CN108285786B - 一种荧光温度探针材料 - Google Patents

一种荧光温度探针材料 Download PDF

Info

Publication number
CN108285786B
CN108285786B CN201810205317.7A CN201810205317A CN108285786B CN 108285786 B CN108285786 B CN 108285786B CN 201810205317 A CN201810205317 A CN 201810205317A CN 108285786 B CN108285786 B CN 108285786B
Authority
CN
China
Prior art keywords
temperature
solution
nanocrystalline
hour
mmol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810205317.7A
Other languages
English (en)
Other versions
CN108285786A (zh
Inventor
夏洁楠
雷磊
徐时清
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dragon Totem Technology Hefei Co ltd
Original Assignee
China Jiliang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Jiliang University filed Critical China Jiliang University
Priority to CN201810205317.7A priority Critical patent/CN108285786B/zh
Publication of CN108285786A publication Critical patent/CN108285786A/zh
Application granted granted Critical
Publication of CN108285786B publication Critical patent/CN108285786B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7766Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals
    • C09K11/7772Halogenides
    • C09K11/7773Halogenides with alkali or alkaline earth metal
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K11/00Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00
    • G01K11/20Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using thermoluminescent materials

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Luminescent Compositions (AREA)

Abstract

本发明属于无机发光材料领域。一种荧光温度探针材料,包括纳米晶壳层、纳米晶中间层和纳米晶核,所述纳米晶壳层是NaLuF4:jYbkEr,纳米晶核是NaGdF4:xYbyTmzLi。该荧光温度探针材料在降低荧光信号检测误差的同时,具有较高的灵敏度。

Description

一种荧光温度探针材料
技术领域
本发明属于无机上转换发光材料领域,涉及一种荧光温度探针材料。
背景技术
传统的基于热接触式温度探测,例如玻璃液体温度计、热电偶、电阻温度计等,由于其内在属性的性质,难以在腐蚀性、电磁干扰等环境下使用,亦或是对微小电子元器件、生物细胞、快速移动物体内的测量。因而,发展具有响应快、空间和温度分辨率高、可远程测量的非接触式温度传感器具有重要的科学价值与现实意义。其中,荧光温度探测是通过表征荧光体的荧光强度、荧光衰减寿命或者发射峰位置随温度的变化来实现温度探测,是一种新颖的非接触式温度检测技术。基于荧光强度比的温度探针材料,目前主要有两种,即单一稀土离子的发光和两种不同稀土离子的发光。前者利用稀土离子发射峰位置比较接近的两个能级作为热耦合能级对,如Er3+2H11/24S3/2热耦合能级,但由于两个对比的发射波长均来源于同一稀土离子,因而表现出较低的灵敏度。后者则选择两种热耦合差异较大的离子,通过测量其荧光强度比来实现温度的探测,但其存在一定的检测误差。
发明内容
本发明的目的是公开一种荧光温度探针材料,借助于调控纳米材料的显微结构,在纳米晶核与纳米晶壳层中掺杂不同的稀土离子,使纳米晶核中的稀土离子的荧光强度随温度的上升而下降,纳米晶壳层中的稀土离子荧光强度随温度的上升而大幅增加,从而在降低荧光信号检测误差的同时,获得具有较高灵敏度的上转换温度探针材料。
为了实现上述发明目的,本发明采用下述的技术方案。
一种荧光温度探针材料,包括纳米晶壳层、纳米晶中间层和纳米晶核,所述纳米晶壳层是NaLuF4:jYbkEr,纳米晶核是NaGdF4:xYbyTmzLi;x的离子掺杂浓度是20-80%,y的离子掺杂浓度是0.5-2%、z的离子掺杂浓度是0-20%,j的离子掺杂浓度是20%-80%,k的离子掺杂浓度是1-5%。
作为优选,纳米晶壳层和纳米晶核分别掺杂不同的稀土离子,通过调控纳米材料的显微结构,使纳米晶核中的Tm3+离子的荧光强度随温度的升高而降低,纳米晶壳层中的Er3+离子的荧光强度随温度的升高而增加。
作为优选,纳米晶中间层是NaScF4@NaYF4:mYb;m的离子掺杂浓度是0-40%。
作为优选,z的离子掺杂浓度是1-20%,m的离子掺杂浓度是1-40%。
一种荧光温度探针材料的制备方法,包括下述步骤:
(1)将(1-x-y-z)毫摩尔乙酸钆,x毫摩尔乙酸镱,y毫摩尔乙酸铥,z毫摩尔乙酸锂,8毫升油酸加入到三颈烧瓶中,在氮气的保护条件下,在160℃的温度下保温1小时后,向三颈烧瓶中加入12毫升十八烯,在160℃的温度下继续保温1小时,得到澄清溶液A;待溶液A自然冷却到室温后,将8毫升含有3毫摩尔氟化铵和0.75毫摩尔氢氧化钠的甲醇溶液逐滴加入到溶液A中,然后在80℃保温半小时;待甲醇溶液全部挥发之后,迅速升温到280℃,并在此温度下保温90分钟,然后自然冷却到室温;将所得纳米晶用乙醇和环己烷混合液洗涤,最后将NaGdF4:xYbyTmzLi纳米晶保存在4ml环己烷中备用;
(2)将1毫摩尔乙酸钪,8毫升油酸加入到三颈瓶中,在氮气的保护条件下,在160℃的温度下保温1小时后,向三颈烧瓶中加入12毫升十八烯,在160℃的温度下继续保温1小时,得到无水的透明溶液B;待溶液B自然冷却到80℃后,加入(1)中含有纳米晶的环己烷溶液,并在100℃保温半小时;待溶液B自然冷却至30℃后,加入8毫升含有3毫摩尔氟化铵和0.75毫摩尔氢氧化钠的甲醇溶液,然后在80℃保温半小时;待甲醇溶液全部挥发之后,迅速升温到280℃,并在此温度下保温90分钟,然后自然冷却到室温;所得的纳米晶用乙醇和环己烷混合液洗涤,最后将NaGdF4:xYbyTmzLi@NaScF4纳米晶保存在4ml环己烷中备用;
(3)将(1-m)毫摩尔乙酸钇,m毫摩尔乙酸镱,8毫升油酸加入到三颈瓶中,在氮气的保护条件下,在160℃的温度下保温1小时后,向三颈烧瓶中加入12毫升十八烯,在160℃的温度下继续保温1小时,得到无水的透明溶液C;待溶液C自然冷却到80℃后,加入(2)中含有纳米晶的环己烷溶液,并在100℃保温半小时;待溶液C自然冷却至30℃后,加入8毫升含有3毫摩尔氟化铵和0.75毫摩尔氢氧化钠的甲醇溶液,然后在80℃保温半小时;待甲醇溶液全部挥发之后,迅速升温到280℃,并在此温度下保温90分钟,然后自然冷却到室温;所得的纳米晶用乙醇和环己烷混合液洗涤,最后将NaGdF4:xYbyTmzLi@NaScF4@NaYF4:mYb纳米晶保存在4ml环己烷中备用;
(4)将(1-j-k)毫摩尔乙酸镥,j毫摩尔乙酸镱,k毫摩尔乙酸铒,8毫升油酸加入到三颈瓶中,在氮气的保护条件下,在160℃的温度下保温1小时后,向三颈烧瓶中加入12毫升十八烯,在160℃的温度下继续保温1小时,得到无水的透明溶液D;待溶液D自然冷却到80℃后,加入(3)中含有纳米晶的环己烷溶液,并在100℃保温半小时;待溶液B自然冷却至30℃后,加入8毫升含有3毫摩尔氟化铵和0.75毫摩尔氢氧化钠的甲醇溶液,然后在80℃保温半小时;待甲醇溶液全部挥发之后,迅速升温到280℃,并在此温度下保温90分钟,然后自然冷却到室温;所得的纳米晶用乙醇和环己烷混合液洗涤,最后将NaGdF4:xYbyTmzLi@NaScF4@NaYF4:mYb@NaLuF4:jYbkEr纳米晶在40℃下烘干得最终产物。
本发明的一种荧光温度探针材料,纳米晶壳层是NaLuF4:jYbkEr,纳米晶核是NaGdF4:xYbyTmzLi,在纳米晶核与纳米晶壳层中掺杂不同的稀土离子,使纳米晶核中的稀土离子的荧光强度随温度的上升而下降,纳米晶壳层中的稀土离子荧光强度随温度的上升而大幅增加,从而在降低荧光信号检测误差的同时,获得具有较高灵敏度。荧光温度探针材料NaGdF4:Yb/Tm/Li@NaScF4@NaYF4:Yb@NaLuF4:Yb/Er纳米晶,粉末X射线衍射分析与透射电子显微镜观察分析表明所得到的产物为纯六方相NaGdF4,形貌为单分散的均匀球状,随着温度的升高,Tm3+离子的荧光强度逐渐减小,而Er3+离子的荧光强度大幅增加,计算结果表明,其灵敏度为3.4%K-1。本发明制备方法简单易重复,原料成本低、产量高,且所得纳米材料分散性、均一性好,上转换效率高。相比传统的上转换稀土掺杂纳米材料,本专利的荧光温度探针材料采用上述一降一升的模式,从而在降低荧光检测误差的同时,获得具有高灵敏度的纳米探针材料。该荧光温度探针材料有利于非接触式温度传感技术的进一步发展,对非接触式温度传感技术的发展具有重要意义。
附图说明
图1:实施例中荧光温度探针材料的X射线衍射图;
图2:实施例中荧光温度探针材料的透射电镜图;
图3:实施例中荧光温度探针材料的上转换变温光谱图;
图4:实施例中荧光温度探针材料的荧光强度比Tm/Er与温度的变化趋势图。
其中,图2:(a)NaGdF4:Yb/Tm/Li;(b)NaGdF4:Yb/Tm/Li@NaScF4;(c)NaGdF4:Yb/Tm/Li@NaScF4@NaYF4:Yb;(d)NaGdF4:Yb/Tm/Li@NaScF4@NaYF4:Yb@NaLuF4:Yb/Er。
具体实施方式
下面结合图1、图2、图3和图4对本专利做进一步的说明。
实施例
一种荧光温度探针材料,包括纳米晶壳层、纳米晶中间层和纳米晶核。荧光温度探针材料是NaGdF4:Yb/Tm/Li@NaScF4@NaYF4:Yb@NaLuF4:Yb/Er,纳米晶壳层是NaLuF4:jYbkEr,纳米晶核是NaGdF4:xYbyTmzLi,纳米晶中间层是NaScF4@NaYF4:mYb。
x的离子掺杂浓度是20-80%,y的离子掺杂浓度是0.5-2%、z的离子掺杂浓度是0-20%,j的离子掺杂浓度是20%-80%,k的离子掺杂浓度是1-5%,m的离子掺杂浓度是0-40%,单位是毫摩尔。
荧光温度探针材料的制备方法,包括下述步骤:(1)将0.695毫摩尔乙酸钆,0.2毫摩尔乙酸镱,0.005毫摩尔乙酸铥,0.1毫摩尔乙酸锂,8毫升油酸加入到三颈烧瓶中,在氮气的保护条件下,在160℃的温度下保温1小时后,向三颈烧瓶中加入12毫升十八烯,在160℃的温度下继续保温1小时,得到澄清溶液A;待溶液A自然冷却到室温后,将8毫升含有3毫摩尔氟化铵和0.75毫摩尔氢氧化钠的甲醇溶液逐滴加入到溶液A中,然后在80℃保温半小时;待甲醇溶液全部挥发之后,迅速升温到280℃,并在此温度下保温90分钟,然后自然冷却到室温;将所得纳米晶用乙醇和环己烷混合液洗涤,最后将NaGdF4:20%Yb0.5%Tm10%Li纳米晶保存在4ml环己烷中备用;(2)将1毫摩尔乙酸钪,8毫升油酸加入到三颈瓶中,在氮气的保护条件下,在160℃的温度下保温1小时后,向三颈烧瓶中加入12毫升十八烯得到无水的透明溶液B;待溶液B自然冷却到80℃后,加入(1)中含有纳米晶的环己烷溶液,并在100℃保温半小时;待溶液B自然冷却至30℃后,加入8毫升含有3毫摩尔氟化铵和0.75毫摩尔氢氧化钠的甲醇溶液,然后在80℃保温半小时;待甲醇溶液全部挥发之后,迅速升温到280℃,并在此温度下保温120分钟,然后自然冷却到室温;所得的纳米晶用乙醇和环己烷混合液洗涤,最后将NaGdF4:20%Yb0.5%Tm10%Li@NaScF4纳米晶保存在4ml环己烷中备用;(3)将0.6毫摩尔乙酸钇,0.4毫摩尔乙酸镱,8毫升油酸加入到三颈瓶中,在氮气的保护条件下,在160℃的温度下保温1小时后,向三颈烧瓶中加入12毫升十八烯得到无水的透明溶液C;待溶液C自然冷却到80℃后,加入(2)中含有纳米晶的环己烷溶液,并在100℃保温半小时;待溶液C自然冷却至30℃后,加入8毫升含有3毫摩尔氟化铵和0.75毫摩尔氢氧化钠的甲醇溶液,然后在80℃保温半小时;待甲醇溶液全部挥发之后,迅速升温到280℃,并在此温度下保温90分钟,然后自然冷却到室温;所得的纳米晶用乙醇和环己烷混合液洗涤,最后将NaGdF4:20%Yb0.5%Tm10%Li@NaScF4@NaYF4:40%Yb纳米晶保存在4ml环己烷中备用;(4)将0.58毫摩尔乙酸镥,0.4毫摩尔乙酸镱,0.02毫摩尔乙酸铒,8毫升油酸加入到三颈瓶中,在氮气的保护条件下,在160℃的温度下保温1小时后,向三颈烧瓶中加入12毫升十八烯得到无水的透明溶液D;待溶液D自然冷却到80℃后,加入(3)中含有纳米晶的环己烷溶液,并在100℃保温半小时;待溶液B自然冷却至30℃后,加入8毫升含有3毫摩尔氟化铵和0.75毫摩尔氢氧化钠的甲醇溶液,然后在80℃保温半小时;待甲醇溶液全部挥发之后,迅速升温到280℃,并在此温度下保温90分钟,然后自然冷却到室温;所得的纳米晶用乙醇和环己烷混合液洗涤,最后将NaGdF4:20%Yb0.5%Tm10%Li@NaScF4@NaYF4:40%Yb@NaLuF4:40%Yb2%Er纳米晶在40℃下烘干得最终产物。
按上述方法制得的NaGdF4:20%Yb0.5%Tm10%Li@NaScF4@NaYF4:40%Yb@NaLuF4:40%Yb2%Er纳米晶,如图1所示,粉末X射线衍射分析表明所合成的产物为纯六方相NaGdF4相;如图2所示,透射电子显微镜观察表明其形貌为单分散均匀球状。图3是上述纳米晶的上转换变温光谱图,其中激发波长为980nm,在980nm激光照射下,所合成的NaGdF4:20%Yb0.5%Tm 10%Li@NaScF4@NaYF4:40%Yb@NaLuF4:40%Yb2%Er纳米晶分别表现出Er3+和Tm3+在650nm和800nm附近的发光,随着温度从20℃逐渐升高到120℃,Tm3+在800nm附近的荧光强度逐渐减小,Er3+在650nm附近的荧光强度逐渐增大。图4是NaGdF4:Yb/Tm/Li@NaScF4@NaYF4:Yb@NaLuF4:Yb/Er纳米晶体系荧光强度比Tm/Er与温度的变化趋势图,通过荧光强度比与温度的变化关系可计算得到该体系最大灵敏度为3.4%K-1

Claims (3)

1.一种荧光温度探针材料,其特征在于包括纳米晶壳层、纳米晶中间层和纳米晶核,所述纳米晶壳层是NaLuF4:jYbkEr,纳米晶核是NaGdF4:xYbyTmzLi;纳米晶中间层是NaScF4@NaYF4:mYb;m是1%-40%,x是20%-80%,y是0.5%-2%,z是1%-20%,j是20%-80%,k是1%-5%。
2.根据权利要求1所述的一种荧光温度探针材料,其特征在于纳米晶壳层和纳米晶核分别掺杂不同的稀土离子,通过调控纳米材料的显微结构,使纳米晶核中的Tm3+离子的荧光强度随温度的升高而降低,纳米晶壳层中的Er3+离子的荧光强度随温度的升高而增加。
3.一种荧光温度探针材料的制备方法,其特征在于包括下述步骤:
(1)将(1-x-y-z)毫摩尔乙酸钆,x毫摩尔乙酸镱,y毫摩尔乙酸铥,z毫摩尔乙酸锂,8毫升油酸加入到三颈烧瓶中,在氮气的保护条件下,在160℃的温度下保温1小时后,向三颈烧瓶中加入12毫升十八烯,在160℃的温度下继续保温1小时,得到澄清溶液A;待溶液A自然冷却到室温后,将8毫升含有3毫摩尔氟化铵和0.75毫摩尔氢氧化钠的甲醇溶液逐滴加入到溶液A中,然后在80℃保温半小时;待甲醇溶液全部挥发之后,迅速升温到280℃,并在此温度下保温90分钟,然后自然冷却到室温;将所得纳米晶用乙醇和环己烷混合液洗涤,最后将NaGdF4:xYbyTmzLi纳米晶保存在4ml环己烷中备用;
其中,x是20%-80%,y是0.5%-2%、z是1%-20%;
(2)将1毫摩尔乙酸钪,8毫升油酸加入到三颈瓶中,在氮气的保护条件下,在160℃的温度下保温1小时后,向三颈烧瓶中加入12毫升十八烯,在160℃的温度下继续保温1小时,得到无水的透明溶液B;待溶液B自然冷却到80℃后,加入步骤(1)中含有纳米晶的环己烷溶液,并在100℃保温半小时;待溶液B自然冷却至30℃后,加入8毫升含有3毫摩尔氟化铵和0.75毫摩尔氢氧化钠的甲醇溶液,然后在80℃保温半小时;待甲醇溶液全部挥发之后,迅速升温到280℃,并在此温度下保温90分钟,然后自然冷却到室温;所得的纳米晶用乙醇和环己烷混合液洗涤,最后将NaGdF4:xYbyTmzLi@NaScF4纳米晶保存在4ml环己烷中备用;
(3)将(1-m)毫摩尔乙酸钇,m毫摩尔乙酸镱,8毫升油酸加入到三颈瓶中,在氮气的保护条件下,在160℃的温度下保温1小时后,向三颈烧瓶中加入12毫升十八烯,在160℃的温度下继续保温1小时,得到无水的透明溶液C;待溶液C自然冷却到80℃后,加入步骤(2)中含有纳米晶的环己烷溶液,并在100℃保温半小时;待溶液C自然冷却至30℃后,加入8毫升含有3毫摩尔氟化铵和0.75毫摩尔氢氧化钠的甲醇溶液,然后在80℃保温半小时;待甲醇溶液全部挥发之后,迅速升温到280℃,并在此温度下保温90分钟,然后自然冷却到室温;所得的纳米晶用乙醇和环己烷混合液洗涤,最后将NaGdF4:xYbyTmzLi@NaScF4@NaYF4:mYb纳米晶保存在4ml环己烷中备用;
其中,m是1%-40%;
(4)将(1-j-k)毫摩尔乙酸镥,j毫摩尔乙酸镱,k毫摩尔乙酸铒,8毫升油酸加入到三颈瓶中,在氮气的保护条件下,在160℃的温度下保温1小时后,向三颈烧瓶中加入12毫升十八烯,在160℃的温度下继续保温1小时,得到无水的透明溶液D;待溶液D自然冷却到80℃后,加入步骤(3)中含有纳米晶的环己烷溶液,并在100℃保温半小时;待溶液D 自然冷却至30℃后,加入8毫升含有3毫摩尔氟化铵和0.75毫摩尔氢氧化钠的甲醇溶液,然后在80℃保温半小时;待甲醇溶液全部挥发之后,迅速升温到280℃,并在此温度下保温90分钟,然后自然冷却到室温;所得的纳米晶用乙醇和环己烷混合液洗涤,最后将NaGdF4:xYbyTmzLi@NaScF4@NaYF4:mYb@NaLuF4:jYbkEr纳米晶在40℃下烘干得最终产物;
其中,j是20%-80%,k是1%-5%。
CN201810205317.7A 2018-03-13 2018-03-13 一种荧光温度探针材料 Active CN108285786B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810205317.7A CN108285786B (zh) 2018-03-13 2018-03-13 一种荧光温度探针材料

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810205317.7A CN108285786B (zh) 2018-03-13 2018-03-13 一种荧光温度探针材料

Publications (2)

Publication Number Publication Date
CN108285786A CN108285786A (zh) 2018-07-17
CN108285786B true CN108285786B (zh) 2020-08-07

Family

ID=62833363

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810205317.7A Active CN108285786B (zh) 2018-03-13 2018-03-13 一种荧光温度探针材料

Country Status (1)

Country Link
CN (1) CN108285786B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109097049B (zh) * 2018-09-05 2021-03-26 中国计量大学 防伪标签材料及其制备方法和应用
CN109233805B (zh) * 2018-09-13 2021-03-05 中国计量大学 具有负热淬灭效应的防伪标签材料及其制备方法和应用
CN112063377A (zh) * 2020-09-15 2020-12-11 哈尔滨工程大学 一种用于980nm激光的功率密度试纸及其制备方法
CN112358879B (zh) * 2020-12-04 2022-07-19 武汉工程大学 一种核壳纳米复合发光材料及其制备方法
CN113930235B (zh) * 2021-11-11 2023-12-29 上海科技大学 一种多响应纳米温度检测探针、制备方法及应用
CN114656966B (zh) * 2022-04-15 2023-07-25 中国科学院福建物质结构研究所 一种四层核壳结构纳米材料及其制备方法和应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104371726A (zh) * 2014-11-26 2015-02-25 中国计量学院 一种可用于温度传感的高温增强上转换荧光型纳米晶及其制备方法和应用
CN105400516A (zh) * 2015-11-09 2016-03-16 南京邮电大学 新型核壳结构光温传感材料及其制备方法
CN106634988A (zh) * 2016-11-30 2017-05-10 中国计量大学 用于荧光温度探针的纳米晶材料

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104371726A (zh) * 2014-11-26 2015-02-25 中国计量学院 一种可用于温度传感的高温增强上转换荧光型纳米晶及其制备方法和应用
CN105400516A (zh) * 2015-11-09 2016-03-16 南京邮电大学 新型核壳结构光温传感材料及其制备方法
CN106634988A (zh) * 2016-11-30 2017-05-10 中国计量大学 用于荧光温度探针的纳米晶材料

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Temperature sensing, excitation power dependent fluorescence branching ratios, and photothermal conversion in NaYF4:Er3+/Yb3+@ NaYF4:Tm3+/Yb3+;Yanqiu Zhang 等;《Optical Materials EXPRESS》;20180117;第8卷;368-384 *
Upconverting Near-Infrared Light through Energy Management in Core-Shell-Shell Nanoparticles;Hongli Wen 等;《Angew. Chem. Int. Ed.》;20131016;第52卷;13419-13423 *

Also Published As

Publication number Publication date
CN108285786A (zh) 2018-07-17

Similar Documents

Publication Publication Date Title
CN108285786B (zh) 一种荧光温度探针材料
Cao et al. Wide-range and highly-sensitive optical thermometers based on the temperature-dependent energy transfer from Er to Nd in Er/Yb/Nd codoped NaYF4 upconversion nanocrystals
Liu et al. Color-tunable upconversion luminescence and multiple temperature sensing and optical heating properties of Ba3Y4O9: Er3+/Yb3+ phosphors
Chen et al. Core@ shell upconverting nanoarchitectures for luminescent sensing of temperature
Priya et al. Review on the synthesis, structural and photo-physical properties of Gd2O3 phosphors for various luminescent applications
Chen et al. A ratiometric optical thermometer based on Bi3+ and Mn4+ co-doped La2MgGeO6 phosphor with high sensitivity and signal discriminability
Sun et al. Nanostructured La2O3: Yb3+/Er3+: temperature sensing, optical heating and bio-imaging application
CN104371726A (zh) 一种可用于温度传感的高温增强上转换荧光型纳米晶及其制备方法和应用
Guan et al. YF3: RE3+ (RE= Dy, Tb, Eu) sub-microstructures: controllable morphology, tunable multicolor, and thermal properties
CN106634988B (zh) 用于荧光温度探针的纳米晶材料
Du et al. A broad-range temperature sensor dependent on the magnetic and optical properties of SrF 2: Yb 3+, Ho 3+
Erdem et al. Upconversion Yb3+/Er3+: Gadolinium gallium garnet nanocrystals for white-light emission and optical thermometry
Liu et al. Novel optical thermometer through upconversion emission of Ho3+ sensitized by Nd3+
Li et al. A latest-generation fluoride with excellent structural stiffness for ultra-efficient photoluminescence and specific four-peak emission temperature sensing
Li et al. Optical thermometry based on upconversion luminescence of Ba3Gd2F12: Yb3+/Er3+ nanocrystals embedded in glass ceramics
Cheng et al. High-sensitivity NaYF 4: Yb 3+/Ho 3+/Tm 3+ phosphors for optical temperature sensing based on thermally coupled and non-thermally coupled energy levels
Yu et al. Effects of K+ and Gd3+ concentration on up-conversion luminescence and optical thermometric properties in NaYF4: Yb/Ho microcrystals
Gao et al. Synthesis of Yb 3+, Ho 3+ and Tm 3+ co-doped β-NaYF 4 nanoparticles by sol–gel method and the multi-color upconversion luminescence properties
Xiao et al. Morphology control and temperature sensing properties of micro‐rods NaLa (WO4) 2: Yb3+, Er3+ phosphors
Zhang et al. Energy transfer mechanism and new ratiometric thermometry strategy by the blue and yellow emissions of Dy
Zhao et al. Low temperature reliability and high sensitivity of dual-channel up-conversion thermometry phosphor optimized by heterovalent ions
Gao et al. Room temperature synthesis, Judd Ofelt analysis and photoluminescence properties of down-conversion K0· 3Bi0· 7F2. 4: Eu3+ orange red phosphors
Xiao et al. Optical thermometry based on fluorescence intensity ratio of doped ions and matrix in CaWO4: Eu3+ phosphors
Du et al. Lanthanide-doped bismuth-based nanophosphors for ratiometric upconversion optical thermometry
Cheng et al. The synthesis of Er3+/Yb3+/K+ triple-doped NaYF4 phosphors and its high sensitivity optical thermometers at low power

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20240321

Address after: 230000 floor 1, building 2, phase I, e-commerce Park, Jinggang Road, Shushan Economic Development Zone, Hefei City, Anhui Province

Patentee after: Dragon totem Technology (Hefei) Co.,Ltd.

Country or region after: Zhong Guo

Address before: 310018, No. 258, source street, Xiasha Higher Education Park, Hangzhou, Zhejiang

Patentee before: China Jiliang University

Country or region before: Zhong Guo