CN106566527B - 一种提高上转换发光纳米晶中Tm3+掺杂浓度的方法 - Google Patents

一种提高上转换发光纳米晶中Tm3+掺杂浓度的方法 Download PDF

Info

Publication number
CN106566527B
CN106566527B CN201610925712.3A CN201610925712A CN106566527B CN 106566527 B CN106566527 B CN 106566527B CN 201610925712 A CN201610925712 A CN 201610925712A CN 106566527 B CN106566527 B CN 106566527B
Authority
CN
China
Prior art keywords
solution
milliliters
temperature
doping concentration
conversion luminescence
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610925712.3A
Other languages
English (en)
Other versions
CN106566527A (zh
Inventor
雷磊
吴若桢
徐时清
肖珍
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Jiliang University
Original Assignee
China Jiliang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Jiliang University filed Critical China Jiliang University
Publication of CN106566527A publication Critical patent/CN106566527A/zh
Application granted granted Critical
Publication of CN106566527B publication Critical patent/CN106566527B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7704Halogenides
    • C09K11/7705Halogenides with alkali or alkaline earth metals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7766Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals
    • C09K11/7772Halogenides
    • C09K11/7773Halogenides with alkali or alkaline earth metal

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Biophysics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Luminescent Compositions (AREA)

Abstract

本发明属于无机发光材料领域。一种用于提高上转换发光纳米晶中Tm3+掺杂浓度的方法,在制备上述纳米晶的过程中,通过加入氨水调节反应溶液的PH值并使其在9‑10范围内,使得产物中敏化离子Yb3+和激活离子Tm3+分布在壳层的二维空间中。优点是有利于提高激活离子最佳掺杂浓度,上转换发光纳米晶中Tm3+掺杂浓度提高,并且发光强度提高,为获得高效率上转换发光纳米材料提供了一个全新的思路,有望在纳米材料制备和应用领域得到广泛的使用。

Description

一种提高上转换发光纳米晶中Tm3+掺杂浓度的方法
技术领域
本发明属于无机发光材料领域,具体是提高上转换发光纳米晶中Tm3+掺杂浓度的方法。
背景技术
Yb/Tm:NaGdF4能够实现近红外980nm到近红外800nm的上转换发光,其激发光和发射光均位于生物组织的光透过窗口,在进行生物标记时能实现较大的穿透深度,成为生物成像领域的一个研究热点。高发光效率是这类材料获得实际应用的重要前提,目前提高上转换发光效率普遍采用的方法是构造核壳结构,比如Yb/Tm:NaYF4@NaYF4核壳纳米晶,NaYF4壳层能够有效抑制位于核中的激活离子将能量传递到表面的缺陷或者有机配体,进而提高发光强度。
研究表明,增加激活离子掺杂浓度是提高发光效率最有效的方法之一,然而由于稀土离子具有丰富的能级结构,增加激活离子掺杂浓度会导致浓度猝灭效应,即产生大量的无辐射弛豫以及能量反传递,导致发光强度大幅降低。
发明内容
本发明公开一种将敏化离子Yb3+和激活离子Tm3+分布在二维空间的壳层中,使得上转换发光纳米晶中Tm3+掺杂浓度提高,并且发光强度提高的上转换发光纳米晶中Tm3+掺杂浓度的方法。
实现上述目的,本发明所采取的技术方案是:
一种用于提高上转换发光纳米晶中Tm3+掺杂浓度的方法,依次包括如下步骤:
(1)将0.4毫摩尔氯化镥、8毫升油酸以及12毫升十八烯加入到三颈瓶中,在氮气的保护条件下,在150℃的温度下保温1小时得到无水的透明溶液A;待A溶液自然冷却至30℃后,将6毫升含有1毫摩尔氢氧化钠和2毫摩尔氟化铵的甲醇溶液逐滴加入到A溶液中,然后在70℃保温半小时;待甲醇溶液全部挥发之后,升温到285℃,并在此温度下保温 100分钟,然后自然冷却到室温;采用高速离心的方法获得NaLuF4纳米晶,然后用乙醇和环己烷混合液洗涤,最后将NaLuF4纳米晶保存在 4毫升环己烷中备用;
(2)将(0.8-m)毫摩尔氯化钆,0.2毫摩尔氯化镱,m毫摩尔氯化铥,8 毫升油酸以及12毫升十八烯加入到三颈瓶中,通过加入氨水调节溶液 PH值并使其在9-10范围内,在氮气的保护条件下,在150℃的温度下保温1小时得到无水的透明溶液B;待B溶液自然冷却至80℃后,加入4毫升含有NaLuF4纳米晶的环己烷溶液,并在100℃保温半小时;待B溶液自然冷却至30℃后,将6毫升含有2毫摩尔氢氧化钠和4毫摩尔氟化铵的甲醇溶液逐滴加入到B溶液中,然后在70℃保温半小时;待甲醇溶液全部挥发之后,以12℃每分钟的速率升温到285℃,并在此温度下保温60分钟,然后自然冷却到室温;采用高速离心的方法获得 NaLuF4@Yb/Tm:NaGdF4核壳纳米晶,然后用乙醇和环己烷混合液洗涤,最后于40℃-80℃烘干后得到最终产物,产物中敏化离子Yb3+和激活离
子Tm3+分布在壳层的二维空间中。
作为优选,产物中敏化离子Yb3+和激活离子Tm3+分布在壳层厚度为1.5nm的二维空间中
作为优选,m是0.002-0.06之间。
作为优选,m是0.005、0.01、0.03、0.05中的一个。
采用上述技术方案的一种用于提高上转换发光纳米晶中Tm3+掺杂浓度的方法,在制备纳米晶的过程中,通过加入氨水调节反应溶液的PH值并使其在9-10 范围内,使得产物中敏化离子Yb3+和激活离子Tm3+分布在壳层厚度为1.5nm的二维空间中,从而极大地提高了Yb3+到Tm3+的能量传递效率,最终使得Tm3+掺杂浓度由0.5%提高到3%,发光强度为原来的7倍,而且与平均尺寸为9nm且Tm3+掺杂浓度为0.5%的核纳米晶相比,将0.5%Tm3+分布在1.5nm壳层中的纳米晶的发光强度提高了近4倍。需要指出随着壳层厚度的改变,Yb3+和Tm3+的空间分布以及Yb3+到Tm3+的能量传递效率也会随之发生改变,从而达不到本发明的技术效果。此外,常用调控壳层厚度的方法是改变前驱体的浓度,这样不仅容易引起单独形核,而且难以实现壳层厚度的精确控制,而本发明不仅制备过程简单、成本低、产量高,而且所得产物的壳层厚度易于控制。这种将敏化离子和激活离子分布在具有特殊壳层厚度的二维空间中的方法,有利于提高激活离子最佳掺杂浓度,为获得高效率上转换发光纳米材料提供了一个全新的思路,有望在纳米材料制备和应用领域得到广泛的使用。
附图说明
图1:本专利实施例中NaLuF4(a)和NaLuF4@Yb/Tm:NaGdF4(b)纳米晶的X射线衍射图;
图2:本专利实施例中NaLuF4(a)和NaLuF4@Yb/Tm:NaGdF4(b)纳米晶的透射电镜图;
图3:本专利实施例中NaLuF4@Yb/Tm:NaGdF4纳米晶的上转换发光谱图;
图4:对比例中Yb/Tm:NaGdF4纳米晶的X射线衍射图;
图5:对比例中Yb/Tm:NaGdF4纳米晶的透射电镜图;
图6:对比例中Yb/Tm:NaGdF4的上转换发光谱图。
具体实施方式
实施例
如图1-3所示,一种用于提高上转换发光纳米晶中Tm3+掺杂浓度的方法,依次包括如下步骤:(1)将0.4毫摩尔氯化镥,8毫升油酸以及12毫升十八烯加入到三颈瓶中,在氮气的保护条件下,在150℃的温度下保温1小时得到无水的透明溶液A;待A溶液自然冷却至30℃后,将6毫升含有1毫摩尔氢氧化钠和2 毫摩尔氟化铵的甲醇溶液逐滴加入到A溶液中,然后在70℃保温半小时;待甲醇溶液全部挥发之后,升温到285℃,并在此温度下保温100分钟,然后自然冷却到室温;采用高速离心的方法获得NaLuF4纳米晶,然后用乙醇和环己烷混合液洗涤,最后将NaLuF4纳米晶保存在4毫升环己烷中备用;
(2)将(0.8-x%)毫摩尔氯化钆,0.2毫摩尔氯化镱,x%毫摩尔氯化铥,8 毫升油酸以及12毫升十八烯加入到三颈瓶中,通过加入氨水调节溶液PH值并使其在9-10范围内,在氮气的保护条件下,在150℃的温度下保温1小时得到无水的透明溶液B;待B溶液自然冷却至80℃后,加入4毫升含有NaLuF4纳米晶的环己烷溶液,并在100℃保温半小时;待B溶液自然冷却至30℃后,将6 毫升含有2毫摩尔氢氧化钠和4毫摩尔氟化铵的甲醇溶液逐滴加入到B溶液中,然后在70℃保温半小时;待甲醇溶液全部挥发之后,以12℃每分钟的速率升温到285℃,并在此温度下保温60分钟,然后自然冷却到室温;采用高速离心的方法获得NaLuF4@Yb/Tm:NaGdF4核壳纳米晶,然后用乙醇和环己烷混合液洗涤,最后于60℃烘干后得到最终产物。
不同Tm3+离子掺杂浓度,如图3中的x是0.5、x=1、x=3、x=5中的数值是百分比浓度,对应的氯化铥的量分别是0.005、0.01、0.03、0.05毫摩尔,对应的氯化钆的量分别是0.795、0.79、0.77、0.75毫摩尔。
粉末X射线衍射分析与透射电子显微镜观察分析表明:如图1所示,NaLuF4和NaLuF4@Yb/Tm:NaGdF4核壳纳米晶都为纯六方相;如图2所示,尺寸分别为 10nm和13nm,含有不同激活离子Tm3+的纳米晶尺寸基本相同。在980nm激光照射下,所有样品的发射谱都包含以450nm和800nm为中心的两个波段。如图3 所示,随着Tm3+掺杂浓度逐渐提高,发光强度先增加后降低,当Tm3+离子掺杂浓度为3%时,上转换发光强度达到最大值。根据费米黄金定则可推论出,二维空间中稀土离子之间的能量传递效率远高于三维空间,因而通过构造核壳结构,使产物中敏化离子Yb3+和激活离子Tm3+分布在壳层厚度为1.5nm的二维空间中,从而极大地提高了Yb3+到Tm3+的能量传递效率,最终使得Tm3+最佳掺杂浓度由 0.5%提高到3%,发光强度为原来的7倍。
对比例
将(0.8-y%)毫摩尔氯化钆,y%毫摩尔氯化铥,0.2毫摩尔氯化镱,10毫升油酸,16毫升十八烯加入到三颈瓶中,在氮气的保护条件下,在150℃的温度下保温1小时得到无水的透明溶液A;待A溶液自然冷却到室温后,将6毫升含有2毫摩尔氢氧化钠和4毫摩尔氟化铵的甲醇溶液逐滴加入到A溶液中,然后在70℃的温度下保温半小时;待甲醇溶液全部挥发之后,迅速升温到280℃,并在此温度下保温90分钟,然后自然冷却到室温;将所得的纳米晶用乙醇和环己烷混合液洗涤,然后于60℃烘干后得到最终产物。不同Tm3+离子掺杂浓度,如图6中的y是0.5、y=1、y=3中y的数值是百分比浓度,即0.5%,1%,3%,对应的氯化铥的量分别是0.005、0.01、0.03毫摩尔,对应的氯化钆的量分别是0.795、0.79、0.77毫摩尔。
粉末X射线衍射分析与透射电子显微镜观察表明:如图4所示,所得产物为纯六方相,如图5所示,尺寸约为8nm;在980nm激光照射下,所有样品的发射谱都包含以450nm和800nm为中心的两个波段,发光强度随着Tm3+掺杂浓度的逐渐提高而逐渐降低,当Tm离子掺杂浓度提高到3%时,发光强度降为原来的 7%,如图6所示。在三维空间的核纳米晶中,随着激活离子浓度的提高,激活离子之间的无辐射交叉驰豫几率大幅增加,大量损耗其吸收的能量,导致发光强度大幅下降。

Claims (2)

1.一种提高上转换发光纳米晶中Tm3+掺杂浓度的方法,其特征在于包括以下步骤:(1)将0.4毫摩尔氯化镥、8毫升油酸以及12毫升十八烯加入到三颈瓶中,在氮气的保护条件下,在150℃的温度下保温1小时得到无水的透明溶液A;待A溶液自然冷却至30℃后,将6毫升含有1毫摩尔氢氧化钠和2毫摩尔氟化铵的甲醇溶液逐滴加入到A溶液中,然后在70℃保温半小时;待甲醇溶液全部挥发之后,升温到285℃,并在此温度下保温100分钟,然后自然冷却到室温;采用高速离心的方法获得NaLuF4纳米晶,然后用乙醇和环己烷混合液洗涤,最后将NaLuF4纳米晶保存在4毫升环己烷中备用;(2)将(0.8-m)毫摩尔氯化钆, 0.2毫摩尔氯化镱, m毫摩尔氯化铥,8毫升油酸以及12毫升十八烯加入到三颈瓶中,通过加入氨水调节溶液PH 值并使其在9-10范围内,在氮气的保护条件下,在150℃的温度下保温1小时得到无水的透明溶液B,上述m是0.002-0.06之间;待B溶液自然冷却至80℃后,加入4毫升含有NaLuF4纳米晶的环己烷溶液,并在100 ℃保温半小时;待B溶液自然冷却至30℃后,将6毫升含有2毫摩尔氢氧化钠和4毫摩尔氟化铵的甲醇溶液逐滴加入到B溶液中,然后在70℃保温半小时;待甲醇溶液全部挥发之后,以 12℃每分钟的速率升温到285℃,并在此温度下保温60分钟,然后自然冷却到室温;采用离心的方法获得NaLuF4@Yb/Tm:NaGdF4核壳纳米晶,然后用乙醇和环己烷混合液洗涤,最后于 40℃-80℃烘干后得到最终产物,产物中敏化离子Yb3+和激活离子Tm3+分布在壳层的二维空间中。
2.根据权利要求1所述的一种提高上转换发光纳米晶中Tm3+掺杂浓度的方法,其特征在于产物中敏化离子Yb3+和激活离子Tm3+分布在壳层厚度为1.5nm的二维空间中。
CN201610925712.3A 2016-08-12 2016-10-24 一种提高上转换发光纳米晶中Tm3+掺杂浓度的方法 Active CN106566527B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2016106593743 2016-08-12
CN201610659374 2016-08-12

Publications (2)

Publication Number Publication Date
CN106566527A CN106566527A (zh) 2017-04-19
CN106566527B true CN106566527B (zh) 2019-02-26

Family

ID=58533346

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610925712.3A Active CN106566527B (zh) 2016-08-12 2016-10-24 一种提高上转换发光纳米晶中Tm3+掺杂浓度的方法

Country Status (1)

Country Link
CN (1) CN106566527B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109097050B (zh) * 2018-09-05 2021-03-26 中国计量大学 荧光防伪标签材料及其制备方法和应用
CN109097049B (zh) * 2018-09-05 2021-03-26 中国计量大学 防伪标签材料及其制备方法和应用
CN109233805B (zh) * 2018-09-13 2021-03-05 中国计量大学 具有负热淬灭效应的防伪标签材料及其制备方法和应用
CN113769115B (zh) * 2021-10-20 2022-05-03 苏州大学 一种上转换纳米诊疗一体化平台探针及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102268259A (zh) * 2011-06-14 2011-12-07 中国科学院长春光学精密机械与物理研究所 发光中心分区域掺杂稀土上转换荧光材料及其制备方法
CN103881720A (zh) * 2014-01-24 2014-06-25 中国科学院长春光学精密机械与物理研究所 一种利用核壳包覆制备高掺杂的稀土上转换荧光材料的方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104781729A (zh) * 2012-09-17 2015-07-15 麦考瑞大学 增强稀土掺杂颗粒中的上转换发光

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102268259A (zh) * 2011-06-14 2011-12-07 中国科学院长春光学精密机械与物理研究所 发光中心分区域掺杂稀土上转换荧光材料及其制备方法
CN103881720A (zh) * 2014-01-24 2014-06-25 中国科学院长春光学精密机械与物理研究所 一种利用核壳包覆制备高掺杂的稀土上转换荧光材料的方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
Breakthrough in concentration quenching threshold of upconversion luminescence via spatial separation of the emitter doping area for bio-applications;Xiaomin Liu等;《Chem. Commun.》;20111231;11957–11959
Growth of lan thanide-dop ed LiGdF4nano particles induced by LiLuF4 core as tri-mod al imaging bioprobes;Xuesong Zhai;《Biomaterials》;20150615;115-123
Preparation of core-shell NaGdFdoped with luminescent lanthanide ions to be used as upconversion-based probes;Feng Wang等;《 nature protocols》;20141231;1634-1644
Upconverting Near-Infrared Light through Energy Management in Core–Shell–Shell Nanoparticles;Hongli Wen等;《Angew. Chem. Int. Ed. 》;20131231;第52卷;13419-13423
疏水基团修饰的核-壳型NaYF4/NaLuF4:Yb3+,Tm3+纳米粒子设计制备;郎言波等;《发光学报》;20150430;第36卷;382-388

Also Published As

Publication number Publication date
CN106566527A (zh) 2017-04-19

Similar Documents

Publication Publication Date Title
CN106566527B (zh) 一种提高上转换发光纳米晶中Tm3+掺杂浓度的方法
Liang et al. The enhanced upconversion fluorescence and almost unchanged particle size of β-NaYF4: Yb3+, Er3+ nanoparticles by codoping with K+ ions
Guo et al. Crystal structure and up-and down-conversion properties of Yb 3+, Ho 3+ codoped BaGdF 5 solid-solution with different morphologies
CN102127444B (zh) 纳米金修饰的增强型上转换发光复合材料及其制备方法
Dey et al. Green upconversion emission in Nd3+–Yb3+–Zn2+: Y2O3 phosphor
Wang et al. Hydrothermal synthesis and luminescence behavior of rare-earth-doped NaLa (WO4) 2 powders
CN106634988B (zh) 用于荧光温度探针的纳米晶材料
Tyagi et al. KLaF4: Er an efficient upconversion phosphor
CN110878207A (zh) 一种上转换纳米光开关材料及其制备方法
Noculak et al. Ion–ion interactions in β-NaGdF 4: Yb 3+, Er 3+ nanocrystals–the effect of ion concentration and their clustering
Sukul et al. Near-infrared (808 and 980 nm) excited photoluminescence study in Nd-doped Y2O3 phosphor for bio-imaging
CN110055069A (zh) 一种多波长激发的单谱带上转换红光纳米晶材料
Maurizio et al. Luminescence dynamics and enhancement of the UV and visible emissions of Tm 3+ in LiYF 4: Yb 3+, Tm 3+ upconverting nanoparticles
Wang et al. Compressed energy transfer distance for remarkable enhancement of the luminescence of Nd 3+-sensitized upconversion nanoparticles
Maurizio et al. BaYF5: Yb3+, Tm3+ upconverting nanoparticles with improved population of the visible and near-infrared emitting states: implications for bioimaging
Wang et al. Infrared luminescent properties of Na5Lu9F32 single crystals co-doped Er3+/Yb3+ grown by Bridgman method
Doke et al. Novel broadband near-infrared emitting long afterglow phosphor MgGeO3: Cr3+
Xi et al. Comparison of upconversion luminescent properties and temperature sensing behaviors of β-NaYF 4: Yb 3+/Er 3+ nano/microcrystals prepared by various synthetic methods
Li et al. Enhanced red up-conversion of β-NaYF4: Er3+, Tm3+ microcrystals for bio-imaging applications
Wang et al. Size/morphology induced tunable luminescence in upconversion crystals: ultra-strong single-band emission and underlying mechanisms
Xiantao et al. Strong dependence of upconversion luminescence on doping concentration in holmium and ytterbium co-doped Y2O3 phosphor
Grobelna et al. Novel inorganic xerogels doped with CaWO4: xDy: Synthesis, characterization and luminescence properties
Hirano et al. Intense up-conversion luminescence of Er3+/Yb3+ co-doped YNbO4 through hydrothermal route
Liu et al. Facile synthesis and multicolor luminescence properties of Gd4O3F6: Ln3+ (Ln= Eu, Tb, Dy, Sm, Ho, Tm, Yb/Er, Yb/Ho) microcrystals
Xu et al. The upconversion luminescence from visible to near-infrared in pyrosilicate C-Er2Si2O7

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
EE01 Entry into force of recordation of patent licensing contract
EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20170419

Assignee: Xinchang China Metrology University Enterprise Innovation Research Institute Co.,Ltd.

Assignor: China Jiliang University

Contract record no.: X2021330000071

Denomination of invention: A method for increasing TM3 +doping concentration in upconversion luminescent nanocrystals

Granted publication date: 20190226

License type: Common License

Record date: 20210816

EC01 Cancellation of recordation of patent licensing contract
EC01 Cancellation of recordation of patent licensing contract

Assignee: Xinchang China Metrology University Enterprise Innovation Research Institute Co.,Ltd.

Assignor: China Jiliang University

Contract record no.: X2021330000071

Date of cancellation: 20211231