CN108242308A - 一种高机械强度软磁合金的制备方法 - Google Patents
一种高机械强度软磁合金的制备方法 Download PDFInfo
- Publication number
- CN108242308A CN108242308A CN201611213653.3A CN201611213653A CN108242308A CN 108242308 A CN108242308 A CN 108242308A CN 201611213653 A CN201611213653 A CN 201611213653A CN 108242308 A CN108242308 A CN 108242308A
- Authority
- CN
- China
- Prior art keywords
- alloy
- magnetically soft
- melting
- amorphous
- soft alloy
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C45/00—Amorphous alloys
- C22C45/02—Amorphous alloys with iron as the major constituent
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C24/00—Coating starting from inorganic powder
- C23C24/08—Coating starting from inorganic powder by application of heat or pressure and heat
- C23C24/10—Coating starting from inorganic powder by application of heat or pressure and heat with intermediate formation of a liquid phase in the layer
- C23C24/103—Coating with metallic material, i.e. metals or metal alloys, optionally comprising hard particles, e.g. oxides, carbides or nitrides
- C23C24/106—Coating with metal alloys or metal elements only
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/12—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
- H01F1/14—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
- H01F1/147—Alloys characterised by their composition
- H01F1/14766—Fe-Si based alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/12—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
- H01F1/14—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
- H01F1/20—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Metallurgy (AREA)
- Power Engineering (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Dispersion Chemistry (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Powder Metallurgy (AREA)
- Hard Magnetic Materials (AREA)
Abstract
本发明公开了一种高机械强度软磁合金的制备方法,该软磁合金由以下原子配比的合金制成:Fe1‑a‑b‑cCuaBbTic,其中a=0.10‑0.15,b=0.02‑0.05,c=0.03‑0.04。本发明制备的具有非晶涂层的软磁合金具有较高的非晶形成能力,同时具有很高的饱和磁化强度和低矫顽力,制备工艺为涂层提供较大温度梯度,相比非晶和细晶混合存在的涂层拥有更优良的机械性能。
Description
技术领域
本发明涉及磁性材料制造领域,具体涉及一种高机械强度软磁合金的制备方法。
背景技术
铁基非晶、纳米晶软磁合金具有高的饱和磁感应强度、高强韧性、低损耗、低矫顽力、高磁导率等优异性能,同时其制备工艺简单,成本低廉,高效节能,能够促进产品节能环保、小型化、轻量化发展,在电力互感器、电力变压器等方面具有广泛应用。
非晶合金与传统晶体材料相比,具有高屈服强度,高硬度,高弹性模量,良好耐腐蚀性能。其中的铁基非晶体系由于具有丰富的自然资源、低廉的材料成本、优异的力学、化学性能、磁学性能、耐腐蚀性能以及潜在的工业应用,吸引了越来越多的材料研究者的注意。
与FINEMET相比,NANOPERM系和HITPERM系合金表现出较高的饱和磁感应强度,且合金磁致伸缩系数趋近于零,大大降低了其应力敏感性,可在高频下使用。但是,大量易氧化昂贵金属Zr,Hf等的存在,以及HITPERM中更含有大量的Co元素,导致了合金成本提高,同时使得制备工艺复杂。。
但是通常合金需要在极高的冷却速度下才能形成非晶合金,其玻璃形成能力限制了非晶样品的形状和最大尺寸,所以非晶制品多为薄膜、条带、细丝或粉末,再加上块体非晶态合金的室温塑性较差,无法通过塑性加工的方法制备成形出结构材料,这些都大大的限制了非晶合金在实际工程中的应用。而相对而言,利用表面涂层技术在基体表面制备非晶涂层,不仅能降低成本,同时还能基体在不失去其特性的情况下大幅度的提高产品的耐腐蚀性和耐磨性。
发明内容
本发明提供一种高机械强度软磁合金的制备方法,该方法制备的软磁合金价格低廉具有非晶合金的特点,具有高饱和磁化强度和低矫顽力,还具有具有突出的断裂强度与塑性变形能力。
为了实现上述目的,本发明提供了一种高机械强度软磁合金的制备方法,该软磁合金由以下原子配比的合金制成:Fe1-a-b-cCuaBbTic,其中a=0.10-0.15,b=0.02-0.05,c=0.03-0.04;
该方法包括如下步骤:
(1)按照上述分子式称取各元素进行配料,打磨去除金属原料的表面氧化皮,按照摩尔比进行精确称量配比并使用乙醇超声波清洗原料;
(2)将步骤(1)配制的原料装入熔炼炉中,在惰性气氛保护下进行熔炼,熔炼温度为1350-1600℃,对炉体抽真空至真空度≤1×10-2Pa,充入纯氩气直到炉内压力达到0.4-0.5个大气压,充分合金需熔炼3-5遍,保证熔炼均匀,冷却后得到成分均匀的母合金铸锭;
(3)将合金锭破卒后装适量于石英管中,采用单辊急冷甩带技术,在Ar气氛中以40m/s的速度甩带,制得非晶合金条带;将非晶合金条带置于石英管中,抽真空至低于3×10-3Pa,然后置于热处理炉中,540℃保温3分钟后迅速将石英管放入水中淬火至室温,得到软磁合金基体带材;
(4)按如下重量百分比准备熔覆的的金属粉末:20%≤Cr≤30%、2%≤Ni≤8%、2%≤Si≤5%、1%≤B≤5%、2%≤C≤6%,铁粉为余量,球磨混合,金属粉末的粒度范围为60-150微米;
(5)使用连续光纤激光器,设定熔覆工艺,采用同步送粉方式对步骤(4)中的金属粉末进行多道熔覆,冷却至室温,在所述软磁合金基体带材上制备一层合金涂层;
(6)使用连续光纤激光器,设定重熔工艺,对步骤(5)中制得的合金涂层进行激光表面重熔,冷却至室温,获得具有非晶涂层的软磁合金。
优选的,步骤(5)中的熔覆工艺是指:依次设置激光功率200-1000W,光斑直径1-2mm,搭接率0.3-0.5,扫描速度300-2000mm/min,同步送粉量为5-15g/min,保护氩气流量10-20L/min。
优选的,步骤(6)中的重熔工艺是指:依次设置激光功率500-2000W,光斑1-2mm,搭接率0.3-0.5,扫描速度600-3000mm/min,保护氩气流量10-20L/min。
本发明制备的具有非晶涂层的软磁合金具有较高的非晶形成能力,同时具有很高的饱和磁化强度和低矫顽力,制备工艺为涂层提供较大温度梯度,相比非晶和细晶混合存在的涂层拥有更优良的机械性能。
具体实施方式
实施例一
该实施例的该软磁合金由以下原子配比的合金制成:Fe0.85Cu0.1B0.02Ti0.03。
按照上述分子式称取各元素进行配料,打磨去除金属原料的表面氧化皮,按照摩尔比进行精确称量配比并使用乙醇超声波清洗原料;
将配制的原料装入熔炼炉中,在惰性气氛保护下进行熔炼,熔炼温度为1350℃,对炉体抽真空至真空度≤1×10-2Pa,充入纯氩气直到炉内压力达到0.4-0.5个大气压,充分合金需熔炼3遍,保证熔炼均匀,冷却后得到成分均匀的母合金铸锭;
将合金锭破卒后装适量于石英管中,采用单辊急冷甩带技术,在Ar气氛中以40m/s的速度甩带,制得非晶合金条带;将非晶合金条带置于石英管中,抽真空至低于3×10-3Pa,然后置于热处理炉中,540℃保温3分钟后迅速将石英管放入水中淬火至室温,得到软磁合金基体带材。
按如下重量百分比准备熔覆的的金属粉末:Cr=20%、N=2%、Si=2%、B=1%、C=2%,铁粉为余量,球磨混合,金属粉末的粒度范围为60-150微米。
使用连续光纤激光器,设定熔覆工艺,采用同步送粉方式对第一步中的金属粉末进行多道熔覆,冷却至室温,所述软磁合金基体带材上制备一层合金涂层。熔覆工艺是指:依次设置激光功率200W,光斑直径1mm,搭接率0.3,扫描速度300mm/min,同步送粉量为5g/min,保护氩气流量10L/min。
使用连续光纤激光器,设定重熔工艺,对第二步中制得的合金涂层进行激光表面重熔,冷却至室温,获得具有非晶涂层的软磁合金。重熔工艺是指:依次设置激光功率500W,光斑1mm,搭接率0.3,扫描速度600mm/min,保护氩气流量10L/min。
实施例二
该实施例的该软磁合金由以下原子配比的合金制成:Fe0.76Cu0.15B0.05Ti0.04。
按照上述分子式称取各元素进行配料,打磨去除金属原料的表面氧化皮,按照摩尔比进行精确称量配比并使用乙醇超声波清洗原料;
将步骤(1)配制的原料装入熔炼炉中,在惰性气氛保护下进行熔炼,熔炼温度为1600℃,对炉体抽真空至真空度≤1×10-2Pa,充入纯氩气直到炉内压力达到0.4-0.5个大气压,充分合金需熔炼5遍,保证熔炼均匀,冷却后得到成分均匀的母合金铸锭;
将合金锭破卒后装适量于石英管中,采用单辊急冷甩带技术,在Ar气氛中以40m/s的速度甩带,制得非晶合金条带;将非晶合金条带置于石英管中,抽真空至低于3×10-3Pa,然后置于热处理炉中,540℃保温3分钟后迅速将石英管放入水中淬火至室温,得到软磁合金基体带材。
按如下重量百分比准备熔覆的金属粉末:Cr=30%、Ni=8%、Si=5%、B=5%、C=6%,铁粉为余量,球磨混合,金属粉末的粒度范围为60-150微米。
使用连续光纤激光器,设定熔覆工艺,采用同步送粉方式对第一步中的金属粉末进行多道熔覆,冷却至室温,所述软磁合金基体带材上制备一层合金涂层。熔覆工艺是指:依次设置激光功率1000W,光斑直径2mm,搭接率0.5,扫描速度2000mm/min,同步送粉量为15g/min,保护氩气流量20L/min。
使用连续光纤激光器,设定重熔工艺,对第二步中制得的合金涂层进行激光表面重熔,冷却至室温,获得具有非晶涂层的软磁合金。重熔工艺是指:依次设置激光功率2000W,光斑2mm,搭接率0.5,扫描速度3000mm/min,保护氩气流量20L/min。
比较例
按照Fe77B15Si5Cu3的分子式,按照常规方式,制备Fe77B15Si5Cu3合金材料。
对相同形状和尺寸的实施例1-2及比较例的软磁合金进行磁性能测试,在25℃进行测试,(1)合金的矫顽力采用KM-OtypeList-Koerzimeter矫顽力仪测量;(2)合金的饱和磁感应强度Bs采用静态磁性能测量仪,以磁场为800A/m下的磁感应强度作为合金的饱和磁感应强度Bs。测试结果显示:实施例1-2的矫顽力相对比较例降低31%以上,饱和磁感应强度相对比较例提高19%以上。
Claims (3)
1.一种高机械强度软磁合金的制备方法,该软磁合金由以下原子配比的合金制成:Fe1-a-b-cCuaBbTic,其中a=0.10-0.15,b=0.02-0.05,c=0.03-0.04;
该方法包括如下步骤:
(1)按照上述分子式称取各元素进行配料,打磨去除金属原料的表面氧化皮,按照摩尔比进行精确称量配比并使用乙醇超声波清洗原料;
(2)将步骤(1)配制的原料装入熔炼炉中,在惰性气氛保护下进行熔炼,熔炼温度为1350-1600℃,对炉体抽真空至真空度≤1×10-2Pa,充入纯氩气直到炉内压力达到0.4-0.5个大气压,充分合金需熔炼3-5遍,保证熔炼均匀,冷却后得到成分均匀的母合金铸锭;
(3)将合金锭破卒后装适量于石英管中,采用单辊急冷甩带技术,在Ar气氛中以40m/s的速度甩带,制得非晶合金条带;将非晶合金条带置于石英管中,抽真空至低于3×10-3Pa,然后置于热处理炉中,540℃保温3分钟后迅速将石英管放入水中淬火至室温,得到软磁合金基体带材;
(4)按如下重量百分比准备熔覆的的金属粉末:20%≤Cr≤30%、2%≤Ni≤8%、2%≤Si≤5%、1%≤B≤5%、2%≤C≤6%,铁粉为余量,球磨混合,金属粉末的粒度范围为60-150微米;
(5)使用连续光纤激光器,设定熔覆工艺,采用同步送粉方式对步骤(4)中的金属粉末进行多道熔覆,冷却至室温,在所述软磁合金基体带材上制备一层合金涂层;
(6)使用连续光纤激光器,设定重熔工艺,对步骤(5)中制得的合金涂层进行激光表面重熔,冷却至室温,获得具有非晶涂层的软磁合金。
2.如权利要求1所述的方法,其特征在于,步骤(5)中的熔覆工艺是指:依次设置激光功率200-1000W,光斑直径1-2mm,搭接率0.3-0.5,扫描速度300-2000mm/min,同步送粉量为5-15g/min,保护氩气流量10-20L/min。
3.如权利要求1所述的方法,其特征在于,步骤(6)中的重熔工艺是指:依次设置激光功率500-2000W,光斑1-2mm,搭接率0.3-0.5,扫描速度600-3000mm/min,保护氩气流量10-20L/min。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201611213653.3A CN108242308A (zh) | 2016-12-25 | 2016-12-25 | 一种高机械强度软磁合金的制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201611213653.3A CN108242308A (zh) | 2016-12-25 | 2016-12-25 | 一种高机械强度软磁合金的制备方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN108242308A true CN108242308A (zh) | 2018-07-03 |
Family
ID=62703687
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201611213653.3A Pending CN108242308A (zh) | 2016-12-25 | 2016-12-25 | 一种高机械强度软磁合金的制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108242308A (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108823484A (zh) * | 2018-07-21 | 2018-11-16 | 芜湖君华材料有限公司 | 一种非晶合金磁性粉末生产方法 |
-
2016
- 2016-12-25 CN CN201611213653.3A patent/CN108242308A/zh active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108823484A (zh) * | 2018-07-21 | 2018-11-16 | 芜湖君华材料有限公司 | 一种非晶合金磁性粉末生产方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104480462B (zh) | 一种铁基非晶涂层及其激光制备方法 | |
CN101650999A (zh) | 一种铁基非晶或纳米晶软磁合金及其制备方法 | |
CN106086715B (zh) | 一种全金属元素Fe-Co-Ni-Mo-Hf非晶合金及其制备方法 | |
CN101215679A (zh) | 一种无磁性铁基块体非晶合金及其制备方法 | |
CN106373690A (zh) | 一种具有良好工艺性能、高饱和磁感应强度的纳米晶软磁合金及其制备方法 | |
CN106868379A (zh) | 一种具有大磁致伸缩系数的高熵合金及其制备方法 | |
CN107424707B (zh) | 一种软磁材料及其制备方法 | |
CN109440021A (zh) | 一种铁基非晶纳米晶软磁合金及其制备方法和应用 | |
CN101717888A (zh) | 纳米晶复合NdFeB永磁合金及其制备方法 | |
CN106756644A (zh) | 一种基于硅元素的铁基非晶纳米晶软磁合金及其制备方法 | |
CN101701327B (zh) | 一种铁基大块非晶软磁合金及其制备方法 | |
CN104711471A (zh) | 一种NiMnX合金靶材的制备方法 | |
CN109930085A (zh) | 一种耐高温耐腐蚀高熵非晶软磁合金及其制备方法 | |
CN101787499B (zh) | 一种铁基纳米晶薄带及其制造方法 | |
CN102610346A (zh) | 一种新型无稀土纳米复合永磁材料及其制备方法 | |
CN105679484B (zh) | 一种高机械强度软磁合金的制备方法 | |
CN108242308A (zh) | 一种高机械强度软磁合金的制备方法 | |
CN1036473C (zh) | 具有增强的交流磁性和可控性的非晶形铁硼硅合金 | |
JP2011099166A (ja) | 軟磁性膜用Co−Fe系合金、軟磁性膜および垂直磁気記録媒体 | |
CN101373653A (zh) | 低Nb的纳米非晶与微晶软磁材料及制备方法 | |
CN105400998A (zh) | 一种Ni-Mn-Ga合金薄带及其制备方法 | |
CN109207871A (zh) | 一种非晶-纳米晶软磁合金及其制备方法 | |
CN100432269C (zh) | 块体铁基非晶合金 | |
CN110093565A (zh) | 晶化窗口宽、软磁性能可控的铁基纳米晶合金及其制备方法 | |
CN109355601A (zh) | 一种钴基块体非晶合金及其制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
WD01 | Invention patent application deemed withdrawn after publication | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20180703 |