CN108196340B - A kind of three dimensional pattern conversion beam splitter based on multiple-mode interfence coupling - Google Patents

A kind of three dimensional pattern conversion beam splitter based on multiple-mode interfence coupling Download PDF

Info

Publication number
CN108196340B
CN108196340B CN201810021513.9A CN201810021513A CN108196340B CN 108196340 B CN108196340 B CN 108196340B CN 201810021513 A CN201810021513 A CN 201810021513A CN 108196340 B CN108196340 B CN 108196340B
Authority
CN
China
Prior art keywords
waveguide
mode
beam splitter
output waveguide
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810021513.9A
Other languages
Chinese (zh)
Other versions
CN108196340A (en
Inventor
王瑾
张云超
翟羽萌
陆云清
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Post and Telecommunication University
Original Assignee
Nanjing Post and Telecommunication University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Post and Telecommunication University filed Critical Nanjing Post and Telecommunication University
Priority to CN201810021513.9A priority Critical patent/CN108196340B/en
Publication of CN108196340A publication Critical patent/CN108196340A/en
Application granted granted Critical
Publication of CN108196340B publication Critical patent/CN108196340B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/14Mode converters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/2804Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers
    • G02B6/2808Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers using a mixing element which evenly distributes an input signal over a number of outputs
    • G02B6/2813Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers using a mixing element which evenly distributes an input signal over a number of outputs based on multimode interference effect, i.e. self-imaging

Abstract

The invention discloses a kind of three dimensional patterns based on multiple-mode interfence coupling to convert beam splitter, belong to the technical field of multiplexing functions beam splitter, it is serially connected in input waveguide, the output waveguide at multimode waveguide both ends including multimode waveguide and respectively, the input waveguide is singlemode input waveguide;The output waveguide includes the identical basic mode output waveguide of quantity and First-Order Mode output waveguide;When light is inputted by input waveguide, perpendicular to multiple-mode interfence coupling is constructed on two different dimensions of transmission direction respectively in multimode waveguide, implementation pattern conversion exports basic mode and First-Order Mode by basic mode output waveguide and First-Order Mode output waveguide with after beam splitting respectively.Structure of the invention is compact and at the same time realize mode multiplexing and beam splitting function, efficiently solves the problems, such as to expand transmission capacity, to meet the needs of next-generation Optical Communication Technology Development.

Description

A kind of three dimensional pattern conversion beam splitter based on multiple-mode interfence coupling
Technical field
The present invention relates to a kind of three dimensional patterns based on multiple-mode interfence coupling to convert beam splitter, belongs to multiplexing functions beam splitter Technical field.
Background technique
With the rapid development of optical communication network, core net and data center need to handle a large amount of number in a short time According to more stringent requirements are proposed for this processing speed and transmission capacity to optical signal.In face of these requirements, space division multiplexing technology and Mode multiplexing technology is very effective settling mode.But traditional optics space division multiplexing and mode based on two-dimentional optical path Multiplexing device can only handle the optical signal for prolonging planar transmission, be increasingly becoming the bottle for further increasing processing speed and transmission capacity Neck.Currently, as three-dimensional photon integrated technology continues to develop, optical mode multiplexing and demultiplexing device forward direction three-dimensional structure development. These three-dimensional photon structure devices not only have the advantages that small in size, speed is fast, integrated level is high, but also in holding and two-dimensional photon Increase the channel number on one single chip on the basis of the identical reliability of device and structural stability, allows three-dimensional photon structure simultaneously The optical signal of different transmission directions in row processing space, to greatly increase transmission capacity.
Under the support of optical device manufacturing process, realize that three dimensional pattern conversion beam splitter can be in mould on a single chip Transmission capacity is further increased in formula multiplex system.Currently, three-dimensional beam splitter can be divided into three types from structure: based on sky Between Directional Coupling Optic, based on Y-branch type and be based on multi-mode interference coupler type.Wherein the beam splitter based on MMI is benefit Optical beam splitting is realized with the self-imaging effect inside multimode waveguide, and it is excellent to have that insertion loss is low, compact-sized and tolerance is good etc. Point.But it is current to change beam splitter and realize multiplexing of the different function on single device well.
Summary of the invention
It is a kind of based on multiple-mode interfence coupling technical problem to be solved by the present invention lies in overcoming the deficiencies of the prior art and provide The three dimensional pattern of conjunction converts beam splitter, solves to realize different function answering on single device based on single multi-mode interference coupler The problem of using.
The present invention specifically uses following technical scheme to solve above-mentioned technical problem:
A kind of three dimensional pattern based on multiple-mode interfence coupling converts beam splitter, including multimode waveguide and is serially connected in multimode respectively The input waveguide at waveguide both ends, output waveguide, wherein the input waveguide is singlemode input waveguide;The output waveguide includes number Measure identical basic mode output waveguide and First-Order Mode output waveguide;When light is inputted by input waveguide, perpendicular to biography in multimode waveguide Multiple-mode interfence coupling is constructed on two different dimensions in defeated direction respectively, passes through basic mode output wave after implementation pattern conversion and beam splitting It leads and exports basic mode and First-Order Mode respectively with First-Order Mode output waveguide.
Further, as a preferred technical solution of the present invention: all basic mode output waveguides are respectively positioned on vertical Directly on the straight line of transmission direction and all First-Order Mode output waveguides be respectively positioned on it is straight perpendicular to another of transmission direction On line, and two straight line parallels.
Further, as a preferred technical solution of the present invention: the multimode waveguide is perpendicular to transmission direction Input light is subjected to mode conversion and beam splitting on one direction, and by different moulds on another direction perpendicular to transmission direction The output light of formula is split respectively.
Further, as a preferred technical solution of the present invention: the basic mode output waveguide and First-Order Mode output wave The quantity led is 3.
Further, as a preferred technical solution of the present invention: the waveguide material of the three dimensional pattern conversion beam splitter Material is polymer material.
The present invention by adopting the above technical scheme, can have the following technical effects:
Three dimensional pattern based on multiple-mode interfence coupling of the invention converts beam splitter, is a kind of three-dimensional function multiplexing beam splitting Device is made of single three-dimensional multimode interference coupler.Three dimensional pattern conversion beam splitter can be converted to the basic mode light field of input Basic mode and First-Order Mode export, and realize 1 point of 3 beam splitting function of basic mode and First-Order Mode respectively while mode conversion.The present invention It is compact-sized to efficiently solve the problems, such as to expand transmission capacity and at the same time realize mode multiplexing and beam splitting function, thus Meets the needs of next-generation Optical Communication Technology Development.
Detailed description of the invention
Fig. 1 is that the three dimensional pattern coupled the present invention is based on multiple-mode interfence converts the structural schematic diagram of beam splitter.
Fig. 2 (a) is the input end face figure that three dimensional pattern of the present invention converts beam splitter;Fig. 2 (b) turns for three dimensional pattern of the present invention Change beam splitter output end face figure.
Fig. 3 is the input waveguide port position figure of the embodiment of the present invention.
Fig. 4 is the output waveguide port position figure of the embodiment of the present invention.
Fig. 5 is present invention energy profile in xz plane after basic mode input.
Fig. 6 is present invention energy profile in (x=-23.4 μm) yz plane after basic mode input.
Fig. 7 is present invention energy profile in (x=9.8 μm) yz plane after basic mode input.
Fig. 8 is present invention energy profile in (x=6.8 μm) yz plane after basic mode input.
Wherein Symbol explanation: 1 is input waveguide, and 11 be multimode waveguide, and 12,13,14 be basic mode output waveguide, 15,16,17 It is First-Order Mode output waveguide;120,130,140 be three single-mode output waveguide cores, and 150,160,170 be First-Order Mode output waveguide Covering core, 110 be multimode waveguide core, and 10 be waveguide covering.
Specific embodiment
Embodiments of the present invention are described with reference to the accompanying drawings of the specification.
As shown in Figure 1, a kind of three dimensional pattern based on multiple-mode interfence coupling of the present invention converts beam splitter, including one is used for It is serially connected in input waveguide 1, the output waveguide at multimode waveguide both ends from the multimode waveguide 11 of image and respectively, wherein the incoming wave 1 is led as singlemode input waveguide;The output waveguide includes the identical basic mode output waveguide of quantity and First-Order Mode output waveguide, output The quantity of waveguide depends on imaging number N, and quantity takes 3 in the present invention, i.e., output waveguide include three basic mode output waveguides 12, 13,14 and three First-Order Mode output waveguides 15,16,17, but this hair is not limited to the quantity, it is equally applicable with other quantity.Pass through Basic mode output waveguide 12,13,14 and First-Order Mode output waveguide 15,16,17 are on two different dimensions perpendicular to transmission direction Multi-mode interference coupler is constructed respectively;When light is inputted by input waveguide, multimode waveguide area perpendicular to two of transmission direction not With multiple-mode interfence coupling is constructed in dimension respectively, implementation pattern conversion is exported with after beam splitting by basic mode output waveguide and First-Order Mode Waveguide exports basic mode and First-Order Mode respectively.
Described two groups are respectively used to the single mode waveguide output and input and constitute the most basic structure list of multi-mode interference coupler Member, the single mode waveguide number of input and output side are respectively M and N, and wherein M takes 1, and N is also corresponding from imaging number.Due to output First-Order Mode and basic mode, and the output waveguide of First-Order Mode is merged by two single mode waveguides, it can be according to incoming signal light Wavelength X, input position Xin, multimode waveguide core refractive index nr, waveguide cladding index nc, multimode waveguide width WMMI, output end The parameters such as number N are imaged, the imaging characteristic of multimode waveguide can be analyzed, by multiple-mode interfence from image-forming principle calculate from And obtain the imaging position of each picture of output end and the length L of required multimode waveguide.Two dimension and the main distinction of three-dimensional MMI are In the structure of multimode waveguide, i.e., two dimension MMI can accommodate multiple modes on perpendicular to the multimode waveguide width on the direction of propagation, But single mode can only be accommodated on multimode waveguide thickness, and the multimode waveguide thickness of three-dimensional MMI also can allow for multiple modes Presence.Preferably, the waveguide material of heretofore described three dimensional pattern conversion beam splitter uses polymer material, such as input and Output waveguide sandwich layer, multimode waveguide sandwich layer and waveguide covering all use polymer material, but the present invention is not limited to this kind of materials.
The present invention is to can be regarded as two based on the self-imaging effect in three-dimensional MMI and be mutually perpendicular to and independent two dimension The superposition of MMI self-imaging effect, therefore, the design of three dimensional pattern conversion beam splitter can be expanded by two-dimensional model converter. General two-dimensional model converter is that the basic mode light field of input is converted to basic mode and First-Order Mode light using the self-imaging effect of MMI Field exports respectively.Imaging number N is taken as 3 in this device, wherein the output waveguide of two-way is snugly into each other, to form single order The output of mould light field, and another output waveguide still exports basic mode light field.Therefore, theoretically, the single order of two-dimensional model converter Mould light field output power is twice of basic mode light field output power.The length of multimode waveguide and width are respectively defined as L at this timeMMI And WMMI.On the basis of two-dimensional model converts beam splitter, is expanded on MMI thickness direction and realize beam splitting function, and then can realized Beam splitting converts beam splitter with the three dimensional pattern that mode conversion combines, and the thickness of multimode waveguide defines H at this timeMMI
Preferably, all basic mode output waves 12,13,14 lead the straight line being respectively positioned on perpendicular to transmission direction On and all First-Order Mode output waveguides 15,16,17 be respectively positioned on the another straight line perpendicular to transmission direction, and it is described Two straight line parallels.After light is inputted by input waveguide 1, by the multimode waveguide 11 of multi-mode interference coupler, in the horizontal direction on x It is exported again by conversion and beam splitting that multiple-mode interfence self-imaging realizes basic mode to First-Order Mode, by more on vertical direction y Mode interference self-imaging realizes the output light beam splitting of different mode, realizes 1 point of 3 beam splitting.Finally, basement membrane output waveguide 12, 13,14 three basic modes of output export First-Order Mode in First-Order Mode output waveguide 15,16,17.
Fig. 2 (a) is that three dimensional pattern of the present invention converts the distribution of beam splitter input port.Fig. 2 (b) turns for three dimensional pattern of the present invention Change splitter output port distribution.In two figures, multimode waveguide core 110 is enclosed in waveguide covering 10;Perpendicular to the direction of propagation X/y plane on, input waveguide core 100 is located at centre with 110 input end face of multimode waveguide core on vertical direction y, in level It is located at the side with multimode waveguide core 110 on the x of direction.The position one on x in the horizontal direction of basic mode output waveguide core 120,130,140 It causes, wherein output waveguide core 130 is identical as 100 position of input waveguide core on vertical direction y;First-Order Mode output waveguide core 150, 160,170 also position consistencies on x in the horizontal direction, wherein output waveguide core 120 and output waveguide core 150 are on vertical direction y Position is identical, and the position on vertical direction y is identical with output waveguide core 160 for output waveguide core 130, output waveguide core 140 with it is defeated The position on vertical direction y of waveguide 170 is identical out.And when the input waveguide core 100 of three dimensional pattern conversion beam splitting is in multimode waveguide When core 110 inputs the section other side, input port and output port distribution are symmetric with Fig. 2 (a) and Fig. 2 (b).
The present invention provides an embodiment:
Beam splitter is converted using the three dimensional pattern being made of polymer material, input port and output port coordinate are by scheming 3 and embodiment illustrated in fig. 4.In the present embodiment, when the wavelength X of input light is 1550nm, multimode waveguide core refractive index nr= 1.48, waveguide cladding index nc=1.45.Set singlemode input waveguide width WinAnd single-mode output duct width Wout1For 3.2 μm, First-Order Mode output waveguide width Wout2=2 × WinIt=6.4 μm, is obtained by the imaging number N=3 on multimode waveguide width To multimode waveguide width WMMI=50 μm, multimode waveguide length LMMI=3398.17 μm, by beam splitting number N on multimode waveguide thicknessH =3 and obtain multimode waveguide thickness HMMI=31 μm.At this point, setting multimode waveguide core center as coordinate (0,0), singlemode input waveguide Core centre coordinate is respectively (23.4,0), three single-mode output waveguide core centre coordinates be respectively (- 23.4,10), (- 23.4, 0), (23.4, -10), three First-Order Mode output waveguide core centre coordinates are respectively (8.3,10), (8.3,0), (8.3, -10).
Fig. 5, Fig. 6 give in xz plane (y=0, the i.e. plane along input waveguide core center), (x=- in yz plane 23.4 μm, the i.e. plane along output basic mode waveguide core center).It can be seen that when light is inputted by input waveguide 1, in multimode wave It leads and carries out mode conversion and beam splitting in 11, and 3 basic modes after beam splitting are exported by output waveguide 12,13,14 respectively, Fig. 7 and Fig. 8 Give in yz plane, i.e., when x=9.8 μm and x=6.8 μm and the plane at parallel output First-Order Mode waveguide core center, energy Amount distribution.It can be seen that when light by input waveguide 1 input when, in multimode waveguide 11 carry out mode conversion with after beam splitting defeated The output of waveguide 15,16,17 out is three identical First-Order Modes.It is thus achieved that real simultaneously in single multi-mode interference coupler Existing mode conversion and beam splitting function.
Therefore, the present invention by constructed respectively on two different dimensions perpendicular to transmission direction multi-mode interference coupler come It realizes different beam splitting functions, the multi-mode interference coupler that one of direction and transmission direction are constituted is realized into a kind of beam splitting function It can be such as 1 point of 3 beam splitting function;The multi-mode interference coupler that another direction and transmission direction are constituted is realized into another beam splitting function That is mode conversion and beam splitting function;It is achieved in the three-dimensional beam splitter of mode conversion with beam splitting function multiplexing, multiplexing functions are three-dimensional Beam splitter is only made of single multi-mode interference coupler, and mode conversion and beam splitting can be achieved at the same time.Structure of the invention is compact simultaneously And mode multiplexing and beam splitting function are realized simultaneously, it efficiently solves the problems, such as to expand transmission capacity, to meet the next generation The demand of Optical Communication Technology Development.
Embodiments of the present invention are explained in detail above in conjunction with attached drawing, but the present invention is not limited to above-mentioned implementations Mode within the knowledge of a person skilled in the art can also be without departing from the purpose of the present invention It makes a variety of changes.

Claims (5)

1. a kind of three dimensional pattern based on multiple-mode interfence coupling converts beam splitter, including multimode waveguide and is serially connected in multimode wave respectively Lead input waveguide, the output waveguide at both ends, which is characterized in that the input waveguide is singlemode input waveguide;The output waveguide Including the identical basic mode output waveguide of quantity and First-Order Mode output waveguide, and basic mode output waveguide and First-Order Mode output waveguide Quantity is greater than 1;When light is inputted by input waveguide, in multimode waveguide perpendicular on two different dimensions of transmission direction distinguish structure Multiple-mode interfence coupling is built, implementation pattern conversion exports base by basic mode output waveguide and First-Order Mode output waveguide with after beam splitting respectively Mould and First-Order Mode.
2. the three dimensional pattern according to claim 1 based on multiple-mode interfence coupling converts beam splitter, it is characterised in that: the institute Some basic mode output waveguides are respectively positioned on the straight line perpendicular to transmission direction and all First-Order Mode output waveguides are respectively positioned on Perpendicular on the another straight line of transmission direction, and two straight line parallels.
3. the three dimensional pattern according to claim 1 based on multiple-mode interfence coupling converts beam splitter, it is characterised in that: described more Input light is carried out mode conversion and beam splitting on a direction perpendicular to transmission direction by mould waveguide, and perpendicular to transmission side To another direction on the output light of different mode is split respectively.
4. the three dimensional pattern according to claim 1 based on multiple-mode interfence coupling converts beam splitter, it is characterised in that: the base The quantity of mould output waveguide and First-Order Mode output waveguide is 3.
5. the three dimensional pattern according to claim 1 based on multiple-mode interfence coupling converts beam splitter, it is characterised in that: described three Dimensional pattern converts the waveguide material of beam splitter as polymer material.
CN201810021513.9A 2018-01-10 2018-01-10 A kind of three dimensional pattern conversion beam splitter based on multiple-mode interfence coupling Active CN108196340B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810021513.9A CN108196340B (en) 2018-01-10 2018-01-10 A kind of three dimensional pattern conversion beam splitter based on multiple-mode interfence coupling

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810021513.9A CN108196340B (en) 2018-01-10 2018-01-10 A kind of three dimensional pattern conversion beam splitter based on multiple-mode interfence coupling

Publications (2)

Publication Number Publication Date
CN108196340A CN108196340A (en) 2018-06-22
CN108196340B true CN108196340B (en) 2019-11-12

Family

ID=62588547

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810021513.9A Active CN108196340B (en) 2018-01-10 2018-01-10 A kind of three dimensional pattern conversion beam splitter based on multiple-mode interfence coupling

Country Status (1)

Country Link
CN (1) CN108196340B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111830628B (en) * 2020-07-24 2022-06-28 联合微电子中心有限责任公司 Coarse wavelength division multiplexer/demultiplexer and optical communication equipment
CN116243424B (en) * 2023-05-09 2023-08-11 之江实验室 Beam splitting mode converter, design method, preparation method and optical device thereof

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6684011B2 (en) * 2000-10-02 2004-01-27 Electronics And Telecommunications Research Institute Spot size converter and method of manufacturing the same
GB0201950D0 (en) * 2002-01-29 2002-03-13 Qinetiq Ltd Multimode interference optical waveguide device
JP5715072B2 (en) * 2012-01-24 2015-05-07 日本電信電話株式会社 High-order mode planar lightwave circuit
CN102944913A (en) * 2012-11-22 2013-02-27 中国科学院半导体研究所 Optical beam splitter performing separation based on coupled mode
CN103345022B (en) * 2013-07-03 2015-05-06 吉林大学 Asymmetric planar optical waveguide mode multiplexing/demultiplexing device based on few-mode fibers
CN104914506B (en) * 2015-06-23 2017-12-19 中国科学院半导体研究所 InP-base mode division multiplexing/demultiplexer structure based on multi-mode interference coupler
JP6487805B2 (en) * 2015-08-13 2019-03-20 日本電信電話株式会社 Waveguide type mode converter
CN105759357B (en) * 2016-05-13 2019-09-03 东南大学 A kind of close-coupled mode step number converter based on slot type waveguide
CN106842422A (en) * 2017-04-14 2017-06-13 吉林大学 A kind of three-dimensional perpendicular coupling optical mode conversion isolation multiple device

Also Published As

Publication number Publication date
CN108196340A (en) 2018-06-22

Similar Documents

Publication Publication Date Title
CN105829933B (en) Wave-guide polarization separation and polarization converter
CN103345022B (en) Asymmetric planar optical waveguide mode multiplexing/demultiplexing device based on few-mode fibers
JP5259829B2 (en) Optical coupling device and optical multiplexing / demultiplexing device
CN103076659B (en) Multi-core fiber optical interconnection structure
CN1723401B (en) Optical device, optical device manufacturing method, and optical integrated device
CN106461864A (en) Grating-coupler assembly with small mode-field diameter for photonic-integrated-circuit systems
CN106249355A (en) The mode multiplexing demultiplexer mated based on silica-based optical waveguide mode
ATE386281T1 (en) ATHERMAL WAVEGUIDE GRID MULTIPLEXER (AWG) WITH POLYMER SEGMENT AND CORRESPONDING PRODUCTION PROCESS
CN105759357B (en) A kind of close-coupled mode step number converter based on slot type waveguide
CN106980153B (en) A kind of production method of the oval right-angled intersection waveguide based on multimode interference principle
CN103513333A (en) Blended crossing device for silicon-based nanowire
CN105093408A (en) Silicon-based nanowire polarization beam splitter based on mode evolution principle
CN108490546B (en) Optical waveguide mode converter for improving optical waveguide transmission characteristics
CN108196340B (en) A kind of three dimensional pattern conversion beam splitter based on multiple-mode interfence coupling
CN108508539A (en) Silicon substrate wavelength division multiplexer based on taper asymmetrical directional coupler
CN110542950A (en) Mode demultiplexer based on degenerate mode group of spatial three-dimensional waveguide
CN102819066A (en) Three-dimensional (3D) converter for coupling multi-core optical fiber and planar optical waveguides and manufacturing method thereof
CN102879858A (en) Single-fiber three-way multiplexer with grating
CN104730645A (en) Multiplexer-demultiplexer for mode multiplexing-wavelength division multiplexing hybrid technology
CN206431319U (en) A kind of wavelength-division multiplex light emission component
Immonen et al. End-to-end optical 25Gb/s link demonstrator with embedded waveguides, 90° out-of-plane connector and on-board optical transceivers
CN107436462B (en) A kind of energy conversion device for the selectable modes excitation in mode multiplexing
CN109343174B (en) Multichannel multi-mode multiplexing waveguide cross and preparation method thereof
CN102279441B (en) Novel single-fiber triplexer for passive optical network
US20240069286A1 (en) Dual Layer Optical Coupling Configuration Between Photonic Integrated Circuit And External Single Mode Optical Fiber

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant