CN106634988B - 用于荧光温度探针的纳米晶材料 - Google Patents

用于荧光温度探针的纳米晶材料 Download PDF

Info

Publication number
CN106634988B
CN106634988B CN201611079102.2A CN201611079102A CN106634988B CN 106634988 B CN106634988 B CN 106634988B CN 201611079102 A CN201611079102 A CN 201611079102A CN 106634988 B CN106634988 B CN 106634988B
Authority
CN
China
Prior art keywords
temperature
zrf
solution
nanocrystalline
milliliters
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201611079102.2A
Other languages
English (en)
Other versions
CN106634988A (zh
Inventor
雷磊
徐时清
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Jiliang University
Original Assignee
China Jiliang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Jiliang University filed Critical China Jiliang University
Priority to CN201611079102.2A priority Critical patent/CN106634988B/zh
Publication of CN106634988A publication Critical patent/CN106634988A/zh
Application granted granted Critical
Publication of CN106634988B publication Critical patent/CN106634988B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/67Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing refractory metals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7704Halogenides
    • C09K11/7705Halogenides with alkali or alkaline earth metals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7766Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals
    • C09K11/7772Halogenides
    • C09K11/7773Halogenides with alkali or alkaline earth metal
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K11/00Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00
    • G01K11/30Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using measurement of the effect of a material on X-radiation, gamma radiation or particle radiation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Luminescent Compositions (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Abstract

本发明属于无机发光材料领域。用于荧光温度探针的纳米晶材料,化学式是Yb/Er/Tm:Na3ZrF7@Na3ZrF7或Yb/Er/Tm:Na3ZrF7@Yb:Na3ZrF7。该用于荧光温度探针的纳米晶材料的优点是有效的避免了杂散光所产生的信号干扰,具有较高的探测灵敏度,能够有效的减少探测误差。

Description

用于荧光温度探针的纳米晶材料
技术领域
本发明属于无机发光材料领域,涉及一种用于荧光温度探针的纳米晶材料。
背景技术
与传统的接触式温度探针相比,非接触式荧光温度探针具有鲜明的优势,比如反应快,灵敏度高,并且可以应用于强酸强碱等极端环境。比如,在紫外光激发下,Tb 3+/Pr 3+或者Eu 3+/Mn 4+共掺的体系在不同温度下表现出不同的荧光性能,具有较高的绝对和相对灵敏度。然而由于紫外光穿透深度浅,并且生物组织会产生背景荧光,使得这类材料不能应用于生物医学领域。基于近红外光激发的上转换发光纳米材料能够有效的避免以上问题,目前广泛研究的是Er 3+离子掺杂体系,这是由于Er 3+ 2H11/2 4S3/2属于热耦合能级,随温度的变化表现出相反的荧光强度变化趋势。然而由于两个对比的发射波长均来源于同一稀土离子,因而表现出较低的灵敏度;此外,Er 3+离子在650nm附近的红光可能产生干扰信号。
发明内容
本发明的目的是公开一种灵敏度高的用于荧光温度探针的纳米晶材料。
为了实现上述发明目的,本发明采用下述的技术方案:用于荧光温度探针的纳米晶材料,该纳米晶材料化学式是Yb/Er/Tm:Na3ZrF7@ Na3ZrF7或Yb/Er/Tm: Na3ZrF7@Yb:Na3ZrF7
作为优选,在980nm激光激发下,该纳米晶材料分别表现出Er 3+和Tm 3+在650nm和800nm处的单谱带发光,随着温度从60℃逐渐增200℃,Er 3+离子位于650nm处的荧光强度不变,而Tm 3+离子位于800nm处的荧光强度持续增加,其灵敏度达1.73%K -1
作为优选,该纳米晶材料制备方法如下:(1)将(0.5-x-y-z)毫摩尔乙酸锆,x毫摩尔乙酸镱,y毫摩尔乙酸铒,z毫摩尔乙酸铥,8毫升油酸,12毫升十八烯加入到三颈瓶中,在氮气的保护条件下,在155℃的温度下保温1小时得到无水的透明溶液A;待A溶液自然冷却到室温后,将8毫升含有3毫摩尔氟化铵的甲醇溶液逐滴加入到A溶液中,然后在80℃保温半小时;待甲醇溶液全部挥发之后,迅速升温到270℃,并在此温度下保温90分钟,然后自然冷却到室温;将所得的纳米晶用乙醇和环己烷混合液洗涤,最后将xYb,yEr,zTm: Na3ZrF7纳米晶保存在4ml环己烷中备用;(2)将(0.5-m)毫摩尔乙酸锆,m毫摩尔乙酸镱,8毫升油酸,12毫升十八烯加入到三颈瓶中,在氮气的保护条件下,在155℃的温度下保温1小时得到无水的透明溶液B;待B溶液自然冷却到80℃后,加入(1)中含有纳米晶的环己烷溶液,并在100℃保温半小时;待B溶液自然冷却至30℃后,加入8毫升含有3毫摩尔氟化铵的甲醇溶液,然后在80℃保温半小时;待甲醇溶液全部挥发之后,迅速升温到270℃,并在此温度下保温90分钟,然后自然冷却到室温;所得的纳米晶用乙醇和环己烷混合液洗涤,最后于40℃-80℃烘干后得到最终产物。进一步的,x的范围是0.05-0.15,y的范围是0.005-0.015,z的范围是0.0025-0.01,m的范围是0-0.15。
采用了上述技术方案的用于荧光温度探针的纳米晶材料,粉末X射线衍射分析与透射电子显微镜观察分析表明:所得到的产物为纯四方相Na3ZrF7,形貌为单分散的均匀棒状。在980nm激光照射下,Yb/Er/Tm:Na3ZrF7纳米晶可以发出明亮的红光,其发射波长位于650nm和800nm。由于稀土离子在这类材料中容易形成团簇,导致稀土离子之间的交叉驰豫几率大幅提高,使得Er 3+和Tm 3+在980nm激光器激发下分别表现出在650nm和800nm处的单谱带发光;此外,由于Er 3+离子的 4F 9/2 4I15/2的能级间距远大于Tm 3+离子的 3H3 3H4,因而随着温度升高,Er 3+离子的荧光强度几乎不变,而Tm 3+离子的 3H3到 3H4能级的无辐射弛豫几率大幅提高,导致Tm 3+离子在800nm处的荧光强度提高,计算结果表明,其灵敏度为1.5%k -1。Er 3+和Tm 3+均为单波长发光,有效的避免了杂散光所产生的信号干扰;其次它们在不同温度下,表现出明显不同的荧光强度变化趋势,具有较高的探测灵敏度。另外,该材料总荧光强度随着温度的升高而增加,能够有效的减少探测误差。此外,本发明制备方法简单、成本低、产量高,所得产物分散性好、形状均一,具有高效上转换发光特性。
附图说明
图1:实施例1和实施例2中Yb/Er/Tm: Na3ZrF7@ Na3ZrF7和Yb/Er/Tm: Na3ZrF7@Yb:Na3ZrF7纳米晶的X射线衍射图。
图2:实施例1和实施例2中Yb/Er/Tm:Na3ZrF7@ Na3ZrF7和Yb/Er/Tm:Na3ZrF7@Yb:Na3ZrF7纳米晶的透射电镜图。
图3:实施例1和实施例2中Yb/Er/Tm: Na3ZrF7@ Na3ZrF7和Yb/Er/Tm: Na3ZrF7@Yb:Na3ZrF7纳米晶的上转换变温光谱,其中激发波长为980nm。
图4:实施例2中Yb/Er/Tm: Na3ZrF7@Yb: Na3ZrF7纳米晶的灵敏度示意图。
具体实施方式
下面结合图1、图2、图3和图4对本专利做进一步的说明。
实施例1
用于荧光温度探针的纳米晶材料,该纳米晶材料化学式是Yb/Er/Tm: Na3ZrF7@Na3ZrF7,如图1、图2和图3所示。
上述纳米晶材料制备方法如下:包括如下步骤:(1)将0.385毫摩尔乙酸锆,0.1毫摩尔乙酸镱,0.01毫摩尔乙酸铒,0.005毫摩尔乙酸铥,8毫升油酸,12毫升十八烯加入到三颈瓶中,在氮气的保护条件下,在155℃的温度下保温1小时得到无水的透明溶液A;待A溶液自然冷却到室温后,将8毫升含有3毫摩尔氟化铵的甲醇溶液逐滴加入到A溶液中,然后在80℃保温半小时;待甲醇溶液全部挥发之后,迅速升温到270℃,并在此温度下保温90分钟,然后自然冷却到室温;将所得的纳米晶用乙醇和环己烷混合液洗涤,最后将纳米晶保存在4ml环己烷中备用;(2)将0.5毫摩尔乙酸锆,8毫升油酸,12毫升十八烯加入到三颈瓶中,在氮气的保护条件下,在155℃的温度下保温1小时得到无水的透明溶液B;待B溶液自然冷却到80℃后,加入(1)中含有纳米晶的环己烷溶液,并在100℃保温半小时;待B溶液自然冷却至30℃后,加入8毫升含有3毫摩尔氟化铵的甲醇溶液,然后在80℃保温半小时;待甲醇溶液全部挥发之后,迅速升温到270℃,并在此温度下保温90分钟,然后自然冷却到室温;所得的纳米晶用乙醇和环己烷混合液洗涤,最后于40℃-80℃烘干后得到最终产物。
按上述方法制得的Yb/Er/Tm: Na3ZrF7@ Na3ZrF7纳米晶,粉末X射线衍射分析表明所合成的产物为纯四方相Na3ZrF7相,如图1(a)。透射电子显微镜观察表明其形貌为单分散均匀棒状,如图2(a)。在980纳米激光照射下,所合成的Yb/Er/Tm: Na3ZrF7@ Na3ZrF7纳米晶分别表现出Er 3+和Tm 3+在650nm和800nm附近的单谱带发光,随着温度从60℃逐渐升高到200℃,Er 3+在650nm附近的荧光强度几乎不变,Tm 3+在800nm附近的荧光强度逐渐增大,如图3(a)。
实施例2
用于荧光温度探针的纳米晶材料,该纳米晶材料化学式是Yb/Er/Tm: Na3ZrF7@Yb:Na3ZrF7,如图1、图2、图3和图4所示。
上述纳米晶材料制备方法如下:包括如下步骤:(1)将0.385毫摩尔乙酸锆,0.1毫摩尔乙酸镱,0.01毫摩尔乙酸铒,0.005毫摩尔乙酸铥,8毫升油酸,12毫升十八烯加入到三颈瓶中,在氮气的保护条件下,在155℃的温度下保温1小时得到无水的透明溶液A;待A溶液自然冷却到室温后,将8毫升含有3毫摩尔氟化铵的甲醇溶液逐滴加入到A溶液中,然后在80℃保温半小时;待甲醇溶液全部挥发之后,迅速升温到270℃,并在此温度下保温90分钟,然后自然冷却到室温;将所得的纳米晶用乙醇和环己烷混合液洗涤,最后将纳米晶保存在4ml环己烷中备用;(2)将0.4毫摩尔乙酸锆,0.1毫摩尔乙酸镱,8毫升油酸,12毫升十八烯加入到三颈瓶中,在氮气的保护条件下,在155℃的温度下保温1小时得到无水的透明溶液B;待B溶液自然冷却到80℃后,加入(1)中含有纳米晶的环己烷溶液,并在100℃保温半小时;待B溶液自然冷却至30℃后,加入8毫升含有3毫摩尔氟化铵的甲醇溶液,然后在80℃保温半小时;待甲醇溶液全部挥发之后,迅速升温到270℃,并在此温度下保温90分钟,然后自然冷却到室温;所得的纳米晶用乙醇和环己烷混合液洗涤,最后于40℃-80℃烘干后得到最终产物。
按上述方法制得的Yb/Er/Tm: Na3ZrF7@Yb: Na3ZrF7纳米晶,粉末X射线衍射分析表明所合成的产物为纯四方相Na3ZrF7相,如图1(b)。透射电子显微镜观察表明其形貌为单分散均匀棒状,如图2(b)。在980纳米激光照射下,所合成的Yb/Er/Tm: Na3ZrF7@Yb:Na3ZrF7纳米晶分别表现出Er 3+和Tm 3+在650nm和800nm附近的单谱带发光,随着温度从60℃逐渐升高到200℃,Er 3+在650nm附近的荧光强度几乎不变,Tm 3+在800nm附近的荧光强度逐渐增大,如图3(b)。计算结果表明其灵敏度为1.73%K -1,如图4。

Claims (3)

1.用于荧光温度探针的纳米晶材料,其特征在于该纳米晶材料化学式是Yb/Er/Tm:Na3ZrF7@Na3ZrF7或Yb/Er/Tm:Na3ZrF7@Yb:Na3ZrF7;在980nm激光激发下,该纳米晶材料分别表现出Er3+和Tm3+在650nm和800nm处的单谱带发光,随着温度从60℃逐渐增200℃,Er3+离子位于650nm处的荧光强度不变,而Tm3+离子位于800nm处的荧光强度持续增加。
2.根据权利要求1所述的用于荧光温度探针的纳米晶材料,特征在于该纳米晶材料制备方法如下:(1)将(0.5-x-y-z)毫摩尔乙酸锆,x毫摩尔乙酸镱,y毫摩尔乙酸铒,z毫摩尔乙酸铥,8毫升油酸,12毫升十八烯加入到三颈瓶中,在氮气的保护条件下,在155℃的温度下保温1小时得到无水的透明溶液A;待A溶液自然冷却到室温后,将8毫升含有3毫摩尔氟化铵的甲醇溶液逐滴加入到A溶液中,然后在80℃保温半小时;待甲醇溶液全部挥发之后,迅速升温到270℃,并在此温度下保温90分钟,然后自然冷却到室温;将所得的纳米晶用乙醇和环己烷混合液洗涤,最后将xYb,yEr,zTm:Na3ZrF7纳米晶保存在4ml环己烷中备用;(2)将(0.5-m)毫摩尔乙酸锆,m毫摩尔乙酸镱,8毫升油酸,12毫升十八烯加入到三颈瓶中,在氮气的保护条件下,在155℃的温度下保温1小时得到无水的透明溶液B;待B溶液自然冷却到80℃后,加入(1)中含有纳米晶的环己烷溶液,并在100℃保温半小时;待B溶液自然冷却至30℃后,加入8毫升含有3毫摩尔氟化铵的甲醇溶液,然后在80℃保温半小时;待甲醇溶液全部挥发之后,迅速升温到270℃,并在此温度下保温90分钟,然后自然冷却到室温;所得的纳米晶用乙醇和环己烷混合液洗涤,最后于40℃-80℃烘干后得到最终产物。
3.根据权利要求2所述的用于荧光温度探针的纳米晶材料,特征在于x的范围是0.05-0.15,y的范围是0.005-0.015,z的范围是0.0025-0.01,m的范围是0-0.15。
CN201611079102.2A 2016-11-30 2016-11-30 用于荧光温度探针的纳米晶材料 Active CN106634988B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611079102.2A CN106634988B (zh) 2016-11-30 2016-11-30 用于荧光温度探针的纳米晶材料

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611079102.2A CN106634988B (zh) 2016-11-30 2016-11-30 用于荧光温度探针的纳米晶材料

Publications (2)

Publication Number Publication Date
CN106634988A CN106634988A (zh) 2017-05-10
CN106634988B true CN106634988B (zh) 2019-01-08

Family

ID=58814450

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611079102.2A Active CN106634988B (zh) 2016-11-30 2016-11-30 用于荧光温度探针的纳米晶材料

Country Status (1)

Country Link
CN (1) CN106634988B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107541204B (zh) * 2017-07-25 2020-05-12 中国计量大学 一种单谱带红光纳米晶材料及其制备方法
CN108285786B (zh) * 2018-03-13 2020-08-07 中国计量大学 一种荧光温度探针材料
CN108424763A (zh) * 2018-03-13 2018-08-21 中国计量大学 荧光温度探针材料
CN109233805B (zh) * 2018-09-13 2021-03-05 中国计量大学 具有负热淬灭效应的防伪标签材料及其制备方法和应用
CN114577361B (zh) * 2022-03-09 2023-03-14 中国空气动力研究与发展中心超高速空气动力研究所 基于电子束荧光的稀薄流场转动温度测量与数据处理方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101794834B (zh) * 2009-12-14 2013-06-12 湖南共创光伏科技有限公司 设有上转换荧光材料膜层的高效太阳能薄膜电池及其膜层制备方法
US8252613B1 (en) * 2011-03-23 2012-08-28 General Electric Company Color stable manganese-doped phosphors
CN103102880A (zh) * 2012-12-12 2013-05-15 中国科学院福建物质结构研究所 单谱带上转换发光纳米晶及其制备方法
CN104403671B (zh) * 2014-11-26 2017-05-03 中国计量学院 一种用于宽带光放大氟化物纳米晶及其制备方法和应用

Also Published As

Publication number Publication date
CN106634988A (zh) 2017-05-10

Similar Documents

Publication Publication Date Title
CN106634988B (zh) 用于荧光温度探针的纳米晶材料
Runowski et al. Optical pressure sensor based on the emission and excitation band width (fwhm) and luminescence shift of Ce3+-doped fluorapatite—high-pressure sensing
Suo et al. Thermometric and optical heating bi-functional properties of upconversion phosphor Ba 5 Gd 8 Zn 4 O 21: Yb 3+/Tm 3+
Zheng et al. Temperature sensor based on the UV upconversion luminescence of Gd 3+ in Yb 3+–Tm 3+–Gd 3+ codoped NaLuF 4 microcrystals
Sun et al. Nanostructured La2O3: Yb3+/Er3+: temperature sensing, optical heating and bio-imaging application
Qiang et al. A temperature sensor based on the enhanced upconversion luminescence of Li+ doped NaLuF 4: Yb 3+, Tm 3+/Er 3+ nano/microcrystals
Liang et al. The enhanced upconversion fluorescence and almost unchanged particle size of β-NaYF4: Yb3+, Er3+ nanoparticles by codoping with K+ ions
Liao et al. Yb 3+ concentration dependence of upconversion luminescence in Y 2 Sn 2 O 7: Yb 3+/Er 3+ nanophosphors
Zhang et al. Concentration quenching of blue upconversion luminescence in Tm3+/Yb3+ co-doped Gd2 (WO4) 3 phosphors under 980 and 808 nm excitation
CN108285786B (zh) 一种荧光温度探针材料
Abbas et al. Lanthanide and transition metals doped materials for non-contact optical thermometry with promising approaches
Avram et al. Down-/up-conversion emission enhancement by Li addition: improved crystallization or local structure distortion?
Liu et al. Novel optical thermometer through upconversion emission of Ho3+ sensitized by Nd3+
Du et al. A broad-range temperature sensor dependent on the magnetic and optical properties of SrF 2: Yb 3+, Ho 3+
CN108424763A (zh) 荧光温度探针材料
CN110055069A (zh) 一种多波长激发的单谱带上转换红光纳米晶材料
Gao et al. Room-temperature ultrafast synthesis, morphology and upconversion luminescence of K 0.3 Bi 0.7 F 2.4: Yb 3+/Er 3+ nanoparticles for temperature-sensing application
Chen et al. Growth of SnO 2 nanocrystals co-doped with Eu 3+ for highly enhanced photoluminescence in mesoporous silica glasses
CN106566527B (zh) 一种提高上转换发光纳米晶中Tm3+掺杂浓度的方法
Leng et al. Impact of pH and urea content on size and luminescence of upconverting Y2O3: Yb, Er nanophosphors
Yu et al. Effects of K+ and Gd3+ concentration on up-conversion luminescence and optical thermometric properties in NaYF4: Yb/Ho microcrystals
Grzyb et al. Multifunctional cellulose fibers: Intense red upconversion under 1532 nm excitation and temperature-sensing properties
Gao et al. Synthesis of Yb 3+, Ho 3+ and Tm 3+ co-doped β-NaYF 4 nanoparticles by sol–gel method and the multi-color upconversion luminescence properties
Kasprowicz et al. Spectroscopic properties of KGd (WO4) 2 single crystals doped with Er3+, Ho3+, Tm3+ and Yb3+ ions: Luminescence and micro-Raman investigations
Li et al. A latest-generation fluoride with excellent structural stiffness for ultra-efficient photoluminescence and specific four-peak emission temperature sensing

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20170510

Assignee: Xinchang China Metrology University Enterprise Innovation Research Institute Co.,Ltd.

Assignor: China Jiliang University

Contract record no.: X2021330000071

Denomination of invention: Nanocrystalline materials for fluorescent temperature probes

Granted publication date: 20190108

License type: Common License

Record date: 20210816

EE01 Entry into force of recordation of patent licensing contract
EC01 Cancellation of recordation of patent licensing contract

Assignee: Xinchang China Metrology University Enterprise Innovation Research Institute Co.,Ltd.

Assignor: China Jiliang University

Contract record no.: X2021330000071

Date of cancellation: 20211231

EC01 Cancellation of recordation of patent licensing contract