CN108262035B - 一种机械球磨热处理两步法合成三氧化二铋-二氧化铈纳米复合物的方法 - Google Patents

一种机械球磨热处理两步法合成三氧化二铋-二氧化铈纳米复合物的方法 Download PDF

Info

Publication number
CN108262035B
CN108262035B CN201810049407.1A CN201810049407A CN108262035B CN 108262035 B CN108262035 B CN 108262035B CN 201810049407 A CN201810049407 A CN 201810049407A CN 108262035 B CN108262035 B CN 108262035B
Authority
CN
China
Prior art keywords
heat treatment
ball milling
ceo
mechanical ball
nano composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810049407.1A
Other languages
English (en)
Other versions
CN108262035A (zh
Inventor
张茂林
葛金龙
刘伟
王传虎
高燕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bengbu College
Original Assignee
Bengbu College
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bengbu College filed Critical Bengbu College
Priority to CN201810049407.1A priority Critical patent/CN108262035B/zh
Publication of CN108262035A publication Critical patent/CN108262035A/zh
Application granted granted Critical
Publication of CN108262035B publication Critical patent/CN108262035B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/18Arsenic, antimony or bismuth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0027Powdering
    • B01J37/0036Grinding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本发明公开了一种机械球磨热处理两步法合成三氧化二铋‑二氧化铈纳米复合物的方法,其是将固相原料二水合铋酸钠、亚硫酸氢钠和五水合硝酸铈混合后,进行机械球磨固相反应,获得BiONO3‑CeO2前驱体,对所述BiONO3‑CeO2前驱体进行热处理,即制得目标产物Bi2O3‑CeO2纳米复合物。本发明采用固体混合,原料室温球磨固相反应和热处理两步法,制备过程简单,易于控制并能大量减少产物粒子的团聚;避免另外添加氧化还原剂、模板剂和溶剂,提高了产物纯度,符合材料绿色化合成的要求,也适合于大规模生产。

Description

一种机械球磨热处理两步法合成三氧化二铋-二氧化铈纳米 复合物的方法
技术领域
本发明属于纳米材料及其制备领域,特别涉及一种Bi2O3/CeO2纳米复合物的制备方法。
背景技术
Bi2O3是一种重要的氧化物半导体材料,由于其具有较低的带隙能,可以吸收可见光,能被可见光激发,具有可见光光催化性能,成为太阳能光催化降解环境污染物的一种很有应用潜力的光催化材料。但是,单一的Bi2O3半导体,在光的照射下,其光生载流子容易复合,导致光量子效率降低,影响光催化效率。为了提高光生载流子的分离,延长生载流子的寿命,提高光催化效率,可以对Bi2O3半导体进行改性,将Bi2O3与能带匹配的半导体进行复合将是一种有效的改性方法。众所周知,CeO2是一种重要的氧化物半导体功能材料,其具有和Bi2O3匹配的能带结构,可以预见Bi2O3/CeO2纳米复合物将具有优越的可见光光催化性能,在太阳能光催化降解环境污染物方面将具有广阔的应用前景。
目前,Bi2O3基纳米复合物的主要制备方法是液相法制备方法。比如:Sood等人以Bi(NO3)3·5H2O和钛酸丁酯为原料,通过水热反应的方法制备出Bi2O3/TiO2异质结光催化剂(S.Sood et al.Chemical Engineering Journal,2016,290:45–52.);Xu等人以Bi2O3粉和钛酸丁酯为原料,采用溶胶-凝胶的方法制备出Bi2O3/TiO2复合粒子(J.-J.Xu etal.Chemical Engineering Journal,2016,290:45–52.);Wang等人以Bi(NO3)3·5H2O和氧化石墨烯为原料,采用水热和煅烧两步法制备出Bi2O3/Graphene纳米复合物(H.-W.Wang etal.Electrochimica Acta,2010,55:8974–8980.),等等。
现有的制备方法虽然可以制备出Bi2O3基复合材料,但仍然存在一些不足,比如:液相法制备的产物粒子容易发生团聚,降低产品性能;有的在制备过程中需要使用大量有机溶剂,带来环境污染;有的制备过程复杂且成本高,不利于大规模生产。所以,有待于进一步探索开发成本低、过程简单、易于大规模生产的新制备方法。
发明内容
本发明的目的在于克服现有技术的不足,提供一种工艺简单、操作方便的室温机械球磨和热处理两步法制备Bi2O3/CeO2纳米复合物的方法。
为实现发明目的,本发明采用如下技术方案:
本发明机械球磨热处理两步法合成三氧化二铋-二氧化铈纳米复合物的方法,其特点在于:将固相原料二水合铋酸钠、亚硫酸氢钠和五水合硝酸铈混合后,进行机械球磨固相反应,获得BiONO3-CeO2前驱体,对所述BiONO3-CeO2前驱体进行热处理,然后再经洗涤、离心分离及干燥后,即制得目标产物Bi2O3-CeO2纳米复合物。
其中:所述二水合铋酸钠、亚硫酸氢钠和五水合硝酸铈的摩尔比为2:1.5:1。所述机械球磨固相反应是指:将混合后原料放入氧化锆球磨罐中,再置于球磨机中,设定转速480rpm,球磨反应6小时。所述热处理是将BiONO3-CeO2前驱体在400℃下加热2~10小时。所述洗涤是用蒸馏水进行洗涤,所述干燥是在60℃、0.1Mpa真空度下真空干燥2小时。
如下式所示:本发明在室温下通过对二水合铋酸钠(NaBiO3·2H2O)、亚硫酸氢钠(NaHSO3)和五水合硝酸铈(Ce(NO3)3·5H2O)固体混合原料的机械球磨而引发固相反应,制备出纳米BiONO3-CeO2前驱体。BiONO3-CeO2前驱体在一定温度下加热处理一定时间,获得Bi2O3/CeO2纳米复合物,从而实现本发明的目的。
Figure GDA0002278000100000021
与现有技术相比,本发明的有益效果体现在:
1、本发明提供的固体混合反应原料的室温固相球磨反应制备技术,制备过程简单、易于控制并减少产物粒子的团聚;
2、本发明提供的Bi2O3/CeO2纳米复合物的制备方法,不需要使用溶剂,除固体原料外不额外添加任何氧化还原剂、模板剂、表面活性剂,提高了产物纯度,也符合材料绿色化合成的要求;
3、本发明提供的Bi2O3/CeO2纳米复合物的制备方法,工艺简单、操作安全可靠、易于工业化生产。
附图说明
图1为本发明实施例1、2、3制备的产物的XRD图谱;
图2为本发明实施例3所制备产物的TEM图像。
具体实施方式
下面结合附图对本发明的实施例作详细说明,下述实施例在以本发明技术方案为前提下进行实施,给出了详细的实施方式和具体的操作过程,但本发明的保护范围不限于下述的实施例。
实施例1
按照2:1.5:1的摩尔比称取0.02摩尔二水合铋酸钠、0.015摩尔亚硫酸氢钠和0.01摩尔五水合硝酸铈加入配备50个直径6mm氧化锆磨球和8个直径10mm氧化锆磨球的50mL氧化锆球磨罐中,在QM-3SP04行星式高能球磨机中于480rpm下连续球磨6小时后,将球磨反应所得产物在400℃下煅烧2小时并冷却至室温,随后用蒸馏水对产物进行洗涤,离心分离并在60℃、0.1Mpa真空度下真空干燥2小时,得到目标产物。
实施例2
按照2:1.5:1的摩尔比称取0.02摩尔二水合铋酸钠、0.015摩尔亚硫酸氢钠和0.01摩尔五水合硝酸铈加入配备50个直径6mm氧化锆磨球和8个直径10mm氧化锆磨球的50mL氧化锆球磨罐中,在QM-3SP04行星式高能球磨机中于480rpm下连续球磨6小时后,将球磨反应所得产物在400℃下煅烧4小时并冷却至室温,随后用蒸馏水对产物进行洗涤,离心分离并在60℃、0.1Mpa真空度下真空干燥2小时,得到目标产物。
实施例3
按照2:1.5:1的摩尔比称取0.02摩尔二水合铋酸钠、0.015摩尔亚硫酸氢钠和0.01摩尔五水合硝酸铈加入配备50个直径6mm氧化锆磨球和8个直径10mm氧化锆磨球的50mL氧化锆球磨罐中,在QM-3SP04行星式高能球磨机中于480rpm下连续球磨6小时后,将球磨反应所得产物在400℃下煅烧10小时并冷却至室温,随后用蒸馏水对产物进行洗涤,离心分离并在60℃、0.1Mpa真空度下真空干燥2小时,得到目标产物。
上述实施例所得目标产物的X-射线衍射分析(XRD分析):分别将实施例1、2和3制得的目标产物进行XRD分析,结果见图1,可以看出,在XRD图谱中只有Bi2O3和CeO2特征衍射峰,没有其它物相的衍射峰存在,表明球磨6小时后,铋酸钠与亚硫酸氢钠和硝酸铈固相反应完全。
由Scherrer公式计算得到:反应原料二水合铋酸钠亚硫酸氢钠和五水合硝酸铈按照2:1.5:1的摩尔比混合后并连续球磨6小时后,将球磨反应所得产物在400℃下分别煅烧2小时、4小时、10小时后,所得复合产物Bi2O3/CeO2中(Bi2O3、CeO2)的平均晶粒尺寸分别为(32.2nm、19.3nm)、(37.7nm、21.5nm)、(42.9nm、29.8nm),表明随着加热时间的延长,产物中Bi2O3和CeO2的平均晶粒尺寸逐渐增大。在制备过程中,可以通过适当改变加热时间来控制复合产物中Bi2O3和CeO2的平均晶粒尺寸。
上述实施例3所得产物的透射电子显微镜观察(TEM图像):将实施例3制得的产物进行透射电子显微镜观察,其图像见图2。从图像可以看出,实施例3制得的产物颗粒大小大约为30-45nm,粒子之间有明显的异质结存在。
本领域普通技术人员可以理解:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (3)

1.一种机械球磨热处理两步法合成三氧化二铋-二氧化铈纳米复合物的方法,其特征在于:将固相原料二水合铋酸钠、亚硫酸氢钠和五水合硝酸铈混合后,进行机械球磨固相反应,获得BiONO3-CeO2前驱体,对所述BiONO3-CeO2前驱体进行热处理,然后再经洗涤、离心分离及干燥后,即制得目标产物Bi2O3-CeO2纳米复合物;
所述机械球磨固相反应是指:将混合后原料放入氧化锆球磨罐中,再置于球磨机中,设定转速480rpm,球磨反应6小时;
所述热处理是将BiONO3-CeO2前驱体在400℃下加热2~10小时。
2.根据权利要求1所述的机械球磨热处理两步法合成三氧化二铋-二氧化铈纳米复合物的方法,其特征在于:所述二水合铋酸钠、亚硫酸氢钠和五水合硝酸铈的摩尔比为2:1.5:1。
3.根据权利要求1所述的机械球磨热处理两步法合成三氧化二铋-二氧化铈纳米复合物的方法,其特征在于:所述洗涤是用蒸馏水进行洗涤,所述干燥是在60℃、0.1Mpa真空度下真空干燥2小时。
CN201810049407.1A 2018-01-18 2018-01-18 一种机械球磨热处理两步法合成三氧化二铋-二氧化铈纳米复合物的方法 Active CN108262035B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810049407.1A CN108262035B (zh) 2018-01-18 2018-01-18 一种机械球磨热处理两步法合成三氧化二铋-二氧化铈纳米复合物的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810049407.1A CN108262035B (zh) 2018-01-18 2018-01-18 一种机械球磨热处理两步法合成三氧化二铋-二氧化铈纳米复合物的方法

Publications (2)

Publication Number Publication Date
CN108262035A CN108262035A (zh) 2018-07-10
CN108262035B true CN108262035B (zh) 2020-05-19

Family

ID=62776109

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810049407.1A Active CN108262035B (zh) 2018-01-18 2018-01-18 一种机械球磨热处理两步法合成三氧化二铋-二氧化铈纳米复合物的方法

Country Status (1)

Country Link
CN (1) CN108262035B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112023954A (zh) * 2020-08-31 2020-12-04 上海电力大学 一种2d-2d结构碘酸氧铋复合光催化剂的制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103466701B (zh) * 2013-09-26 2017-06-27 新疆大学 一种固相化学反应制备三氧化二铋纳米线的方法
CN106311212A (zh) * 2016-08-18 2017-01-11 王欧庭 一种高效的脱硝催化剂及其制备工艺

Also Published As

Publication number Publication date
CN108262035A (zh) 2018-07-10

Similar Documents

Publication Publication Date Title
CN106824213B (zh) 一种钴氧化物掺杂的碱式碳酸铋/氯氧化铋光催化剂及其制备方法
CN106925304B (zh) Bi24O31Br10/ZnO复合可见光催化剂及其制备方法
CN105170173B (zh) 一种钙钛矿材料/有机聚合物复合光催化剂、制备及应用
CN103172030A (zh) 氧化物粉体及其制备方法、催化剂、以及催化剂载体
CN108212186B (zh) 一种室温固相化学反应制备三氧化二铋-碳酸氧铋纳米复合物的方法
CN108187684B (zh) 一种机械球磨热处理两步法合成三氧化二铋-氧化亚铜纳米复合物的方法
CN110342578B (zh) 一种碱金属钨青铜粉体的制备方法
CN109999871A (zh) 一种La2O2CO3纳米三角片负载Pd催化剂的制备方法及其应用
CN103263906A (zh) 一种纳米晶氧化锡光催化剂及其制备方法
CN108262051B (zh) 一种机械球磨热处理两步法合成二氧化铈-碳酸氧铋纳米复合物的方法
Huang et al. Template-free synthesis of ternary sulfides submicrospheres as visible light photocatalysts by ultrasonic spray pyrolysis
CN108017086B (zh) 一种碳酸氧铋-氧化石墨烯纳米复合物的制备方法
CN113600223B (zh) 一种Fe2P/氮空位g-C3N4纳米片光催化剂的制备方法与用途
CN108262035B (zh) 一种机械球磨热处理两步法合成三氧化二铋-二氧化铈纳米复合物的方法
CN103318954A (zh) 一种固相化学反应制备三钛酸钠纳米棒的方法
CN104803422A (zh) 一种纳米级铁铝尖晶石的制备方法
CN104445340A (zh) 由纳米块自组装的八面体氧化铈的制备方法
CN111266114A (zh) 一种金属铁/氧化锌/碳三元纳米复合可见光催化剂及其制备方法和应用
Fan et al. Nitrogen doped anatase TiO2 sheets with dominant {001} facets for enhancing visible-light photocatalytic activity
Chen et al. Preparation in acidic and alkaline conditions and characterization of α-Bi 2 Mo 3 O 12 and γ-Bi 2 MoO 6 powders
CN107973343B (zh) 一种室温固相化学反应制备纳米三氧化二铋的方法
CN112844375B (zh) 脱除氮氧化物的MnO2/Bi2WO6异质结光催化剂及其制备方法
CN108046319B (zh) 一种室温固相反应制备钛酸铋纳米复合氧化物的方法
CN102001696A (zh) 一种镁铝尖晶石纳米颗粒粉体的制备方法
He et al. A novel Bi-based oxybromide BaBiO2Br: Synthesis, optical property and photocatalytic activity

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant