CN108341667B - 一种纳米立方体铁电材料的制备方法 - Google Patents

一种纳米立方体铁电材料的制备方法 Download PDF

Info

Publication number
CN108341667B
CN108341667B CN201810292934.5A CN201810292934A CN108341667B CN 108341667 B CN108341667 B CN 108341667B CN 201810292934 A CN201810292934 A CN 201810292934A CN 108341667 B CN108341667 B CN 108341667B
Authority
CN
China
Prior art keywords
bnt
ferroelectric material
tio
hydrothermal reaction
nano
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810292934.5A
Other languages
English (en)
Other versions
CN108341667A (zh
Inventor
方必军
张琦蕙
孙建建
吴盾
杜庆柏
丁建宁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changzhou University
Original Assignee
Changzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changzhou University filed Critical Changzhou University
Priority to CN201810292934.5A priority Critical patent/CN108341667B/zh
Publication of CN108341667A publication Critical patent/CN108341667A/zh
Application granted granted Critical
Publication of CN108341667B publication Critical patent/CN108341667B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/475Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on bismuth titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7766Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals
    • C09K11/7767Chalcogenides
    • C09K11/7769Oxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Luminescent Compositions (AREA)

Abstract

本发明属于铁电多功能材料领域,一种纳米立方体铁电材料的制备方法,包括两步水热反应过程:(1)在低温条件下形成BNT‑Er/Yb晶核,再在高温超临界条件下制备纳米籽晶Na0.5Bi0.5‑x(Er/Yb)xTiO3(BNT‑Er/Yb);(2)在中温超临界条件下自组装制备纳米立方体铁电材料Na0.5Bi0.5‑x(Er/Yb)xTiO3(BNT‑Er/Yb),式中Er与Yb的原子数量比为1/1‑1/10,其中x=0‑0.05。通过两步水热反应自组装制备纳米立方体铁电材料,避免了传统固相法的高温煅烧,得到纳米立方体铁电材料,呈现增强的荧光和热释电性能,有望在LED照明、红外气体传感器等领域应用。

Description

一种纳米立方体铁电材料的制备方法
技术领域
本发明属于铁电多功能材料领域,尤其涉及一种纳米立方体铁电材料的制备方法。
背景技术
稀土元素内层的4f电子容易被激发,能够在4f电子层内或f-d电子层之间发生跃迁,产生从紫外到红外不同波段的吸收和发射荧光光谱。其中稀土元素Er具有丰富的能级结构、能级分布均匀、激发态能级寿命长,Yb经常作为提高上转换发光效率的敏化剂,Er3+/Yb3+共掺杂有望诱导增强的荧光和热释电性能。
钛酸铋钠基无铅压电陶瓷具有优异的电、声、光学性能,具有较低的声子能量,与玻璃态物质相比具有较高的稳定性和机械强度。钛酸铋钠陶瓷有着较强的铁电性能(Pr=38μC/cm2,Ec=73kV/cm),剩余极化较大,能够有效提高稀土离子的光致发光性能,是良好的稀土离子上转换发光基质。
稀土掺杂能够改善铁电陶瓷的电学性能,同时,铁电陶瓷的剩余极化能够诱导增强稀土荧光发射强度。
传统的稀土掺杂荧光粉都是通过高温固相法制备,该方法操作简便,易于工业化应用,但是产物形貌不规则,粒径不均匀,易生成杂相,影响荧光粉的发光性能。与之相对,水热法反应温度低,属于稀薄相生长,有利于快速传质和反应完全,容易制备高纯度的荧光粉;同时,水热合成能够进行原子量级的掺杂,其反应条件易于调节。
发明内容
为解决现有技术存在的固相法产物形貌不规则的缺陷,本发明提供一种纳米立方体铁电材料的制备方法。
为解决上述技术问题,本发明所采用的方案为:一种纳米立方体铁电材料的制备方法,包括两步水热反应过程:
(1)在低温条件下形成BNT-Er/Yb晶核,再在高温超临界条件下制备纳米籽晶Na0.5Bi0.5-x(Er/Yb)xTiO3(BNT-Er/Yb);
(2)在中温超临界条件下自组装制备纳米立方体铁电材料Na0.5Bi0.5-x(Er/Yb)xTiO3(BNT-Er/Yb),式中Er与Yb的原子数量比为1/1-1/10,其中x=0-0.05。
具体地,步骤(1)具体步骤为:按照化学计量比称量NaAc·3H2O、Bi(NO3)3·5H2O、Bi2O3、钛酸正丁酯、TiO2、Er2O3、Yb2O3,放入水热釜中添加去离子水配制成混合液,填充率小于75%,加入十六烷基三甲基溴化铵,加入NaOH形成过饱和溶液,先在120℃水热反应0.5h,诱导形成BNT-Er/Yb晶核;随后升温至240℃水热反应8h,得到BNT-Er/Yb纳米籽晶。
进一步地,所述Bi(NO3)3·5H2O与Bi2O3的摩尔比为1:40-50;所述钛酸正丁酯与TiO2的摩尔比为1:40-50。
具体地,步骤(2)具体步骤为:将步骤(1)得到的含有BNT-Er/Yb纳米籽晶的混合液调节NaOH浓度为6M,加入司本-80和EDTA,在160℃水热反应24h,得到纳米立方体铁电材料BNT-Er/Yb。
作为优先,步骤(1)和(2)中水热反应升降温条件为:升温速率为10℃/min,水热反应结束后降温速率为20℃/min。
有益效果:本发明反应温度低,属于稀薄相生长,有利于快速传质和反应完全,容易制备高纯度的荧光粉;同时,水热合成能够进行原子量级的掺杂,其反应条件易于调节,且通过反应条件的调控、引入籽晶、添加添加剂等可以控制荧光材料的晶体结构和形态,以获得增强的荧光性能。
本发明通过两步水热反应过程自组装制备纳米立方体铁电材料,避免了传统固相法的高温煅烧,得到纳米立方体铁电材料,呈现增强的荧光和热释电性能,有望在LED照明、红外气体传感器等领域获得应用。
附图说明
为了对本发明作更详细的描述,现结合实施例与图简介如下:
图1水热法制备的BNT-Er/Yb的XRD图;
图2水热法制备的Na0.5Bi0.5-x(Er/Yb)xTiO3(Er/Yb=1/1,x=0.02)的SEM图;
图3水热法制备的BNT-Er/Yb的发射光谱。
具体实施方式
实施例1
按照化学式Na0.5Bi0.5-x(Er/Yb)xTiO3(Er/Yb=1/1,x=0.02)称量计量比的NaAc·3H2O、Bi(NO3)3·5H2O、Bi2O3(Bi(NO3)3·5H2O/Bi2O3=1/40,摩尔比)、钛酸正丁酯、TiO2(钛酸正丁酯/TiO2=1/40,摩尔比,取决于Yb含量)、Er2O3、Yb2O3,放入水热釜中添加去离子水配制成混合液,填充率小于75%,目标产物BNT-Er/Yb的质量为2g。加入十六烷基三甲基溴化铵2.5mg,加入NaOH使其形成16M过饱和溶液,先在120℃水热反应0.5h,随后升温至240℃水热反应8h。
将上述混合液调节NaOH浓度为6M,加入司本-80 60mg、EDTA100mg,在160℃水热反应24h,得到纳米立方体铁电材料Na0.5Bi0.5-x(Er/Yb)xTiO3(Er/Yb=1/1,x=0.02)BNT-Er/Yb。
上述水热反应过程升温速率都为10℃/min,水热反应结束后降温速率都为20℃/min。
实施例2
按照化学式Na0.5Bi0.5-x(Er/Yb)xTiO3(Er/Yb=1/3,x=0.03)称量计量比的NaAc·3H2O、Bi(NO3)3·5H2O、Bi2O3(Bi(NO3)3·5H2O/Bi2O3=1/42,摩尔比)、钛酸正丁酯、TiO2(钛酸正丁酯/TiO2=1/30,摩尔比)、Er2O3、Yb2O3,放入水热釜中添加去离子水配制成混合液,填充率小于75%,目标产物BNT-Er/Yb的质量为2g。加入十六烷基三甲基溴化铵2.5mg,加入NaOH使其形成16M过饱和溶液,先在120℃水热反应0.5h,随后升温至240℃水热反应8h。
将上述混合液调节NaOH浓度为6M,加入司本-80 60mg、EDTA100mg,在160℃水热反应24h,得到纳米立方体铁电材料Na0.5Bi0.5-x(Er/Yb)xTiO3(Er/Yb=1/3,x=0.03)BNT-Er/Yb。
上述水热反应过程升温速率都为10℃/min,水热反应结束后降温速率都为20℃/min。
实施例3
按照化学式Na0.5Bi0.5-x(Er/Yb)xTiO3(Er/Yb=1/5,x=0.04)称量计量比的NaAc·3H2O、Bi(NO3)3·5H2O、Bi2O3(Bi(NO3)3·5H2O/Bi2O3=1/45,摩尔比)、钛酸正丁酯、TiO2(钛酸正丁酯/TiO2=1/25,摩尔比)、Er2O3、Yb2O3,放入水热釜中添加去离子水配制成混合液,填充率小于75%,目标产物BNT-Er/Yb的质量为2g。加入十六烷基三甲基溴化铵2.5mg,加入NaOH使其形成16M过饱和溶液,先在120℃水热反应0.5h,随后升温至240℃水热反应8h。
将上述混合液调节NaOH浓度为6M,加入司本-80 60mg、EDTA100mg,在160℃水热反应24h,得到纳米立方体铁电材料Na0.5Bi0.5-x(Er/Yb)xTiO3(Er/Yb=1/5,x=0.04)BNT-Er/Yb。
上述水热反应过程升温速率都为10℃/min,水热反应结束后降温速率都为20℃/min。
实施例4
按照化学式Na0.5Bi0.5-x(Er/Yb)xTiO3(Er/Yb=1/7,x=0.05)称量计量比的NaAc·3H2O、Bi(NO3)3·5H2O、Bi2O3(Bi(NO3)3·5H2O/Bi2O3=1/50,摩尔比)、钛酸正丁酯、TiO2(钛酸正丁酯/TiO2=1/4220,摩尔比)、Er2O3、Yb2O3,放入水热釜中添加去离子水配制成混合液,填充率小于75%,目标产物BNT-Er/Yb的质量为2g。加入十六烷基三甲基溴化铵2.5mg,加入NaOH使其形成16M过饱和溶液,先在120℃水热反应0.5h,随后升温至240℃水热反应8h。
将上述混合液调节NaOH浓度为6M,加入司本-80 60mg、EDTA100mg,在160℃水热反应24h,得到纳米立方体铁电材料Na0.5Bi0.5-x(Er/Yb)xTiO3(Er/Yb=1/7,x=0.05)BNT-Er/Yb。
上述水热反应过程升温速率都为10℃/min,水热反应结束后降温速率都为20℃/min。
图1是实施例1~4水热法制备的BNT-Er/Yb的XRD图,呈现较纯的三方钙钛矿结构。
图2是实施例1水热法制备的Na0.5Bi0.5-x(Er/Yb)xTiO3(Er/Yb=1/1,x=0.02)的SEM图(实施例2~4产物SEM图基本与实施例1相同),纳米立方体结构有利于增强荧光和热释电性能。
图3是实施例1~4水热法制备的BNT-Er/Yb的荧光发射光谱,在530nm、550nm、660nm和735nm处出现发射峰,分别对应于2H11/24S3/24F9/24I9/2能级到4I15/2能级的跃迁,在绿色光区的550nm的发射峰最强,在红色光区的660nm和735nm的发射峰较弱。水热法制备的纳米立方体铁电材料BNT-Er/Yb呈现增强的荧光和热释电性能,有望在LED照明、红外气体传感器等领域获得应用。
对比例1
按照化学计量比称量NaAc·3H2O、Bi(NO3)3·5H2O、Bi2O3(Bi(NO3)3·5H2O/Bi2O3=1/40,摩尔比)、钛酸正丁酯、二氧化钛(钛酸正丁酯/TiO2=1/40,摩尔比)、Er2O3、Yb2O3,放入水热釜中搅拌均匀配制成水溶液,并向其中加入NaOH、加入司本-80 60mg、EDTA100mg,其中NaOH浓度为12M,在200℃水热反应24h,得到Na0.5Bi0.5-x(Er/Yb)xTiO3(Er/Yb=1/1,x=0.02)BNT-Er/Yb。上述水热反应过程升温速率都为10℃/min,水热反应结束后降温速率都为20℃/min。
经XRD测定,产物存在一定的杂相,产物形貌不均匀。
对比例2
将实施例1步骤(1)中Bi2O3替换成等量的Bi(NO3)3·5H2O(以Bi摩尔量计),其他条件同实施例1。最终制得产物Na0.5Bi0.5-x(Er/Yb)xTiO3(Er/Yb=1/1,x=0.02)BNT-Er/Yb。经测定产物存在杂相,产物形貌不均匀。
对比例3
将实施例1步骤(1)中TiO2替换成等量的钛酸正丁酯(以Ti摩尔量计),其他条件同实施例1,最终制得产物Na0.5Bi0.5-x(Er/Yb)xTiO3(Er/Yb=1/1,x=0.02)BNT-Er/Yb。经测定产物存在杂相,产物形貌不均匀。
对比例4
将实施例1步骤(2)中司本-80及EDTA替换成等量的聚丙烯酰胺,其他条件同实施例1,最终得到产物纳米立方栅栏Na0.5Bi0.5-x(Er/Yb)xTiO3(Er/Yb=1/1,x=0.02)BNT-Er/Yb,产物形貌与实施例1中完全不同。
对比例5
将实施例1中钛酸正丁酯与TiO2摩尔比替换为1/20,其他条件同实施例1,最终得到产品,经XRD检测发现,产物中存在一定的杂相,导致荧光和热释电性能降低。
对比例6
将实施例4中钛酸正丁酯与TiO2摩尔比替换为1/40,其他条件同实施例4,最终得到产品,经XRD检测发现,产物中存在一定的杂相,导致荧光和热释电性能降低。
从实施例1、4、对比例5和6可以说明,证明Yb含量越高,需要提高钛酸正丁酯/TiO2的比例增大,即钛酸正丁酯的量相应增多,才能保证产物的晶相纯度,反之则产品晶相纯度降低。

Claims (2)

1.一种纳米立方体铁电材料的制备方法,其特征在于:包括两步水热反应过程:
(1)在低温条件下形成BNT-Er/Yb晶核,再在高温条件下制备纳米籽晶Na0.5Bi0.5-x(Er/Yb)xTiO3(BNT-Er/Yb);
(2)在中温条件下自组装制备纳米立方体铁电材料Na0.5Bi0.5-x(Er/Yb)xTiO3(BNT-Er/Yb),式中Er与Yb的原子数量比为1/1-1/10,其中x=0-0.05;
步骤(1)具体步骤为:按照化学计量比称量NaAc·3H2O、Bi(NO3)3·5H2O、Bi2O3、钛酸正丁酯、TiO2、Er2O3、Yb2O3,放入水热釜中添加去离子水配制成混合液,填充率小于75%,加入十六烷基三甲基溴化铵,加入NaOH形成过饱和溶液,先在120℃水热反应0.5h,诱导形成BNT-Er/Yb晶核;随后升温至240℃水热反应8h,得到BNT-Er/Yb纳米籽晶;
所述Bi(NO3)3·5H2O与Bi2O3的摩尔比为1:40-50;所述钛酸正丁酯与TiO2的摩尔比为1:40-50;
步骤(2)具体步骤为:将步骤(1)得到的含有BNT-Er/Yb纳米籽晶的混合液调节NaOH浓度为6M,加入司本-80和EDTA,在160℃水热反应24h,得到纳米立方体铁电材料BNT-Er/Yb。
2.如权利要求1所述的一种纳米立方体铁电材料的制备方法,其特征在于,步骤(1)和(2)中水热反应升降温条件为:升温速率为10℃/min,水热反应结束后降温速率为20℃/min。
CN201810292934.5A 2018-03-30 2018-03-30 一种纳米立方体铁电材料的制备方法 Active CN108341667B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810292934.5A CN108341667B (zh) 2018-03-30 2018-03-30 一种纳米立方体铁电材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810292934.5A CN108341667B (zh) 2018-03-30 2018-03-30 一种纳米立方体铁电材料的制备方法

Publications (2)

Publication Number Publication Date
CN108341667A CN108341667A (zh) 2018-07-31
CN108341667B true CN108341667B (zh) 2020-10-02

Family

ID=62957960

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810292934.5A Active CN108341667B (zh) 2018-03-30 2018-03-30 一种纳米立方体铁电材料的制备方法

Country Status (1)

Country Link
CN (1) CN108341667B (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005298679A (ja) * 2004-04-12 2005-10-27 Fuji Photo Film Co Ltd 希土類ホウ酸塩の製造方法
CN104710173A (zh) * 2015-03-10 2015-06-17 宁波大学 无铅铁电上转换荧光陶瓷材料及其制备方法和应用
CN104944943A (zh) * 2015-05-27 2015-09-30 聊城大学 一种具有发光特性的bnt基无铅电致伸缩材料及制备方法
CN106187167A (zh) * 2016-07-11 2016-12-07 南京大学 一种增强稀土Er离子光致发光的复合材料及其制备方法
CN107055597A (zh) * 2017-06-16 2017-08-18 陕西科技大学 一种低温下快速制备立方钛酸铋钠粉体的方法
CN107057699A (zh) * 2017-05-15 2017-08-18 宁波大学 无铅铁电上转换荧光材料及其制备方法和应用
CN107814568A (zh) * 2017-10-30 2018-03-20 西安工业大学 一种稀土掺杂钛酸铋钠钙钛矿材料及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005298679A (ja) * 2004-04-12 2005-10-27 Fuji Photo Film Co Ltd 希土類ホウ酸塩の製造方法
CN104710173A (zh) * 2015-03-10 2015-06-17 宁波大学 无铅铁电上转换荧光陶瓷材料及其制备方法和应用
CN104944943A (zh) * 2015-05-27 2015-09-30 聊城大学 一种具有发光特性的bnt基无铅电致伸缩材料及制备方法
CN106187167A (zh) * 2016-07-11 2016-12-07 南京大学 一种增强稀土Er离子光致发光的复合材料及其制备方法
CN107057699A (zh) * 2017-05-15 2017-08-18 宁波大学 无铅铁电上转换荧光材料及其制备方法和应用
CN107055597A (zh) * 2017-06-16 2017-08-18 陕西科技大学 一种低温下快速制备立方钛酸铋钠粉体的方法
CN107814568A (zh) * 2017-10-30 2018-03-20 西安工业大学 一种稀土掺杂钛酸铋钠钙钛矿材料及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Upconversion and downconversion luminescence properties of Er3+ doped NBT ceramics synthesized via hydrothermal method;Jianjian Sun et al.;《Optical Materials》;20170731;第244-249页 *
Upconversion emission in Er-doped and Er/Yb-codoped ferroelectric Na0.5Bi0.5TiO3 and its temperature sensing application;Peng Du et al.;《Journal of Applied Physics》;20140731;第014102页 *

Also Published As

Publication number Publication date
CN108341667A (zh) 2018-07-31

Similar Documents

Publication Publication Date Title
CN111477746B (zh) 一种低温掺杂、高光致发光量子产率的钙钛矿薄膜及其制备方法
Raju et al. A facile and efficient strategy for the preparation of stable CaMoO 4 spherulites using ammonium molybdate as a molybdenum source and their excitation induced tunable luminescent properties for optical applications
Raju et al. Eu 3+ ion concentration induced 3D luminescence properties of novel red-emitting Ba 4 La 6 (SiO 4) O: Eu 3+ oxyapatite phosphors for versatile applications
CN101591540A (zh) 一种稀土钒酸盐LaVO4:Eu红色荧光粉的制备方法
Zhai et al. Morphology-controlled synthesis and luminescence properties of green-emitting NaGd (WO4) 2: Tb3+ phosphors excited by n-UV excitation
Wang et al. 3D-hierachical spherical LuVO4: Tm3+, Dy3+, Eu3+ microcrystal: synthesis, energy transfer, and tunable color
Lee et al. Synthesis and luminescence properties of Eu3+ doped BaGd2Ti4O13 phosphors
CN107418560B (zh) 一种高效硫掺杂氧化锌纳米材料的制备方法
Wu et al. Low-temperature preparation of monodispersed Eu-doped CaTiO 3 LED phosphors with controllable morphologies
CN114032091B (zh) 一种超高荧光效率的三元金属卤化物及制备方法
Yao et al. Garnet transparent ceramic film of Y3Al5O12: Eu3+ fabricated through an interface reaction of layered rare-earth hydroxide nanosheets on amorphous alumina
Raju et al. Development of dumbbell-shaped La2Si2O7: Eu3+ nanocrystalline phosphors for solid-state lighting applications
CN101831292A (zh) 一种铝酸锶发光材料及其可控合成方法
CN108341667B (zh) 一种纳米立方体铁电材料的制备方法
CN108165269A (zh) 一种相变延迟且上转换发光强度大幅提高的氟化镥钾纳米晶及其制备方法
Wanjun et al. Photoluminescence properties Pr3+ and Bi3+-codoped CaTiO3 phosphor prepared by a peroxide-based route
CN102796517B (zh) 一种含氮硅酸镁薄膜及其制备方法和应用
CN111748345A (zh) 一种Mn4+激活的氟化物红色荧光粉及其制备方法
CN110527508A (zh) 一种白光led用氮化物红色荧光粉及其制备方法
Lakshmanan et al. Rare earth doped CaSO4 luminescence phosphors for applications in novel displays–new recipes
CN107033907B (zh) 稀土掺杂的纳米晶体及其制备方法
CN108531176B (zh) 一种纳米立方栅栏荧光材料的自组装制备方法
Zhang et al. Enhanced upconversion luminescence in LuPO 4: Ln 3+ phosphors via optically inert ions doping
Koparkar et al. Synthesis and effect of partially replacement of Y 3+ to La 3+-ions on their photoluminescence properties of (Y (1− x) La x) PO 4: Eu 3+ phosphor
Wang et al. Simple coating synthesis and enhanced luminescence behaviour of LiLa (MoO4) 2: Eu3+@ NaF

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant