CN108262051A - 一种机械球磨热处理两步法合成二氧化铈-碳酸氧铋纳米复合物的方法 - Google Patents

一种机械球磨热处理两步法合成二氧化铈-碳酸氧铋纳米复合物的方法 Download PDF

Info

Publication number
CN108262051A
CN108262051A CN201810049864.0A CN201810049864A CN108262051A CN 108262051 A CN108262051 A CN 108262051A CN 201810049864 A CN201810049864 A CN 201810049864A CN 108262051 A CN108262051 A CN 108262051A
Authority
CN
China
Prior art keywords
heat treatment
ball mill
complex
ceria
nano
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810049864.0A
Other languages
English (en)
Other versions
CN108262051B (zh
Inventor
张茂林
葛金龙
刘伟
王传虎
高燕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bengbu College
Original Assignee
Bengbu College
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bengbu College filed Critical Bengbu College
Priority to CN201810049864.0A priority Critical patent/CN108262051B/zh
Publication of CN108262051A publication Critical patent/CN108262051A/zh
Application granted granted Critical
Publication of CN108262051B publication Critical patent/CN108262051B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/20Carbon compounds
    • B01J27/232Carbonates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0027Powdering
    • B01J37/0036Grinding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本发明公开了一种机械球磨热处理两步法合成二氧化铈‑碳酸氧铋纳米复合物的方法,其是将固相原料二水合铋酸钠、五水合醋酸铈和二水合草酸混合后,进行机械球磨固相反应,所得产物经洗涤、离心分离及干燥后获得中间产物,对中间产物进行热处理即制得目标产物CeO2‑Bi2O2CO3纳米复合物。本发明采用固体混合,原料室温球磨固相反应和热处理两步法,制备过程简单,易于控制并能大量减少产物粒子的团聚;避免另外添加氧化还原剂、模板剂和溶剂,提高了产物纯度,符合材料绿色化合成的要求,也适合于大规模生产。

Description

一种机械球磨热处理两步法合成二氧化铈-碳酸氧铋纳米复 合物的方法
技术领域
本发明属于纳米材料及其制备领域,具体涉及一种CeO2-Bi2O2CO3纳米复合物的制备方法。
背景技术
碳酸氧铋(Bi2O2CO3),又称次碳酸铋,目前已被广泛应用于医药工业中的收敛剂、X-射线诊断遮光剂,并可用于治疗胃炎、细菌性痢疾、腹泻、肠炎等。近年来,铋系化合物半导体作为一类新型的半导体材料,由于其独特的层状结构与其优异的物理和化学性能得到了非常广泛的研究。碳酸氧铋作为具有Aurivillius型氧化物结构的铋系化合物半导体中的代表之一,拥有一种典型的“sillén”结构,即(Bi2O2)2+原子层、(CO3)2-原子层交替排列的层状结构。铋氧原子层与碳氧原子层之间存在的较强内建电场,能够有效地促进光生电子-空穴对的转移与分离,因而表现出了良好的光催化性能。碳酸氧铋光催化剂尽管表现出很好的光催化性能,但其禁带宽度仍然比较大,为了拓宽其光吸收范围,提高光催化效率,有必要对其进行改性,通过碳酸氧铋与其他半导体的复合,将是一种有效的改性方式。众所周知,CeO2也是一种催化活性高的氧化物半导体功能材料,具有稳定性强、普适性好、对人体无害和廉价易得的特点。所以,将CeO2与碳酸氧铋进行复合将是一种可行有效的方法方法,并可以预见CeO2-Bi2O2CO3纳米复合物将具有更高的光催化效率,是一种很有应用潜力的复合光催化材料。
目前,Bi2O2CO3和CeO2的制备方法主要是沉淀法、溶胶-凝胶法、水热法等液相方法。比如,H.Hiang等人采用表面活性剂协助的水热方法制备了碳酸氧铋纳米片(MaterialsScience in Semiconductor Processing,2013,16(6):1650-1654);阮毛毛等人采用水为溶剂、Bi(NO3)3·5H2O为Bi源、二水合柠檬酸三钠(TCD)为配体构筑了前驱配合物Bi-TCD,通过配合物分解实现了由纳米片自组装的碳酸氧铋微米绒球的绿色可控合成(物理化学学报,2017,33(5):1033-1042);Y.Liu等人采用水热和溶热方法制备了碳酸氧铋纳米片(Applied Surface Science,2010,257(1):172-175);Y.Zheng等人以硝酸铋和柠檬酸为原料,通过水热反应制备出纳米级碳酸氧铋(Journal of Molecular Catalysis A,2010,317,34);马琳等人公开了以乙二醇-水混合溶剂热方法合成碳酸氧铋花状微球的方法(发明专利CN 103708551A);栗海峰等人公开了以硝酸铋和尿素为原料,在压强为3MP以上、100~200℃条件下反应1~4小时,制备纳微米板片碳酸氧铋材料(发明专利CN 102275987A)。韦薇等人用Ce(NO3)3·6H2O溶解在去离子水中,加入H2O2、聚乙二醇等试剂,用正向、反向化学共沉淀法制备得CeO2粉末(韦薇,杨冬霞,杨申明,等.化学共沉淀法制备纳米二氧化铈的研究.稀土,2009,30(5):19-21)。李占双等人以Ce(NO3)3·6H2O为原料、乙二醇为分散剂,运用水热法制得纳米CeO2粉末(李占双,闫慧君,尤佳,等.水热法合成纳米CeO2及其光催化性质研究.化学试剂,2008,30(4):262-264)。张环华等人以硝酸铈和柠檬酸为原料,采用溶胶-凝胶法制备了CeO2纳米晶(张环华,李秀珍,潘湛昌,等.溶胶–凝胶法制备纳米CeO2.精细化工中间体,2002,32(5):30-31)。
以上制备方法虽然可以制备出Bi2O2CO3和CeO2,但都需要使用溶剂,且有的合成过程需要使用表面活性剂等反应助剂来协助,有的需要昂贵的反应原料,过程复杂,或需要高温高压条件,大大增加了制备成本,难以实现规模化工业生产。同时,液相法制备也容易导致产物粒子出现团聚现象。所以,简单、方便的Bi2O2CO3和CeO2制备新方法,特别是CeO2-Bi2O2CO3纳米复合物的制备新方法将有待于进一步开发研究。
发明内容
本发明的目的在于克服现有技术的不足,提供一种过程简单、易于控制、绿色环保的机械球磨和热处理两步法合成策略,制备CeO2-Bi2O2CO3纳米复合物。
为实现发明目的,本发明采用如下技术方案:
本发明机械球磨热处理两步法合成二氧化铈-碳酸氧铋纳米复合物的方法,其特点在于:将固相原料二水合铋酸钠、五水合醋酸铈和二水合草酸混合后,进行机械球磨固相反应,所得产物经洗涤、离心分离及干燥后获得中间产物,对中间产物进行热处理即制得目标产物CeO2-Bi2O2CO3纳米复合物。
其中:所述二水合铋酸钠、所述五水合醋酸铈和所述二水合草酸的摩尔比为2:1:1.5。所述球磨固相反应是指:将混合后原料放入氧化锆球磨罐中,再置于球磨机中,设定转速480rpm,球磨反应2小时。所述热处理是将中间产物在300℃下加热2~10小时。所述洗涤是用蒸馏水进行洗涤,所述干燥是在60℃、0.1Mpa真空度下真空干燥2小时。
本发明首先在室温下通过对二水合铋酸钠(NaBiO3·2H2O)、五水合醋酸铈(Ce(CH3COO)3·5H2O)和二水合草酸(H2C2O4·2H2O)固体混合原料的机械球磨而引发固相反应,制备出CeO2-Bi2O2CO3纳米复合物(见反应式(1)),再通过热处理,使非晶相CeO2转变为晶相CeO2(见反应式(2)),从而制备出晶相CeO2-Bi2O2CO3纳米复合物,实现本发明的目的。
与现有技术相比,本发明的有益效果体现在:
1、本发明提供的固体混合反应原料的机械球磨热处理两步法制备技术,制备过程简单、易于控制并减少产物粒子的团聚;
2、本发明提供的CeO2-Bi2O2CO3纳米复合物的制备方法,不需要使用溶剂,不添加任何氧化还原剂、模板剂、表面活性剂,提高了产物纯度,也符合材料绿色化合成的要求;
3、本发明提供的CeO2-Bi2O2CO3纳米复合物的制备方法,工艺简单、操作安全可靠、易于工业化生产。
附图说明
图1为本发明实施例1制备的产物和原料铋酸钠的XRD图谱;
图2为本发明实施例2、3和4制备的产物的XRD图谱;
图3为本发明实施例4所制备产物的TEM图像。
具体实施方式
下面结合附图对本发明的实施例作详细说明,下述实施例在以本发明技术方案为前提下进行实施,给出了详细的实施方式和具体的操作过程,但本发明的保护范围不限于下述的实施例。
实施例1
按照2:1:1.5的摩尔比称取0.02摩尔二水合铋酸钠、0.01摩尔五水合醋酸铈、0.015摩尔二水合草酸加入配备50个直径6mm氧化锆磨球和8个直径10mm氧化锆磨球的50mL氧化锆球磨罐中,在QM-3SP04行星式高能球磨机中于480rpm下连续球磨2小时,用蒸馏水对产物进行洗涤,离心分离并在60℃、0.1Mpa真空度下真空干燥2小时,得到中间产物。
实施例2
按照2:1:1.5的摩尔比称取0.02摩尔二水合铋酸钠、0.01摩尔五水合醋酸铈、0.015摩尔二水合草酸加入配备50个直径6mm氧化锆磨球和8个直径10mm氧化锆磨球的50mL氧化锆球磨罐中,在QM-3SP04行星式高能球磨机中于480rpm下连续球磨2小时,用蒸馏水对产物进行洗涤,离心分离并在60℃、0.1Mpa真空度下真空干燥2小时,得到中间产物,将中间产物再在300℃下热处理2小时,制得目标产物CeO2-Bi2O2CO3纳米复合物。
实施例3
按照2:1:1.5的摩尔比称取0.02摩尔二水合铋酸钠、0.01摩尔五水合醋酸铈、0.015摩尔二水合草酸加入配备50个直径6mm氧化锆磨球和8个直径10mm氧化锆磨球的50mL氧化锆球磨罐中,在QM-3SP04行星式高能球磨机中于480rpm下连续球磨2小时,用蒸馏水对产物进行洗涤,离心分离并在60℃、0.1Mpa真空度下真空干燥2小时,得到中间产物,将中间产物再在300℃下热处理4小时,制得目标产物CeO2-Bi2O2CO3纳米复合物。
实施例4
按照2:1:1.5的摩尔比称取0.02摩尔二水合铋酸钠、0.01摩尔五水合醋酸铈、0.015摩尔二水合草酸加入配备50个直径6mm氧化锆磨球和8个直径10mm氧化锆磨球的50mL氧化锆球磨罐中,在QM-3SP04行星式高能球磨机中于480rpm下连续球磨2小时,用蒸馏水对产物进行洗涤,离心分离并在60℃、0.1Mpa真空度下真空干燥2小时,得到中间产物,将中间产物再在300℃下热处理10小时,制得目标产物CeO2-Bi2O2CO3纳米复合物。
上述实施例所得目标产物的X-射线衍射分析(XRD分析):分别将实施例1制得的产物和原料二水合铋酸钠进行XRD分析,结果见图1。在XRD图谱中Bi2O2CO3特征衍射峰明显,但CeO2在2θ=28.54处的特征衍射峰是一个很弱的“馒头”峰,表明室温固相球磨反应所得产物中CeO2主要是以非晶相存在。同时在XRD衍射图谱中没有发现原料铋酸纳的特征衍射峰,表明球磨2小时后,铋酸钠、醋酸铈和草酸固相反应完全。
分别将实施例2、3、4制得的目标产物进行XRD分析,结果见图2。由Scherrer公式计算得到:中间产物在300℃下加热处理2小时、4小时、10小时,所得CeO2-Bi2O2CO3纳米复合物中(CeO2、Bi2O2CO3)的平均晶粒尺寸分别为(11.0nm、23.1nm)、(13.5nm、26.4nm)、(18.6nm、31.2nm),表明随着加热时间的延长,产物中CeO2和Bi2O2CO3的平均晶粒尺寸都缓慢增大。在制备过程中,可以通过改变加热时间来控制产物中CeO2和Bi2O2CO3的平均晶粒尺寸。
上述实施例4所得目标产物的透射电子显微镜观察(TEM图像):将实施例4制得的产物进行透射电子显微镜观察,其图像见图3。从图像可以看出,实施例4制得的产物粒子形状比较规整,颗粒大小大约为20-45nm,粒子之间有明显的异质结存在。
本领域普通技术人员可以理解:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (5)

1.一种机械球磨热处理两步法合成二氧化铈-碳酸氧铋纳米复合物的方法,其特征在于:将固相原料二水合铋酸钠、五水合醋酸铈和二水合草酸混合后,进行机械球磨固相反应,所得产物经洗涤、离心分离及干燥后获得中间产物,对中间产物进行热处理即制得目标产物CeO2-Bi2O2CO3纳米复合物。
2.根据权利要求1所述的机械球磨热处理两步法合成二氧化铈-碳酸氧铋纳米复合物的方法,其特征在于:所述二水合铋酸钠、所述五水合醋酸铈和所述二水合草酸的摩尔比为2:1:1.5。
3.根据权利要求1所述的机械球磨热处理两步法合成二氧化铈-碳酸氧铋纳米复合物的方法,其特征在于:所述球磨固相反应是指:将混合后原料放入氧化锆球磨罐中,再置于球磨机中,设定转速480rpm,球磨反应2小时。
4.根据权利要求1所述的机械球磨热处理两步法合成二氧化铈-碳酸氧铋纳米复合物的方法,其特征在于:所述热处理是将中间产物在300℃下加热2~10小时。
5.根据权利要求1所述的机械球磨热处理两步法合成二氧化铈-碳酸氧铋纳米复合物的方法,其特征在于:所述洗涤是用蒸馏水进行洗涤,所述干燥是在60℃、0.1Mpa真空度下真空干燥2小时。
CN201810049864.0A 2018-01-18 2018-01-18 一种机械球磨热处理两步法合成二氧化铈-碳酸氧铋纳米复合物的方法 Active CN108262051B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810049864.0A CN108262051B (zh) 2018-01-18 2018-01-18 一种机械球磨热处理两步法合成二氧化铈-碳酸氧铋纳米复合物的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810049864.0A CN108262051B (zh) 2018-01-18 2018-01-18 一种机械球磨热处理两步法合成二氧化铈-碳酸氧铋纳米复合物的方法

Publications (2)

Publication Number Publication Date
CN108262051A true CN108262051A (zh) 2018-07-10
CN108262051B CN108262051B (zh) 2020-02-21

Family

ID=62776075

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810049864.0A Active CN108262051B (zh) 2018-01-18 2018-01-18 一种机械球磨热处理两步法合成二氧化铈-碳酸氧铋纳米复合物的方法

Country Status (1)

Country Link
CN (1) CN108262051B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109574061A (zh) * 2018-11-26 2019-04-05 新疆大学 一种具有不同形貌纳米二氧化铈的固相制备方法
CN112023954A (zh) * 2020-08-31 2020-12-04 上海电力大学 一种2d-2d结构碘酸氧铋复合光催化剂的制备方法
CN112110490A (zh) * 2020-10-09 2020-12-22 东北大学 一种钨酸铈的制备方法及制备的钨酸铈

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102942219A (zh) * 2012-11-16 2013-02-27 西南石油大学 一种室温下制备碳酸氧铋纳米片的方法
CN105366720A (zh) * 2015-12-04 2016-03-02 新疆大学 一种室温固相化学反应合成碳酸氧铋纳米片的方法
CN106268895A (zh) * 2016-08-23 2017-01-04 扬州天辰精细化工有限公司 一种三氧化二铁‑碳酸氧铋复合光催化剂的制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102942219A (zh) * 2012-11-16 2013-02-27 西南石油大学 一种室温下制备碳酸氧铋纳米片的方法
CN105366720A (zh) * 2015-12-04 2016-03-02 新疆大学 一种室温固相化学反应合成碳酸氧铋纳米片的方法
CN106268895A (zh) * 2016-08-23 2017-01-04 扬州天辰精细化工有限公司 一种三氧化二铁‑碳酸氧铋复合光催化剂的制备方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109574061A (zh) * 2018-11-26 2019-04-05 新疆大学 一种具有不同形貌纳米二氧化铈的固相制备方法
CN112023954A (zh) * 2020-08-31 2020-12-04 上海电力大学 一种2d-2d结构碘酸氧铋复合光催化剂的制备方法
CN112110490A (zh) * 2020-10-09 2020-12-22 东北大学 一种钨酸铈的制备方法及制备的钨酸铈
CN112110490B (zh) * 2020-10-09 2021-07-16 东北大学 一种钨酸铈的制备方法及制备的钨酸铈

Also Published As

Publication number Publication date
CN108262051B (zh) 2020-02-21

Similar Documents

Publication Publication Date Title
Najafian et al. Enhanced photocatalytic activity of a novel NiO/Bi2O3/Bi3ClO4 nanocomposite for the degradation of azo dye pollutants under visible light irradiation
Shi et al. NaNbO 3 nanostructures: facile synthesis, characterization, and their photocatalytic properties
Fu et al. A facile coating method to construct uniform porous α-Fe2O3@ TiO2 core-shell nanostructures with enhanced solar light photocatalytic activity
Saedy et al. Hydrothermal synthesis and physicochemical characterization of CuO/ZnO/Al2O3 nanopowder. Part I: Effect of crystallization time
Ju et al. A novel calcined Bi2WO6/BiVO4 heterojunction photocatalyst with highly enhanced photocatalytic activity
Zhao et al. Phase and morphological transitions of titania/titanate nanostructures from an acid to an alkali hydrothermal environment
CN101318702B (zh) 一种三氧化钨纳米片及其制备方法
CN108262051A (zh) 一种机械球磨热处理两步法合成二氧化铈-碳酸氧铋纳米复合物的方法
Lu et al. Ionic liquid-mediated synthesis of meso-scale porous lanthanum-transition-metal perovskites with high CO oxidation performance
CN108212186B (zh) 一种室温固相化学反应制备三氧化二铋-碳酸氧铋纳米复合物的方法
CN103263906A (zh) 一种纳米晶氧化锡光催化剂及其制备方法
CN101092244A (zh) 一种钛酸锶多孔球的制备方法
CN107803170B (zh) 一种二氧化钛/氧化镍双壳空心球的制备方法
CN107552034A (zh) 一种简单、快速制备碳掺杂氧化锌纳米片的方法
Wang et al. Ceria nanocube with reactive {100} exposure planes: Simple and controllable synthesis under moderate conditions
CN108187684A (zh) 一种机械球磨热处理两步法合成三氧化二铋-氧化亚铜纳米复合物的方法
Wang et al. High temperature and water-based evaporation-induced self-assembly approach for facile and rapid synthesis of nanocrystalline mesoporous TiO 2
CN112337491A (zh) 一种双功能光催化应用的磷化镍/氧化铟纳米复合材料制备方法及用途
Chen et al. Low-temperature preparation of α-Al2O3 with the assistance of seeding a novel hydroxyl aluminum oxalate
CN116651489A (zh) 一种磁改性三维花状N-Bi 2 O 2 CO 3 / g-C3 N 4光催化材料的制备方法及应用
CN106732493A (zh) 一种纳米片状单斜晶二氧化钛b光催化剂的制备方法
CN102942204A (zh) 一种二氧化铈纳米粉体的制备方法
CN110227517A (zh) CuBi2O4/BiPO4p-n型异质结光催化剂、制备方法及其应用
CN105347389A (zh) 一种暴露(010)晶面的超薄钛酸纳米带及其制备方法
CN108262035B (zh) 一种机械球磨热处理两步法合成三氧化二铋-二氧化铈纳米复合物的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant