CN108198747A - 一种二次外延生长制备氮化镓系材料的方法 - Google Patents

一种二次外延生长制备氮化镓系材料的方法 Download PDF

Info

Publication number
CN108198747A
CN108198747A CN201810018514.8A CN201810018514A CN108198747A CN 108198747 A CN108198747 A CN 108198747A CN 201810018514 A CN201810018514 A CN 201810018514A CN 108198747 A CN108198747 A CN 108198747A
Authority
CN
China
Prior art keywords
growth
secondary epitaxy
gan
layer
gallium nitride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810018514.8A
Other languages
English (en)
Inventor
文于华
刘阳
张梅
田芃
金佳鸿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hunan Institute of Science and Technology
Original Assignee
Hunan Institute of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hunan Institute of Science and Technology filed Critical Hunan Institute of Science and Technology
Priority to CN201810018514.8A priority Critical patent/CN108198747A/zh
Publication of CN108198747A publication Critical patent/CN108198747A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02455Group 13/15 materials
    • H01L21/02458Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • H01L21/02513Microstructure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/308Chemical or electrical treatment, e.g. electrolytic etching using masks

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Plasma & Fusion (AREA)

Abstract

本发明公开了一种二次外延生长制备氮化镓系材料的方法,包括以下步骤:(1)依次在衬底材料上生长出缓冲层、非故意掺杂的GaN外延层;(2)在GaN外延层上淀积一层介质掩蔽膜,光刻并通过湿法腐蚀方法去除部分掩蔽膜,形成二次外延生长区域;(3)将步骤(2)形成的材料进行等离子体处理,形成含有5~25%空位缺陷的GaN表层;(4)二次外延生长出由氮化镓系二元、三元和四元化合物半导体材料构成的同质或者异质结构。本发明在二次外延生长前,先将生长区域进行等离子体处理,引入满足条件的表面空位缺陷分布,从而诱导GaN材料在二次外延生长初期的层状生长,并且实施工艺简单,适合在氮化镓光电器件和电子器件制造领域应用。

Description

一种二次外延生长制备氮化镓系材料的方法
技术领域
本发明涉及半导体材料生长领域,尤其涉及一种二次外延生长制备氮化镓系材料的方法。
背景技术
钎锌矿结构的氮化镓系二元、三元和四元化合物半导体材料,可以通过金属有机物化学气相沉积(MOCVD)和分子束外延(MBE)等方法来获得。外延生长的AlGaN/GaN、AlGaN/AlN/GaN、InGaN/GaN和AlInGaN/GaN等异质结构,可以在界面附近产生大量迁移率高的二维电子气,十分适合于制作大功率节能型的光电器件和电子器件。
原生的GaN材料,一般能够满足如发光二极管(LED)、异质结构场效应晶体管(HFET)等的需要。但是,要进一步提高材料的生长质量或实现某些特殊的器件结构,需要在原生材料上进行二次外延生长。
1994年,Kato等人为了改善GaN外延材料的晶体质量,首次引入了二次外延生长方法。该方法又被称为侧向外延生长技术,首先在衬底上生长AlN缓冲层,并外延预生长GaN层,然后沉积非晶态的SiO2掩膜,并利用光刻和刻蚀技术,形成规则的掩膜图形;最后进行二次外延生长。该方法可以有效减少GaN生长过程中的穿透位错,从而提高生长材料的质量。参考文献:O. Nam, M. D. Bremser, T. S. Zheleva and R. F. Davis, “Lateralepitaxy of low defect density GaN layers via organometallic vapor phaseepitaxy,” Appl. Phys. Lett., 71, 2638(1997)。
1998年,Chen等人先在蓝宝石衬底上生长了AlGaN/GaN异质结,再通过等离子体刻蚀,去除源、漏电极位置的二维电子气结构,并用 MOCVD方法在刻蚀区域二次外延生长重掺杂的n型GaN层,最后通过器件工艺制作出AlGaN/GaN HFET,获得低导通电阻、高跨导的器件。参考文献:C. Chen, S. Keller, G. Parish, R. Vetury, P. Kozodoy, E. L. Hu,Steven P. Denbaars, U. K. Mishra, and Y. F. Wu, “High-transconductance self-aligned AlGaN/GaN modulation-doped field-effect transistors with regrownohmic contacts,” Appl. Phys. Lett. , 73, 3147(1998)。
2011年,Yuhua Wen等通过选择区域生长方法,首先对栅极区域进行SiO2掩膜,然后在其他区域进行GaN材料的二次生长,制作了凹栅结构的GaN基常关型场效应晶体管。参考文献:Yuhua Wen, Zhiyuan He, Jialin Li, Ruihong Luo, Peng Xiang, QingyuDeng, Guangning Xu,Zhen Shen, Zhisheng Wu, Baijun Zhang, Hao Jiang, Gang Wangand Yang Liu. Enhancement-mode AlGaN/GaN heterostructure field effecttransistors fabricated by selective area growth technique. Appl. Phys. Lett.,98,072108(2011)。
GaN材料二次外延生长前,需要经过掩膜图形的制作和化学清洗等过程,材料的表面情况无疑会影响到二次生长材料的质量。尤其当需要二次外延生长距离生长界面很近的二维电子气结构时,引入合理的表面处理技术来提高仅数十纳米厚度的GaN薄膜生长质量显得格外重要。
发明内容
本发明的目的在于提供一种能诱导GaN材料二次外延生长初期的层状生长模式,并且实施工艺简单的二次外延生长制备氮化镓系材料的方法。
为实现上述目的,本发明的技术方案为:一种二次外延生长制备氮化镓系材料的方法,其特征在于包括以下步骤:
(1)依次在衬底材料上生长出缓冲层、非故意掺杂的GaN外延层;
(2)在GaN外延层上淀积一层介质掩蔽膜,光刻并通过湿法腐蚀方法去除部分掩蔽膜,形成二次外延生长区域;
(3)将步骤(2)形成的材料进行等离子体处理,形成含有5~25%空位缺陷的GaN表层;
(4)二次外延生长出由氮化镓系二元、三元和四元化合物半导体材料构成的同质或者异质结构。
步骤(1)中,所述衬底材料为Si、蓝宝石、SiC和GaN等;所述缓冲层为低温GaN或AlN插入层。
步骤(2)中,所述介质掩蔽膜为SiO2、SiN等。
步骤(3)中,等离子体处理为将材料暴露在氩气或者氮气的等离子体中,在表面产生物理刻蚀,形成随机分布的空位缺陷。
关于表面空位缺陷对GaN材料二次外延生长的影响,发明人研究发现,一定数量随机分布的空位缺陷有利于诱导GaN二次生长初期的层状生长,将提高薄膜的生长质量。本发明在二次外延生长前,先将生长区域暴露在氩气或者氮气的等离子体中,在没有定向电场加速的情况下,等离子体会随机对材料表面进行刻蚀,从而可以有效引入满足条件的表面空位缺陷分布。另外,采用氩、氮或是其他惰性气体的等离子体,不会引入杂质原子,对外延生长影响小。
本发明在二次外延生长前,先将生长区域进行等离子体处理,引入满足条件的表面空位缺陷分布,从而诱导GaN材料在二次外延生长初期的层状生长,并且实施工艺简单,适合在氮化镓光电器件和电子器件制造领域应用。
附图说明
图1为含有一定比例表面空位缺陷的钎锌矿结构GaN材料结构示意图;
图2为图1的基础上分子动力学模拟二次外延生长一个双原子层后的结构
示意图;
图3为图2的表面图;
图4~图8为本发明二次外延生长制备氮化镓系材料各个阶段的材料结构示意图;
图中,1是衬底层,2是缓冲层,3是外延层,4是GaN表层,5是GaN外延层,6是AlN插入层,7是AlGaN层。
具体实施方式
以下结合附图对本发明进行详细的描述。
图8为本发明二次外延生长材料的最终材料的结构示意图,包括衬底层1、缓冲层2、非故意掺杂的外延层3、含有随机分布的空位缺陷的GaN表层4、二次外延生长的GaN层5、二次外延生长的AlN插入层6、以及二次外延生长的AlGaN层7。
本发明制备方法的具体过程如下:
(1)钎锌矿结构的原生GaN的外延生长采用金属有机物化学气相沉积(MOCVD)方法,依次在衬底层1上生长出缓冲层2、外延层3,其结构如图4所示,外延生长温度在1020℃至1150℃之间,衬底层1为蓝宝石、Si、SiC或者GaN之一,缓冲层2为低温GaN层或者AlN插入层,外延层3为i-GaN层;
(2)在GaN表面制作介质掩膜图形,对未被SiO2或SiN掩蔽的区域用Ar等离子体处理,等离子体用电感耦合等离子(Inductively Couple Plasma)刻蚀机产生,调整等离子体生成的射频电源功率和处理时间,形成含有随机分布的空位缺陷的GaN表层4,其结构如图5所示;
(3)在GaN表层4上二次外延生长GaN外延层5,其结构如图6所示;
(4)在GaN外延层5上二次外延生长0.5至2微米的AlN插入层6,其结构如图7所示;
(5)在AlN插入层6上二次外延生长AlGaN层7,形成AlGaN/AlN/GaN异质结构,其结构如图8所示。
以上对本发明所提供的二次外延生长氮化镓系材料的表面处理技术及其工艺流程进行了详细介绍,对于本领域的一般技术人员,依据本发明实施例的思想,在具体实施方式及应用范围上均会有改变之处。综上所述,本说明书内容不应理解为对本发明的限制。

Claims (2)

1.一种二次外延生长制备氮化镓系材料的方法,其特征在于包括以下步骤:
(1)依次在衬底材料上生长出缓冲层、非故意掺杂的GaN外延层;
(2)在GaN外延层上淀积一层介质掩蔽膜,光刻并通过湿法腐蚀方法去除部分掩蔽膜,形成二次外延生长区域;
(3)将步骤(2)形成的材料进行等离子体处理,形成含有5~25%空位缺陷的GaN表层;
(4)二次外延生长出由氮化镓系二元、三元和四元化合物半导体材料构成的同质或者异质结构。
2.根据权利要求1所述的方法,其特征在于:所述等离子体处理为将材料暴露在氩气或者氮气的等离子体中,在表面产生物理刻蚀,形成随机分布的空位缺陷。
CN201810018514.8A 2018-01-09 2018-01-09 一种二次外延生长制备氮化镓系材料的方法 Pending CN108198747A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810018514.8A CN108198747A (zh) 2018-01-09 2018-01-09 一种二次外延生长制备氮化镓系材料的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810018514.8A CN108198747A (zh) 2018-01-09 2018-01-09 一种二次外延生长制备氮化镓系材料的方法

Publications (1)

Publication Number Publication Date
CN108198747A true CN108198747A (zh) 2018-06-22

Family

ID=62588844

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810018514.8A Pending CN108198747A (zh) 2018-01-09 2018-01-09 一种二次外延生长制备氮化镓系材料的方法

Country Status (1)

Country Link
CN (1) CN108198747A (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003347234A (ja) * 2002-05-27 2003-12-05 Toyota Central Res & Dev Lab Inc Iii族窒化物膜の製造方法
CN101252100A (zh) * 2008-03-28 2008-08-27 西安电子科技大学 一种A1GaN/GaN HEMT器件的隔离方法
CN101252088A (zh) * 2008-03-28 2008-08-27 西安电子科技大学 一种新型增强型A1GaN/GaN HEMT器件的实现方法
CN103579330A (zh) * 2012-07-23 2014-02-12 三星电子株式会社 氮化物基半导体器件及其制造方法
CN106024695A (zh) * 2016-08-11 2016-10-12 成都海威华芯科技有限公司 用于GaN晶体管的器件隔离方法
CN106328474A (zh) * 2016-10-14 2017-01-11 北京大学 一种在室温环境下向氮化镓中引入杂质的方法
CN206301802U (zh) * 2016-09-05 2017-07-04 中山大学 一种选区外延高质量的AlGaN/GaN生长结构
CN107154338A (zh) * 2016-03-03 2017-09-12 北京大学 一种提高GaN HEMT钝化效果、降低电流崩塌的表面处理技术
CN107170671A (zh) * 2017-06-22 2017-09-15 广东省半导体产业技术研究院 一种基于离子注入的GaN功率器件及其制造方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003347234A (ja) * 2002-05-27 2003-12-05 Toyota Central Res & Dev Lab Inc Iii族窒化物膜の製造方法
CN101252100A (zh) * 2008-03-28 2008-08-27 西安电子科技大学 一种A1GaN/GaN HEMT器件的隔离方法
CN101252088A (zh) * 2008-03-28 2008-08-27 西安电子科技大学 一种新型增强型A1GaN/GaN HEMT器件的实现方法
CN103579330A (zh) * 2012-07-23 2014-02-12 三星电子株式会社 氮化物基半导体器件及其制造方法
CN107154338A (zh) * 2016-03-03 2017-09-12 北京大学 一种提高GaN HEMT钝化效果、降低电流崩塌的表面处理技术
CN106024695A (zh) * 2016-08-11 2016-10-12 成都海威华芯科技有限公司 用于GaN晶体管的器件隔离方法
CN206301802U (zh) * 2016-09-05 2017-07-04 中山大学 一种选区外延高质量的AlGaN/GaN生长结构
CN106328474A (zh) * 2016-10-14 2017-01-11 北京大学 一种在室温环境下向氮化镓中引入杂质的方法
CN107170671A (zh) * 2017-06-22 2017-09-15 广东省半导体产业技术研究院 一种基于离子注入的GaN功率器件及其制造方法

Similar Documents

Publication Publication Date Title
JP5311765B2 (ja) 半導体エピタキシャル結晶基板およびその製造方法
JP5533661B2 (ja) 化合物半導体装置及びその製造方法
CN101252088B (zh) 一种增强型A1GaN/GaN HEMT器件的实现方法
US8981428B2 (en) Semiconductor device including GaN-based compound semiconductor stacked layer and method for producing the same
US9269577B2 (en) Method for manufacturing nitride semiconductor device
JP7013710B2 (ja) 窒化物半導体トランジスタの製造方法
CN111916351A (zh) 半导体器件及其制备方法
JP2008072029A (ja) 半導体エピタキシャル結晶基板の製造方法
JP2016207748A (ja) 半導体装置の製造方法および半導体装置
JP2011023677A (ja) 化合物半導体エピタキシャルウェハおよびその製造方法
JP6085178B2 (ja) Mes構造トランジスタを作製する方法、mes構造トランジスタ
WO2019119589A1 (zh) 一种硅衬底上N极性面高频GaN整流器外延结构及其制备方法
CN109728087B (zh) 基于纳米球掩模的低欧姆接触GaN基HEMT制备方法
CN108447788B (zh) 增强型高电子迁移率晶体管的制备方法
JP2009231550A (ja) 半導体装置の製造方法
US20130171811A1 (en) Method for manufacturing compound semiconductor
Qu et al. AlGaNGaN heterostructure grown by metalorganic vapor phase epitaxy
CN113725297B (zh) 一种具有盖帽层的常开型氧化镓基hfet器件及其制备方法
CN108198747A (zh) 一种二次外延生长制备氮化镓系材料的方法
CN107978628B (zh) 一种覆盖纳米柱势垒的GaN晶体管及其制备方法
WO2019095924A1 (zh) 一种利用极化掺杂制备增强型GaN基晶体管的方法
CN110838518A (zh) 一种hemt器件的外延结构及其制备方法和应用
CN111952175A (zh) 晶体管的凹槽制作方法及晶体管
JP6416705B2 (ja) 電界効果トランジスタおよびその製造方法
KR101256465B1 (ko) 질화물계 반도체 소자 및 그 제조 방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20180622