CN108336187B - 一种Ag/Cu2O异质结纳米薄膜的制备方法 - Google Patents

一种Ag/Cu2O异质结纳米薄膜的制备方法 Download PDF

Info

Publication number
CN108336187B
CN108336187B CN201810148539.XA CN201810148539A CN108336187B CN 108336187 B CN108336187 B CN 108336187B CN 201810148539 A CN201810148539 A CN 201810148539A CN 108336187 B CN108336187 B CN 108336187B
Authority
CN
China
Prior art keywords
film
hetero
nano thin
concentration
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810148539.XA
Other languages
English (en)
Other versions
CN108336187A (zh
Inventor
伍泳斌
钟福新
高云鹏
黎燕
莫德清
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guilin University of Technology
Original Assignee
Guilin University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guilin University of Technology filed Critical Guilin University of Technology
Priority to CN201810148539.XA priority Critical patent/CN108336187B/zh
Publication of CN108336187A publication Critical patent/CN108336187A/zh
Application granted granted Critical
Publication of CN108336187B publication Critical patent/CN108336187B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/07Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the Schottky type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明公开了一种Ag/Cu2O异质结纳米薄膜的制备方法。将纯Cu片和浓度为0.01~0.10mol/L Cu(NO3)2溶液,于80℃~90℃下反应4~6小时,在Cu片上制得光电压值为0.0937V~0.3168V的Cu2O薄膜;在Cu2O薄膜中加入浓度为0.05~0.09mol/L的Cu(NO3)2溶液和浓度为0.0005~0.0025mol/L的AgNO3溶液,于烘箱内反应2~8小时;得光电压值为0.3273V~0.3853V的Ag/Cu2O异质结纳米薄膜。本发明工艺简单,周期较短,对原料以及设备要求不高,制得的异质结纳米薄膜更有利于被太阳光激发而产生光生电子,具有优良的光电性能。

Description

一种Ag/Cu2O异质结纳米薄膜的制备方法
技术领域
本发明涉及一种Ag/Cu2O异质结纳米薄膜的制备方法。
背景技术
Cu2O是一种良好的半导体材料,不同条件下制备的Cu2O可能为n型或p型半导体。Cu2O不仅具有廉价、易生产、无毒、方便储存等优点,同时禁带宽度为1.9~2.1eV,能够直接利用太阳光可见光段能量95%以上,比单晶硅更具优势。Cu2O理论光电转换效率可以达到20%。是一种非常有潜力的太阳能电池材料。但是目前Cu2O的光电转换率仅为9%左右,为了提高Cu2O的光电性能,采用Ag和Cu2O构成异质结是一种有效的方法。由于Ag+的局部表面离子共振效应能增加对光的吸收,同时Cu2O的费米能级比Ag高,为使两者费米能级相等,在Cu2O和Ag之间会产生电子转移,促进Cu2O中光电子-空穴对分离,从而提高Cu2O的光电性能。
发明内容
本发明的目的是提供一种Ag/Cu2O异质结纳米薄膜的制备方法。
具体步骤为:
(1)先在反应釜中加入纯Cu片和浓度为0.01~0.10mol/L Cu(NO3)2溶液,于80℃~90℃下反应4~6小时,即在Cu片上制得光电压值为0.0937V~0.3168V的Cu2O薄膜。
(2)在装有步骤(1)所得的Cu2O薄膜的反应釜中加入浓度为0.05~0.09mol/L的 Cu(NO3)2溶液和浓度为0.0005~0.0025mol/L的 AgNO3溶液,于80℃~120℃的烘箱内反应2~8小时;即获得光电压值为0.3273V ~0.3853V的Ag/Cu2O异质结纳米薄膜。
本发明与其他相关技术相比,最显著的特点是通过两步水热法,即首先利用Cu片和Cu(NO3)2溶液制得Cu2O纳米薄膜;然后取性能最优的Cu2O纳米薄膜和Ag构成异质结。在第二步制备Ag/Cu2O异质结纳米薄膜的反应中,Ag+通过Cu2O晶体的间隙与Cu基底发生置换反应,在Cu2O晶体间隙中形成约300nm的Ag纳米粒子与Cu2O构成Ag/Cu2O异质结纳米薄膜。该异质结纳米薄膜更有利于被太阳光激发而产生光生电子,从而使其具有优良的光电性能,光电压可达到0.3853V。此方法工艺简单,周期较短,对原料以及设备要求不高,产品的光电性能较高。
具体实施方式
实施例1:
在反应釜中加入纯Cu片与浓度为0.01mol/L Cu(NO3)2溶液,80℃反应4小时,即获得光电压值为0.0937V的Cu2O纳米薄膜。
实施例2:
在反应釜中加入纯Cu片与浓度为0.1mol/L的 Cu(NO3)2溶液,90℃反应6小时,即获得光电压值为0.2359V的Cu2O纳米薄膜。
实施例3:
在反应釜中加入纯Cu片与浓度为0.06mol/L 的Cu(NO3)2溶液,80℃反应5小时,即获得光电压值为0.3168V的Cu2O纳米薄膜。
实施例4:
向实施例3所得光电压为0.3168V的Cu2O薄膜加入由浓度为0.05mol/L 的Cu(NO3)2和浓度为0.0025mol/L 的AgNO3组成的混合溶液,于90℃的烘箱内反应8小时,即得到光电压值为0.3793V的Ag/Cu2O异质结纳米薄膜。
实施例5:
向实施例3所得光电压为0.3168V的Cu2O薄膜加入由浓度为0.08mol/L 的Cu(NO3)2和浓度为0.002mol/L的 AgNO3组成的混合溶液,于120℃的烘箱内反应2小时,即得到光电压值为0.3273V的Ag/Cu2O异质结纳米薄膜。
实施例6:
向实施例3所得光电压为0.3168V的Cu2O薄膜加入由浓度为0.07mol/L 的Cu(NO3)2和浓度为0.001mol/L 的AgNO3组成的混合溶液,于90℃的烘箱内反应5小时,即得到光电压值为0.3853V的Ag/Cu2O异质结纳米薄膜。
实施例7:
向实施例3所得光电压为0.3168V的Cu2O薄膜加入由浓度为0.09mol/L 的Cu(NO3)2和浓度为0.0005mol/L 的AgNO3组成的混合溶液,于80℃的烘箱内反应6小时,即得到光电压值为0.3564V的Ag/Cu2O异质结纳米薄膜。

Claims (1)

1.一种Ag/Cu2O异质结纳米薄膜的制备方法,其特征在于具体步骤为:
(1)先在反应釜中加入纯Cu片和浓度为0.01~0.10mol/L Cu(NO3)2溶液,于80℃~90℃下反应4~6小时,即在Cu片上制得光电压值为0.0937V~0.3168V的Cu2O薄膜;
(2)在装有步骤(1)所得的Cu2O薄膜的反应釜中加入浓度为0.05~0.09mol/L的 Cu(NO3)2溶液和浓度为0.0005~0.0025mol/L的 AgNO3溶液,于80℃~120℃的烘箱内反应2~8小时;即获得光电压值为0.3273V ~0.3853V的Ag/Cu2O异质结纳米薄膜。
CN201810148539.XA 2018-02-13 2018-02-13 一种Ag/Cu2O异质结纳米薄膜的制备方法 Active CN108336187B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810148539.XA CN108336187B (zh) 2018-02-13 2018-02-13 一种Ag/Cu2O异质结纳米薄膜的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810148539.XA CN108336187B (zh) 2018-02-13 2018-02-13 一种Ag/Cu2O异质结纳米薄膜的制备方法

Publications (2)

Publication Number Publication Date
CN108336187A CN108336187A (zh) 2018-07-27
CN108336187B true CN108336187B (zh) 2019-11-26

Family

ID=62929475

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810148539.XA Active CN108336187B (zh) 2018-02-13 2018-02-13 一种Ag/Cu2O异质结纳米薄膜的制备方法

Country Status (1)

Country Link
CN (1) CN108336187B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101774629A (zh) * 2010-01-06 2010-07-14 华中师范大学 p型和n型氧化亚铜薄膜的水热法可控制备
CN103691965A (zh) * 2013-12-20 2014-04-02 华南理工大学 一种铜/银异质结纳米粒子的制备方法
CN106268857A (zh) * 2015-06-12 2017-01-04 中国科学院苏州纳米技术与纳米仿生研究所 金属/氧化亚铜复合光催化材料及其制备方法
CN106868540A (zh) * 2017-02-14 2017-06-20 西安理工大学 一种基于银修饰的纳米氧化亚铜光催化材料的制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105664966A (zh) * 2015-12-31 2016-06-15 丽王化工(南通)有限公司 金属/氧化亚铜复合纳米材料的制备方法和应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101774629A (zh) * 2010-01-06 2010-07-14 华中师范大学 p型和n型氧化亚铜薄膜的水热法可控制备
CN103691965A (zh) * 2013-12-20 2014-04-02 华南理工大学 一种铜/银异质结纳米粒子的制备方法
CN106268857A (zh) * 2015-06-12 2017-01-04 中国科学院苏州纳米技术与纳米仿生研究所 金属/氧化亚铜复合光催化材料及其制备方法
CN106868540A (zh) * 2017-02-14 2017-06-20 西安理工大学 一种基于银修饰的纳米氧化亚铜光催化材料的制备方法

Also Published As

Publication number Publication date
CN108336187A (zh) 2018-07-27

Similar Documents

Publication Publication Date Title
CN107089683B (zh) 一种二硫化钼/硫化铜/氧化亚铜纳米复合材料的制备方法
Zheng et al. Non-layered 2D materials toward advanced photoelectric devices: progress and prospects
CN103562127B (zh) 新的化合物半导体及其用途
Jule et al. Wide visible emission and narrowing band gap in Cd-doped ZnO nanopowders synthesized via sol-gel route
EP2708497B1 (en) Novel compound semiconductor and usage for same
US9334443B1 (en) Synthesis of CsSnI3 by a solution based method
EP2674964B1 (en) Precursor solution for forming a semiconductor thin film on the basis of CIS, CIGS or CZTS
CN104795456A (zh) 电沉积法制备三带隙铁掺杂铜镓硫太阳能电池材料的方法
EP2703344B1 (en) Novel compound semiconductor and use thereof
Jang et al. One-step H2S reactive sputtering for 2D MoS2/Si heterojunction photodetector
CN108336187B (zh) 一种Ag/Cu2O异质结纳米薄膜的制备方法
Fu et al. Synthesis, crystal structure and optical properties of Ce doped CuInSe2 powders prepared by mechanically alloying
EP2708502A1 (en) Novel compound semiconductor and usage for same
CN106784038B (zh) 一种组分可调光电薄膜的制备方法
CN110054212A (zh) 一种化合物NH4GaS2及其制备方法和应用
CN101935880A (zh) 新型硫属化合物半导体材料
RU2695208C1 (ru) Способ получения монозеренных кестеритных порошков
RU2718124C1 (ru) Способ получения монозеренных кестеритных порошков из тройных халькогенидов меди и олова и соединений цинка
EP2703345B1 (en) Novel semiconductor compound and usage thereof
CN113501780B (zh) 一种基于丁基吡啶鎓阳离子的铋碘杂化半导体类钙钛矿材料
CN104821344B (zh) 具有量子阱结构的铜铟镓硒薄膜太阳能电池及其制造方法
US9150741B2 (en) Producing method of ink composition for forming absorption layer of thin film cells
CN103928534B (zh) 一种金属卤氧化物纳米薄膜/Si复合电池片及其制备方法
CN109713061B (zh) 一种基于溶胶凝胶法制备铜铟镓硒吸收层的方法
Sun et al. Experimental and theoretical study on band gap tuning of Cu 2 ZnSn (S 1− x Se x) 4 absorbers for thin-film solar cells

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
EE01 Entry into force of recordation of patent licensing contract
EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20180727

Assignee: NANNING YONGBAO SOLAR ENERGY CO.,LTD.

Assignor: GUILIN University OF TECHNOLOGY

Contract record no.: X2023980045066

Denomination of invention: A Preparation Method for Ag/Cu2O Heterojunction Nanofilms

Granted publication date: 20191126

License type: Common License

Record date: 20231101

Application publication date: 20180727

Assignee: Guangxi Yiyetang Construction Technology Co.,Ltd.

Assignor: GUILIN University OF TECHNOLOGY

Contract record no.: X2023980045032

Denomination of invention: A Preparation Method for Ag/Cu2O Heterojunction Nanofilms

Granted publication date: 20191126

License type: Common License

Record date: 20231101

EE01 Entry into force of recordation of patent licensing contract
EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20180727

Assignee: Guangxi Kaitian agricultural new technology Co.,Ltd.

Assignor: GUILIN University OF TECHNOLOGY

Contract record no.: X2023980045264

Denomination of invention: A Preparation Method for Ag/Cu2O Heterojunction Nanofilms

Granted publication date: 20191126

License type: Common License

Record date: 20231103