CN108220916A - 一种具有增韧机制的GNCD-cBN纳米复合多层涂层刀具的制备方法 - Google Patents

一种具有增韧机制的GNCD-cBN纳米复合多层涂层刀具的制备方法 Download PDF

Info

Publication number
CN108220916A
CN108220916A CN201810033987.5A CN201810033987A CN108220916A CN 108220916 A CN108220916 A CN 108220916A CN 201810033987 A CN201810033987 A CN 201810033987A CN 108220916 A CN108220916 A CN 108220916A
Authority
CN
China
Prior art keywords
coating
deposition
substrate
cbn
nano diamond
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810033987.5A
Other languages
English (en)
Other versions
CN108220916B (zh
Inventor
徐锋
田帅
许晨辉
吴金鑫
涂禄强
王雪
高继业
左敦稳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Aeronautics and Astronautics
Original Assignee
Nanjing University of Aeronautics and Astronautics
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Aeronautics and Astronautics filed Critical Nanjing University of Aeronautics and Astronautics
Priority to CN201810033987.5A priority Critical patent/CN108220916B/zh
Publication of CN108220916A publication Critical patent/CN108220916A/zh
Application granted granted Critical
Publication of CN108220916B publication Critical patent/CN108220916B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • C23C16/27Diamond only
    • C23C16/271Diamond only using hot filaments
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/021Cleaning or etching treatments
    • C23C14/022Cleaning or etching treatments by means of bombardment with energetic particles or radiation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0641Nitrides
    • C23C14/0647Boron nitride
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0227Pretreatment of the material to be coated by cleaning or etching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • C23C16/27Diamond only
    • C23C16/274Diamond only using microwave discharges
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/044Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material coatings specially adapted for cutting tools or wear applications
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/046Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material with at least one amorphous inorganic material layer, e.g. DLC, a-C:H, a-C:Me, the layer being doped or not
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/048Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material with layers graded in composition or physical properties

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

一种具有增韧机制的GNCD‑cBN纳米复合多层涂层刀具的制备方法,它通过梯度纳米金刚石(GNCD)与立方氮化硼(cBN)交替生长形成复合涂层。其中纳米金刚石涂层是一种梯度渐变的涂层,主要特征是金刚石涂层内是“高含量sp3碳+高含量sp2碳+高含量sp3碳”结构的梯度渐变纳米金刚石涂层。本发明的涂层具备了立方氮化硼涂层的硬度,用于切削高温合金和高强度钢等黑色金属材料,同时使用梯度渐变的纳米金刚石,可以增加涂层的厚度,改变在切削过程中涂层的韧性,整体提高涂层的强度和耐冲击性,显著提高涂层刀具的耐磨性,延长刀具寿命。

Description

一种具有增韧机制的GNCD-cBN纳米复合多层涂层刀具的制备 方法
技术领域
本发明涉及一种超硬材料薄膜制备技术,尤其是一种GNCD/cBN纳米多层复合涂层刀具的制备方法,具体地说是一种使用微波化学气相沉积或者热丝化学气相沉积结合射频磁控溅射沉积法在硬质合金刀具衬底上交替沉积梯度纳米金刚石涂层和立方氮化硼纳米涂层的制备方法。
背景技术
随着我国航空航天等现代制造技术的高速发展,越来越多高强度和超高强度钢在航天航空器中应用。但是随着钛合金、高温合金和高强度超高强度钢等难加工材料的广泛应用;针对各种难加工材料的高速超高速切削、高速硬态切削、绿色干切削和精密超精密切削等先进机械加工工艺的层出不穷,高速钢和硬质合金等传统的刀具材料已经远远不能满足市场的需求,金刚石是已发现的世界上最硬的材料,但是由于金刚石的一些特性,使得金刚石涂层刀具加工黑色金属时存在一系列问题。因此,迫切需要工程技术人员研究出一种新型材料的刀具,以满足当代对高性能刀具的需求。
立方氮化硼(cBN)是由氮原子和硼原子所构成的立方结构的晶体,在自然界尚未被发现,有着优异的性能,在硬度方面仅次于金刚石,耐磨性极高、摩擦系数小、导热性能好,热化学稳定性好,1150℃以下加工黑色金属时化学性能非常稳定,是加工高温合金和高强度钢等黑色金属理想的刀具材料。此外与金刚石相比,cBN在较高的温度下也不与黑色金属发生反应,具有极为稳定的化学性能,适合加工含铁的金属材料,特别是钢类材料,因此其加工性能远远高于金刚石刀具。目前cBN刀具主要以高温高压下制备的聚晶立方氮化硼(PcBN)作为超硬刀具材料,适用于一些形状比较简单的刀片,但仍然无法经济可靠的进行复杂形状PcBN刀具的制备,此外由于PcBN具有超高硬度,导致其刃磨具有极大的困难。相对于PcBN来说,cBN涂层在刀具几何形状方面具有极大的柔性,可以适应立铣刀和麻花钻等复杂形状刀具基体。因此,cBN作为刀具涂层具有广阔的应用前景,尤其适合金刚石涂层刀具不能胜任的黑色金属加工,但是,作为超硬涂层,cBN也存在着涂层与基底之间的结合力差,涂层韧性不足等问题,制约了其优异耐磨性和切削性能的充分发挥。
近些年来,纳米多层结构薄膜越来越多的受到研究者们的关注。纳米多层结构涂层一般是两种厚度在纳米尺度上的不同材料或结构层交替排列而成的涂层体系。这种多层化涂层起初主要用于半导体和光学仪器,现在又应用于超导和磁记录领域。耐磨和耐腐蚀防护涂层的纳米多层化结构在力学性能上具有超硬度和超模量效应,能得到任何单一组分无法得到的硬度和弹性模量,不仅能够显著提高硬度,而且涂层的韧性和抗裂纹扩展能力也得到显著改善。研究发现,纳米金刚石是最适宜cBN生长的衬底材料之一,其原因除了金刚石与cBN有相近的晶格常数外,更在于纳米金刚石与cBN具有相同的纳米晶粒结构,更为接近的表面自由能,大量的表面微观缺陷为cBN提供了合适的成核区;同时纳米金刚石表面晶粒细小、粗糙度低,光滑的表面使得衬底能够均匀的获得轰击离子的组分和能量,更有利于cBN最佳成核窗口的形成。立方氮化硼作为性能优异的超硬刀具涂层材料,厚度普遍在1-2μm左右,且往往伴随着很大残余应力,涂层的韧性和耐冲击性较低。基于金刚石膜的残余应力显著低于cBN并且可控,因此本发明提出将梯度纳米金刚石(GNCD)和立方氮化硼构成多层交替结构膜,通过梯度纳米金刚石涂层中调制界面附近为高含量sp3碳(sp3碳:碳原子的2s轨道同三个2p轨道杂化,形成四个相同的sp杂化轨道,即碳原子之间全部以σ键结合,如金刚石等),能够保证cBN的外延生长,在非调制界面附近提高sp2碳(sp2碳:碳原子的2s轨道同两个2p轨道杂化,形成三个相同的sp杂化轨道,即碳原子与周围碳原子结合,除了两个σ单键外,还存在一个双键,双键包括一个σ键和一个π键,如石墨)含量,作为涂层应力的松弛区域,实现cBN刀具涂层强韧化。通过cBN与金刚石的交替调制结构,降低cBN/GNCD复合涂层的整体应力状态,提高涂层韧性,从而可以增大超硬涂层的沉积厚度,使其更好地胜任切削加工。
发明内容
本发明的目的是针对现有的涂层与硬质合金基底结合性能较差、涂层韧性低的问题,发明一种具有增韧机制的GNCD/cBN纳米复合多层涂层刀具的制备方法。
本发明的技术方案是:
一种具有增韧机制的GNCD-cBN纳米复合多层涂层刀具的制备方法,其特征是它包括以下步骤:
1)衬底预处理:使用WC-Co硬质合金刀片作为衬底材料,将WC-Co硬质合金刀片置于丙酮溶液中超声清洗10~15分钟,然后再放入用K3Fe(CN)6:KOH:H2O以质量比1: 0.8~1.2: 8~12的比例混合而成的溶液中超声清洗15~30min,再用浓度为65%的硝酸和36%的盐酸以1: 2~4的体积比配成的混合溶液浸泡不少于5min,最后用金刚石纳米粉悬浊液超声清洗15~30min,并用去离子水清洗后,在氮气环境中吹干待用,得到衬底;
2)化学气相沉积梯度纳米金刚石涂层:
采用微波化学气相沉积方法或热丝化学气相沉积方法在上述经预处理的衬底上沉积梯度纳米金刚石涂层(GNCD),通过改变沉积过程中的工艺参数,得到表面沉积有纳米金刚石过渡层的衬底,控制纳米金刚石涂层的厚度为500~600nm,其中涂层调制界面附近为富含高纯度sp3碳的纳米金刚石,中间部分为富含sp2碳的纳米金刚石;
3)对表面沉积有梯度纳米金刚石过渡层的衬底再次进行表面预处理:在沉积立方氮化硼之前,在阳极源辅助射频磁控溅射设备中使用纯Ar离子在加负偏压条件下轰击沉积有梯度金刚石涂层的表面,轰击时间在10~20min;
4)沉积立方氮化硼涂层:
使用阳极源辅助射频磁控溅射设备在经过预处理的梯度纳米金刚石涂层的表面上制备立方氮化硼涂层,得到结合强度满足要求的立方氮化硼涂层(cBN);
5)重复步骤2)-4)在硬质合金刀片表面沉积GNCD/cBN纳米多层涂层刀具:
通过微波化学气相沉积和阳极源辅助射频磁控溅射或者通过热丝化学气相沉积和阳极源辅助射频磁控溅射,控制不同沉积参数在硬质合金刀片上交替沉积GNCD涂层和cBN纳米涂层,涂层的总厚度由调制层厚度和调制周期决定,调制周期为6-10个周期,制备得到结合强度高,韧性好的GNCD/cBN纳米多层涂层刀具。
所述的K3Fe(CN)6:KOH:H2O的最佳配比为1:1:10。
所述的微波化学气相沉积制备梯度纳米金刚石的最佳工艺参数为:将预处理后的衬底置于微波化学气相沉积腔体内,使用Ar、H2和CH4作为沉积气源, 首先在基底上制备高sp3含量的纳米金刚石,沉积参数为:温度750°C,气压8kPa, CH4为6sccm沉积5min,然后逐渐增大CH4的含量,到沉积12分钟时,CH4含量达到15sccm,之后逐渐减小CH4的含量,到沉积至22min时,CH4含量减小至1sccm沉积8min;然后缓慢降温,制备出梯度渐变的纳米金刚石薄膜。
所述的热丝化学气相沉积梯度纳米金刚石的最佳工艺参数为:将预处理后的衬底置于热丝化学气相沉积腔体内,衬底置于已碳化处理的钽丝下方约4-6mm,钽丝温度2300℃,气体总流量100sccm, 其中CH4: H2:Ar =1:24:25;衬底温度730℃;反应气压1KPa;沉积时间10min;之后增加沉积气体中CH4的浓度至4%,其他条件不变,沉积时间10min;再降至甲烷浓度至2%,沉积时间10min。
所述的对表面沉积有梯度纳米金刚石过渡层的衬底再次进行表面预处理是指:所述的射频磁控溅射时溅射靶材为热压的纯度为99.99%的hBN靶, 工艺参数为本底真空:5.0×10-4Pa;衬底温度:900°C;射频功率:250W;偏压:-300V;气体:纯Ar = 35sccm;沉积气压:0.8Pa;溅射时间15min。
所述的沉积立方氮化硼涂层是指:射频磁控溅射时溅射靶材为热压的纯度为99.99%的hBN靶, 本底真空度:5.0×10-4Pa;衬底温度:900°C;射频功率:250W;偏压:-210V;阳极源功率200W;气体总流量35sccm,其中N2:Ar = 1:6;沉积气压:0.8Pa;溅射时间1h。
本发明的有益效果:
1)工艺成本低、效率高,条件易于控制,有利于以后规模化生产。
2)GNCD和cBN纳米涂层中涂层致密和粘结强度高,显著提高了cBN与硬质合金基底的结合力。
3)采用梯度纳米金刚石和cBN的交替调制结构,降低GNCD/cBN复合涂层的整体应力状态,提高涂层韧性,从而增大超硬涂层的沉积厚度。
4)本发明的纳米金刚石涂层是一种梯度渐变的涂层,主要特征是金刚石涂层内是“高含量sp3碳+高含量sp2碳+高含量sp3碳”结构的梯度渐变纳米金刚石涂层。
5)本发明的复合涂层具备了立方氮化硼涂层的硬度,用于切削高温合金和高强度钢等黑色金属材料,同时使用梯度渐变的纳米金刚石,可以增加涂层的厚度,改变在切削过程中涂层的韧性,整体提高涂层的强度和耐冲击性,显著提高涂层刀具的耐磨性,延长刀具寿命,既有金刚石涂层的硬度,又克服金刚石涂层刀具无法切削黑色金属材料的缺点。该梯度渐变纳米金刚石和立方氮化硼复合涂层是一种新型的复合超硬刀具涂层。
附图说明
图1是本发明所涉及的硬质合金基底上沉积GNCD/cBN纳米多层涂层调制结构示意图。
图2 GNCD涂层的拉曼光谱图。
图3氮化硼薄膜表面的XPS光谱图。
图4是立方氮化硼涂层的表面SEM形貌图。
具体实施方式
下面结合附图和实施例对本发明作进一步的说明。
实施例一。
如图1-4所示。
一种具有增韧机制的GNCD-cBN纳米复合多层涂层刀具的制备方法,它包括以下步骤:
1)衬底预处理:使用WC-Co硬质合金刀片作为衬底材料,现将WC-Co硬质合金刀片置于丙酮溶液中超声清洗15分钟,然后再放入用K3Fe(CN)6:KOH:H2O以质量比1:1:10的比例混合而成的溶液中超声清洗20min,再用浓度为65%的硝酸和36%的盐酸以1:3的体积比配成的混合溶液浸泡5min,最后用金刚石微粉悬浊液超声研磨25min,并用去离子水清洗后,吹干待用,得到衬底。
2)微波化学气相沉积梯度纳米金刚石:将预处理后的衬底置于微波化学气相沉积腔体内,打开冷水机,使用机械泵抽真空至5.0Pa,打开气体流量计,通入H2,维持气压在0.6kPa, 打开微波电源,调节功率至800W开始起辉,随后以3:2的比例逐渐的增加H2和Ar流量,保持功率与气压相匹配到达温度750°C和气压8kPa,总气流维持在200sccm。待温度和气压稳定后通入CH4,开始梯度纳米金刚石的制备。沉积参数为:温度750°C,气压8kPa, CH4为6sccm沉积5min,然后逐渐增大CH4的含量,到沉积12分钟时,CH4含量达到15sccm,之后逐渐减小CH4的含量,到沉积至22min时,CH4含量减小至1sccm沉积8min;然后缓慢降温,沉积形成厚度为500~600nm的梯度纳米金刚石涂层。其中涂层上下表面附近部分为富含高纯度sp3碳的纳米金刚石,中间部分为富含sp2碳的纳米金刚石。GNCD涂层的拉曼光谱图如图2所示。
3)表面沉积有梯度纳米金刚石过渡层的衬底表面预处理:所述的射频磁控溅射时溅射靶材为热压的纯度为99.99%的hBN靶, 首先将沉积有梯度纳米金刚石过渡层的衬底置于磁控溅射腔体内的样品架上,打开机械泵,当腔体内的气压小于10Pa时,关闭机械泵插板阀,打开分子泵,使腔体内本底真空度达到5.0×10-4Pa;打开加热电源,以30°C/min的增温速度使衬底温度达到900°C;通入气体:纯Ar = 35sccm;调节沉积气压:0.8Pa; 射频功率:250W;偏压:-300V;轰击时间15min(也可为10-20分钟之间的任意值)。
4)沉积立方氮化硼涂层:所述的溅射靶材为热压的纯度为99.99%的hBN靶, 本底真空度:5.0×10-4Pa;衬底温度:900°C;气体总流量35sccm,其中调小Ar的流量,通入H2,其中H2:Ar = 1:6;沉积气压:0.8Pa;射频功率增大至250W;打开阳极源调节阳极源功率200W,占空比49%;调节偏压至-220V;溅射时间1h,沉积形成厚度为200nm的cBN涂层。氮化硼薄膜表面的XPS光谱图如图3所示。
5)沉积GNCD/cBN纳米多层涂层刀具:通过微波化学气相沉积和阳极源辅助射频磁控溅射方法,重复步骤2)~4),如图1所示,在YG6硬质合金刀片衬底上交替沉积GNCD涂层和cBN纳米涂层,涂层的总厚度由调制层厚度和调制周期决定,调制周期为6-10个周期,制备得到结合强度高,韧性好的GNCD/cBN纳米多层涂层刀具,表面形貌图如图4所示。
本实施例的
实施例二。
如图1-4所示。
一种具有增韧机制的GNCD-cBN纳米复合多层涂层刀具的制备方法,它包括以下步骤:
1)衬底预处理:使用WC-Co硬质合金刀片作为衬底材料,现将WC-Co硬质合金刀片置于丙酮溶液中超声清洗15分钟,然后再放入用K3Fe(CN)6:KOH:H2O以质量比1:1:10的比例混合而成的溶液中超声清洗20min,再用浓度为65%的硝酸和36%的盐酸以1:3的体积比配成的混合溶液浸泡5min,最后用金刚石微粉悬浊液超声研磨25min,并用去离子水清洗后,吹干待用,得到衬底。
2)热丝化学气相沉积梯度纳米金刚石:将预处理后的衬底置于热丝化学气相沉积腔体内,衬底置于已碳化处理的钽丝下方约4-6mm,钽丝温度2300℃;衬底温度730℃;气体总流量100sccm, 其中CH4:H2:Ar=1:24:25;反应气压1KPa;沉积时间:10min;之后调节流量控制器使碳源浓度(CH4)逐渐增加至4%,其他条件不变,沉积时间10min,然后调节流量控制器使碳源浓度(CH4)降至2%,沉积时间10min。沉积形成厚度为200nm的梯度纳米金刚石涂层。其中涂层上下表面附近部分为富含高纯度sp3碳的纳米金刚石,中间部分为富含sp2碳的纳米金刚石。GNCD涂层的拉曼光谱图与图2相似。
3)表面沉积有梯度纳米金刚石过渡层的衬底表面预处理:所述的射频磁控溅射时溅射靶材为热压的纯度为99.99%的hBN靶, 首先将沉积有梯度纳米金刚石过渡层的衬底置于磁控溅射腔体内的样品架上,打开机械泵,当腔体内的气压小于10Pa时,关闭机械泵插板阀,打开分子泵,使腔体内本底真空度达到5.0×10-4Pa;打开加热电源,以30°C/min的增温速度使衬底温度达到900°C;通入气体:纯Ar = 35sccm;调节沉积气压:0.8Pa; 射频功率:250W;偏压:-300V;轰击时间15min。
4)沉积立方氮化硼涂层:所述的溅射靶材为热压的纯度为99.99%的hBN靶, 本底真空度:5.0×10-4Pa;衬底温度:900°C;气体总流量35sccm,其中调小Ar的流量,通入H2,其中H2:Ar = 1:6;沉积气压:0.8Pa;射频功率增大至250W;打开阳极源调节阳极源功率200W,占空比49%;调节偏压至-220V;溅射时间1h,沉积形成厚度为200nm的cBN涂层。氮化硼薄膜表面的XPS光谱图与图3相似。
5)沉积GNCD/cBN纳米多层涂层刀具:通过热丝化学气相沉积和阳极源辅助射频磁控溅射方法,通过重复步骤2)~4),在YG6硬质合金刀片衬底上交替沉积GNCD涂层和cBN纳米涂层,如图1所示。涂层的总厚度由调制层厚度和调制周期决定,调制周期为6-10个周期,制备得到结合强度高,韧性好的GNCD/cBN纳米多层涂层刀具,表面形貌图如图4相近似。
实施例三。
本实施例与实施例一、二的区别在于衬底预处理时使用的参数满足以下条件:使用WC-Co硬质合金刀片作为衬底材料,将WC-Co硬质合金刀片置于丙酮溶液中超声清洗10~15分钟,然后再放入用K3Fe(CN)6:KOH:H2O以质量比1: 0.8~1.2: 8~12的比例混合而成的溶液中超声清洗15~30min,再用浓度为65%的硝酸和36%的盐酸以1: 2~4的体积比配成的混合溶液浸泡不少于5min,最后用金刚石纳米粉悬浊液超声清洗15~30min,并用去离子水清洗后,在氮气环境中吹干待用,得到衬底。其余实施例一、二相同,所沉积的涂层的性能如图2-4所示。
本发明未涉及部分均与现有技术相同或可采用现有技术加以实现。

Claims (6)

1.一种具有增韧机制的GNCD-cBN纳米复合多层涂层刀具的制备方法,其特征是它包括以下步骤:
1)衬底预处理:使用WC-Co硬质合金刀片作为衬底材料,将WC-Co硬质合金刀片置于丙酮溶液中超声清洗10~15分钟,然后再放入用K3Fe(CN)6:KOH:H2O以质量比1: 0.8~1.2: 8~12的比例混合而成的溶液中超声清洗15~30min,再用浓度为65%的硝酸和36%的盐酸以1: 2~4的体积比配成的混合溶液浸泡不少于5min,最后用金刚石纳米粉悬浊液超声清洗15~30min,并用去离子水清洗后,在氮气环境中吹干待用,得到衬底;
2)化学气相沉积梯度纳米金刚石涂层:
采用微波化学气相沉积方法或热丝化学气相沉积方法在上述经预处理的衬底上沉积梯度纳米金刚石涂层(GNCD),通过改变沉积过程中的工艺参数,得到表面沉积有纳米金刚石过渡层的衬底,控制纳米金刚石涂层的厚度为500~600nm,其中涂层调制界面附近为富含高纯度sp3碳的纳米金刚石,中间部分为富含sp2碳的纳米金刚石;
3)对表面沉积有梯度纳米金刚石过渡层的衬底再次进行表面预处理:在沉积立方氮化硼之前,在阳极源辅助射频磁控溅射设备中使用纯Ar离子在加负偏压条件下轰击沉积有梯度金刚石涂层的表面,轰击时间在10~20min;
4)沉积立方氮化硼涂层:
使用阳极源辅助射频磁控溅射设备在经过预处理的梯度纳米金刚石涂层的表面上制备立方氮化硼涂层,得到结合强度满足要求的立方氮化硼涂层(cBN);
5)重复步骤2)-4)在硬质合金刀片表面沉积GNCD/cBN纳米多层涂层刀具:
通过微波化学气相沉积和阳极源辅助射频磁控溅射或者通过热丝化学气相沉积和阳极源辅助射频磁控溅射,控制不同沉积参数在硬质合金刀片上交替沉积GNCD涂层和cBN纳米涂层,涂层的总厚度由调制层厚度和调制周期决定,调制周期为6-10个周期,制备得到结合强度高,韧性好的GNCD/cBN纳米多层涂层刀具。
2.根据权利要求1所述的方法,其特征是所述的K3Fe(CN)6:KOH:H2O的配比为1:1:10。
3.根据权利要求1所述的方法,其特征是所述的微波化学气相沉积制备梯度纳米金刚石的工艺参数为:将预处理后的衬底置于微波化学气相沉积腔体内,使用Ar、H2和CH4作为沉积气源, 首先在基底上制备高sp3含量的纳米金刚石,沉积参数为:温度750°C,气压8kPa,CH4为6sccm沉积5min,然后逐渐增大CH4的含量,到沉积12分钟时,CH4含量达到15sccm,之后逐渐减小CH4的含量,到沉积至22min时,CH4含量减小至1sccm沉积8min;然后缓慢降温,制备出梯度渐变的纳米金刚石薄膜。
4.根据权利要求1所述的方法,其特征是所述的热丝化学气相沉积梯度纳米金刚石的工艺参数为:将预处理后的衬底置于热丝化学气相沉积腔体内,衬底置于已碳化处理的钽丝下方约4-6mm,钽丝温度2300℃,气体总流量100sccm, 其中CH4: H2:Ar =1:24:25;衬底温度730℃;反应气压1KPa;沉积时间10min;之后增加沉积气体中CH4的浓度至4%,其他条件不变,沉积时间10min;再降至甲烷浓度至2%,沉积时间10min。
5.根据权利要求1所述的方法,其特征是所述的对表面沉积有梯度纳米金刚石过渡层的衬底再次进行表面预处理是指:所述的射频磁控溅射时溅射靶材为热压的纯度为99.99%的hBN靶, 工艺参数为本底真空:5.0×10-4Pa;衬底温度:900°C;射频功率:250W;偏压:-300V;气体:纯Ar = 35sccm;沉积气压:0.8Pa;溅射时间15min。
6.根据权利要求1所述的方法,其特征是所述的沉积立方氮化硼涂层是指:射频磁控溅射时溅射靶材为热压的纯度为99.99%的hBN靶, 本底真空度:5.0×10-4Pa;衬底温度:900°C;射频功率:250W;偏压:-210V;阳极源功率200W;气体总流量35sccm,其中N2:Ar = 1:6;沉积气压:0.8Pa;溅射时间1h。
CN201810033987.5A 2018-01-15 2018-01-15 一种具有增韧机制的GNCD-cBN纳米复合多层涂层刀具的制备方法 Active CN108220916B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810033987.5A CN108220916B (zh) 2018-01-15 2018-01-15 一种具有增韧机制的GNCD-cBN纳米复合多层涂层刀具的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810033987.5A CN108220916B (zh) 2018-01-15 2018-01-15 一种具有增韧机制的GNCD-cBN纳米复合多层涂层刀具的制备方法

Publications (2)

Publication Number Publication Date
CN108220916A true CN108220916A (zh) 2018-06-29
CN108220916B CN108220916B (zh) 2019-08-27

Family

ID=62641752

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810033987.5A Active CN108220916B (zh) 2018-01-15 2018-01-15 一种具有增韧机制的GNCD-cBN纳米复合多层涂层刀具的制备方法

Country Status (1)

Country Link
CN (1) CN108220916B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109825821A (zh) * 2019-03-19 2019-05-31 中南大学 一种金刚石/cbn复合涂层硬质合金刀具、制备方法及装置
CN110527891A (zh) * 2019-09-16 2019-12-03 东华大学 低钴硬质合金表面金刚石涂层及其制备方法
CN111286717A (zh) * 2019-12-26 2020-06-16 兰州空间技术物理研究所 一种类富勒烯碳基复合薄膜及其制备方法
CN111979544A (zh) * 2020-09-22 2020-11-24 南京航空航天大学 一种采用热致相变膜作为应力调控层多级调节刀具涂层应力的方法
WO2022095748A1 (zh) * 2020-11-06 2022-05-12 上海征世科技股份有限公司 一种纳米金刚石刀具及其制备方法和应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1136788A (zh) * 1993-11-23 1996-11-27 普莱斯墨泰格工程中心 用于精密表面处理的磨料及其制造方法
US20060105171A1 (en) * 2004-11-12 2006-05-18 Labarge William J Coated article
KR20100138672A (ko) * 2009-06-25 2010-12-31 부산대학교 산학협력단 입방 질화 붕소 및 다이아몬드의 다층코팅된 초경 인서트 공구
CN102586777A (zh) * 2012-03-30 2012-07-18 南京航空航天大学 基于微/纳米金刚石过渡层的立方氮化硼涂层刀具的制备方法
CN103628036A (zh) * 2013-12-12 2014-03-12 南京航空航天大学 立方氮化硼涂层刀具的制备方法
CN106232873A (zh) * 2014-08-27 2016-12-14 宝马股份公司 用于金属构件的涂层、 用于涂布金属构件的方法、用于内燃机的活塞和机动车辆
CN107513690A (zh) * 2016-06-17 2017-12-26 中国科学院深圳先进技术研究院 一种类金刚石/立方氮化硼多层复合涂层及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1136788A (zh) * 1993-11-23 1996-11-27 普莱斯墨泰格工程中心 用于精密表面处理的磨料及其制造方法
US20060105171A1 (en) * 2004-11-12 2006-05-18 Labarge William J Coated article
KR20100138672A (ko) * 2009-06-25 2010-12-31 부산대학교 산학협력단 입방 질화 붕소 및 다이아몬드의 다층코팅된 초경 인서트 공구
CN102586777A (zh) * 2012-03-30 2012-07-18 南京航空航天大学 基于微/纳米金刚石过渡层的立方氮化硼涂层刀具的制备方法
CN103628036A (zh) * 2013-12-12 2014-03-12 南京航空航天大学 立方氮化硼涂层刀具的制备方法
CN106232873A (zh) * 2014-08-27 2016-12-14 宝马股份公司 用于金属构件的涂层、 用于涂布金属构件的方法、用于内燃机的活塞和机动车辆
CN107513690A (zh) * 2016-06-17 2017-12-26 中国科学院深圳先进技术研究院 一种类金刚石/立方氮化硼多层复合涂层及其制备方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109825821A (zh) * 2019-03-19 2019-05-31 中南大学 一种金刚石/cbn复合涂层硬质合金刀具、制备方法及装置
CN110527891A (zh) * 2019-09-16 2019-12-03 东华大学 低钴硬质合金表面金刚石涂层及其制备方法
CN110527891B (zh) * 2019-09-16 2021-11-02 东华大学 低钴硬质合金表面金刚石涂层及其制备方法
CN111286717A (zh) * 2019-12-26 2020-06-16 兰州空间技术物理研究所 一种类富勒烯碳基复合薄膜及其制备方法
CN111286717B (zh) * 2019-12-26 2022-06-03 兰州空间技术物理研究所 一种类富勒烯碳基复合薄膜及其制备方法
CN111979544A (zh) * 2020-09-22 2020-11-24 南京航空航天大学 一种采用热致相变膜作为应力调控层多级调节刀具涂层应力的方法
CN111979544B (zh) * 2020-09-22 2022-11-15 南京航空航天大学 一种采用热致相变膜作为应力调控层多级调节刀具涂层应力的方法
WO2022095748A1 (zh) * 2020-11-06 2022-05-12 上海征世科技股份有限公司 一种纳米金刚石刀具及其制备方法和应用

Also Published As

Publication number Publication date
CN108220916B (zh) 2019-08-27

Similar Documents

Publication Publication Date Title
CN108220916B (zh) 一种具有增韧机制的GNCD-cBN纳米复合多层涂层刀具的制备方法
CN106191807B (zh) 一种具有金刚石涂层的硬质合金件及其制备方法
CN109930129B (zh) 一种复合金刚石涂层硬质合金刀具及制备方法
CN102650053B (zh) 复杂形状cvd金刚石/类金刚石复合涂层刀具制备方法
CN105386049B (zh) 一种在硬质合金表面制备梯度硬质复合涂层的方法
CN101487121B (zh) 一种金刚石/w-c梯度结构复合涂层及其制备方法
CN102586777B (zh) 基于微/纳米金刚石过渡层的立方氮化硼涂层刀具的制备方法
CN101880866B (zh) 一种在硬质合金上为金刚石涂层制备金刚石-碳化硅-硅化钴复合中间层的方法
CN1219109C (zh) 硬质合金基体复杂形状刀具金刚石涂层制备方法
CN105483644A (zh) 多层金刚石涂层及其制备方法、涂层工具
CN105543803B (zh) 一种硬质合金衬底的金刚石/碳化硼复合涂层及制备方法
CN106835064B (zh) 一种具有金刚石/碳化硅复合涂层的工具及其制备方法
CN111482622B (zh) 一种涂层切削刀具及其制备方法
CN105039928B (zh) 一种金刚石/碳化硅三维复合结构的制备方法及其制备的产品
CN108103468A (zh) 一种金刚石涂层刀片及其制备方法
CA2108423A1 (en) Method of producing wear resistant articles having super hard coat and articles made therefrom
CN106929818A (zh) 一种基于孕镶金刚石原位沉积生长金刚石涂层的工艺方法
CN103938182B (zh) 硼氮共掺纳米基定向金刚石薄膜的制备方法
CN115351317A (zh) 涂层切削刀具及其制备方法
CN108728816A (zh) 具有多种涂层的拉丝模具及其制备方法
CN106319518A (zh) 金刚石/金属碳化物复合涂层及其制备方法和应用
Liu et al. Advances in deposition of diamond films on cemented carbide and progress of diamond coated cutting tools
KR100305315B1 (ko) 다이아몬드 막이 코팅된 절삭공구 및 그 제조방법
CN110387534A (zh) 一种纳米金刚石涂层硬质合金材料的制备方法
Grannen et al. A comparison study of diamond films grown on tungsten carbide cobalt tool inserts with CH4 and CF4 gas sources

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant