CN108295888A - 一种介孔硅负载纳米二氧化钛光催化剂的制备方法 - Google Patents

一种介孔硅负载纳米二氧化钛光催化剂的制备方法 Download PDF

Info

Publication number
CN108295888A
CN108295888A CN201810252128.5A CN201810252128A CN108295888A CN 108295888 A CN108295888 A CN 108295888A CN 201810252128 A CN201810252128 A CN 201810252128A CN 108295888 A CN108295888 A CN 108295888A
Authority
CN
China
Prior art keywords
mesoporous silicon
titanium dioxide
nano
preparation
photocatalysis agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810252128.5A
Other languages
English (en)
Inventor
郭赞如
蒋勇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu Ao Jing Jia Environmental Protection & Technology Co Ltd
Original Assignee
Jiangsu Ao Jing Jia Environmental Protection & Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu Ao Jing Jia Environmental Protection & Technology Co Ltd filed Critical Jiangsu Ao Jing Jia Environmental Protection & Technology Co Ltd
Priority to CN201810252128.5A priority Critical patent/CN108295888A/zh
Publication of CN108295888A publication Critical patent/CN108295888A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/03Catalysts comprising molecular sieves not having base-exchange properties
    • B01J29/0308Mesoporous materials not having base exchange properties, e.g. Si-MCM-41
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/041Mesoporous materials having base exchange properties, e.g. Si/Al-MCM-41
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • B01J35/393Metal or metal oxide crystallite size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • B01J2229/18After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself
    • B01J2229/186After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself not in framework positions

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dispersion Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种介孔硅负载纳米二氧化钛光催化剂的制备方法,该方法利用磁性介孔硅和3‑氨基丙基三甲氧基硅烷反应,得到氨基化介孔硅;将纳米二氧化钛转载进入氨基化介孔硅的介孔里得到介孔硅负载纳米二氧化钛光催化剂。本发明制备的介孔硅负载纳米二氧化钛光催化剂具有磁性、能够通过磁场对其进行回收,其介孔结构能有效富集有机污染物,并在紫外光下将其光催化降解,能作为空气、污水的净化材料。

Description

一种介孔硅负载纳米二氧化钛光催化剂的制备方法
技术领域
本发明属于光催化材料技术领域,具体涉及一种介孔硅负载纳米二氧化钛光催化剂的制备方法。
背景技术
近年来,污染成为人类面临要解决的重要问题之一,介孔硅具有比较面积大的特点,对污染物具有很好的吸附能力,因此,介孔硅被研究人员用作吸附剂,处理污染物,但是介孔硅吸附饱和之后不能自动释放,导致介孔硅不能重复使用,限制其大规模应用,如能将吸附的污染物降解则能够反复利用,污染物的最终降解需要物质将其分解。目前,能分解污染物的方法有生物发,氧化法等方法,近年,利用光催化剂可是实现污染物的分解,而且比生物发,氧化法更为简便。其中,纳米二氧化钛(TiO2)是一种代表性具有光催化效果的半导体材料而被广泛研究。并且发现,粒径越小,光催化效果越高,但是粒径小纳米二氧化钛直接使用的话难以回收利用。
发明内容
为解决现有技术的不足,本发明的目的在于提供一种可得到具有磁性的、能够吸附并光催化降解的催化剂的介孔硅负载纳米二氧化钛光催化剂的制备方法。
为了实现上述目标,本发明采用如下的技术方案:
一种介孔硅负载纳米二氧化钛光催化剂的制备方法,包括以下制备步骤:
S1、将磁性介孔硅在超声波作用下分散到甲苯中,在机械搅拌的情况下,加入3-氨基丙基三甲氧基硅烷,在70℃下搅拌12h,磁铁吸附并用乙醇洗涤6次,干燥得到氨基化介孔硅;
S2、将氨基化介孔硅和纳米二氧化钛在水中每隔2h超声10min,重复5次,然后静置12h,磁铁吸附收集得到装载纳米二氧化钛的介孔硅;
S3、将装载纳米二氧化钛的介孔硅置于马弗炉中进行加热一定时间,得到介孔硅负载纳米二氧化钛光催化剂。
优选地,前述步骤S1中,磁性介孔硅的介孔直径为10~20nm,磁性介孔硅和3-氨基丙基三甲氧基硅烷质量比为3:1~1:5。
再优选地,前述步骤S2中,纳米二氧化钛的粒径为5~10nm,氨基化介孔硅和纳米二氧化钛质量比为3:1~1:3。
更优选地,前述步骤S3中,马弗炉的温度为80~300℃,处理时间为2~24h。
本发明的有益之处在于:
(1)本发明的工艺过程操作简单、成本低廉,能够适应大规模实际生产;
(2)本发明所制备的介孔硅负载纳米二氧化钛光催化剂,能够利用介孔硅的吸附能力富集污染物,纳米二氧化钛再将其降解;
(3)本发明制备的介孔硅负载纳米二氧化钛光催化剂引入磁性,能够利用磁场快速分离,实现循环利用的效果。
附图说明
图1是本发明的实施例1中介孔硅负载纳米二氧化钛光催化剂的透射电子显微镜图。
具体实施方式
以下结合附图和具体实施例对本发明作具体的介绍。
实施例1
一种介孔硅负载纳米二氧化钛光催化剂的制备方法,包括以下制备步骤:
S1、将3g介孔直径为10nm的磁性介孔硅在超声波作用下分散到150mL甲苯中,在机械搅拌的情况下,加入1g 3-氨基丙基三甲氧基硅烷,在70℃下搅拌12h,磁铁吸附并用乙醇洗涤6次,干燥得到氨基化介孔硅;
S2、将3g氨基化介孔硅和1g粒径为5nm的纳米二氧化钛在水中每隔2h超声10min,重复5次,然后静置12h,磁铁吸附收集得到装载纳米二氧化钛的介孔硅;
S3、将装载纳米二氧化钛的介孔硅置于马弗炉中进行加热,处理温度为80℃,处理时间为24h,得到介孔硅负载纳米二氧化钛光催化剂。
实施例2
一种介孔硅负载纳米二氧化钛光催化剂的制备方法,包括以下制备步骤:
S1、将1g介孔直径为20nm的磁性介孔硅在超声波作用下分散到150mL甲苯中,在机械搅拌的情况下,加入5g 3-氨基丙基三甲氧基硅烷,在70℃下搅拌12h,磁铁吸附并用乙醇洗涤6次,干燥得到氨基化介孔硅;
S2、将1g氨基化介孔硅和3g粒径为10nm的纳米二氧化钛在水中每隔2h超声10min,重复5次,然后静置12h,磁铁吸附收集得到装载纳米二氧化钛的介孔硅;
S3、将装载纳米二氧化钛的介孔硅置于马弗炉中进行加热,处理温度为300℃,处理时间为2h,得到介孔硅负载纳米二氧化钛光催化剂。
实施例3
一种介孔硅负载纳米二氧化钛光催化剂的制备方法,包括以下制备步骤:
S1、将1g介孔直径为20nm的磁性介孔硅在超声波作用下分散到150mL甲苯中,在机械搅拌的情况下,加入1g 3-氨基丙基三甲氧基硅烷,在70℃下搅拌12h,磁铁吸附并用乙醇洗涤6次,干燥得到氨基化介孔硅;
S2、将1g氨基化介孔硅和1g粒径为8nm的纳米二氧化钛在水中每隔2h超声10min,重复5次,然后静置12h,磁铁吸附收集得到装载纳米二氧化钛的介孔硅;
S3、将装载纳米二氧化钛的介孔硅置于马弗炉中进行加热,处理温度为200℃,处理时间为8h,得到介孔硅负载纳米二氧化钛光催化剂。
实施例4
一种介孔硅负载纳米二氧化钛光催化剂的制备方法,包括以下制备步骤:
S1、将1g介孔直径为15nm的磁性介孔硅在超声波作用下分散到150mL甲苯中,在机械搅拌的情况下,加入4g 3-氨基丙基三甲氧基硅烷,在70℃下搅拌12h,磁铁吸附并用乙醇洗涤6次,干燥得到氨基化介孔硅;
S2、将1g氨基化介孔硅和1g粒径为6nm的纳米二氧化钛在水中每隔2h超声10min,重复5次,然后静置12h,磁铁吸附收集得到装载纳米二氧化钛的介孔硅;
S3、将装载纳米二氧化钛的介孔硅置于马弗炉中进行加热,处理温度为150℃,处理时间为20h,得到介孔硅负载纳米二氧化钛光催化剂。
实施例5
一种介孔硅负载纳米二氧化钛光催化剂的制备方法,包括以下制备步骤:
S1、将1g介孔直径为20nm的磁性介孔硅在超声波作用下分散到150mL甲苯中,在机械搅拌的情况下,加入3g 3-氨基丙基三甲氧基硅烷,在70℃下搅拌12h,磁铁吸附并用乙醇洗涤6次,干燥得到氨基化介孔硅;
S2、将2g氨基化介孔硅和1g粒径为5nm的纳米二氧化钛在水中每隔2h超声10min,重复5次,然后静置12h,磁铁吸附收集得到装载纳米二氧化钛的介孔硅;
S3、将装载纳米二氧化钛的介孔硅置于马弗炉中进行加热,处理温度为150℃,处理时间为20h,得到介孔硅负载纳米二氧化钛光催化剂。
本发明得到的介孔硅负载纳米二氧化钛光催化剂是暗红色。实施例1中的介孔硅负载纳米二氧化钛光催化剂的透射电子显微镜图见图1所示,可以看出,纳米TiO2以纳米颗粒形式负载于介孔硅里面。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
以上显示和描述了本发明的基本原理、主要特征和优点。本行业的技术人员应该了解,上述实施例不以任何形式限制本发明,凡采用等同替换或等效变换的方式所获得的技术方案,均落在本发明的保护范围内。

Claims (4)

1.一种介孔硅负载纳米二氧化钛光催化剂的制备方法,其特征在于,包括以下制备步骤:
S1、将磁性介孔硅在超声波作用下分散到甲苯中,在机械搅拌的情况下,加入3-氨基丙基三甲氧基硅烷,在70℃下搅拌12h,磁铁吸附并用乙醇洗涤6次,干燥得到氨基化介孔硅;
S2、将氨基化介孔硅和纳米二氧化钛在水中每隔2h超声10min,重复5次,然后静置12h,磁铁吸附收集得到装载纳米二氧化钛的介孔硅;
S3、将装载纳米二氧化钛的介孔硅置于马弗炉中进行加热一定时间,得到介孔硅负载纳米二氧化钛光催化剂。
2.根据权利要求1所述的介孔硅负载纳米二氧化钛光催化剂的制备方法,其特征在于,所述步骤S1中,磁性介孔硅的介孔直径为10~20nm,磁性介孔硅和3-氨基丙基三甲氧基硅烷质量比为3:1~1:5。
3.根据权利要求1所述的介孔硅负载纳米二氧化钛光催化剂的制备方法,其特征在于,所述步骤S2中,纳米二氧化钛的粒径为5~10nm,氨基化介孔硅和纳米二氧化钛质量比为3:1~1:3。
4.根据权利要求1所述的介孔硅负载纳米二氧化钛光催化剂的制备方法,其特征在于,所述步骤S3中,马弗炉的温度为80~300℃,处理时间为2~24h。
CN201810252128.5A 2018-03-26 2018-03-26 一种介孔硅负载纳米二氧化钛光催化剂的制备方法 Pending CN108295888A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810252128.5A CN108295888A (zh) 2018-03-26 2018-03-26 一种介孔硅负载纳米二氧化钛光催化剂的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810252128.5A CN108295888A (zh) 2018-03-26 2018-03-26 一种介孔硅负载纳米二氧化钛光催化剂的制备方法

Publications (1)

Publication Number Publication Date
CN108295888A true CN108295888A (zh) 2018-07-20

Family

ID=62847804

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810252128.5A Pending CN108295888A (zh) 2018-03-26 2018-03-26 一种介孔硅负载纳米二氧化钛光催化剂的制备方法

Country Status (1)

Country Link
CN (1) CN108295888A (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103691415A (zh) * 2013-12-18 2014-04-02 绍兴文理学院 高结晶度、规则介孔结构的二氧化钛-二氧化硅纳米复合物、制备方法及其应用
CN103816902A (zh) * 2014-03-19 2014-05-28 黑龙江大学 一种磁载TiO2复合光催化剂材料的制备方法
CN104761692A (zh) * 2015-01-15 2015-07-08 西南石油大学 纳米二氧化硅表面引入碳碳双键的改性方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103691415A (zh) * 2013-12-18 2014-04-02 绍兴文理学院 高结晶度、规则介孔结构的二氧化钛-二氧化硅纳米复合物、制备方法及其应用
CN103816902A (zh) * 2014-03-19 2014-05-28 黑龙江大学 一种磁载TiO2复合光催化剂材料的制备方法
CN104761692A (zh) * 2015-01-15 2015-07-08 西南石油大学 纳米二氧化硅表面引入碳碳双键的改性方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
AMIRAH AHMAD等: "Adsorption of methyl orange by synthesized and functionalized-CNTs with 3-aminopropyltriethoxysilane loaded TiO2 nanocomposites", 《CHEMOSPHERE》 *

Similar Documents

Publication Publication Date Title
Mirzaei et al. Magnetic fluorinated mesoporous g-C3N4 for photocatalytic degradation of amoxicillin: transformation mechanism and toxicity assessment
CN106944098B (zh) 碳材料负载铜钴双金属硫化物复合材料及其制法和在废水处理中的应用
Gajera et al. Adsorption of cationic and anionic dyes on photocatalytic flyash/TiO2 modified chitosan biopolymer composite
Bai et al. Kinetics and mechanism of photocatalytic degradation of methyl orange in water by mesoporous Nd-TiO2-SBA-15 nanocatalyst
Zhang et al. Metal oxide nanoparticles deposited onto carbon-coated halloysite nanotubes
CN106381682B (zh) 一种高吸附-光催化性能的纳米二氧化钛/活性炭纤维毡三维多孔材料及其制备方法
CN109174161B (zh) 可磁分离TNTs/g-C3N4纳米复合材料的制备方法和应用
CN106621746B (zh) 一种负氧离子触媒装修污染净化剂及其制备方法
CN101485981B (zh) 一种无机抗菌复合材料的制备方法
CN104264450B (zh) 一种蚕丝织物抗菌整理剂及其制备方法
CN104874385B (zh) 一种TiO2纳米管/SiO2气凝胶复合的光催化材料及其制备方法
Zeng et al. Removal of fluoride from aqueous solution by TiO2 and TiO2–SiO2 nanocomposite
Wang et al. Various carbon-based MgAl2O4 adsorbents and their removal efficiency of CR dye and antibiotics in aqueous media: High selective adsorption capacity, performance prediction and mechanism insight
CN108654586A (zh) 一种石墨化介孔碳-TiO2复合光催化材料及其制备方法与应用
CN102784632A (zh) 核/壳结构的硅藻土/二氧化钛复合光催化剂的制备方法
CN106145379B (zh) 光催化生物吸附剂及其制备方法和应用
Wei et al. Fabrication of the novel core-shell MCM-41@ mTiO2 composite microspheres with large specific surface area for enhanced photocatalytic degradation of dinitro butyl phenol (DNBP)
CN105363433A (zh) 石墨烯基钨酸铋复合光催化剂及其制备方法和应用
CN106179473B (zh) 纳米零价铁/碳纳米管/沸石杂化介孔分子筛复合材料的制备方法
CN108483556A (zh) 一种降解抗生素的方法
Jaramillo-Fierro et al. Porous geopolymer/ZnTiO3/TiO2 composite for adsorption and photocatalytic degradation of methylene blue dye
CN109650439B (zh) 大尺寸自组装二氧化钛微球及其制备方法和应用
CN106731902A (zh) 一种可见光催化复合超滤膜的制备方法
Jiahu et al. Nanostructured Silica-Nd 2 Sn 2 O 7 Hybrid Using Fibrous Nanosilica as Photocatalysts for Degradation of Metronidazole in Simulated Wastewater
CN105964217A (zh) 一种磁性KMS-1/Fe3O4复合材料的制备方法及其用于去除环丙沙星

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20180720