CN108279562A - 一种基于滑模pid控制的飞行机械臂 - Google Patents

一种基于滑模pid控制的飞行机械臂 Download PDF

Info

Publication number
CN108279562A
CN108279562A CN201810014083.8A CN201810014083A CN108279562A CN 108279562 A CN108279562 A CN 108279562A CN 201810014083 A CN201810014083 A CN 201810014083A CN 108279562 A CN108279562 A CN 108279562A
Authority
CN
China
Prior art keywords
control
sliding formwork
mechanical arm
quadrotor
unmanned plane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810014083.8A
Other languages
English (en)
Inventor
刘云平
周玉康
黄希杰
杨健康
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Information Science and Technology
Original Assignee
Nanjing University of Information Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Information Science and Technology filed Critical Nanjing University of Information Science and Technology
Priority to CN201810014083.8A priority Critical patent/CN108279562A/zh
Publication of CN108279562A publication Critical patent/CN108279562A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B11/00Automatic controllers
    • G05B11/01Automatic controllers electric
    • G05B11/36Automatic controllers electric with provision for obtaining particular characteristics, e.g. proportional, integral, differential
    • G05B11/42Automatic controllers electric with provision for obtaining particular characteristics, e.g. proportional, integral, differential for obtaining a characteristic which is both proportional and time-dependent, e.g. P.I., P.I.D.

Abstract

本发明公开了一种基于滑模PID控制的飞行机械臂,考虑到四旋翼的欠驱动问题,即4个输入控制6个自由度,可以充分利用系统的耦合特性,建立姿态角与位置和高度控制量U1之间的数学关系,从而通过控制姿态角和位置高度来实现轨迹跟踪的目的。将系统分为一个全驱动子系统和一个欠驱动子系统,既可实现四旋翼飞行器的空中飞行功能,又可达到机械手在空中抓取功能的基于四旋翼飞行器的运载机械手,可以根据物体不同的运动对机械臂进行快速、准确的控制,能够针对不同状态的物体运动实现稳定的跟踪并进行抓取。

Description

一种基于滑模PID控制的飞行机械臂
技术领域
本发明属于航空飞行器设计技术领域,尤其是涉及一种高效、多用途、既可实现四旋翼飞行器的空中飞行功能,又可达到机械手在空中抓取功能的基于四旋翼飞行器的运载机械手,可以根据物体不同的运动对机械臂进行快速、准确的控制,能够针对不同状态的物体运动实现稳定的跟踪并进行抓取。
背景技术
四旋翼飞行器是一种利用四个旋翼作为飞行引擎来进行空中飞行的飞行器。进入20世纪以来,电子技术飞速发展四轴飞行器开始走向小型化,并融入了人工智能,使其发展趋于无人机,智能机器人。四轴飞行器不但实现了直升机的垂直升降的飞行性能,同时也在一定程度上降低了飞行器机械结构的设计难度。四轴飞行器的平衡控制系统由各类惯性传感器组成。在制作过程中,对整体机身的中心、对称性以及电机性能要求较低,这也正是制作四轴飞行器的优势所在,而且相较于固定翼飞机,四轴也有着可垂直起降,机动性好,易维护等优点。
机械手是在机械化,自动化生产过程中发展起来的一种新型装置。在现代生产过程中,机械手被广泛的运用于自动生产线中,机械人的研制和生产已成为高技术领域内,迅速发展起来的一门新兴的技术,它更加促进了机械手的发展,使得机械手能更好地实现与机械化和自动化的有机结合。机械手虽然还不如人手那样灵活,但它具有能不断重复工作和劳动,不知疲劳,不怕危险,抓举重物的力量比人手力大的特点,因此,机械手已受到许多部门的重视,并越来越广泛地得到了应用。
四旋翼由于陀螺效应、大气扰动等外在原因大大限制了无人机搭载方面的发展;四旋翼系统本身的强耦合、欠驱动、多变量以及非线性等特点,使得对其的飞行控制设计难以实现,而对无人机搭载机械臂的控制也变得更加困难。搭载机械臂会令无人机的稳定更加难以控制,这是由于搭载机械臂会影响无人机自身的平衡性,机械臂自身的惯性会令系统产生抖振,而且搭载机械臂的无人机会更加容易受到扰动。目前无人机携带设备成本较高且发生事故的概率也较大,因此研究和分析无人机搭载机械臂的时候的稳定性和可靠性显得尤为重要。
发明内容
本发明提出了一种新型的滑模PID控制,针对传统PID控制中出现的抗干扰性差、鲁棒性差,以及滑模控制中存在的抖振问题进行了改善。在不同环境下,对机械臂进行运动的跟踪和分析其稳定性。
技术方案如下:
考虑到四旋翼的欠驱动问题,即4个输入控制6个自由度,可以充分利用系统的耦合特性,建立姿态角与位置和高度控制量U1之间的数学关系,从而通过控制姿态角和位置高度来实现轨迹跟踪的目的。将系统分为一个全驱动子系统和一个欠驱动子系统,主要步骤如下;
1)首先通过欧拉庞卡莱方程建立四轴无人机的动力学模型,得到7个姿态角加速度,包括x,y,z轴方向上的加速度,翻滚角加速度、偏航角加速度,俯仰角加速度和机械臂运动加速度通过这些加速度实现对无人机各个控制器的反解算。
2)设计滑模PID控制器,主要分为两个步骤,第一步设计滑模面,本发明设计的滑模面为s=0,并采用指数趋近率,第二步是设计无人机控制律,本发明所设计的控制器是将滑模控制和PID控制进行结合,设计出一种新型的滑模PID控制器。
3)通过相关的计算就可以得到,无人机俯仰、翻滚、偏航和上下运动的四种控制律,根据求得的控制律搭建图3的simulink仿真图,并进行仿真设计,将无人机的一些硬件架构参数输入到无人机仿真模型中去,就可以对无人机的姿态数据进行控制。
4)构造Lyapunov函数的方法来对系统的稳定性进行证明。
5)最后为了方便与传统的PID控制进行比较,本发明在机械臂不同的运动状况和加干扰的情况下对两种控制进行比较,最终得到图4和图5的仿真控制图。
有益效果
针对四旋翼飞行器挂载机械臂的稳定性控制存在欠驱动、强耦合和易受干扰等问题,提出了一种滑模PID控制方法,并在动力学模型的基础上,改进了传统的PID控制,采用指数趋近率的滑模控制,设计了一种滑模PID控制器。通过Lyapunov函数证明了控制器的稳定性,并考虑了波动控制信号和外界扰动对系统稳定性影响。与传统PID控制进行仿真对比,实验表明滑模PID控制器能够准确且快速的对四旋翼的姿态进行控制,使四旋翼能够减少来之外界的不确定干扰,能够更好的保持稳定,系统能够快速响应、缩短调节时间、抵抗扰动,对于整个系统能够更加稳定的控制,为今后实际的机械臂控制实验垫定了理论基础。
附图说明
图1为四旋翼搭载机械臂结构图;
图2为控制顺序流程图;
图3为仿真设计图;
图4为滑模PID控制在机械臂为正弦期望运动下无人机的实际姿态;
图5是PID控制在机械臂为正弦期望运动下无人机的实际姿态。
具体实施方式
以下结合附图具体说明本发明技术方案。
图1是四旋翼搭载机械臂的结构图,为方便建模和分析,建立了三个坐标系——地球坐标系E-XYZ、四旋翼坐标系B-xyz和机械臂坐标系A-ax,az。其中,E坐标系可视为惯性坐标系,而B坐标系为随动坐标系且B的原点位于四旋翼的质心位置,搭载的机械臂位于四旋翼的下方。
表1四旋翼结构参数表
选取广义坐标矢量q=(φ,θ,ψ,x,y,z,a)T,伪速度矢量p=(p,q,r,u,v,w,b)T,基于欧拉-庞卡莱方程建立四旋翼无人机的动力学模型[14],其方程的一般形式如式1所示和式2所示。
其中,表示四旋翼飞行器姿态角向量,X=(x,y,z)T表示四旋翼飞行器的质心相对于大地坐标系的空间位置向量。a表示机械臂与z轴的夹角,而b表示其角速度。V(q)是运动学矩阵,是四旋翼的伪速度向广义速度转换的矩阵。M(q)是惯性矩阵,C(q,p)是陀螺矩阵,F(p,q,u)为包含空气动力、重力以及控制输入的总和。为简化公式,令
Sφ=sinφ,Sθ=sinθ,Sa=sina,Cθ=cosθ,Sψ=sinψ,Cψ=cosψ,Ca=cosa
则上述中的表达式分别为:
M(q)=[b1b2] (4)
C(q,p)=[a1 a2 a3 a4 a5 a6 a7] (5)
其中b1,b2,a1,a2,a3,a4,a5,a6,a7为子矩阵,他们定义如下:
Ul为垂直高度控制量,U2为滚转输入控制量,U3为俯仰控制输入量,U4为偏航控制量,T为下拉角的控制量,Fi(i=1,2,3,4)为各旋翼所受到的拉力,A=πR2,且
输入向量为U=[U1,U2,U3,U4,T]T。当四旋翼在无风或风速很小的状态下低速飞行时,空气阻力对系统的影响较小,可以忽略不计。同时,假设四旋翼在飞行过程中的滚转角和俯仰角很小,且其变化率也充分小,根据,则可近似得到:
因此,系统的数学模型最终可简化为:
图2是根据上述的动力学方程准备进行仿真实验的流程图。实验通过在建立旋翼飞行机械臂的动力学模型基础上,基于滑模PID方法设计了整个系统的控制器,并通过建立Lyapunov函数研究了飞行器的稳定性。
水平位置控制模块和下拉倾斜角模块均采用PID算法,建立目标位置(xd,yd)与加速度(x”,y”)、期望倾斜角ad和机械臂控制力矩之间的关系,三个量的控制律如下:
高度控制和姿态控制采用滑模PID算法。本文提出的滑模PID控制器的设计主要分为两个步骤[17]。其一是选取适当的PID滑模面函数s,其二是设计合适的控制律,使该系统能够到达并且保持在期望的滑模面s=0上。现以四旋翼的高度控制为例,首先,已知zd为期望高度,实际高度为z,定义跟踪误差函数为:
ez=zd-z (10)
选取滑模面:
为了保证s较大时,系统能以较大的速度趋近于滑动模态,选取指数趋近率的方法推导控制变量U1
其中,为sz对时间的导数,ε和k均为正常数,在本文的实验中ε取值为0.01,k取值为3,sgn(s)为符号函数。
本实验利用Lyapunov函数来判断系统的稳定性,设置Lyapunov函数为:
可知,四旋翼系统满足Lyapunov渐进稳定的稳定性判据,是一种渐进稳定系统,跟踪误差将会逐渐减少最终收敛到0,且满足滑动模态的可达条件。根据滑模面的一阶导和选取的指数趋近律就能够得到滑模中整个系统的高度的具体表达式,具体如式15。
U1=(A4*Sz+A3*T-A1)/A2 (15)
其中
A2=2(2Jy(m1+m2)+m2R2(2m1+m2))-2m2 2R2C2a
A3=4m2(m1+m2)RSa
A4=4(m1+m2)(Jy(m1+m2)+m1m2R2)
同理可以得到翻滚、俯仰和偏航的控制律分别是:
U2=F((B*D-E*C)/(A*B-C2)
U3=(Iy*G+T)/L (16)
U4=F((A*B*E-B*C*D)/(A*B*B-B*C2))
其中D,G,E,T分别为翻滚、俯仰、偏航和下拉角的滑模面函数,A,B,C,F分别为
A=L(2Iz(m1+m2)+m1m2R2(1-C2a))
B=2Ix(m1+m2)+m1m2R2(1+C2a)
C=m1m2R2S2a
F=2(IxIz(m1+m2)+m1m2R2(Izcos2a+IxSa 2))
图3是基于上述建立的旋翼飞行机械臂的动力学模型,利用Simulink对该模型进行仿真分析,利用S-Function的形式搭建了两个模块,即控制器模块U和四旋翼动力模块Muav,得到的仿真结构图。
针对该模型,设计初始状态为:
用于设置四旋翼的初始偏航角和机械臂偏离中心的角度,以及他们的角速度和速度。并设定期望控制目标为:
x→xd,y→yd,z→zd,θ→θd,ψ→ψd,φ→φd,a→ad
设定初始状态的具体数值为:
x0=[0.1 0 0.05 0-0.1 0 0 0 0 0 1 0π/6 0]T
并设置其各个位姿的期望值分别为:
将表1中的四旋翼和机械臂的硬件结构参数具体值输入到到模型中,并设置相关的控制器参数,表2是输入到模型中的各个参数值的具体设置。
表2控制器中的结构和控制参数值
图4和图5分别是滑模PID控制和PID控制在机械臂为正弦期望运动下,无人机的实际姿态。通过对两者仿真结果的对比分析,可以发现本控制方法能够更加快速且平滑的到达稳态,解决了传统PID控制过程中易受干扰的问题,并克服了滑模控制中严重的抖振现象,具有较强的鲁棒性和自适应性。

Claims (1)

1.一种基于滑模PID控制的飞行机械臂,其特征在于,考虑到四旋翼的欠驱动问题,即4个输入控制6个自由度,充分利用系统的耦合特性,建立姿态角与位置和高度控制量U1之间的数学关系,将系统分为一个全驱动子系统和一个欠驱动子系统,主要步骤如下;
1)首先通过欧拉庞卡莱方程建立四轴无人机的动力学模型,得到7个姿态角加速度,包括x,y,z轴方向上的加速度,翻滚角加速度、偏航角加速度,俯仰角加速度和机械臂运动加速度通过这些加速度实现对无人机各个控制器的反解算;
2)设计滑模PID控制器,分为两个步骤,第一步设计滑模面,设滑模面为s=0,并采用指数趋近率,第二步设计无人机控制律,将滑模控制和PID控制进行结合,设计滑模PID控制器;
3)通过计算得到无人机俯仰、翻滚、偏航和上下运动的四种控制律,根据求得的控制律搭建仿真图,并进行仿真设计,将无人机的硬件架构参数输入到无人机仿真模型中去,对无人机的姿态数据进行控制;
4)构造Lyapunov函数的方法来对系统的稳定性进行证明;
5)最后为了证明滑模PID的优点,与传统的PID控制进行比较实验,在机械臂不同的运动状况和加干扰的情况下对两种控制进行比较,最终得到仿真控制图。
CN201810014083.8A 2018-01-08 2018-01-08 一种基于滑模pid控制的飞行机械臂 Pending CN108279562A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810014083.8A CN108279562A (zh) 2018-01-08 2018-01-08 一种基于滑模pid控制的飞行机械臂

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810014083.8A CN108279562A (zh) 2018-01-08 2018-01-08 一种基于滑模pid控制的飞行机械臂

Publications (1)

Publication Number Publication Date
CN108279562A true CN108279562A (zh) 2018-07-13

Family

ID=62803299

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810014083.8A Pending CN108279562A (zh) 2018-01-08 2018-01-08 一种基于滑模pid控制的飞行机械臂

Country Status (1)

Country Link
CN (1) CN108279562A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110609568A (zh) * 2019-09-24 2019-12-24 广东名阳信息科技有限公司 一种大型无人机uav的强自耦pi协同控制方法
CN111007854A (zh) * 2019-12-18 2020-04-14 哈尔滨工程大学 一种欠驱动船轨迹跟踪控制系统
CN113625758A (zh) * 2021-08-20 2021-11-09 中国人民解放军火箭军工程大学 一种四旋翼无人机群位姿双环抗干扰编队控制方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104950677A (zh) * 2015-06-17 2015-09-30 浙江工业大学 基于反演滑模控制的机械臂系统饱和补偿控制方法
CN105159306A (zh) * 2015-08-12 2015-12-16 山东劳动职业技术学院 一种基于全局稳定的四旋翼飞行器滑模控制方法
CN106444810A (zh) * 2016-10-31 2017-02-22 浙江大学 借助虚拟现实的无人机机械臂空中作业系统及其控制方法
WO2017160192A1 (ru) * 2016-03-18 2017-09-21 Павел Константинович ГЕРАСИМОВ Способ точной посадки беспилотного летательного аппарата

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104950677A (zh) * 2015-06-17 2015-09-30 浙江工业大学 基于反演滑模控制的机械臂系统饱和补偿控制方法
CN105159306A (zh) * 2015-08-12 2015-12-16 山东劳动职业技术学院 一种基于全局稳定的四旋翼飞行器滑模控制方法
WO2017160192A1 (ru) * 2016-03-18 2017-09-21 Павел Константинович ГЕРАСИМОВ Способ точной посадки беспилотного летательного аппарата
CN106444810A (zh) * 2016-10-31 2017-02-22 浙江大学 借助虚拟现实的无人机机械臂空中作业系统及其控制方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
JING-JING XIONG 等: "Discrete-time sliding mode control for a quadrotor UAV", 《OPTIK》 *
刘云平 等: "四旋翼飞行器的滑模PID轨迹跟踪控制", 《机械科学与技术》 *
刘云平 等: "基于滑模PID的飞行机械臂稳定性控制", 《南京理工大学学报》 *
宋大雷 等: "3自由度旋翼飞行机械臂系统动力学建模与预测控制方法", 《机器人》 *
李选聪: "多旋翼无人机的机械臂抓取动力学分析和控制研究", 《中国优秀硕士学位论文全文数据库信息科技辑》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110609568A (zh) * 2019-09-24 2019-12-24 广东名阳信息科技有限公司 一种大型无人机uav的强自耦pi协同控制方法
CN111007854A (zh) * 2019-12-18 2020-04-14 哈尔滨工程大学 一种欠驱动船轨迹跟踪控制系统
CN111007854B (zh) * 2019-12-18 2022-10-25 哈尔滨工程大学 一种欠驱动船轨迹跟踪控制系统
CN113625758A (zh) * 2021-08-20 2021-11-09 中国人民解放军火箭军工程大学 一种四旋翼无人机群位姿双环抗干扰编队控制方法
CN113625758B (zh) * 2021-08-20 2024-04-26 中国人民解放军火箭军工程大学 一种四旋翼无人机群位姿双环抗干扰编队控制方法

Similar Documents

Publication Publication Date Title
CN108459612B (zh) 基于人工势场法的无人机编队控制方法及装置
Gong et al. Adaptive backstepping sliding mode trajectory tracking control for a quad-rotor
Rodic et al. Control of a Quadrotor Flight
CN109116860B (zh) 三旋翼无人机的非线性鲁棒控制方法
CN107491083B (zh) 一种基于饱和自适应滑模控制的四旋翼自主着船方法
Zhou et al. A unified control method for quadrotor tail-sitter uavs in all flight modes: Hover, transition, and level flight
CN107563044B (zh) 基于在线安全学习的四旋翼无人机路径跟踪控制方法
CN107765553A (zh) 针对旋翼无人机吊挂运输系统的非线性控制方法
CN109597426A (zh) 基于l1自适应控制的四旋翼直升机轨迹跟踪控制方法
Walid et al. Modeling and control of a quadrotor UAV
CN108279562A (zh) 一种基于滑模pid控制的飞行机械臂
Suprijono et al. Direct inverse control based on neural network for unmanned small helicopter attitude and altitude control
CN107678442B (zh) 一种基于双模型下的四旋翼自主着船控制方法
Hegde et al. Transition flight modeling and robust control of a VTOL unmanned quad tilt-rotor aerial vehicle
Katigbak et al. Autonomous trajectory tracking of a quadrotor UAV using PID controller
Alcan et al. Robust hovering control of a quadrotor using acceleration feedback
Roy Robust backstepping control for small helicopter
CN116560249A (zh) 一种机动飞行的高自由度简化建模与轨迹仿真方法
Kemper et al. Impact of center of gravity in quadrotor helicopter controller design
Munoz et al. Embedded robust nonlinear control for a four-rotor rotorcraft: Validation in real-time with wind disturbances
CN111650954B (zh) 基于深度学习的四旋翼无人机地面效应补偿降落控制方法
Abrougui et al. Flight Controller Design Based on Sliding Mode Control for Quadcopter Waypoints Tracking
Kumar et al. Exponential reaching law based robust trajectory tracking for unmanned aerial vehicles
Kang et al. Quaternion based nonlinear trajectory control of quadrotors with guaranteed stability
Afhami et al. Updating LQR control for full dynamic of a quadrotor

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20180713