁/共134頁 50 °C » 201213655 75 .如申請專利範圍第74項所述的方法,更包括,回收該已加 熱、超臨界、高密度(:〇2循環液體至該燃燒器。 76 .如申請專利範圍第74項所述的方法,其中,該供應額外量 的熱的步驟包括自一 〇2分離單元收回的熱的使用。 77 .如申請專利範圍第67項所述的方法,其中,在該渦輪排放 流通過該主要熱交換單元前,該渦輪排放流通過一從屬熱 交換單元。 78 .如申請專利範圍第77項所述的方法,其中,該從屬熱交換 單元利用來自該渦輪排放流的熱而加熱衍生自一蒸汽發電 系統的一或更多個流。 79 .如申請專利範圍第78項所述的方法,其中,該蒸汽發電系 統包括一習知锅爐系統。 80 .如申請專利範圍第79項所述的方法,其中,該習知鍋爐系 統包括一燃煤發電站。 81 .如申請專利範圍第78項所述的方法,其中,該習知鍋爐系 統包括一核能反應器。 82 .如申請專利範圍第78項所述的方法,其中,該一或更多個 已加熱蒸汽流通過一或更多個渦輪,以進行發電。 83 .如申請專利範圍第59項所述的方法,其中,至少部分的該 c〇2循環液體被導入該蒸散冷卻燃燒器,以與該〇2以及該 含碳燃料的其中之一或二者相混合。 84 .如申請專利範圍第59項所述的方法,其中,該C〇2循環液 體被導入該蒸散冷卻燃燒器,以作為一蒸散冷卻液體的所 有或部分,進而被引導穿過形成在該蒸散冷卻燃燒器中的 一或更多個蒸散液體供應通道。 100125736 表單編號A0101 第119頁/共134頁 1003441436-0 201213655 8。.如申μ專利範圍第59項所述的方法,其中,該燃燒在至少 大約1,3 0 0 °c的一溫度實行。 86 .如申靖專利範圍第59項所述的方法,其中,該燃燒在大約 1300C至大約5,0〇〇。〇的一溫度實行。 87 .如申请專利範圍第59項所述的方法,其中,該〇2被提供為 —流’其中,該〇2的莫耳濃度為至少85〇/〇。 88 ·如申清專利範圍第59項所述的方法,其中,該燃燒的效率 大於50%,該效率被計算為相關於燃燒發電的該含碳燃料 的總低發熱值熱能而產生的淨電力的比率。 89 種發電系統,包括: —蒸散冷卻燃燒器,配置來接收一燃料,〇、以及c〇循 2 2 環液體流,以及具有至少一燃燒階段,以在該c〇循環液 2 體的存在下燃燒該燃料,以及在至少大約8 Mpa的一壓力 以及至少大約800。(:的一溫度提供包括c〇的一燃燒產物 流; 一主要發電渦輪,與該燃燒器進行流體溝通,該主要渴輪 具有一入口,用以接收該燃燒產物流,以及一出口,用以 釋放包括(:〇2的一渦輪排放流,該主要渦輪適合來控制壓 降,以使得於該入口處的該燃燒產物流的壓力相較於在該 出口處的該渦輪排放流的壓力比少於大約12 ; —主要熱交換單元,與該主要渦輪進行流體溝通,用以接 收β亥渴輪排放流,以及將來自於該渴輪排放流的熱傳送至 該c〇2循環液體流;以及 至少一壓縮器’與該至少一熱交換器進行流體溝通,以用 於壓縮該C〇2循環液體流。 90 100125736 如申請專利範圍第89項所述的發電系統,更包括一或更多 表單編號A0101 第120頁/共134頁 ,nn. 201213655 個分離裝置,位在該熱交換單元以及該至少一壓縮器之間 ’用以移除存在於該(:〇2循環液體中除了 C〇2以外的一或更 多個從屬成份。 91 ·如申請專利範圍第89項所述的發電系統,更包括一第—壓 縮器’適合來將該c〇2循環液體流壓縮至高於該C0臨界壓 2 力的一壓力。 92 .如申請專利範圍第91項所述的發電系統,更包括—冷卻裝 置’適合來將離開該第一壓縮器的該(:〇2循環液體流冷卻 至其密度大於大約200 kg/m3的一溫度。 93 ·如申請專利範圍第g2項所述的發電系統,更包括一第二壓 縮器,適合來將該已冷卻c〇2循環液體流壓縮至輸入該燃 燒器所需的一壓力。 94 .如申請專利範圍第92項所述的發電系統,更包括一或更多 個熱傳遞零件,以將來自一外部來源的熱傳遞至該燃燒器 上游以及該第二壓縮器下流的該C〇2循環液體。 95 .如申請專利範圍第94項所述的發電系統,其中,該等熱傳 遞零件相關連於一〇產生裝置。 96 .如申請專利範圍第89項所述的發電系統,更包括一第二燃 燒器,位在該蒸散冷卻燃燒器上游並與其進行流體溝通。 97 .如申請專利範圍第96項所述的發電系統,更包括—或更多 個過濾器或分離裝置,位在該第二燃燒器以及該蒸散冷卻 燃燒器之間。 100125736 98 . 99 . 如申請專利範圍第97項所述的發電系統,其中,該第二燃 燒器為一蒸散冷卻燃燒器。 如申請專利範圍第96項所述的發電系統,更包括一混合裝 置,以形成一微粒燃料材料與一流化介質的一漿料。 表單編號A0101 第121頁/共134頁 1003441436-0 201213655 100 101 102 103 如申請專利範圍第96項所述的發電系統,更包括一研磨裝 置,以微粒化一固態燃料。 如申請專利範圍第89項所述的發電系統,其中,該熱交換 單元包括至少二熱交換器。 如申請專利範圍第101項所述的發電系統,其中,該熱交 換單元包括串聯的至少三個熱交換器。 如申請專利範圍第101項所述的發電系統,其中,在串聯 中的該第一熱交換器適合來接收該主要渦輪排放流,並且 是由可承受至少大約700。(:的一溫度的一高溫合金所形 成0 104 .如申請專利範圍第89項所述的發電系統,其中,該主要發 電渦輪包括串聯的至少二個渦輪。 105 ·如申請專利範圍第89項所述的發電系統,更包括一從屬熱 交換單元’位在該主要發電渦輪以及該主要熱交換單元之 間,並與該主要發電渦輪以及該主要熱交換單元進行液體 溝通。 106 .如申請專利範圍第1〇5項所述的發電系統,更包括一錢爐 ’經由至少一蒸汽流而與該從屬熱交換進行液體溝通。 107 .如申請專利範圍第106項所述的發電系統,更包括一從屬 發電渦輪,具有一入口,用以接收來自該從屬熱交換單元 的至少一蒸汽流。 100125736 表單編號A0101 第122頁/共134頁 1003441436-0The method of claim 1, wherein the burner comprises an evapotranspiration burner, such as the method of claim 1, wherein the (3) 2 circulating liquid is introduced into the money-dissipating cold. The burner 'is taken as all or part of the evapotranspiration cooling liquid, and is then guided through a 46.47. 48. 100125736 or more evapotranspiration supply channels formed in the evapotranspiration burner. The method of claim 1, wherein a temperature of about 1,300 ° C is applied. The method of claim 1, wherein the method is from 1200 ° C to about 5,000. (A temperature of (:) is implemented as in the method of claim 1, wherein Form No. A0101, page 115/134, the combustion is at least, the combustion is about, and the 〇2 is provided as 1003441436-0 8%。 The method of the method of the present invention, wherein the molar concentration is from about 85% to about 99. 8%. 5. The method of claim 2, wherein the turbine discharge stream passes directly into the primary heat exchange unit without passing through an additional burner. 51. The method according to the item, wherein the efficiency of the combustion is greater than 50%, and the efficiency is calculated as a ratio of net electric power generated in relation to the total low calorific value heat energy of the carbonaceous fuel for combustion generation. The method of clause 3, comprising, between the burning step and the expanding step, passing the combustion product stream through at least one means for removing a contaminant in a solid or liquid state. The method of claim 5, comprising: passing the turbine discharge stream through a subordinate heat exchange unit between the expansion step and the retracting step. 54. The method of claim 53, wherein The slave heat exchange unit utilizes heat from the turbine discharge stream to heat one or more streams derived from a steam power generation system. 55. The method of claim 54, wherein the steam power generation system The method of claim 55, wherein the method of claim 55, wherein the conventional steel furnace system comprises a coal-fired power station, wherein the method of claim 54 wherein The conventional pin furnace system includes a nuclear energy reactor.. The method of claim 54, wherein the one or more heated steam streams pass through one or more turbines for power generation. 100125736 1003441436-0 Form No. A0101 Page 116 of 134 201213655 59. A method of generating electricity, comprising: introducing a carbonaceous fuel, 0, a (^. circulating liquid into a steaming Cooling the combustion engine L, the C〇2 being introduced at a pressure of at least about 8 Mpa, and a temperature of at least about 200 ° C; burning the fuel to provide a combustion product stream comprising: (〇2, The combustion product stream has a temperature of at least about 80 ° C; and the combustion product stream is expanded across a turbine for power generation, the turbine having an inlet for receiving the combustion product stream, and an outlet for Release a turbine exhaust stream comprising CO wherein the combustion calcination at the inlet is less than about 12 60 61 62 〇 63 64 compared to the turbine discharge stream at the outlet. The method of claim 59, wherein the c〇 circulating fluid 2 is introduced at a pressure of at least about 2 MPa. The method of claim 59, wherein the c〇2 circulating liquid is introduced at a temperature of at least about 700 °C. The method of claim 5, wherein the combustion product stream has a temperature of at least about 1, 〇 〇乞. The method of the present invention, wherein the pressure ratio of the sigma (four) force to the pressure of the turbine discharge to the outlet is from about 1.5 to about 1 Torr. The method of claim 4, wherein the ratio of 〇2 in the liquid to carbon in the fuel to be introduced to the burner is from about 10 to about 50 based on the molar. 100125736 6566 The method of claim 59, wherein c〇2 in the stream is in a gaseous state. The method of claim 65, wherein Form No. A0101, Page 1 of 134, is discharged at the turbine. The turbine discharge stream 1003441436-0 201213655 has a pressure of less than or equal to 7 MPa. 67. The method of claim 59, further comprising passing the full wheel discharger through a primary heat exchange unit to recover heat from the thirsty wheel discharge stream and providing less than about 200. A cycle of temperature is a cycle. 68. The method of claim 67, wherein the primary heat exchange unit comprises at least two heat exchangers in series. Μ The method of claim 67, further comprising performing - or more separating steps on the % helium ring liquid stream to remove the liquid stream present in the ring liquid except (: 〇 2 One or more subordinate components. The method of claim 69, further comprising compressing the purified, C〇2 circulating liquid stream above the % critical pressure using a „first-restrictor a pressure to provide a supercritical c〇^ shield ring liquid stream. 71. The method of claim 7, further comprising cooling the supercritical CO? circulating liquid stream to a density of at least about a temperature of 2 〇〇kg/m3. 72. The method of claim 7, wherein the supercritical, still dense C〇2 circulating liquid is passed through a second compressor to The (3) cycle liquid is pressurized to the pressure required to be input to the burner. 73. The method of claim 72, further comprising: making the supercritical, helium density, high pressure (: 〇 2 cycle The liquid passes through the same main heat exchange unit so that the recovered heat is used Increasing the temperature of the C〇2 circulating liquid. 74. The method of claim 73, further comprising supplying an additional amount of heat to the supercritical, high-density, high-pressure c〇2 circulating liquid, , the difference between the temperature of the circulating fluid and the temperature of the turbine discharge stream for recycling to the burner is less than about 100125736 Form No. A0101 Page 118 / Total 134 pages 50 ° C » 201213655 75. The method of claim 74, further comprising recovering the heated, supercritical, high density (: 〇 2 circulating liquid to the burner. 76. as claimed in claim 74 The method of the present invention, wherein the step of supplying an additional amount of heat comprises the use of heat recovered from a separation unit. 77. The method of claim 67, wherein the turbine discharge stream passes through the The method of claim 77, wherein the slave heat exchange unit utilizes from the turbine row, before the primary heat exchange unit, the turbine discharge stream is passed through a slave heat exchange unit. The heat of the discharge heats one or more streams derived from a steam power generation system. The method of claim 78, wherein the steam power generation system comprises a conventional boiler system. The method of claim 79, wherein the conventional boiler system comprises a coal-fired power station. The method of claim 78, wherein the conventional boiler system comprises a nuclear energy reaction The method of claim 78, wherein the one or more heated steam streams pass through one or more turbines for power generation. 83. As claimed in claim 59 The method wherein at least a portion of the c〇2 circulating liquid is introduced into the evaporative cooling combustor to mix with one or both of the crucible 2 and the carbonaceous fuel. 84. The method of claim 59, wherein the C〇2 circulating liquid is introduced into the evapotranial cooling burner as all or part of an evapotranspiration cooling liquid, thereby being guided through the evapotranspiration. Cooling one or more evapotranspiration supply channels in the combustor. 100125736 Form No. A0101 Page 119 of 134 1003441436-0 201213655 8. The method of claim 59, wherein the combustion is carried out at a temperature of at least about 1,300 °C. 86. The method of claim 59, wherein the combustion is between about 1300 C and about 5,0 Torr. A temperature of 〇 is carried out. The method of claim 59, wherein the crucible 2 is provided as a stream wherein the crucible 2 has a molar concentration of at least 85 Å/〇. 88. The method of claim 59, wherein the efficiency of the combustion is greater than 50%, the efficiency being calculated as net power generated in relation to the total low calorific value thermal energy of the carbonaceous fuel for combustion generation. The ratio. 89 power generation systems, comprising: an evapotranspiration burner configured to receive a fuel, 〇, and c〇 a 2 2 ring liquid stream, and having at least one combustion stage to be present in the presence of the c 〇 circulating fluid 2 The fuel is combusted, and at a pressure of at least about 8 Mpa and at least about 800. a temperature of (: a combustion product stream comprising c〇; a primary power generating turbine in fluid communication with the burner, the primary thirsty wheel having an inlet for receiving the combustion product stream, and an outlet for Release a turbine discharge stream comprising: (〇2, the primary turbine being adapted to control the pressure drop such that the pressure of the combustion product stream at the inlet is less than the pressure ratio of the turbine discharge stream at the outlet At about 12; a primary heat exchange unit in fluid communication with the primary turbine for receiving a beta thirsty wheel discharge stream and transferring heat from the thirsty wheel discharge stream to the c〇2 circulating liquid stream; At least one compressor is in fluid communication with the at least one heat exchanger for compressing the C〇2 circulating liquid stream. 90 100125736 The power generating system of claim 89, further comprising one or more forms No. A0101 Page 120 of 134, nn. 201213655 Separating devices, located between the heat exchange unit and the at least one compressor 'to be removed from the (: 〇 2 circulating liquid) One or more subordinate components other than C〇2. 91. The power generation system of claim 89, further comprising a first-compressor adapted to compress the c〇2 circulating liquid stream to be higher than A pressure of the C0 critical pressure 2 force. 92. The power generation system of claim 91, further comprising a cooling device adapted to cool the (by 〇2 circulating liquid stream) leaving the first compressor To a temperature having a density greater than about 200 kg/m3. 93. The power generation system of claim g2, further comprising a second compressor adapted to compress the cooled c〇2 circulating liquid stream to A pressure required to input the burner. 94. The power generation system of claim 92, further comprising one or more heat transfer components for transferring heat from an external source to the upstream of the burner And the C〇2 circulating liquid flowing down the second compressor. The power generating system of claim 94, wherein the heat transfer components are associated with a single generating device. Range 89 The power generation system further includes a second burner located upstream of and in fluid communication with the evapotranspiration burner. 97. The power generation system of claim 96, further comprising - or more A power generation system according to claim 97, wherein the second burner is an evapotranspiration. The power generation system of claim 97, wherein the second burner is an evapotranspiration. Cooling the burner. The power generation system of claim 96, further comprising a mixing device to form a slurry of particulate fuel material and fluidized medium. Form No. A0101 Page 121 of 134 1003441436-0 201213655 100 101 102 103 The power generation system of claim 96, further comprising a grinding device for atomizing a solid fuel. The power generation system of claim 89, wherein the heat exchange unit comprises at least two heat exchangers. The power generation system of claim 101, wherein the heat exchange unit comprises at least three heat exchangers connected in series. A power generation system according to claim 101, wherein the first heat exchanger in series is adapted to receive the primary turbine discharge stream and is capable of withstanding at least about 700. A power generation system according to claim 89, wherein the main power generation turbine includes at least two turbines connected in series. 105. The power generation system further includes a slave heat exchange unit positioned between the main power generation turbine and the main heat exchange unit, and in liquid communication with the main power generation turbine and the main heat exchange unit. The power generation system of the first aspect, further comprising a money furnace, is in liquid communication with the subordinate heat exchange via at least one steam flow. 107. The power generation system according to claim 106, further comprising A slave power generating turbine having an inlet for receiving at least one steam stream from the slave heat exchange unit. 100125736 Form No. A0101 Page 122 of 134 Page 1003441436-0
TW100125736A 2010-08-31 2011-07-21 System and method for high efficiency power generation using a carbon dioxide circulating working fluid TWI583866B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US12/872,777 US8596075B2 (en) 2009-02-26 2010-08-31 System and method for high efficiency power generation using a carbon dioxide circulating working fluid

Publications (2)

Publication Number Publication Date
TW201213655A true TW201213655A (en) 2012-04-01
TWI583866B TWI583866B (en) 2017-05-21

Family

ID=46797296

Family Applications (2)

Application Number Title Priority Date Filing Date
TW106102748A TWI678465B (en) 2010-08-31 2011-07-21 System and method for high efficiency power generation using a carbon dioxide circulating working fluid
TW100125736A TWI583866B (en) 2010-08-31 2011-07-21 System and method for high efficiency power generation using a carbon dioxide circulating working fluid

Family Applications Before (1)

Application Number Title Priority Date Filing Date
TW106102748A TWI678465B (en) 2010-08-31 2011-07-21 System and method for high efficiency power generation using a carbon dioxide circulating working fluid

Country Status (1)

Country Link
TW (2) TWI678465B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110770581A (en) * 2017-07-03 2020-02-07 林德股份公司 Method and system for analyzing fuel gas

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3736745A (en) * 1971-06-09 1973-06-05 H Karig Supercritical thermal power system using combustion gases for working fluid
US4498289A (en) * 1982-12-27 1985-02-12 Ian Osgerby Carbon dioxide power cycle
US6289666B1 (en) * 1992-10-27 2001-09-18 Ginter Vast Corporation High efficiency low pollution hybrid Brayton cycle combustor
DK0953748T3 (en) * 1998-04-28 2004-06-07 Alstom Switzerland Ltd Power plant with a CO2 process
US6871502B2 (en) * 2002-02-15 2005-03-29 America Air Liquide, Inc. Optimized power generation system comprising an oxygen-fired combustor integrated with an air separation unit
US6877322B2 (en) * 2002-09-17 2005-04-12 Foster Wheeler Energy Corporation Advanced hybrid coal gasification cycle utilizing a recycled working fluid
US7191587B2 (en) * 2002-11-13 2007-03-20 American Air Liquide, Inc. Hybrid oxygen-fired power generation system
US7739864B2 (en) * 2006-11-07 2010-06-22 General Electric Company Systems and methods for power generation with carbon dioxide isolation

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110770581A (en) * 2017-07-03 2020-02-07 林德股份公司 Method and system for analyzing fuel gas

Also Published As

Publication number Publication date
TWI583866B (en) 2017-05-21
TW201727047A (en) 2017-08-01
TWI678465B (en) 2019-12-01

Similar Documents

Publication Publication Date Title
US11674436B2 (en) System and method for high efficiency power generation using a carbon dioxide circulating working fluid
JP6289698B2 (en) System and method for high-efficiency power generation using carbon dioxide circulating working fluid
JP6741725B2 (en) High efficiency power generation system and method using carbon dioxide circulating working fluid
TW201213655A (en) System and method for high efficiency power generation using a carbon dioxide circulating working fluid