CN108275665B - 一种纤维状氮化钛/氮化硅/氮化碳复合纳米材料的应用 - Google Patents

一种纤维状氮化钛/氮化硅/氮化碳复合纳米材料的应用 Download PDF

Info

Publication number
CN108275665B
CN108275665B CN201810182453.9A CN201810182453A CN108275665B CN 108275665 B CN108275665 B CN 108275665B CN 201810182453 A CN201810182453 A CN 201810182453A CN 108275665 B CN108275665 B CN 108275665B
Authority
CN
China
Prior art keywords
nitride
composite nano
nano material
silicon nitride
titanium nitride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810182453.9A
Other languages
English (en)
Other versions
CN108275665A (zh
Inventor
孙琴华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Xinhong Holdings Co.,Ltd.
Original Assignee
Hangzhou Fuyang Weiwen Environmental Protection Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hangzhou Fuyang Weiwen Environmental Protection Technology Co ltd filed Critical Hangzhou Fuyang Weiwen Environmental Protection Technology Co ltd
Priority to CN201810182453.9A priority Critical patent/CN108275665B/zh
Publication of CN108275665A publication Critical patent/CN108275665A/zh
Application granted granted Critical
Publication of CN108275665B publication Critical patent/CN108275665B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/0605Binary compounds of nitrogen with carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/068Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with silicon
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/076Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with titanium or zirconium or hafnium
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • C01P2004/82Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/10Solid density
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/14Pore volume
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/90Other properties not specified above
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrochemistry (AREA)
  • Composite Materials (AREA)
  • Textile Engineering (AREA)
  • Inorganic Fibers (AREA)
  • Ceramic Products (AREA)
  • Catalysts (AREA)

Abstract

本发明提供了一种纤维状氮化钛/氮化硅/氮化碳复合纳米材料在燃料电池、光敏太阳能电池和超级电容器中的应用,其中,所述复合纳米材料首先通过静电纺丝方法得到氮化钛/氮化硅复合纳米材料,然后再加入碳氮源,通过简单焙烧即制得氮化钛/氮化硅/氮化碳复合纳米材料,本发明材料具有十分优异的综合性能,材料呈现均匀的纤维状,纤维的直径为几十个纳米,长度为1‑2 um,孔体积为0.33~0.44cm3/g,比表面积高达163.2~183.0m2/g,维氏硬度HV20.1‑22.5Gpa,抗弯强度953‑980Mpa,断裂韧性9.6‑10.5Mpa·m½,相对密度98.9%,电导率为6~9S/cm,是一种前景十分广阔的纳米复合材料。

Description

一种纤维状氮化钛/氮化硅/氮化碳复合纳米材料的应用
本申请是分案申请,原申请的申请号为201610661818.7,申请日为2016年8月13日,发明名称为“一种纤维状氮化钛/氮化硅/氮化碳复合纳米材料及其制备方法”。
技术领域
本发明属于无机纳米材料技术领域,具体涉及一种纤维状氮化钛/氮化硅/氮化碳复合纳米材料的应用。
背景技术
对纳米材料的研究是当今科学研究中一个前沿领域,也是全世界许多科学工作者研究的热点。纳米材料的神奇之处和还不为人们所识的方面更是引起了人们的广泛关注;对纳米材料进行制备的研究和应用更是目前的热点和难点,也是发展高科技的重点。
氮化钛是一种用途广泛的超硬材料,理想化学计量比的块体TiN属于立方晶系,呈金黄色,且具有金属光泽,密度为5.22g/cm3,熔点29~30℃,显微硬度约为21GPa,弹性模量约为590GPa,线膨胀系数为9.35 ×10-6/℃ (20~1000/℃),导热率为19.3W/(m·K)(20℃),电阻率为25.0µΩ·cm,不溶于水、酸,微溶于热王水与氢氟酸混合液。因其具有高强度、高硬度、耐高温、耐酸性侵蚀、耐磨损以及良好的导电性、导热性等一系列优点,在机械加工刀具、刃具、各种材料成型模具和耐磨部件的耐磨涂层以及各种金属部件都有广泛的应用。
纳米氮化硅是一种重要的结构材料,它是一种超硬物质,本身具有润滑性,并且耐磨损;除氢氟酸外,它不与其它无机酸反应,抗腐蚀能力强,高温时抗氧化。而且它还能抵抗冷热冲击,在空气中加热到l000℃以上,急剧冷却再急剧加热,也不会碎裂。具体到物理性能方面,氮化硅材料具有硬度高、耐磨损、弹性模量大、强度高、耐高温、热膨胀系数小、导热系数大、抗热震性好、密度低、表面摩擦系数小、电绝缘性能好等特点;而化学性能方面,它还有耐腐蚀、抗氧化等优点。在电子封装中,硅酮加氮化硅薄膜的双层防护可以显著改善电子模块的防水性能。氮化硅作为一种钝化和绝缘薄膜材料,广泛应用于半导体器件和半导体集成电路。但是其本身介电常数较高,阻碍了其在封装领域绝缘材料的应用。
氮化碳是一类有机半导体光催化材料,氮化碳被认为是室温下稳定的有机聚合物半导体材料。类石墨氮化碳的基本结构单位是由CN的sp2杂化组成嗪环(C6N7),环与环之间通过末端的N原子链接,形成了π共轭平面,因此,这种特殊化学结构使它成为禁带宽度为2.67eV的窄带隙半导体材料,载流子复合速率较高,具有稳定的化学性质、易制备,并且无毒、在可见光范围响应等优点,使它在光催化、电子、光学、生物等很多领域具有广阔的应用前景。
目前,虽然现有技术中氮化钛、氮化硅、氮化碳材料的报道较多,它们虽然具有良好的导电性和机械稳定性,但是其综合性能还是不够理想,还有待进一步提高;因此开发具有优良综合性能的复合纳米材料具有十分重要的意义。
发明内容
本发明的目的是提供一种综合性能优异的三元复合纳米材料,具体涉及一种纤维状氮化钛/氮化硅/氮化碳复合纳米材料的应用。
为解决上述问题,本发明采用的技术方案为:
一种纤维状氮化钛/氮化硅/氮化碳复合纳米材料在燃料电池、光敏太阳能电池和超级电容器中的应用,其中:
所述复合纳米材料为纤维状结构,纤维的直径为几十个纳米,长度为1-2 um,孔体积为0.33~0.44cm3/g,比表面积为163.2~183.0m2/g;所述复合纳米材料为纤维状结构,纤维的直径为几十个纳米,长度为1-2 um,孔体积为0.33~0.44cm3/g,比表面积为163.2~183.0m2/g。
并且本发明还要求保护所述复合纳米材料的制备方法:
一种纤维状氮化钛/氮化硅/氮化碳复合纳米材料的制备方法,包括如下步骤:
(1)氮化钛/氮化硅复合纳米材料的制备:在不断搅拌下依次将15~20g柠檬酸钛、20~30g的硅溶胶依次加入到2~3g、0.005~0.008mol/L的聚乙烯吡咯烷酮和70~90 mL无水乙醇/DMF的混合溶液中,并在30~40℃下搅拌4~8h小时,得到均匀的混合前躯体溶液,然后将前驱体溶液置入具有喷丝头的注射器中,进行纺丝,纺丝的条件为:进样速率为0.3-1m1/h,板间电压为1-2kv/cm,得到前驱体纤维;将前驱体纤维在空气中600-800℃进行热处理,时间为3-5小时,然后自然冷却至室温,得到钛硅氧化物复合纳米纤维;之后将上述纳米纤维置于管式炉中,在升温前向炉内以100~130mL/min的流速通高纯氮气,然后在此流速通氮气的情况下,匀速升温,将炉温升到1100~1200℃,保持此温度6~8小时,然后在通氮气条件下,将温度降到室温,得到氮化钛/氮化硅复合纳米材料;
(2)氮化钛/氮化硅/氮化碳复合纳米材料:将6~10g碳氮源溶解在40~50mL无水乙醇中,并加入步骤(1)得到的氮化钛/氮化硅复合纳米材料,然后将得到的混合物置于40~60℃的温度下,在不断搅拌下将无水乙醇蒸干,最后将蒸干的后的产品在450~550℃氮气气氛中焙烧3~5h,即得氮化钛/氮化硅/氮化碳三元复合纳米材料。
其中,所述的碳氮源为三聚氰胺或单氰胺。
所述将前驱体溶液置入注射器中,注射器前段连接直径为0.5-1.6mm的喷丝头,注射器置于医用微量注射泵中。
所述无水乙醇/DMF的混合溶液中无水乙醇与DMF的体积比为2:1。
本发明的技术效果为:
相对于现有技术,本发明所得氮化钛/氮化硅/氮化碳复合纳米材料,制备方法简单,生产成本低,采用静电纺丝的工艺,得到的材料呈现均匀的纤维状,纤维的直径为几十个纳米,长度为1-2 um,孔体积为0.33~0.44cm3/g,比表面积高达163.2~183.0m2/g,另外,本发明材料还具有十分优异的综合性能,维氏硬度HV20.1-22.5Gpa,抗弯强度953-980Mpa,断裂韧性9.6-10.5Mpa·m½,相对密度98.9%,电导率为6~9S/cm;另外,本发明复合纳米材料应用于燃料电池、光敏太阳能电池和超级电容器中均具有十分优异的性能,是一种前景十分广阔的材料。
附图说明
图1为本发明实施例1复合纳米材料的SEM图。
具体实施方式
下面结合实施例对本发明的技术方案做进一步的阐述:
实施例1
一种纤维状氮化钛/氮化硅/氮化碳复合纳米材料的制备方法,包括如下步骤:
(1)氮化钛/氮化硅复合纳米材料的制备:在不断搅拌下依次将15g柠檬酸钛、20g的硅溶胶依次加入到2g、0.006mol/L的聚乙烯吡咯烷酮和70 mL无水乙醇/DMF的混合溶液中,并在30℃下搅拌8h小时,得到均匀的混合前躯体溶液,然后将前驱体溶液置入具有喷丝头的注射器中,进行纺丝,纺丝的条件为:进样速率为0.6m1/h,板间电压为1kv/cm,得到前驱体纤维;将前驱体纤维在空气中700℃进行热处理,时间为4小时,然后自然冷却至室温,得到钛硅氧化物复合纳米纤维;之后将上述纳米纤维置于管式炉中,在升温前向炉内以120mL/min的流速通高纯氮气,然后在此流速通氮气的情况下,匀速升温,将炉温升到1100℃,保持此温度7小时,然后在通氮气条件下,将温度降到室温,得到氮化钛/氮化硅复合纳米材料;
(2)氮化钛/氮化硅/氮化碳复合纳米材料:将6g三聚氰胺溶解在40mL无水乙醇中,并加入步骤(1)得到的氮化钛/氮化硅复合纳米材料,然后将得到的混合物置于50℃的温度下,在不断搅拌下将无水乙醇蒸干,最后将蒸干的后的产品在550℃氮气气氛中焙烧4h,即得氮化钛/氮化硅/氮化碳三元复合纳米材料。
实施例2
一种纤维状氮化钛/氮化硅/氮化碳复合纳米材料的制备方法,包括如下步骤:
(1)氮化钛/氮化硅复合纳米材料的制备:在不断搅拌下依次将20g柠檬酸钛、30g的硅溶胶依次加入到3g、0.007mol/L的聚乙烯吡咯烷酮和90 mL无水乙醇/DMF的混合溶液中,并在40℃下搅拌4h小时,得到均匀的混合前躯体溶液,然后将前驱体溶液置入具有喷丝头的注射器中,进行纺丝,纺丝的条件为:进样速率为0.6m1/h,板间电压为2kv/cm,得到前驱体纤维;将前驱体纤维在空气中800℃进行热处理,时间为3小时,然后自然冷却至室温,得到钛硅氧化物复合纳米纤维;之后将上述纳米纤维置于管式炉中,在升温前向炉内以130mL/min的流速通高纯氮气,然后在此流速通氮气的情况下,匀速升温,将炉温升到1100℃,保持此温度6小时,然后在通氮气条件下,将温度降到室温,得到氮化钛/氮化硅复合纳米材料;
(2)氮化钛/氮化硅/氮化碳复合纳米材料:将10g单氰胺溶解在50mL无水乙醇中,并加入步骤(1)得到的氮化钛/氮化硅复合纳米材料,然后将得到的混合物置于60℃的温度下,在不断搅拌下将无水乙醇蒸干,最后将蒸干的后的产品在550℃氮气气氛中焙烧5h,即得氮化钛/氮化硅/氮化碳三元复合纳米材料。
实施例3
一种纤维状氮化钛/氮化硅/氮化碳复合纳米材料的制备方法,包括如下步骤:
(1)氮化钛/氮化硅复合纳米材料的制备:在不断搅拌下依次将18g柠檬酸钛、25g的硅溶胶依次加入到2.5g、0.006mol/L的聚乙烯吡咯烷酮和80 mL无水乙醇/DMF的混合溶液中,并在35℃下搅拌6h小时,得到均匀的混合前躯体溶液,然后将前驱体溶液置入具有喷丝头的注射器中,进行纺丝,纺丝的条件为:进样速率为0.6m1/h,板间电压为1.5kv/cm,得到前驱体纤维;将前驱体纤维在空气中700℃进行热处理,时间为5小时,然后自然冷却至室温,得到钛硅氧化物复合纳米纤维;之后将上述纳米纤维置于管式炉中,在升温前向炉内以110mL/min的流速通高纯氮气,然后在此流速通氮气的情况下,匀速升温,将炉温升到1150℃,保持此温度6小时,然后在通氮气条件下,将温度降到室温,得到氮化钛/氮化硅复合纳米材料;
(2)氮化钛/氮化硅/氮化碳复合纳米材料:将9g三聚氰胺溶解在45mL无水乙醇中,并加入步骤(1)得到的氮化钛/氮化硅复合纳米材料,然后将得到的混合物置于45℃的温度下,在不断搅拌下将无水乙醇蒸干,最后将蒸干的后的产品在500℃氮气气氛中焙烧4h,即得氮化钛/氮化硅/氮化碳三元复合纳米材料。
实施例4
一种纤维状氮化钛/氮化硅/氮化碳复合纳米材料的制备方法,包括如下步骤:
(1)氮化钛/氮化硅复合纳米材料的制备:在不断搅拌下依次将19g柠檬酸钛、26g的硅溶胶依次加入到2.8g、0.007mol/L的聚乙烯吡咯烷酮和78mL无水乙醇/DMF的混合溶液中,并在36℃下搅拌6h小时,得到均匀的混合前躯体溶液,然后将前驱体溶液置入具有喷丝头的注射器中,进行纺丝,纺丝的条件为:进样速率为0.6m1/h,板间电压为1.6kv/cm,得到前驱体纤维;将前驱体纤维在空气中700℃进行热处理,时间为4小时,然后自然冷却至室温,得到钛硅氧化物复合纳米纤维;之后将上述纳米纤维置于管式炉中,在升温前向炉内以120mL/min的流速通高纯氮气,然后在此流速通氮气的情况下,匀速升温,将炉温升到1100℃,保持此温度6小时,然后在通氮气条件下,将温度降到室温,得到氮化钛/氮化硅复合纳米材料;
(2)氮化钛/氮化硅/氮化碳复合纳米材料:将7g单氰胺溶解在46mL无水乙醇中,并加入步骤(1)得到的氮化钛/氮化硅复合纳米材料,然后将得到的混合物置于50℃的温度下,在不断搅拌下将无水乙醇蒸干,最后将蒸干的后的产品在500℃氮气气氛中焙烧4h,即得氮化钛/氮化硅/氮化碳三元复合纳米材料。
实施例5
一种纤维状氮化钛/氮化硅/氮化碳复合纳米材料的制备方法,包括如下步骤:
(1)氮化钛/氮化硅复合纳米材料的制备:在不断搅拌下依次将20g柠檬酸钛、27g的硅溶胶依次加入到3g、0.008mol/L的聚乙烯吡咯烷酮和80 mL无水乙醇/DMF的混合溶液中,并在37℃下搅拌7h小时,得到均匀的混合前躯体溶液,然后将前驱体溶液置入具有喷丝头的注射器中,进行纺丝,纺丝的条件为:进样速率为1m1/h,板间电压为1.2kv/cm,得到前驱体纤维;将前驱体纤维在空气中800℃进行热处理,时间为4小时,然后自然冷却至室温,得到钛硅氧化物复合纳米纤维;之后将上述纳米纤维置于管式炉中,在升温前向炉内以130mL/min的流速通高纯氮气,然后在此流速通氮气的情况下,匀速升温,将炉温升到1200℃,保持此温度6小时,然后在通氮气条件下,将温度降到室温,得到氮化钛/氮化硅复合纳米材料;
(2)氮化钛/氮化硅/氮化碳复合纳米材料:将6g单氰胺溶解在43mL无水乙醇中,并加入步骤(1)得到的氮化钛/氮化硅复合纳米材料,然后将得到的混合物置于52℃的温度下,在不断搅拌下将无水乙醇蒸干,最后将蒸干的后的产品在500℃氮气气氛中焙烧5h,即得氮化钛/氮化硅/氮化碳三元复合纳米材料。
实施例6
对实施例1-5所制备材料的性能测试,结果如下:
比表面积m<sup>2</sup>/g 电导率S/cm 维氏硬度Gpa 抗弯强度Mpa 断裂韧性Mpa·m<sup>½</sup>
实施例1 173.4 9 21.5 970 9.9
实施例2 169.3 7 22.5 968 10.2
实施例3 175.3 6 20.1 953 9.6
实施例4 183.0 8 20.8 980 10.5
实施例5 163.2 7 21.7 961 9.7
从上表1可以看出,本发明制备的氮化钛/氮化硅/氮化碳复合纳米材料具有良好的综合性能,是一种应用前景十分广阔的复合纳米材料。
最后应说明的是:以上所述仅为本发明的优选实施例而已,并不用于限制本发明,尽管参照前述实施例对本发明进行了详细的说明,对于本领域的技术人员来说,其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (4)

1.一种纤维状氮化钛/氮化硅/氮化碳复合纳米材料在燃料电池、光敏太阳能电池和超级电容器中的应用,其特征在于:
所述复合纳米材料为纤维状结构,纤维的直径为几十个纳米,长度为1-2 um,孔体积为0.33~0.44cm3/g,比表面积为163.2~183.0m2/g;
其中,所述复合纳米材料的制备方法包括如下步骤:
(1)氮化钛/氮化硅复合纳米材料的制备:在不断搅拌下将15~20g柠檬酸钛、20~30g的硅溶胶依次加入到2~3g、0.005~0.008mol/L的聚乙烯吡咯烷酮和70~90 mL无水乙醇/DMF的混合溶液中,并在30~40℃下搅拌4~8h小时,得到均匀的混合前躯体溶液,然后将前驱体溶液置入具有喷丝头的注射器中,进行纺丝,纺丝的条件为:进样速率为0.3-1mL/h,板间电压为1-2kv/cm,得到前驱体纤维;再将前驱体纤维在空气中600-800℃进行热处理,时间为3-5小时,然后自然冷却至室温,得到钛硅氧化物复合纳米纤维;之后将上述纳米纤维置于管式炉中,在升温前向炉内以100~130mL/min的流速通高纯氮气,然后在此流速通氮气的情况下,匀速升温,将炉温升到1100~1200℃,保持此温度6~8小时,最后在通氮气条件下,将温度降到室温,得到氮化钛/氮化硅复合纳米材料;
(2)氮化钛/氮化硅/氮化碳复合纳米材料:将6~10g碳氮源溶解在40~50mL无水乙醇中,并加入步骤(1)得到的氮化钛/氮化硅复合纳米材料,然后将得到的混合物置于40~60℃的温度下,在不断搅拌下将无水乙醇蒸干,最后将蒸干后的产品在450~550℃氮气气氛中焙烧3~5h,即得氮化钛/氮化硅/氮化碳三元复合纳米材料。
2.根据权利要求1所述的应用, 其特征在于,所述的碳氮源为三聚氰胺或单氰胺。
3.根据权利要求2所述的应用,其特征在于,将前驱体溶液置入注射器中,注射器前段连接直径为0.5-1.6mm的喷丝头,注射器置于医用微量注射泵中。
4.根据权利要求3所述的应用,其特征在于,无水乙醇/DMF的混合溶液中无水乙醇与DMF的体积比为2:1。
CN201810182453.9A 2016-08-13 2016-08-13 一种纤维状氮化钛/氮化硅/氮化碳复合纳米材料的应用 Active CN108275665B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810182453.9A CN108275665B (zh) 2016-08-13 2016-08-13 一种纤维状氮化钛/氮化硅/氮化碳复合纳米材料的应用

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610661818.7A CN106241755B (zh) 2016-08-13 2016-08-13 一种纤维状氮化钛/氮化硅/氮化碳复合纳米材料及其制备方法
CN201810182453.9A CN108275665B (zh) 2016-08-13 2016-08-13 一种纤维状氮化钛/氮化硅/氮化碳复合纳米材料的应用

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN201610661818.7A Division CN106241755B (zh) 2016-08-13 2016-08-13 一种纤维状氮化钛/氮化硅/氮化碳复合纳米材料及其制备方法

Publications (2)

Publication Number Publication Date
CN108275665A CN108275665A (zh) 2018-07-13
CN108275665B true CN108275665B (zh) 2020-05-05

Family

ID=57591580

Family Applications (3)

Application Number Title Priority Date Filing Date
CN201810182453.9A Active CN108275665B (zh) 2016-08-13 2016-08-13 一种纤维状氮化钛/氮化硅/氮化碳复合纳米材料的应用
CN201810182454.3A Active CN108178134B (zh) 2016-08-13 2016-08-13 一种复合纳米材料及其制备方法
CN201610661818.7A Active CN106241755B (zh) 2016-08-13 2016-08-13 一种纤维状氮化钛/氮化硅/氮化碳复合纳米材料及其制备方法

Family Applications After (2)

Application Number Title Priority Date Filing Date
CN201810182454.3A Active CN108178134B (zh) 2016-08-13 2016-08-13 一种复合纳米材料及其制备方法
CN201610661818.7A Active CN106241755B (zh) 2016-08-13 2016-08-13 一种纤维状氮化钛/氮化硅/氮化碳复合纳米材料及其制备方法

Country Status (1)

Country Link
CN (3) CN108275665B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108728846A (zh) * 2017-04-21 2018-11-02 中国航发商用航空发动机有限责任公司 热端部件的热防护涂层制备装置及热防护涂层制备方法
CN109675450B (zh) * 2018-12-26 2020-09-25 中国科学院深圳先进技术研究院 一种抗菌复合纳米纤维膜及其制备方法和应用
CN113262565A (zh) * 2021-04-19 2021-08-17 陈志丽 一种高强度空气过滤器芯材料及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101094944A (zh) * 2004-10-29 2007-12-26 国立科学研究中心 至少包括碳纳米管的复合纤维、其制备方法以及其应用
CN101269969A (zh) * 2008-05-08 2008-09-24 中国人民解放军国防科学技术大学 氮化物陶瓷纤维的制备方法
CN102094261A (zh) * 2009-12-09 2011-06-15 中国科学院兰州化学物理研究所 氮化钛纳米纤维的制备方法
CN105200539A (zh) * 2015-09-29 2015-12-30 东华大学 一种静电纺丝方法及其制备的纳米纤维/纺粘无纺布复合过滤材料

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1733634A (zh) * 2004-08-11 2006-02-15 鸿富锦精密工业(深圳)有限公司 纳米线及其制备方法
KR101265093B1 (ko) * 2008-12-26 2013-05-16 한국과학기술연구원 나노 분말, 나노 잉크 및 마이크로 로드와 그 제조 방법
CN101905974B (zh) * 2010-02-05 2011-11-16 西安理工大学 陶瓷纳米复合纤维的静电纺丝制备方法
US9580323B2 (en) * 2013-05-31 2017-02-28 University Of Notre Dame Du Lac Method of producing graphene and other carbon materials
CN104826622A (zh) * 2014-04-10 2015-08-12 北汽福田汽车股份有限公司 多孔碳纳米纤维负载钐掺杂纳米二氧化钛材料及其制备方法和应用
CN104032406A (zh) * 2014-05-12 2014-09-10 浙江理工大学 一种多孔无机光催化复合纳米纤维的制备方法
CN105002599B (zh) * 2015-06-30 2018-05-22 宁波工程学院 高纯度N掺杂TiO2全介孔纳米纤维的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101094944A (zh) * 2004-10-29 2007-12-26 国立科学研究中心 至少包括碳纳米管的复合纤维、其制备方法以及其应用
CN101269969A (zh) * 2008-05-08 2008-09-24 中国人民解放军国防科学技术大学 氮化物陶瓷纤维的制备方法
CN102094261A (zh) * 2009-12-09 2011-06-15 中国科学院兰州化学物理研究所 氮化钛纳米纤维的制备方法
CN105200539A (zh) * 2015-09-29 2015-12-30 东华大学 一种静电纺丝方法及其制备的纳米纤维/纺粘无纺布复合过滤材料

Also Published As

Publication number Publication date
CN108178134A (zh) 2018-06-19
CN108275665A (zh) 2018-07-13
CN106241755B (zh) 2018-05-11
CN108178134B (zh) 2020-05-05
CN106241755A (zh) 2016-12-21

Similar Documents

Publication Publication Date Title
US10774450B2 (en) Method to massively manufacture carbon fibers through graphene composites and the use thereof
CN108275665B (zh) 一种纤维状氮化钛/氮化硅/氮化碳复合纳米材料的应用
Lu et al. Growth of SiC nanorods at low temperature
KR100836627B1 (ko) 전기방사법을 이용한 인듐 주석 산화물 나노섬유의 제조방법
EP2660192B1 (en) Graphene derivative-carbon nanotube composite material and preparation method thereof
Chen et al. Tribological properties of Ni–P-multi-walled carbon nanotubes electroless composite coating
WO2021068737A1 (zh) 柔性莫来石纤维气凝胶材料及其制备方法
John et al. Open ended nitrogen-doped carbon nanotubes for the electrochemical storage of energy in a supercapacitor electrode
Cao et al. Direct synthesis of high concentration N-doped coiled carbon nanofibers from amine flames and its electrochemical properties
Mishra et al. Effect of annealing temperature on the performance of printable carbon electrodes for perovskite solar cells
CN107988660A (zh) 一种热化学气相沉积制备三维石墨烯纤维的方法及其应用
CN103172050A (zh) 一种氮化硼包覆碳纳米管的制备方法
EP3216757B1 (en) Method for preparing graphene by molten state inorganic salt reaction bed
CN103159210A (zh) 一种制备氮掺杂石墨烯的新方法
Yang et al. Electrospinning of carbon/CdS coaxial nanofibers with photoluminescence and conductive properties
CN106925312A (zh) 一种碳化钼掺杂线性聚合物修饰石墨烯复合材料及其制备方法
CN110451465B (zh) 一种海胆状氮化硼纳米球-纳米管分级结构及其制备方法
CN101428813A (zh) 一种超细氮化硼连续纳米纤维的制备方法
CN107955998B (zh) 一种轻质高柔莫来石超细/纳米陶瓷纤维及其制备方法
Xie et al. Hierarchically nanostructured carbon fiber-nickel-carbon nanotubes for high-performance supercapacitor electrodes
Guo et al. In situ carbon thermal reduction method for the production of electrospun metal/SiOC composite fibers
Sun et al. Electrical property of macroscopic graphene composite fibers prepared by chemical vapor deposition
Huang et al. In-situ synthesis of SiC nanowires on biomass carbon materials derived from cherry stones
CN107151009A (zh) 一种氮掺杂石墨烯及其制备方法和应用
CN113249824B (zh) 一种柔性碳/铁酸镧复合纤维膜材料的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20230613

Address after: No. 39, Qiangongzhuang Village, Xiakou Town, Fucheng County, Hengshui City, Hebei Province, 053000

Patentee after: Xu Yong

Address before: 311400 Chunjiang Street Xinjian village, Fuyang District, Hangzhou City, Zhejiang Province

Patentee before: HANGZHOU FUYANG WEIWEN ENVIRONMENTAL PROTECTION TECHNOLOGY CO.,LTD.

TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20230627

Address after: 518000 New Asia Garden 24-118, No. 85 Jixiang Middle Road, Longgang District, Shenzhen, Guangdong Province

Patentee after: Zhang Yizhi

Address before: No. 39, Qiangongzhuang Village, Xiakou Town, Fucheng County, Hengshui City, Hebei Province, 053000

Patentee before: Xu Yong

TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20230719

Address after: Building 4, Qidi Xiexin, No. 333 Longfei Avenue, Huanggekeng Community, Longcheng Street, Longgang District, Shenzhen City, Guangdong Province, 518000, 1505A8

Patentee after: Shenzhen Xinhong Holdings Co.,Ltd.

Address before: 518000 New Asia Garden 24-118, No. 85 Jixiang Middle Road, Longgang District, Shenzhen, Guangdong Province

Patentee before: Zhang Yizhi