CN108221465B - 纤维素纳米纤维/氟化碳管柔性复合膜及其制备方法 - Google Patents

纤维素纳米纤维/氟化碳管柔性复合膜及其制备方法 Download PDF

Info

Publication number
CN108221465B
CN108221465B CN201711345422.2A CN201711345422A CN108221465B CN 108221465 B CN108221465 B CN 108221465B CN 201711345422 A CN201711345422 A CN 201711345422A CN 108221465 B CN108221465 B CN 108221465B
Authority
CN
China
Prior art keywords
cellulose
carbon fluoride
fcnt
nfc
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201711345422.2A
Other languages
English (en)
Other versions
CN108221465A (zh
Inventor
王雄伟
武培怡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fudan University
Original Assignee
Fudan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fudan University filed Critical Fudan University
Priority to CN201711345422.2A priority Critical patent/CN108221465B/zh
Publication of CN108221465A publication Critical patent/CN108221465A/zh
Application granted granted Critical
Publication of CN108221465B publication Critical patent/CN108221465B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/63Inorganic compounds
    • D21H17/67Water-insoluble compounds, e.g. fillers, pigments
    • D21H17/69Water-insoluble compounds, e.g. fillers, pigments modified, e.g. by association with other compositions prior to incorporation in the pulp or paper
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/07Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with halogens; with halogen acids or salts thereof; with oxides or oxyacids of halogens or salts thereof
    • D06M11/11Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with halogens; with halogen acids or salts thereof; with oxides or oxyacids of halogens or salts thereof with halogen acids or salts thereof
    • D06M11/13Ammonium halides or halides of elements of Groups 1 or 11 of the Periodic Table
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/07Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with halogens; with halogen acids or salts thereof; with oxides or oxyacids of halogens or salts thereof
    • D06M11/30Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with halogens; with halogen acids or salts thereof; with oxides or oxyacids of halogens or salts thereof with oxides of halogens, oxyacids of halogens or their salts, e.g. with perchlorates
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M13/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
    • D06M13/322Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing nitrogen
    • D06M13/388Amine oxides
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2101/00Chemical constitution of the fibres, threads, yarns, fabrics or fibrous goods made from such materials, to be treated
    • D06M2101/02Natural fibres, other than mineral fibres
    • D06M2101/04Vegetal fibres
    • D06M2101/06Vegetal fibres cellulosic

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

本发明属于导热复合材料技术领域,具体为一种纤维素纳米纤维/氟化碳管柔性复合膜及其制备方法。本发明首先通过TEMPO氧化分离的纤维素纳米纤维来促进氟化碳管在水中的分散,得到均匀的氟化碳管分散液;然后利用真空过滤促进自组装技术制备得到一维氟化碳管和一维纤维素纳米纤维素沿着面内方向层层堆积的柔性导热复合膜。本发明使得复合膜在保持良好绝缘性的同时依然具有优异的导热性能,在氟化碳管含量为35 wt%时的面内热导率达到14.04 W/mK,垂直面内热导率达到0.83 W/mK。本发明使用氟化碳管作为导热填料,而复合膜的导热性能与已发表的同类研究工作相比具有良好的竞争性。本发明方法操作简单,生产成本较低,易于批量化、规模化生产,具有广阔的应用前景。

Description

纤维素纳米纤维/氟化碳管柔性复合膜及其制备方法
技术领域
本发明属于导热复合材料技术领域,具体涉及一种纤维素纳米纤维和氟化碳管柔性导热复合膜及其制备方法。
背景技术
随着各种电力电子设备,特别是一些便携式或可穿戴电子设备,朝着集成化和高功率化的发展,它们在工作过程当中不可避免地会产生大量的热。这些热量如果不能被及时有效地耗散出去的话就会严重影响到设备的寿命,工作稳定性甚至安全性。因此开发和利用一些可用于便携式和可穿戴电子设备的柔性绝缘导热膜具有重要的意义。
近来,很多陶瓷填料基的聚合物复合导热绝缘材料被广泛地研究。但是,这些复合材料往往需要加入较为大量的填料(大于50 wt%)才能获得相对较高的热导率,而且获得的热导率基本在1-10 W/mK之间。然而进一步提高填料的添加量则会引起材料力学性能的恶化。一些研究团队发现使用一些大长径比或径厚比的填料,比如一维的纳米填料(纳米纤维,纳米线和纳米管)和二维的纳米片,可以实现在相对较低的填料添加量下获得较高的热导率。其中,石墨烯和碳纳米管由于质轻、强度高和热导率优异的特性是制备导热聚合物复合材料用得最多的填料。而且由于他们还具有极好的柔性,因此在柔性导热膜领域也是有着广泛的研究和应用。但是碳管和石墨烯作为导热填料它们在提高聚合物导热性能的同时会不可避免地引起电导率的提升,而这又会限制材料在某些要求电绝缘领域的应用。因此在低的填料添加量下同时获得高的导热性能和保持良好的绝缘性能仍然是一大挑战。为了达到这个目的,氮化硼是目前使用最多的一类绝缘导热填料。因为氮化硼作为类石墨烯的材料也具有大的径厚比,高的强度,而且理论热导率可达600 W/mK,同时还具有优异的电绝缘性。如果进一步将它剥离成纳米片,其面内热导率还会显著提升。但是氮化硼的剥离比较耗时,耗能,而且产率也比较低,而未剥离的氮化硼一般柔性较差。因此这也一定程度上限制了他们的广泛应用。
氟化碳管是将碳纳米管上的共轭Sp2结构进行氟原子进行加成取代后制得的一维管状纳米材料。随着氟化程度的提升,由于碳管本身的共轭结构遭到破坏(由连续变为不连续),致使碳管的导电性显著下降,逐渐由导体变为绝缘态。此外,碳管的理论热导率也会随着氟化程度的提高出现下降的趋势,但理论预测发现其下降的幅度要远小于电导率的损失幅度,也即碳管电导率对氟原子的引入更加敏感,而且当氟化量超过某一值时,热导率还会出现上升趋势。受此启发,我们猜想用氟化程度较高的一维碳管作为填料与聚合物进行复合可能可以实现在获得良好绝缘性能的同时具有较高的热导率。但是氟化碳管具有极强的疏水性,它的均匀分散又成为一大严峻的挑战。为克服这一问题同时兼顾环保可再生等因素,本文我们用TEMPO氧化法分离的纤维素纳米纤维实现氟化碳管在水中的均匀分散。这主要是由于纤维素纳米纤维具有两亲性的特征,可以通过与氟化碳管之间强的疏水相互作用使原本疏水的氟化碳管均匀分散在水中。而纤维素纳米纤维来源于生物质,本身是一种可再生的材料。将得到的均匀分散的纤维素纳米纤维/氟化碳管的混合液通过真空抽膜的方法来制备导热复合膜。在真空力的诱导下,一维的纤维素纳米纤维和一维的氟化碳管会沿着膜的面内方向层层堆积形成类贻贝结构的复合膜。一维/一维的堆积使得氟化碳管在相对低的添加量即能搭接形成导热网络。因此纤维素纳米纤维/氟化碳管复合膜在氟化碳管含量为35 wt%时的面内方向热导率达到14.04 W/mK, 垂直面内方向的热导率为0.83 W/mK。而且复合膜具有较好的柔性和良好的绝缘性。
发明内容
本发明的目的在于提供一种新型的在保持良好绝缘性、同时具有高热导率的柔性复合膜及其制备方法。
本发明提供的同时具有良好绝缘性和高导热率的柔性纤维素纳米纤维/氟化碳管复合膜中,纤维素纳米纤维与氟化碳管沿着面内方向层层取向堆积,其制备的具体步骤为:
(1)称取1-10 g纤维素制品、10-100 mg TEMPO、0.1-1 g溴化钠和0.5-4 g次氯酸钠加入到100-500 ml的去离子水中,在室温下搅拌2-12 h,期间用0.5-3 mol/L的氢氧化钠来调控混合液的pH值保持在6-10左右。将氧化后的纤维素过滤、洗涤。再将氧化后的纤维素重新分散到水中,进行探针超声10-60 min。随后在2000-10000 rpm下离心5-20 min,取上层液即为氧化分离的纤维素纳米纤维(记为NFC)。配置浓度为1-5 mg/ml的NFC水溶液。
(2)称取2-60 mg的氟化碳纳米管(记为FCNT)和5-50 ml NFC的水溶液加入到30-100 ml去离子水中,探针超声2-10 min,得到均匀分散液,记为FCNT/NFC。
(3)将均匀分散的FCNT/NFC水分散液加到抽膜装置中,以混合醋酸纤维酯为基膜,控制真空度为0.1-1 MPa。待抽膜完成后,在丙酮中浸泡除去基膜,自然烘干,即得到柔性复合膜,记为NFC/FCNT-x,x表示FCNT在膜中的质量百分数。
本发明步骤(1)中,所用的纤维素制品为微晶纤维素、棉花和纤维素滤膜中的一种。
本发明提供的方法可以获得柔性纤维素纳米纤维/氟化碳管复合膜,主要是通过真空抽膜诱导一维纤维素纳米纤维与一维氟化碳管层层堆积的方法来制备两者的复合膜。
本发明制备的纤维素纳米纤维/氟化碳管柔性复合膜中,氟化碳管与纤维素纳米纤维相互缠绕、层层堆积,在基体中分布均匀,而且沿着面内方向取向分布并相互搭接形成连续导热网络,表现出良好的柔性、电绝缘性和热导率,可以用作导热填料。
本发明操作方便,制备条件简单,生产成本低,易于批量化、规模化生产,具有良好的工业化生产基础和广阔的应用前景。
附图说明
图 1为TEMPO氧化法分离的纤维素纳米纤维的透射电子显微图。
图 2为氟化碳管的透射电子显微图。
图 3为氟化碳管的X射线光电子能谱。
图 4为氟化碳管水分散液加入纤维素纳米纤维前后的分散状态照片。
图 5为抽膜得到的不同FCNT含量的NFC/FCNT复合膜照片和复合膜的柔性测试照片。
图 6为不同FCNT含量的复合膜的表面及断面扫描电子显微图。其中:(a-c) 纯NFC膜;
(d-e) NFC/FCNT-13.3复合膜;(f-i) NFC/FCNT-35复合膜。
图 7为不同FCNT含量的复合膜的体积电阻率。
图 8为不同FCNT含量的复合膜的应力-应变曲线。
图 9为不同FCNT含量的复合膜的面内和垂直面内方向的热导率。
具体实施方式
以下通过实施例进一步详细说明本发明具有良好电绝缘性和热导率的柔性纤维素纳米纤维/氟化碳管复合膜的制备方法及其导热性能,该实施例仅仅是作为提供说明而不是限定本发明。
实施例 1
(1)称取4 g纤维素制品,50 mg TEMPO,0.5 g溴化钠和2.976 g次氯酸钠加入到400 ml的去离子水中,然后在室温下搅拌6 h,期间用0.5 mol/L的氢氧化钠来调控混合液的pH值保持在10左右。将氧化后的纤维素过滤、洗涤。再重新分散到水中,进行探针超声30min。随后在8000 rpm下离心10 min,取上层液即为氧化分离的纤维素纳米纤维(记为NFC)。配置NFC水溶液,其浓度为2 mg/ml。
(2)将稀释的NFC水分散液加到抽膜装置中,以混合醋酸纤维酯为基膜,控制真空度为0.1 MPa。待抽膜完成后,在丙酮中浸泡除去基膜,自然烘干得到纯的NFC复合膜。
图1所示为TEMPO氧化法分离的纤维素纳米纤维(NFC)的透射电子显微图。可以看到制备的NFC显示纤维状特征,他们在水中具有极好的分散性及分散稳定性。氟化碳管的透射电子显微图显示氟化碳管成管状,具有大的长径比及良好的柔韧性 (图2)。图3为氟化碳管的X射线光电子能谱图。可以看到谱图中存在强的氟元素峰,其原子比例为53.6 at%, 说明FCNT具有很高的氟化程度。高的氟化程度致使FCNT管具有强的疏水性,因此很难分散在水中。但是通过加入两亲性的NFC,可以有效促进FCNT的水中均匀分散,其主要原因是由于NFC与NFC之间具有很强的疏水相互作用 (图4)。图5为抽膜制得的不同FCNT含量下的复合膜照片。纯的NFC显示较好的透光性,随着FCNT含量的提高,复合膜透光性逐渐减弱,颜色逐渐加深。此外由于一维的NFC和一维的氟化碳管均具有较好的柔性,因此制得的复合膜也显示优异的柔性,可反复弯折,甚至可以折成纸飞机,显示了它们在柔性可穿戴电子设备上作为散热膜的应用潜力。
实施例 2
(1)称取4 g纤维素制品,50 mg TEMPO,0.5 g溴化钠和2.976 g次氯酸钠加入到400 ml的去离子水中,然后在室温下搅拌6 h,期间用0.5 mol/L的氢氧化钠来调控混合液的pH值保持在10左右。将氧化后的纤维素过滤、洗涤。再重新分散到水中,进行探针超声30min。随后在8000 rpm下离心10 min,取上层液即为氧化分离的纤维素纳米纤维(记为NFC)。配置NFC水溶液的浓度为2 mg/ml。
(2)称取30 mg的氟化碳纳米管(记为FCNT)和30 ml NFC的水溶液加入到50 ml去离子水中,探针超声5 min得到FCNT/NFC均匀分散液。
(3)将均匀分散的FCNT/NFC水分散液加到抽膜装置中,以混合醋酸纤维酯为基膜,控制真空度为0.1 MPa。待抽膜完成后,在丙酮中浸泡除去基膜,自然烘干得到NFC/FCNT-35复合膜。
图6为纯的NFC膜和不同FCNT含量的复合膜的表面及脆断面扫描电子显微图。表面显示一维的NFC与一维的FCNT之间相互交织、层层堆积的状态,但表面的粗糙度随着FCNT含量的增加而逐渐提高。由复合膜的脆断面图可以更加清晰地看到NFC与氟化碳管在膜面内方向上层层堆积、相互缠绕,使氟化碳管沿着面内方向取向并相互搭接形成导热网络。而且这种层层堆积的有序结构不随FCNT含量的提高而产生明显的减弱。进一步测试了不同FCNT含量下的复合膜的体积电阻率,如图7所示。FCNT加入量对复合膜电阻率的影响较小,而且不同FCNT含量的复合膜的体积电阻率均大于7.8×1010 Ω cm,说明复合膜具有良好的电绝缘性。图8为不同FCNT含量的复合膜的拉伸应力-应变曲线。纯的NFC膜由于内部NFC纤维之间存在强的氢键相互作用,因此具有较高的拉伸强度(108 MPa)。但是随着FCNT的加入及含量的提高,复合膜的拉伸强度逐渐减弱。另一方面,复合膜的断裂伸长率则随膜中FCNT含量呈现增大后减小的趋势。主要是由于在FCNT含量较低时,断裂过程碳管的滑移和拔出需要消耗大量的能量。图9为复合膜的面内热导率和垂直面内热导率随膜中FCNT含量的变化曲线。复合膜在两个方向上的热导率均随FCNT含量的增大而提高,当FCNT含量为35 wt%时,面内热导率达到14.04 W/mK,垂直面内方向的热导率达到0.83 W/mK,显示大的热导率各向异性,也暗示FCNT在膜面内方向的取向分布。
实施例 3
(1)称取4 g纤维素制品,50 mg TEMPO,0.5 g溴化钠和2.976 g次氯酸钠加入到400 ml的去离子水中,然后在室温下搅拌6 h,期间用0.5 mol/L的氢氧化钠来调控混合液的pH值保持在10左右。将氧化后的纤维素过滤、洗涤。再重新分散到水中,进行探针超声30min。随后在8000 rpm下离心10 min,取上层液即为氧化分离的纤维素纳米纤维(记为NFC)。配置NFC水溶液的浓度为2 mg/ml。
(2)称取5 mg的氟化碳纳米管(记为FCNT)和30 ml NFC的水溶液加入到50 ml去离子水中,探针超声5 min得到FCNT/NFC均匀分散液。
(3)将均匀分散的FCNT/NFC水分散液加到抽膜装置中,以混合醋酸纤维酯为基膜,控制真空度为0.1 MPa。待抽膜完成后,在丙酮中浸泡除去基膜,自然烘干得到NFC/FCNT-8.6复合膜。
实施例 4
(1)称取4 g纤维素制品,50 mg TEMPO,0.5 g溴化钠和2.976 g次氯酸钠加入到400 ml的去离子水中,然后在室温下搅拌6 h,期间用0.5 mol/L的氢氧化钠来调控混合液的pH值保持在10左右。将氧化后的纤维素过滤、洗涤。再重新分散到水中,进行探针超声30min。随后在8000 rpm下离心10 min,取上层液即为氧化分离的纤维素纳米纤维(记为NFC)。配置NFC水溶液的浓度为2 mg/ml。
(2)称取10 mg的氟化碳纳米管(记为FCNT)和30 ml NFC的水溶液加入到50 ml去离子水中,探针超声5 min得到FCNT/NFC均匀分散液。
(3)将均匀分散的FCNT/NFC水分散液加到抽膜装置中,以混合醋酸纤维酯为基膜,控制真空度为0.1-1 MPa。待抽膜完成后,在丙酮中浸泡除去基膜,自然烘干得到NFC/FCNT-13.3复合膜。
实施例 5
(1)称取4 g纤维素制品,50 mg TEMPO,0.5 g溴化钠和2.976 g次氯酸钠加入到400 ml的去离子水中,然后在室温下搅拌6 h,期间用0.5 mol/L的氢氧化钠来调控混合液的pH值保持在10左右。将氧化后的纤维素过滤、洗涤。再重新分散到水中,进行探针超声30min。随后在8000 rpm下离心10 min,取上层液即为氧化分离的纤维素纳米纤维(记为NFC)。配置NFC水溶液的浓度为2 mg/ml。
(2)称取20 mg的氟化碳纳米管(记为FCNT)和30 ml NFC的水溶液加入到50 ml去离子水中,探针超声5 min得到FCNT/NFC均匀分散液。
(3)将均匀分散的FCNT/NFC水分散液加到抽膜装置中,以混合醋酸纤维酯为基膜,控制真空度为0.1 MPa。待抽膜完成后,在丙酮中浸泡除去基膜,自然烘干得到NFC/FCNT-25复合膜。

Claims (4)

1.一种纤维素纳米纤维/氟化碳管的柔性复合膜的制备方法,其特征在于,具体步骤为:
(1)将1-10 g纤维素制品、10-100 mg TEMPO、0.1-1 g溴化钠和0.5-4 g次氯酸钠,加入到100-500 ml的去离子水中,在室温下搅拌2-12 h,期间用0.5-3 mol/L的氢氧化钠调控混合液的pH值,使之保持在6-10;将氧化后的纤维素过滤、洗涤;再将纤维素重新分散到水中,进行探针超声10-60 min;随后在2000-10000 rpm下离心5-20 min,取上层液,即为氧化分离的纤维素纳米纤维,记为NFC;配置NFC水溶液,其浓度为1-5 mg/ml;
(2)将2-60 mg的氟化碳纳米管(记为FCNT)和5-50 ml NFC的水溶液加入到30-100 ml去离子水中,探针超声2-10 min,得到均匀分散液,记为FCNT/NFC;
(3)将均匀分散的FCNT/NFC水分散液加到抽膜装置中,以混合醋酸纤维酯为基膜,控制真空度为0.1-1 MPa;抽膜完成后,在丙酮中浸泡除去基膜,自然烘干,即得到柔性复合膜,记为NFC/FCNT-x, x表示FCNT在膜中的质量百分数。
2.根据权利要求1所述的制备方法,其特征在于,步骤(1)中所用的纤维素制品为微晶纤维素、棉花和纤维素滤膜中的一种。
3.一种由权利要求1-2之一制备方法制备得到的具有优异电绝缘性和导热性的纤维素纳米纤维/氟化碳管的柔性复合膜。
4.如权利要求3所述的纤维素纳米纤维/氟化碳管的柔性复合膜作为导热材料的应用。
CN201711345422.2A 2017-12-15 2017-12-15 纤维素纳米纤维/氟化碳管柔性复合膜及其制备方法 Active CN108221465B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711345422.2A CN108221465B (zh) 2017-12-15 2017-12-15 纤维素纳米纤维/氟化碳管柔性复合膜及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711345422.2A CN108221465B (zh) 2017-12-15 2017-12-15 纤维素纳米纤维/氟化碳管柔性复合膜及其制备方法

Publications (2)

Publication Number Publication Date
CN108221465A CN108221465A (zh) 2018-06-29
CN108221465B true CN108221465B (zh) 2020-05-12

Family

ID=62649588

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711345422.2A Active CN108221465B (zh) 2017-12-15 2017-12-15 纤维素纳米纤维/氟化碳管柔性复合膜及其制备方法

Country Status (1)

Country Link
CN (1) CN108221465B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113248797B (zh) * 2021-07-07 2022-10-21 北京化工大学 一种导热复合材料及其制备方法
CN115341339B (zh) * 2022-08-25 2024-03-22 武汉大学 用于全氟多氟类化合物检测分析的丝素蛋白复合纤维膜及方法
CN116024840A (zh) * 2022-12-13 2023-04-28 国网湖南省电力有限公司 一种氟化碳纳米管/芳纶纳米纤维复合绝缘纸及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101309855A (zh) * 2005-11-16 2008-11-19 加州理工学院 多层碳纳米材料的氟化
CN103225173A (zh) * 2013-05-17 2013-07-31 天津工业大学 一种纤维素/碳纳米管复合纳米纤维膜的制备方法
CN105694074A (zh) * 2016-03-08 2016-06-22 北京理工大学 一种柔性抗燃高介电纳米复合膜的制备方法
CN105860143A (zh) * 2016-05-14 2016-08-17 上海大学 一种柔性纳米纤维素-石墨烯复合膜及其制备方法
CN107099045A (zh) * 2017-06-13 2017-08-29 南京林业大学 一种高导热纳米纤维素基电气绝缘复合膜的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101309855A (zh) * 2005-11-16 2008-11-19 加州理工学院 多层碳纳米材料的氟化
CN103225173A (zh) * 2013-05-17 2013-07-31 天津工业大学 一种纤维素/碳纳米管复合纳米纤维膜的制备方法
CN105694074A (zh) * 2016-03-08 2016-06-22 北京理工大学 一种柔性抗燃高介电纳米复合膜的制备方法
CN105860143A (zh) * 2016-05-14 2016-08-17 上海大学 一种柔性纳米纤维素-石墨烯复合膜及其制备方法
CN107099045A (zh) * 2017-06-13 2017-08-29 南京林业大学 一种高导热纳米纤维素基电气绝缘复合膜的制备方法

Also Published As

Publication number Publication date
CN108221465A (zh) 2018-06-29

Similar Documents

Publication Publication Date Title
Weng et al. Mechanically robust ANF/MXene composite films with tunable electromagnetic interference shielding performance
Jia et al. Multifunctional fireproof electromagnetic shielding polyurethane films with thermal management performance
Miao et al. Silver nanowires intercalating Ti 3 C 2 T x MXene composite films with excellent flexibility for electromagnetic interference shielding
Ma et al. Highly thermal conductivities, excellent mechanical robustness and flexibility, and outstanding thermal stabilities of aramid nanofiber composite papers with nacre-mimetic layered structures
Li et al. Thermally conductive polyvinyl alcohol composite films via introducing hetero-structured MXene@ silver fillers
Zhao et al. Flexible polydimethylsilane nanocomposites enhanced with a three-dimensional graphene/carbon nanotube bicontinuous framework for high-performance electromagnetic interference shielding
Chen et al. Thermally conductive but electrically insulating polybenzazole nanofiber/boron nitride nanosheets nanocomposite paper for heat dissipation of 5G base stations and transformers
Wang et al. Thermally conductive, super flexible and flame-retardant BN-OH/PVA composite film reinforced by lignin nanoparticles
US10395792B2 (en) Nanocomposite film comprising cellulose and a conductive nanofiller, and method of making
Cui et al. Enhanced thermal conductivity of bioinspired nanofibrillated cellulose hybrid films based on graphene sheets and nanodiamonds
CN108264885B (zh) 一种力学增强的电磁屏蔽膜及其制备方法
KR101182380B1 (ko) 그라핀 및 탄소나노튜브를 포함하는 하이브리드 고분자 복합 섬유 및 이의 제조 방법
CN108221465B (zh) 纤维素纳米纤维/氟化碳管柔性复合膜及其制备方法
Lee et al. Enhanced through-plane thermal conductivity of paper-like cellulose film with treated hybrid fillers comprising boron nitride and aluminum nitride
Zhang et al. Highly thermally conductive and electrically insulating polydimethylsiloxane composites prepared by ultrasonic-assisted forced infiltration for thermal management applications
Li et al. Facial fabrication of aramid composite insulating paper with high strength and good thermal conductivity
JP5099117B2 (ja) 窒化ホウ素系繊維紙の製造方法
Huang et al. A small amount of delaminated Ti 3 C 2 flakes to greatly enhance the thermal conductivity of boron nitride papers by assembling a well-designed interface
CN109912912B (zh) 一种柔性、电绝缘氟化石墨烯导热复合膜及其制备和应用
Qian et al. Highly thermally conductive Ti3C2Tx/h-BN hybrid films via coulombic assembly for electromagnetic interference shielding
CN109788586B (zh) 一种柔性高强芳纶纳米纤维基复合电热膜及其制备方法
CN104672502B (zh) 氰乙基纤维素基高介电柔性纳米复合膜及其制备方法
Wang et al. BNNS/PVA bilayer composite film with multiple-improved properties by the synergistic actions of cellulose nanofibrils and lignin nanoparticles
Wang et al. Boosting the thermal conductivity of CNF-based composites by cross-linked lignin nanoparticle and BN-OH: Dual construction of 3D thermally conductive pathways
Wang et al. Green production of covalently functionalized boron nitride nanosheets via saccharide-assisted mechanochemical exfoliation

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant