CN108348907B - 使用稳定活性金属复合物制备用于直链轻质烃的脱氢催化剂的方法 - Google Patents

使用稳定活性金属复合物制备用于直链轻质烃的脱氢催化剂的方法 Download PDF

Info

Publication number
CN108348907B
CN108348907B CN201680065827.8A CN201680065827A CN108348907B CN 108348907 B CN108348907 B CN 108348907B CN 201680065827 A CN201680065827 A CN 201680065827A CN 108348907 B CN108348907 B CN 108348907B
Authority
CN
China
Prior art keywords
catalyst
platinum
tin
carrier
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201680065827.8A
Other languages
English (en)
Other versions
CN108348907A (zh
Inventor
韩贤植
刘荣山
金镐东
姜东君
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Heesung Catalysts Corp
Original Assignee
Heesung Catalysts Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Heesung Catalysts Corp filed Critical Heesung Catalysts Corp
Publication of CN108348907A publication Critical patent/CN108348907A/zh
Application granted granted Critical
Publication of CN108348907B publication Critical patent/CN108348907B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/62Platinum group metals with gallium, indium, thallium, germanium, tin or lead
    • B01J23/622Platinum group metals with gallium, indium, thallium, germanium, tin or lead with germanium, tin or lead
    • B01J23/626Platinum group metals with gallium, indium, thallium, germanium, tin or lead with germanium, tin or lead with tin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/62Platinum group metals with gallium, indium, thallium, germanium, tin or lead
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/62Platinum group metals with gallium, indium, thallium, germanium, tin or lead
    • B01J23/622Platinum group metals with gallium, indium, thallium, germanium, tin or lead with germanium, tin or lead
    • B01J23/624Platinum group metals with gallium, indium, thallium, germanium, tin or lead with germanium, tin or lead with germanium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/64Platinum group metals with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/656Manganese, technetium or rhenium
    • B01J23/6562Manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • B01J35/394Metal dispersion value, e.g. percentage or fraction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/396Distribution of the active metal ingredient
    • B01J35/397Egg shell like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/51Spheres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/6472-50 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/65150-500 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/657Pore diameter larger than 1000 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/66Pore distribution
    • B01J35/69Pore distribution bimodal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0018Addition of a binding agent or of material, later completely removed among others as result of heat treatment, leaching or washing,(e.g. forming of pores; protective layer, desintegrating by heat)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • B01J37/0203Impregnation the impregnation liquid containing organic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • B01J37/0213Preparation of the impregnating solution
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/32Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by dehydrogenation with formation of free hydrogen
    • C07C5/327Formation of non-aromatic carbon-to-carbon double bonds only
    • C07C5/333Catalytic processes
    • C07C5/3335Catalytic processes with metals
    • C07C5/3337Catalytic processes with metals of the platinum group
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0201Oxygen-containing compounds
    • B01J31/0202Alcohols or phenols
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/396Distribution of the active metal ingredient
    • B01J35/399Distribution of the active metal ingredient homogeneously throughout the support particle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • B01J37/0207Pretreatment of the support
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/088Decomposition of a metal salt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • B01J37/18Reducing with gases containing free hydrogen
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals
    • C07C2523/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals combined with metals, oxides or hydroxides provided for in groups C07C2523/02 - C07C2523/36
    • C07C2523/56Platinum group metals
    • C07C2523/62Platinum group metals with gallium, indium, thallium, germanium, tin or lead

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)

Abstract

本发明涉及一种催化剂,其显示出改进的选择性和反应性,适用于通过使C9‑C13链烷烃脱氢而制备烯烃,更具体地涉及一种制备催化剂的技术,所述催化剂配置为使用具有可控孔的热处理载体并且催化剂中所含的大部分金属成分不是以单独金属的形式均匀分布,而是以从催化剂载体的外表面在载体中以合金形式均匀分布,因此当用于脱氢时表现出高转化率和选择性。

Description

使用稳定活性金属复合物制备用于直链轻质烃的脱氢催化剂 的方法
技术领域
本发明涉及一种催化剂,其显示出改进的选择性和反应性,适用于通过使C9-C13链烷烃脱氢而制备烯烃,更具体地涉及一种制备催化剂的技术,该催化剂被配置成使用具有可控孔的热处理过的载体,并且催化剂中包含的大多数金属组分均不是以单独金属的形式均匀分布,而是以从催化剂载体的外表面在载体中以合金形式均匀分布,因此当用于脱氢时表现出高转化率和选择性。特别是,在制备催化剂时,使用有机溶剂以负载金属,由此抑制了各种金属在催化剂中的分布,从而增加了金属间合金化率,并且由此使用分散稳定剂增加活性金属的分散程度。
背景技术
通常,待脱氢的具有9个或更多个碳原子的直链烯烃是一种非常经济的化合物,其被广泛用作制备生物可降解的清洁剂,药物,塑料,合成橡胶等的中间体的基础材料。已知从具有9-13个或更多个碳原子的直链烷烃通过脱氢生产线性烯烃的方法,通常包括使氢气和气态链烷烃与脱氢催化剂接触,随后在高温和大气压力下反应。在脱氢反应体系中,制备催化剂以主要增加反应速率并同时抑制如裂解、焦炭产生、异构化等副反应,从而增加线性烯烃选择性。
通常可用于从线性链烷烃生产线性烯烃的脱氢催化剂主要通过在二氧化硅、γ/θ/η氧化铝、二氧化硅-氧化铝、沸石等上负载第VIII族贵金属如铂等来制备。这种催化剂是有问题的,因为金属颗粒由于反应初始阶段的高温而可能被早期烧结,这不利地缩短了催化剂的寿命。为了防止直链烷烃脱氢催化剂的活性退化,烯烃选择性的退化和由于碳沉积引起的催化活性的退化,可用的催化剂是这样配置的,即VIII族贵金属与选自锡,锂,钾,钠等的一种或多种其它金属结合。同时,在链烷烃烃脱氢的反应机理中,反应在高温下进行,因此不仅脱氢反应而且还有副反应如裂解和焦炭生成可能发生,不利地降低催化活性和选择性。特别是在催化剂的活性金属深入到载体中的情况下,总的分散性变好,因此即使当反应物通过材料转移和扩散引入到载体中,它也与金属活性位点接触,从而提高总活性。然而,反应物或产物可能长时间停留在催化剂中,不利地引起如催化剂内产物的吸附,产物的附加反应,异构化和焦炭生成以及缩短催化剂寿命的副反应。因此,对载体中的活性金属分布进行彻底研究以抑制脱氢反应中的副反应并增加所产生的烯烃选择性。具体而言,提出了在催化剂载体的外表面上设置活性金属以降低材料转移效果并通过最小化反应物或产物与催化剂之间接触时间来抑制由于链式反应引起的额外脱氢来提高选择性和使活性最大化的方法。
例如,美国专利4,077,912和4,255,253公开了通过用催化金属氧化物涂覆载体制备的催化剂,从而能够结合到载体的外表面,并且美国专利6,177,381公开了一种催化剂,为了防止负载活性金属时活性金属扩散到载体中,使用α氧化铝和堇青石作为内核,并且将γ氧化铝和活性金属混合以得到浆料,然后将浆料用于形成外层,从而增加使用催化剂的选择性和脱氢程度。上述专利还公开了将用于形成外层的浆料与活性金属混合在一起,然后可以将所得混合物施加在内核上,或者可以施加浆料,然后可以使活性金属负载在其上。
发明内容
技术问题
然而,具有核-壳结构的这种多层催化剂是有问题的,因为核和壳分开制造,因此制造工艺复杂,并且因为通过使用了烧结的α氧化铝或堇青石作为载体提高了载体的密度,可能导致制造成本高。此外,与单片球形载体催化剂相比,用于壳体的浆料不利的是因为在催化剂中摩擦时可能发生层间损失。尽管在制造多层催化剂时使用有机或无机粘合剂来粘合内芯和外层,但是用于防止外层被剥离的有机粘合剂可能由于来自脱氢反应的热量的热冲击导致外层的表面积减小,无机粘合剂可以减少外层上的反应活性位点的数量。通常,为脱氢反应提供活性位点的铂和改善铂稳定性的锡必须以合金的形式存在,但是常规技术是有问题的,因为铂和锡被依次负载,因此铂锡合金形式仅取决于两种活性材料的接触概率,并且具有用于所需反应的最佳铂/锡摩尔比的合金可与单独的铂或具有不同铂/锡摩尔比的其他合金一起存在,因此在反应过程中发生副反应。
技术方案
本发明提供了一种用于链烷烃的脱氢催化剂,其通过将活性金属直接负载到载体上而不是以典型的壳核型多层结构的形式而在结构上是稳定的,并且其中活性金属不是单独存在于载体中,而是以合金的形式保持均匀,从而显著提高了烯烃转化率和选择性,并且还提供了制备该催化剂的方法。此外,本发明提供一种催化剂,其中使用来自初始浸渍步骤的有机溶剂,使作为活性材料的铂和作为辅助金属的锡以期望的锡/铂摩尔比的复合物形式存在并且加入有机稳定剂以提高分散程度,从而制备前体溶液,然后将其用于浸渍载体。在此,通过根据活性物质分布层中的无机酸和有机溶剂的比例来调整氧化铝的表面特性,能够控制从载体外表面到其内部的活性金属层的厚度/分布。
有益效果
根据本发明,催化剂被构造成使得铂和锡在载体中具有一致的分布,并且铂和锡以通过还原具有一致的铂/锡摩尔比的合金的形式存在。因此,单独的铂,单独的锡和具有不同铂/锡摩尔比的其他合金的最小化可以得到改进的选择性。根据混合有机溶剂的组成,可以控制催化剂中铂-锡复合物的厚度,由此可以响应于反应物的形式来控制最佳的活性金属分布。由于活性金属负载在载体本身上,因此与常规催化剂相比,可以抑制活性物质的剥离(stripping),并且本发明的催化剂由于高强度而在耐久性方面显著改善,因此在经济上优异。
附图说明
图1示出了与常规技术相比本发明的关键过程;
图2是示出本发明的处理步骤的流程图;
图3示出了通过调节根据本发明的实施例2和对比实施例1中的活性金属的厚度制备的催化剂的视频显微镜图像;
图4示出了使用根据本发明的实施例2中的热处理载体制备的催化剂的视频显微镜图像(a)和其电子探针显微分析(EPMA)图像(b);和
图5示出了使用实施例1和对比实施例1和2的催化剂的H2-TPR(氢温度程序还原)对活性金属进行合金化的状态。
具体实施方式
本发明涉及一种显示出改进的选择性和反应性的催化剂,其适用于通过使C9-C13链烷烃脱氢而制备烯烃,并且本发明人已确定使用仅通过紧密负载活性金属到载体的外表面制备的催化剂可以抑制脱氢副反应并且还可以提高催化反应的转化率和选择性。特别是,已经证实,当由具有大分子尺寸的C9或更高级烃制备作为目标产物的单烯烃时,由于载体外表面上的活性物质分布,可以预期高选择性。图1示出了与常规技术相比本发明的关键过程,图2示出了本发明的过程的流程图。本发明的方法如图2所示,下面全面描述:
1)制备稳定的铂-锡复合物溶液
由于锡的高还原性,铂-锡复合物溶液使铂容易在空气中沉淀。在制备复合溶液时,选择溶剂非常重要。当使用水作为溶剂时,铂被锡还原,因此铂-锡前体溶液变得非常不稳定,并且因此铂颗粒可能沉淀,因此不能将其用作前体。在本发明中,使用可防止锡还原的溶剂使前体溶液随时间稳定。具体而言,在铂和锡前体的混合期间,将这些前体添加到有机溶剂中以不破坏铂-锡复合物,并且添加分散稳定剂以由此制备其中粒子不聚集的溶液。对于有机溶剂和分散稳定剂,可以依次使用选自水、甲醇、乙醇、丁醇、丙酮、乙酸乙酯、乙腈、乙二醇、三甘醇、乙二醇醚、甘油、山梨糖醇、木糖醇、二烷基醚、四氢呋喃中的任意一种或两种或可以组合使用。在制备铂-锡复合物溶液期间,在惰性气体气氛中进行老化,从而抑制由氧气引起的分解并实现稳定化。这里,惰性气体可以包括氮气、氩气和氦气,并且优选氮气。
2)使用稳定的铂-锡络合物溶液和碱金属制备催化剂
制备与载体的总孔体积相对应量的PtSn复合物溶液,并且使用喷涂工艺来浸渍载体。在浸渍过程之后,使催化剂均匀化,同时使催化剂在氮气氛中流动,由此使催化剂表面上的活性金属浓度相同,然后在100-150℃下干燥24小时。干燥后,将有机材料在氮气气氛中于200-400℃除去,然后在空气中在400-700℃下烧结。如果在低于400℃的温度下进行热处理,则负载的金属可能不会变成金属氧化物。另一方面,如果在高于700℃的温度下进行热处理,则可能发生金属间聚集,并且催化剂的活性相对于其量不高。烧结后,为了抑制催化剂的副反应,进行碱金属的负载。具体而言,使用与铂-锡复合物溶液相同的喷涂工艺将锂负载到载体的孔中,在100-150℃下干燥24小时,然后在空气中在400-700℃下烧结。最后,烧结后,使用氢/氮混合气体(4%/96%-100%/0%)在400-600℃下进行还原处理,得到催化剂。在还原过程中,如果还原温度低于400℃,金属氧化物不能被完全还原,并且两种或多种金属颗粒可能单独存在,而不是以合金的形式存在。另一方面,如果还原温度高于600℃,则可能发生两种或更多种金属颗粒的聚集和烧结,由此活性位点的发生率可能降低并且催化活性可能降低。还原过程不是以加热还原的方式用来自加热步骤的氢气进行,而是采用高温还原的方式,其中保持氮气气氛直到温度达到相应的温度,然后将氢气引入到相应的温度。
3)评估催化剂性能
将链烷烃转化为烯烃的方法可以使用根据本发明的脱氢催化剂的方式进行,并且具有2至20个碳原子,优选9至13个碳原子的烃包括链烷烃,异链烷烃和烷基芳香材料,用氢气稀释,然后可以在400-600℃,优选470℃,0-2atm,优选1.6atm下并且LHSV(液体小时空间速度)为1-30h-1,优选20-30h-1进行气态反应。用于通过脱氢生产烯烃的反应器不受特别限制,可以使用其中填充有催化剂的固定床催化反应器。而且,由于脱氢反应是吸热的,所以重要的是催化反应器始终保持绝热。本发明的脱氢反应应在使反应温度、压力和液体空间速度保持在适当范围内的条件下进行。如果反应温度低,则不会发生反应,而如果反应温度过高,反应压力与其成比例地增加,并且可能发生副反应如焦炭生成、异构化等。
实施例1
实施例1的载体在γ-氧化铝载体(由德国BASF制造,比表面积:210m2/g,孔体积:0.7cm3/g,平均孔径:8.5nm)通过在800℃下烧结5小时孔径控制之后使用。经热处理的氧化铝具有的物理性质包括例如150m2/g的比表面积,0.6cm3/g的孔体积和10nm的平均孔径,并具有双孔结构,所述双孔结构包括10nm或更小的中孔以及50μm或更大的大孔。使用铂前体氯铂酸(H2PtCl6)和锡前体氯化锡(SnCl2),并且基于催化剂的总重量氯铂酸的量为0.2wt%和氯化锡以摩尔比1.0在氮气氛中混合。接下来,将铂-锡混合物以相应于载体总孔体积的量加入到溶剂中并溶解。使用包含重量比为100:20:1.5的乙醇/乙二醇/盐酸的溶剂。使用初湿浸渍过程将载体用所制备的铂-锡复合物溶液浸渍。负载铂-锡的组合物在空气中于600℃热处理4小时,由此固定活性金属。接下来,使用初湿浸渍过程,将含有占催化剂总重量的0.6wt%的硝酸锂(Li(NO3)2)负载于载体的孔中,对金属负载组合物在空气中在400℃进行热处理以制备金属负载的催化剂。将催化剂以在氮气氛中升温至400℃的方式逐步还原,然后使用氢气/氮气混合气体(4%/96%)保持4小时,由此制备催化剂。该催化剂被配置为使得铂和锡在载体的外表面上以120μm的厚度分布,并且锂均匀地分布在载体中。
实施例2:
以与实施例1中相同的方式制备实施例2的催化剂,不同之处在于在制备锡-铂复合物溶液时锡/铂摩尔比变为2.0。该催化剂配置为使得铂和锡在载体的外表面上以120μm的厚度分布,并且锂均匀地分布在载体中。
实施例3:
以与实施例1中相同的方式制备实施例3的催化剂,不同之处在于在制备锡-铂复合物溶液时锡/铂摩尔比变为3.0。该催化剂配置为使得铂和锡在载体的外表面上以120μm的厚度分布,并且锂均匀地分布在载体中。
实施例4:
以与实施例1中相同的方式制备实施例4的催化剂,不同之处在于在制备锡-铂复合物溶液时锡/铂摩尔比变为4.0。该催化剂配置为使得铂和锡在载体的外表面上以120μm的厚度分布,并且锂均匀地分布在载体中。
实施例5:
以与实施例2中相同的方式制备实施例5的催化剂,不同之处在于使用包含重量比为100:20:1.0的乙醇/乙二醇/盐酸的溶剂来制备铂-锡复合物溶液。该催化剂配置成使得铂和锡在载体的外表面上以60μm的厚度分布,并且锂均匀地分布在载体中。
实施例6:
以与实施例2中相同的方式制备实施例6的催化剂,不同之处在于使用包含重量比为100:20:2.5的乙醇/乙二醇/盐酸的溶剂来制备铂-锡复合物溶液。该催化剂配置为使得铂和锡在载体的外表面上以250μm的厚度分布,并且锂均匀地分布在载体中。
对比实施例1
根据美国专利4,786,625中公开的方法,制备催化剂。在使用基于催化剂的总重量,0.2wt%的氯铂酸和0.6wt%的氮化锂和硫代苹果酸用对应于氧化铝载体总孔体积的量的去离子水稀释之后,通过初湿浸渍过程浸渍含锡的γ-氧化铝载体(由德国SASOL制造)。此后,使用蒸发干燥器在80℃蒸发溶剂,随后在540℃下热处理4小时,从而固定活性金属。此后,在540℃的氢气气氛中进行还原反应4小时,由此制备催化剂。这种催化剂配置为使得铂在载体的外表面上主要分布厚度为60μm,但是一些铂在载体中存在高达150μm,并且锡分布厚度为200μm以上,锡和锂均匀分布在载体上。
对比实施例2
根据US 4,716,143中公开的方法,制备催化剂。在使用基于催化剂总重量的0.2wt%的氯铂酸的量,锡/铂摩尔比为2.0的氯化锡和0.5wt%的盐酸用用对应于氧化铝载体总孔体积的量的去离子水稀释之后,通过初湿浸渍过程浸渍经热处理的γ-氧化铝载体(具有150m2/g的比表面积,0.6cm3/g的孔体积和10nm的平均孔径)。使用初湿浸渍过程用制备的铂-锡复合物溶液浸渍载体。将铂-锡负载的组合物在150℃下干燥24小时,然后在空气中于540℃热处理4小时,从而固定活性金属。之后,通过初湿浸渍过程将基于催化剂总重量的0.6wt%的硝酸锂负载到载体的孔中,并将该金属负载组合物在空气中于540℃热处理,由此制备金属负载的催化剂。将该催化剂在氢气氛中于540℃下还原4小时,得到催化剂。这种催化剂配置为铂在载体的外表面上主要分布厚度为180μm,但是一些铂在载体中存在高达400μm,并且锡以200μm的厚度分布,并且锂均匀分布在载体中。
对比实施例3:
对比实施例3的催化剂以与对比实施例2中相同的方式制备,不同之处在于,在负载铂和锡之后,向溶剂中加入基于催化剂的总重量的2.0wt%的盐酸。该催化剂配置为使得铂、锡和锂均匀分布在载体中。
实施例和对比实施例的催化剂中的活性金属分布性质示于下表1中。
测试实施例1至9:评估催化剂性能
为了测量催化剂的活性,进行脱氢反应,并使用固定床反应体系作为反应器。具体而言,将1.16g催化剂放入管状反应器中,使氢气以235cc/分钟的速度均匀流动,以使催化剂在470℃下还原1小时。随后,将反应器的温度均匀地保持在470℃,然后使用HPLC泵以0.7ml/分钟的恒定速率将具有9至13个碳原子的链烷烃进料连续供入反应器中,液体空间速度设定为21h-1。使用压力调节器将反应压力保持在1.6atm。将反应后生成的物质冷却至4℃或以下并保存,将从反应器中取出的产物通过缠绕有热线的管线转移至气相色谱仪中,使用FID(火焰离子化检测器)和TCD(热导检测器)进行定量分析。基于以下等式计算产物的链烷烃转化率和烯烃选择性。使用上述催化剂的产物的性质汇总于下表2中。
链烷烃转化率(%)=[反应前的链烷烃摩尔数-反应后的链烷烃摩尔数]/[反应前的链烷烃摩尔数]×100
烯烃选择性(%)=[产物中的烯烃摩尔数]/[产物摩尔数]×100%
图3示出通过调节根据本发明的实施例2和对比实施例1中的活性金属的厚度制备的催化剂的视频显微镜图像。具体地,(a)的图像示出使用锡-铂合金溶液的实施例2的催化剂,(b)的图像示出使用单独的铂和锡溶液的对比实施例1的催化剂。图4示出使用根据本发明的实施例2中的热处理载体制备的催化剂的视频显微镜图像(a)和其电子探针显微分析(EPMA)图像(b)。如(b)图所示,催化剂横截面上的铂和锡以均匀的厚度分布在催化剂中。图5示出了在实施例1和对比实施例1和2的催化剂中使用H2-TPR(氢温度程序还原)对活性金属进行合金化的状态。在实施例1中,Pt和Sn不单独存在,只观察到PtSn合金的峰,与对比实施例1和2不同。
表1
Figure BDA0001656379160000101
表2
Figure BDA0001656379160000102
结论
当锡/铂摩尔比等于或小于预定水平时,防止因焦炭引起失活的在铂周围的锡量较小,因此初始反应活性可能增加,但发生快速失活,不利地使耐久性退化。另一方面,当锡/铂摩尔比等于或大于预定水平时,一些铂活性位点被锡覆盖以增加选择性,但是总活性可能降低,最终降低烯烃收率。当金属层较薄时,反应物通过催化剂的TOF(反转频率)降低,因此总的链烷烃转化率略有下降,但生成的烯烃化合物在催化剂中的停留时间短,因此通过催化剂而没有副反应,由此增加烯烃收率。相反,当金属层厚时,反应物在催化剂活性层中的停留时间增加,从而提高转化率。然而,当反应物通过催化剂时,发生一次脱氢,然后在催化剂中再次吸附,二次脱氢、异构化、裂化和聚合依次进行,从而降低烯烃选择性,导致烯烃收率降低。在对比实施例1和2中,铂不均匀地分布在载体中,因此进行总体不均匀的反应,并且由于在催化剂中单独存在铂颗粒和具有低锡-铂合金比的颗粒,催化反应时链烷烃转化率增加,但发生裂化等副反应,不期望地降低了烯烃选择性。由于副反应,产物被转移到单独的铂颗粒或含有少量锡的铂中,从而阻断活性位点,从而导致催化剂快速失活,导致低耐久性。基于实施例和对比实施例的反应结果,表现出最佳转化率、选择性和耐久性的催化剂被确定为实施例2的催化剂,其中均匀锡铂合金的摩尔比为2,并且金属层厚度约为110至130μm。

Claims (2)

1.一种控制脱氢催化剂中铂-锡合金厚度的方法,其中铂和锡以具有一致的铂/锡摩尔比的合金形式存在,具有一定的厚度,从γ-氧化铝载体的外表面为蛋壳形状,所述方法包括使所述载体与铂-锡复合物溶液接触,铂-锡复合物溶液的溶剂包括乙醇/乙二醇/盐酸,所述方法还包括改变乙醇/乙二醇/盐酸的重量比,从而增加的盐酸使得催化剂中的铂-锡合金变厚。
2.根据权利要求1所述的控制脱氢催化剂中铂-锡合金厚度的方法,其中从所述γ-氧化铝载体的外表面为蛋壳形状的所述厚度,达到110至250μm。
CN201680065827.8A 2015-11-10 2016-10-31 使用稳定活性金属复合物制备用于直链轻质烃的脱氢催化剂的方法 Active CN108348907B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR10-2015-0157393 2015-11-10
KR1020150157393A KR101814451B1 (ko) 2015-11-10 2015-11-10 안정화 활성금속 착체를 이용한 직쇄형 탄화수소류 탈수소화 촉매 제조방법
PCT/KR2016/012353 WO2017082565A1 (ko) 2015-11-10 2016-10-31 안정화 활성금속 착체를 이용한 직쇄형 탄화수소류 탈수소화 촉매 제조방법

Publications (2)

Publication Number Publication Date
CN108348907A CN108348907A (zh) 2018-07-31
CN108348907B true CN108348907B (zh) 2021-07-13

Family

ID=58695717

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201680065827.8A Active CN108348907B (zh) 2015-11-10 2016-10-31 使用稳定活性金属复合物制备用于直链轻质烃的脱氢催化剂的方法

Country Status (6)

Country Link
US (1) US11040333B2 (zh)
EP (1) EP3375522A4 (zh)
KR (1) KR101814451B1 (zh)
CN (1) CN108348907B (zh)
MY (1) MY189866A (zh)
WO (1) WO2017082565A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101716170B1 (ko) 2015-11-10 2017-03-14 희성촉매 주식회사 안정화 활성금속 복합체를 이용한 직쇄형 경질탄화수소류 탈수소화 촉매 제조방법
KR102119459B1 (ko) * 2018-05-21 2020-06-05 희성촉매 주식회사 이중층 구조를 가지는 경질탄화수소류 탈수소화 촉매
CN112638828A (zh) * 2018-08-31 2021-04-09 陶氏环球技术有限责任公司 氢选择性氧担载材料和使用方法
KR102175701B1 (ko) * 2018-10-19 2020-11-06 희성촉매 주식회사 고효율의 분지형 경질탄화수소류 탈수소화 촉매 제조방법
KR20210061711A (ko) * 2019-11-20 2021-05-28 에스케이이노베이션 주식회사 탈수소화 성형 촉매 및 이를 이용하여 파라핀을 올레핀으로 전환시키는 방법
CN112892612B (zh) * 2019-12-03 2023-01-17 中国石化集团金陵石油化工有限责任公司 一种用于烃类转化反应的催化剂
KR20230123732A (ko) * 2022-02-17 2023-08-24 한국화학연구원 액체 유기 수소 운반체 기반 탈수소화 반응 촉매 및 이의 제조방법

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070075064A (ko) * 2006-01-12 2007-07-18 한국화학연구원 신규의 메조세공형 백금계 촉매 및 이의 제조방법
CN102271806A (zh) * 2008-12-30 2011-12-07 株式会社晓星 脱氢催化剂
CN103212411A (zh) * 2013-05-07 2013-07-24 北京化工大学 低碳烷烃脱氢制取烯烃的高效催化剂及其制备方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4077912A (en) 1972-10-12 1978-03-07 Standard Oil Company Catalysts useful for exothermic reactions
US4255253A (en) 1979-01-03 1981-03-10 The Standard Oil Company Hydrogen processing of hydrocarbon feeds using coated catalysts
US4786625A (en) 1987-02-25 1988-11-22 Uop Inc. Dehydrogenation catalyst compositon
US4716143A (en) 1986-06-06 1987-12-29 Uop Inc. Dehydrogenation catalyst composition
US6177381B1 (en) 1998-11-03 2001-01-23 Uop Llc Layered catalyst composition and processes for preparing and using the composition
US20090275792A1 (en) * 2005-02-18 2009-11-05 Vogel Christopher J Dehydrogenation process with water control
US20070123418A1 (en) * 2005-11-28 2007-05-31 Hyun-Sik Han Catalyst composition containing gallium for purifying exhaust gases of internal combustion engine
WO2012101567A2 (de) 2011-01-25 2012-08-02 Basf Se Katalysatorträger aus der flammen-spraypyrolyse und katalysator für die autotherme propandehydrierung
US20140323785A1 (en) * 2011-11-21 2014-10-30 Reliance Industries Limited Catalyst composite for dehydrogenation of hydrocarbons and method of preparation thereof
US8912110B2 (en) * 2012-03-29 2014-12-16 Uop Llc Catalyst for conversion of hydrocarbons
EP2882529A2 (en) * 2012-08-13 2015-06-17 Reliance Industries Limited A dehydrogenation catalyst for hydrocarbons and method of preparation thereof
KR101527841B1 (ko) * 2013-12-04 2015-06-16 희성촉매 주식회사 중공형 담체를 이용한 탄화수소 탈수소화 촉매 제조방법
KR101562458B1 (ko) * 2014-04-04 2015-10-22 주식회사 효성 선택도가 우수한 탈수소화 촉매의 제조방법
KR101716170B1 (ko) 2015-11-10 2017-03-14 희성촉매 주식회사 안정화 활성금속 복합체를 이용한 직쇄형 경질탄화수소류 탈수소화 촉매 제조방법

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070075064A (ko) * 2006-01-12 2007-07-18 한국화학연구원 신규의 메조세공형 백금계 촉매 및 이의 제조방법
CN102271806A (zh) * 2008-12-30 2011-12-07 株式会社晓星 脱氢催化剂
CN103212411A (zh) * 2013-05-07 2013-07-24 北京化工大学 低碳烷烃脱氢制取烯烃的高效催化剂及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
The influence of solvent on the performance of Pt-Sn/θ-Al2O3 propane dehydrogenation catalyst prepared by co-impregnation method;Farnaz Tahriri Zangeneh et al;《Fuel Processing Technology》;20121012;第109卷;第118-123页 *

Also Published As

Publication number Publication date
US20180311644A1 (en) 2018-11-01
WO2017082565A1 (ko) 2017-05-18
MY189866A (en) 2022-03-15
EP3375522A4 (en) 2019-08-28
US11040333B2 (en) 2021-06-22
KR20170054789A (ko) 2017-05-18
CN108348907A (zh) 2018-07-31
EP3375522A1 (en) 2018-09-19
KR101814451B1 (ko) 2018-01-04

Similar Documents

Publication Publication Date Title
CN108348907B (zh) 使用稳定活性金属复合物制备用于直链轻质烃的脱氢催化剂的方法
CN108290140B (zh) 使用稳定活性金属复合物制备用于直链轻质烃的脱氢催化剂的方法
EP1492620B1 (en) Dehydrogenation catalyst composition
CN110603096B (zh) 高再生效率的直链轻烃的脱氢催化剂的制备方法
US10213769B2 (en) Method for producing hydrocarbon dehydrogenation catalyst using sponge-type support
JP4652695B2 (ja) 水素化芳香族類の脱水素触媒及びその製造方法
EP3335790B1 (en) Process for the conversion of a hydrocarbon feed comprising a saturated hydrocarbon compound to olefin products
KR20120077688A (ko) 선택도가 향상된 탈수소화 반응용 금속 촉매
US20110301392A1 (en) Variation of tin impregnation of a catalyst for alkane dehydrogenation
JP2000317310A (ja) 優れたアクセシビリティーを有する、第8、9または10族の元素を含む触媒、およびパラフィン脱水素方法におけるその使用
KR102046771B1 (ko) 탈수소화 촉매
KR102175701B1 (ko) 고효율의 분지형 경질탄화수소류 탈수소화 촉매 제조방법
KR101527841B1 (ko) 중공형 담체를 이용한 탄화수소 탈수소화 촉매 제조방법
KR102035471B1 (ko) 선택도가 우수한 탈수소 촉매의 제조방법
KR101456900B1 (ko) 계면활성제를 이용한 탄화수소 탈수소화 촉매 제조방법
KR102223597B1 (ko) 아세틸렌의 선택적 수소화용 촉매 및 이의 제조방법
KR102523345B1 (ko) 담체 기공이 조절된 탈수소화 촉매
KR101631146B1 (ko) 메틸사이클로펜탄으로부터 고순도의 벤젠 제조용 촉매 및 이를 이용한 벤젠 제조방법
JP2006102632A (ja) 水素製造用触媒および水素の製造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant