CN108196340A - A kind of three dimensional pattern based on multiple-mode interfence coupling converts beam splitter - Google Patents
A kind of three dimensional pattern based on multiple-mode interfence coupling converts beam splitter Download PDFInfo
- Publication number
- CN108196340A CN108196340A CN201810021513.9A CN201810021513A CN108196340A CN 108196340 A CN108196340 A CN 108196340A CN 201810021513 A CN201810021513 A CN 201810021513A CN 108196340 A CN108196340 A CN 108196340A
- Authority
- CN
- China
- Prior art keywords
- mode
- waveguide
- output
- input
- beam splitter
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000008878 coupling Effects 0.000 title claims abstract description 17
- 238000010168 coupling process Methods 0.000 title claims abstract description 17
- 238000005859 coupling reaction Methods 0.000 title claims abstract description 17
- 238000006243 chemical reaction Methods 0.000 claims abstract description 34
- 230000005540 biological transmission Effects 0.000 claims abstract description 26
- 239000002861 polymer material Substances 0.000 claims description 5
- 239000000463 material Substances 0.000 claims description 4
- 230000003287 optical effect Effects 0.000 abstract description 13
- 238000005516 engineering process Methods 0.000 abstract description 6
- 238000011161 development Methods 0.000 abstract description 5
- 238000004891 communication Methods 0.000 abstract description 4
- 238000003384 imaging method Methods 0.000 description 9
- 238000009826 distribution Methods 0.000 description 8
- 238000010586 diagram Methods 0.000 description 7
- 230000000694 effects Effects 0.000 description 7
- 238000005253 cladding Methods 0.000 description 6
- 238000000034 method Methods 0.000 description 4
- 239000012792 core layer Substances 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 230000007812 deficiency Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 239000010410 layer Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/10—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
- G02B6/14—Mode converters
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/10—Beam splitting or combining systems
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/26—Optical coupling means
- G02B6/28—Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
- G02B6/2804—Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers
- G02B6/2808—Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers using a mixing element which evenly distributes an input signal over a number of outputs
- G02B6/2813—Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers using a mixing element which evenly distributes an input signal over a number of outputs based on multimode interference effect, i.e. self-imaging
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Optical Integrated Circuits (AREA)
Abstract
本发明公开了一种基于多模干涉耦合的三维模式转换分束器,属于功能复用分束器的技术领域,包括多模波导和分别串接在多模波导两端的输入波导、输出波导,所述输入波导为单模输入波导;所述输出波导包括数量相同的基模输出波导和一阶模输出波导;光由输入波导输入时,在多模波导内垂直于传输方向的两个不同维度上分别构建多模干涉耦合,实现模式转化与分束后通过基模输出波导和一阶模输出波导分别输出基模和一阶模。本发明结构紧凑并且同时实现了模式复用与分束功能,有效地解决了扩大传输容量的问题,从而满足下一代光通信技术发展的需求。
The invention discloses a three-dimensional mode conversion beam splitter based on multi-mode interference coupling, belonging to the technical field of functional multiplexing beam splitters, including a multi-mode waveguide, an input waveguide and an output waveguide respectively connected in series at both ends of the multi-mode waveguide, The input waveguide is a single-mode input waveguide; the output waveguide includes the same number of fundamental mode output waveguides and first-order mode output waveguides; when light is input by the input waveguide, two different dimensions perpendicular to the transmission direction in the multimode waveguide The multi-mode interference coupling is constructed respectively, and the fundamental mode and the first-order mode are respectively output through the fundamental-mode output waveguide and the first-order-mode output waveguide after mode conversion and beam splitting. The invention has a compact structure and simultaneously realizes the functions of mode multiplexing and beam splitting, effectively solves the problem of enlarging the transmission capacity, and thus satisfies the development requirements of the next-generation optical communication technology.
Description
技术领域technical field
本发明涉及一种基于多模干涉耦合的三维模式转换分束器,属于功能复用分束器的技术领域。The invention relates to a three-dimensional mode conversion beam splitter based on multi-mode interference coupling, and belongs to the technical field of functional multiplexing beam splitters.
背景技术Background technique
随着光通信网络的迅速发展,核心网和数据中心需要在短时间内处理大量的数据,这对光信号的处理速度和传输容量提出了更高的要求。面对这些要求,空分复用技术及模式复用技术是非常有效的解决方式。但是,传统的基于二维光路的光学空分复用及模式复用器件只能处理延平面传输的光信号,已逐渐成为进一步提高处理速度和传输容量的瓶颈。当前,随着三维光子集成技术不断发展,光模式复用及解复用器件正向三维结构发展。这些三维光子结构器件不仅具有体积小、速度快、集成度高的优点,而且在保持与二维光子器件相同的可靠性和结构稳定性基础上增加单个芯片上的信道数目,允许三维光子结构并行处理空间上不同传输方向的光信号,从而大大增加传输容量。With the rapid development of optical communication networks, core networks and data centers need to process a large amount of data in a short period of time, which puts forward higher requirements for the processing speed and transmission capacity of optical signals. Faced with these requirements, space division multiplexing technology and mode multiplexing technology are very effective solutions. However, traditional optical space division multiplexing and mode multiplexing devices based on two-dimensional optical paths can only process optical signals transmitted along a plane, which has gradually become a bottleneck for further improving processing speed and transmission capacity. At present, with the continuous development of three-dimensional photonic integration technology, optical mode multiplexing and demultiplexing devices are developing towards three-dimensional structures. These three-dimensional photonic structure devices not only have the advantages of small size, high speed, and high integration, but also increase the number of channels on a single chip while maintaining the same reliability and structural stability as two-dimensional photonic devices, allowing three-dimensional photonic structures to parallel The optical signals of different transmission directions in space are processed, thereby greatly increasing the transmission capacity.
在光学器件制造工艺的支持下,在单一芯片上实现三维模式转换分束器可以在模式复用系统中进一步提高传输容量。目前,三维光分束器从结构上可分为三种类型:基于空间定向耦合器型、基于Y分支型以及基于多模干涉耦合器型。其中基于MMI的光分束器是利用多模波导内部的自映像效应实现光学分束,具有插入损耗低、结构紧凑及容差性好等优点。但目前的换分束器无法良好地实现不同功能在单一器件上的复用。Supported by the fabrication process of optical devices, the realization of 3D mode-converting beamsplitters on a single chip can further increase the transmission capacity in mode-multiplexing systems. At present, three-dimensional beam splitters can be divided into three types in terms of structure: based on spatial directional couplers, based on Y-branches, and based on multimode interference couplers. Among them, the MMI-based optical beam splitter uses the self-image effect inside the multimode waveguide to realize optical beam splitting, and has the advantages of low insertion loss, compact structure and good tolerance. However, current beam splitters cannot well realize the multiplexing of different functions on a single device.
发明内容Contents of the invention
本发明所要解决的技术问题在于克服现有技术的不足,提供一种基于多模干涉耦合的三维模式转换分束器,解决基于单个多模干涉耦合器实现不同功能在单一器件上的复用的问题。The technical problem to be solved by the present invention is to overcome the deficiencies of the prior art, provide a three-dimensional mode conversion beam splitter based on multi-mode interference coupling, and solve the problem of multiplexing different functions on a single device based on a single multi-mode interference coupler question.
本发明具体采用以下技术方案解决上述技术问题:The present invention specifically adopts the following technical solutions to solve the above technical problems:
一种基于多模干涉耦合的三维模式转换分束器,包括多模波导和分别串接在多模波导两端的输入波导、输出波导,其中所述输入波导为单模输入波导;所述输出波导包括数量相同的基模输出波导和一阶模输出波导;光由输入波导输入时,在多模波导内垂直于传输方向的两个不同维度上分别构建多模干涉耦合,实现模式转化与分束后通过基模输出波导和一阶模输出波导分别输出基模和一阶模。A three-dimensional mode conversion beam splitter based on multimode interference coupling, comprising a multimode waveguide and an input waveguide and an output waveguide respectively connected in series at both ends of the multimode waveguide, wherein the input waveguide is a single-mode input waveguide; the output waveguide Including the same number of fundamental mode output waveguides and first-order mode output waveguides; when light is input from the input waveguide, multimode interference coupling is respectively constructed in two different dimensions perpendicular to the transmission direction in the multimode waveguide to realize mode conversion and beam splitting Afterwards, the fundamental mode and the first-order mode are respectively output through the fundamental-mode output waveguide and the first-order mode output waveguide.
进一步地,作为本发明的一种优选技术方案:所述所有的基模输出波导均位于垂直于传输方向的一条直线上,及所有的一阶模输出波导均位于垂直于传输方向的另一条直线上,并且所述两条直线平行。Further, as a preferred technical solution of the present invention: all the fundamental mode output waveguides are located on a straight line perpendicular to the transmission direction, and all first-order mode output waveguides are located on another straight line perpendicular to the transmission direction , and the two lines are parallel.
进一步地,作为本发明的一种优选技术方案:所述多模波导在垂直于传输方向的一个方向上将输入光进行模式转化与分束,及在垂直于传输方向的另一个方向上将不同模式的输出光分别进行分束。Further, as a preferred technical solution of the present invention: the multimode waveguide performs mode conversion and splitting of the input light in one direction perpendicular to the transmission direction, and performs different modes in the other direction perpendicular to the transmission direction. The output light of each mode is split separately.
进一步地,作为本发明的一种优选技术方案:所述基模输出波导和一阶模输出波导的数量均为3个。Further, as a preferred technical solution of the present invention: the number of the fundamental mode output waveguide and the first-order mode output waveguide are both three.
进一步地,作为本发明的一种优选技术方案:所述三维模式转换分束器的波导材料为聚合物材料。Further, as a preferred technical solution of the present invention: the waveguide material of the three-dimensional mode conversion beam splitter is a polymer material.
本发明采用上述技术方案,能产生如下技术效果:The present invention adopts above-mentioned technical scheme, can produce following technical effect:
本发明的基于多模干涉耦合的三维模式转换分束器,是一种三维功能复用分束器,由单一三维多模干涉耦合器构成。该三维模式转换分束器可将输入的基模光场转换为基模和一阶模输出,并在模式转换的同时分别实现基模与一阶模的1分3分束功能。本发明结构紧凑并且同时实现了模式复用与分束功能,有效地解决了扩大传输容量的问题,从而满足下一代光通信技术发展的需求。The three-dimensional mode conversion beam splitter based on multi-mode interference coupling of the present invention is a three-dimensional functional multiplexing beam splitter, which is composed of a single three-dimensional multi-mode interference coupler. The three-dimensional mode conversion beam splitter can convert the input fundamental mode light field into the fundamental mode and the first-order mode output, and realize the 1-splitting and 3-beam-splitting functions of the fundamental mode and the first-order mode respectively during the mode conversion. The invention has a compact structure and simultaneously realizes the functions of mode multiplexing and beam splitting, effectively solves the problem of enlarging the transmission capacity, and thus satisfies the development requirements of the next-generation optical communication technology.
附图说明Description of drawings
图1为本发明基于多模干涉耦合的三维模式转换分束器的结构示意图。FIG. 1 is a schematic structural diagram of a three-dimensional mode conversion beam splitter based on multi-mode interference coupling according to the present invention.
图2(a)为本发明三维模式转换分束器的输入端面图;图2(b)为本发明三维模式转换分束器输出端面图。Fig. 2(a) is the input end view of the three-dimensional mode conversion beam splitter of the present invention; Fig. 2(b) is the output end view of the three-dimensional mode conversion beam splitter of the present invention.
图3为本发明实施例的输入波导端口位置图。Fig. 3 is a position diagram of an input waveguide port according to an embodiment of the present invention.
图4为本发明实施例的输出波导端口位置图。Fig. 4 is a diagram of the position of the output waveguide port of the embodiment of the present invention.
图5为本发明在基模输入后在xz平面上能量分布图。Fig. 5 is a diagram of the energy distribution on the xz plane after the fundamental mode is input according to the present invention.
图6为本发明在基模输入后在(x=-23.4μm)yz平面上能量分布图。Fig. 6 is a diagram of the energy distribution on the (x=-23.4 μm) yz plane of the present invention after the input of the fundamental mode.
图7为本发明在基模输入后在(x=9.8μm)yz平面上能量分布图。Fig. 7 is a diagram of the energy distribution on the (x=9.8 μm) yz plane after the input of the fundamental mode according to the present invention.
图8为本发明在基模输入后在(x=6.8μm)yz平面上能量分布图。Fig. 8 is a diagram of the energy distribution on the (x=6.8 μm) yz plane after the input of the fundamental mode according to the present invention.
其中标号解释:1为输入波导,11为多模波导,12、13、14是基模输出波导,15、16、17是一阶模输出波导;120、130、140为三个单模输出波导芯,150、160、170为一阶模输出波导包层芯,110为多模波导芯,10为波导包层。Explanation of the labels: 1 is the input waveguide, 11 is the multimode waveguide, 12, 13, and 14 are the fundamental mode output waveguides, 15, 16, and 17 are the first-order mode output waveguides; 120, 130, and 140 are three single-mode output waveguides Cores, 150, 160, and 170 are first-order mode output waveguide cladding cores, 110 is a multimode waveguide core, and 10 is a waveguide cladding.
具体实施方式Detailed ways
下面结合说明书附图对本发明的实施方式进行描述。Embodiments of the present invention will be described below in conjunction with the accompanying drawings.
如图1所示,本发明一种基于多模干涉耦合的三维模式转换分束器,包括一个用于自映像的多模波导11和分别串接在多模波导两端的输入波导1、输出波导,其中所述输入波导1为单模输入波导;所述输出波导包括数量相同的基模输出波导和一阶模输出波导,输出波导的数量取决于成像个数N,本发明中数量取3,即输出波导包括三个基模输出波导12、13、14和三个一阶模输出波导15、16、17,但本发不限于该数量,同其他数量同样适用。通过基模输出波导12、13、14和一阶模输出波导15、16、17在垂直于传输方向的两个不同维度上分别构建多模干涉耦合器;光由输入波导输入时,在多模波导区垂直于传输方向的两个不同维度上分别构建多模干涉耦合,实现模式转化与分束后通过基模输出波导和一阶模输出波导分别输出基模和一阶模。As shown in Figure 1, a three-dimensional mode conversion beam splitter based on multimode interference coupling of the present invention includes a multimode waveguide 11 for self-image and input waveguide 1 and output waveguide respectively connected in series at both ends of the multimode waveguide , wherein the input waveguide 1 is a single-mode input waveguide; the output waveguide includes the same number of fundamental mode output waveguides and first-order mode output waveguides, and the number of output waveguides depends on the imaging number N. In the present invention, the number is 3, That is, the output waveguides include three fundamental mode output waveguides 12, 13, 14 and three first-order mode output waveguides 15, 16, 17, but the present invention is not limited to this number, and the same applies to other numbers. Multimode interference couplers are respectively constructed in two different dimensions perpendicular to the transmission direction by fundamental mode output waveguides 12, 13, 14 and first-order mode output waveguides 15, 16, 17; when light is input by the input waveguide, the multimode The waveguide area is perpendicular to the transmission direction in two different dimensions to construct multi-mode interference coupling respectively, and after realizing mode conversion and beam splitting, the fundamental mode and the first-order mode are respectively output through the fundamental-mode output waveguide and the first-order-mode output waveguide.
所述两组分别用于输入和输出的单模波导构成多模干涉耦合器最基本的结构单元,输入和输出端的单模波导个数分别为M和N,其中M取1个,N也对应自成像个数。由于输出一阶模和基模,而一阶模的输出波导是由两个单模波导合并而成,可以根据入射信号光的波长λ、输入位置Xin、多模波导芯部折射率nr,波导包层折射率nc、多模波导宽度WMMI、输出端成像个数N等参数,可以对多模波导的成像特性进行分析,通过多模干涉自成像原理计算从而得到输出端各个像的成像位置以及所需多模波导的长度L。二维与三维MMI的主要区别是在多模波导的结构上,即二维MMI在垂直于传播方向上的多模波导宽度上可容纳多个模式,但在多模波导厚度上只能容纳单个模式,而三维MMI的多模波导厚度也能够允许多个模式的存在。优选地,本发明中所述三维模式转换分束器的波导材料采用聚合物材料,如输入和输出波导芯层、多模波导芯层以及波导包层都采用聚合物材料,但本发明不限于该种材料。The two groups of single-mode waveguides used for input and output respectively constitute the most basic structural unit of a multimode interference coupler, and the numbers of single-mode waveguides at the input and output ends are M and N respectively, where M is 1, and N also corresponds to The number of self-images. Since the first-order mode and the fundamental mode are output, and the output waveguide of the first-order mode is formed by combining two single-mode waveguides, it can be determined according to the wavelength λ of the incident signal light, the input position X in , and the refractive index n r of the multimode waveguide core , waveguide cladding refractive index n c , multimode waveguide width W MMI , output end imaging number N and other parameters can analyze the imaging characteristics of the multimode waveguide, and calculate by the principle of multimode interference self-imaging to obtain each image at the output end The imaging position and the length L of the required multimode waveguide. The main difference between two-dimensional and three-dimensional MMI is in the structure of the multimode waveguide, that is, the two-dimensional MMI can accommodate multiple modes in the width of the multimode waveguide perpendicular to the propagation direction, but can only accommodate a single mode in the thickness of the multimode waveguide. mode, and the multimode waveguide thickness of the 3D MMI can also allow the existence of multiple modes. Preferably, the waveguide material of the three-dimensional mode conversion beam splitter in the present invention adopts polymer materials, such as input and output waveguide core layers, multimode waveguide core layers and waveguide cladding layers all adopt polymer materials, but the present invention is not limited to The kind of material.
本发明是基于三维MMI中的自映像效应,可以看作是两个相互垂直且独立的二维MMI自映像效应的叠加,因此,三维模式转换分束器的设计可由二维模式转换器扩展而来。一般的二维模式转换器是利用MMI的自映像效应将输入的基模光场转换为基模和一阶模光场分别输出。在此器件中将成像个数N取为3,其中两路的输出波导彼此紧贴,从而形成一阶模光场输出,而另一路输出波导依然输出基模光场。因此,理论上,二维模式转换器的一阶模光场输出功率是基模光场输出功率的两倍。此时多模波导的长度及宽度分别定义为LMMI和WMMI。在二维模式转换分束器的基础上,在MMI厚度方向上拓展实现分束功能,进而可实现分束与模式转换相结合的三维模式转换分束器,此时多模波导的厚度定义HMMI。The present invention is based on the self-image effect in the three-dimensional MMI, which can be regarded as the superposition of two mutually perpendicular and independent two-dimensional MMI self-image effects. Therefore, the design of the three-dimensional mode conversion beam splitter can be extended by the two-dimensional mode converter. Come. A general two-dimensional mode converter uses the self-image effect of the MMI to convert the input fundamental mode light field into the fundamental mode and the first-order mode light field for output respectively. In this device, the number N of imaging is taken as 3, and the output waveguides of the two paths are close to each other to form the first-order mode light field output, while the other output waveguide still outputs the fundamental mode light field. Therefore, theoretically, the light field output power of the first-order mode of the two-dimensional mode converter is twice that of the fundamental mode light field. At this time, the length and width of the multimode waveguide are defined as L MMI and W MMI respectively. On the basis of the two-dimensional mode conversion beam splitter, the beam splitting function is expanded in the thickness direction of the MMI, and then the three-dimensional mode conversion beam splitter that combines beam splitting and mode conversion can be realized. At this time, the thickness of the multimode waveguide is defined as H MMI .
优选地,所述所有的基模输出波12、13、14导均位于垂直于传输方向的一条直线上,及所有的一阶模输出波导15、16、17均位于垂直于传输方向的另一条直线上,并且所述两条直线平行。光由输入波导1输入后,经过多模干涉耦合器的多模波导11,在水平方向x上通过多模干涉自成像效应实现基模到一阶模的转化并分束再输出,在垂直方向y上通过多模干涉自成像效应实现不同模式的输出光分束,实现1分3分束。最后,在基膜输出波导12、13、14输出三个基模,在一阶模输出波导15、16、17输出一阶模。Preferably, all the fundamental mode output waveguides 12, 13, 14 are located on a straight line perpendicular to the transmission direction, and all first-order mode output waveguides 15, 16, 17 are located on another line perpendicular to the transmission direction on a straight line, and the two straight lines are parallel. After the light is input by the input waveguide 1, it passes through the multimode waveguide 11 of the multimode interference coupler. In the horizontal direction x, the conversion from the fundamental mode to the first-order mode is realized through the multimode interference self-imaging effect, and the beam is split and then output. In the vertical direction On y, the multi-mode interference self-imaging effect is used to achieve different modes of output light beam splitting, realizing 1 split and 3 split beams. Finally, the base film output waveguides 12, 13, 14 output three fundamental modes, and the first-order mode output waveguides 15, 16, 17 output the first-order mode.
图2(a)为本发明三维模式转换分束器输入端口分布。图2(b)为本发明三维模式转换分束器输出端口分布。两图中,多模波导芯110包围在波导包层10内;在垂直于传播方向的xy平面上,输入波导芯100在垂直方向y上位于与多模波导芯110输入端面的中间,在水平方向x上位于与多模波导芯110的一侧。基模输出波导芯120、130、140在水平方向x上位置一致,其中输出波导芯130在垂直方向y上与输入波导芯100位置相同;一阶模输出波导芯150、160、170也在水平方向x上位置一致,其中,输出波导芯120与输出波导芯150在垂直方向y上位置相同,输出波导芯130与输出波导芯160在垂直方向y上位置相同,输出波导芯140与输出波导170在垂直方向y上位置相同。且当三维模式转换分束的输入波导芯100在多模波导芯110输入断面另一侧时,输入端口和输出端口分布,与图2(a)和图2(b)呈对称分布。Fig. 2(a) shows the distribution of input ports of the three-dimensional mode conversion beam splitter of the present invention. Fig. 2(b) is the output port distribution of the three-dimensional mode conversion beam splitter of the present invention. In the two figures, the multimode waveguide core 110 is enclosed in the waveguide cladding 10; on the xy plane perpendicular to the propagation direction, the input waveguide core 100 is located in the middle of the input end face of the multimode waveguide core 110 in the vertical direction y, and in the horizontal direction It is located on one side of the multimode waveguide core 110 in the direction x. The fundamental mode output waveguide cores 120, 130, 140 are in the same position in the horizontal direction x, wherein the output waveguide core 130 is in the same position as the input waveguide core 100 in the vertical direction y; the first-order mode output waveguide cores 150, 160, 170 are also in the horizontal direction The positions in the direction x are the same, wherein the output waveguide core 120 and the output waveguide core 150 have the same position in the vertical direction y, the output waveguide core 130 and the output waveguide core 160 have the same position in the vertical direction y, and the output waveguide core 140 and the output waveguide 170 The same position in the vertical direction y. And when the input waveguide core 100 of the three-dimensional mode conversion beam splitting is on the other side of the input section of the multimode waveguide core 110, the distribution of input ports and output ports is symmetrical with that of Fig. 2(a) and Fig. 2(b).
本发明给出一实施例:The present invention provides an embodiment:
采用由聚合物材料组成的三维模式转换分束器,其输入端口和输出端口坐标由图3和图4所示实施例。在本实施例中,当输入光的波长λ为1550nm,多模波导芯部折射率nr=1.48,波导包层折射率nc=1.45。设定单模输入波导宽度Win以及单模输出波导宽度Wout1为3.2μm,一阶模输出波导宽度Wout2=2×Win=6.4μm,由多模波导宽度上的成像个数N=3而得到多模波导宽度WMMI=50μm,多模波导长度LMMI=3398.17μm,由多模波导厚度上分束数目NH=3而得到多模波导厚度HMMI=31μm。此时,设多模波导芯中心为坐标(0,0),单模输入波导芯中心坐标分别为(23.4,0),三个单模输出波导芯中心坐标分别为(-23.4,10)、(-23.4,0)、(23.4,-10),三个一阶模输出波导芯中心坐标分别为(8.3,10)、(8.3,0)、(8.3,-10)。A three-dimensional mode conversion beam splitter composed of polymer materials is used, and the coordinates of its input port and output port are shown in Figure 3 and Figure 4 in the embodiment. In this embodiment, when the wavelength λ of the input light is 1550 nm, the refractive index of the core of the multimode waveguide n r =1.48, and the refractive index of the cladding of the waveguide n c =1.45. Set the single-mode input waveguide width W in and the single-mode output waveguide width W out1 to be 3.2 μm, the first-order mode output waveguide width W out2 = 2×W in = 6.4 μm, and the imaging number N on the multimode waveguide width = 3. The multimode waveguide width W MMI = 50 μm, the multimode waveguide length L MMI = 3398.17 μm are obtained, and the multimode waveguide thickness H MMI = 31 μm is obtained from the number of beam splits N H = 3 in the thickness of the multimode waveguide. At this time, let the center of the multimode waveguide core be coordinates (0,0), the center coordinates of the single-mode input waveguide cores are (23.4,0), and the center coordinates of the three single-mode output waveguide cores are (-23.4,10), (-23.4,0), (23.4,-10), the center coordinates of the three first-order mode output waveguide cores are (8.3,10), (8.3,0), (8.3,-10) respectively.
图5、图6给出了xz平面上(y=0,即沿输入波导芯中心的平面)、yz平面上(x=-23.4μm,即沿输出基模波导芯中心的平面)。可以看到,当光由输入波导1输入时,在多模波导11中进行模式转化与分束,而分束后的3个基模分别由输出波导12、13、14输出,图7和图8给出了在yz平面上,即当x=9.8μm和x=6.8μm且平行输出一阶模波导芯中心的平面,的能量分布。可以看到,当光由输入波导1输入时,在多模波导11中进行模式转化与分束后在输出波导15、16、17输出的为三个相同的一阶模。由此实现了在单一多模干涉耦合器中同时实现模式转化与分束功能。Figure 5 and Figure 6 show the xz plane (y=0, the plane along the center of the input waveguide core) and the yz plane (x=-23.4 μm, the plane along the center of the output fundamental mode waveguide core). It can be seen that when the light is input by the input waveguide 1, the mode conversion and beam splitting are carried out in the multimode waveguide 11, and the three fundamental modes after beam splitting are respectively output by the output waveguides 12, 13, and 14, as shown in Fig. 7 and Fig. 8 shows the energy distribution on the yz plane, that is, when x=9.8μm and x=6.8μm and the plane outputting the center of the first-order mode waveguide core in parallel. It can be seen that when light is input from the input waveguide 1, three identical first-order modes are output from the output waveguides 15, 16, and 17 after mode conversion and beam splitting in the multimode waveguide 11. Thus, the mode conversion and beam splitting functions are realized simultaneously in a single multimode interference coupler.
因此,本发明通过垂直于传输方向的两个不同维度上分别构建多模干涉耦合器来实现不同的分束功能,将其中一个方向与传输方向构成的多模干涉耦合器实现一种分束功能如1分3分束功能;将另一个方向与传输方向构成的多模干涉耦合器实现另一种分束功能即模式转化且分束功能;由此实现模式转换与分束功能复用的三维分束器,功能复用三维分束器仅由单一的多模干涉耦合器组成,可同时实现模式转换与分束。本发明结构紧凑并且同时实现了模式复用与分束功能,有效地解决了扩大传输容量的问题,从而满足下一代光通信技术发展的需求。Therefore, the present invention implements different beam splitting functions by constructing multimode interference couplers in two different dimensions perpendicular to the transmission direction, and realizes a beam splitting function by using a multimode interference coupler composed of one direction and the transmission direction Such as 1-3 beam-splitting function; the multi-mode interference coupler composed of another direction and transmission direction realizes another beam-splitting function, that is, mode conversion and beam-splitting function; thereby realizing the three-dimensional multiplexing of mode conversion and beam-splitting function Beam splitter, functional multiplexing The three-dimensional beam splitter is only composed of a single multimode interference coupler, which can realize mode conversion and beam splitting at the same time. The invention has a compact structure and realizes the functions of mode multiplexing and beam splitting at the same time, effectively solves the problem of enlarging the transmission capacity, and thus satisfies the development requirement of the next-generation optical communication technology.
上面结合附图对本发明的实施方式作了详细说明,但是本发明并不限于上述实施方式,在本领域普通技术人员所具备的知识范围内,还可以在不脱离本发明宗旨的前提下做出各种变化。The embodiments of the present invention have been described in detail above in conjunction with the accompanying drawings, but the present invention is not limited to the above embodiments, and can also be made without departing from the gist of the present invention within the scope of knowledge possessed by those of ordinary skill in the art. Variations.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810021513.9A CN108196340B (en) | 2018-01-10 | 2018-01-10 | A 3D Mode Conversion Beamsplitter Based on Multimode Interference Coupling |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810021513.9A CN108196340B (en) | 2018-01-10 | 2018-01-10 | A 3D Mode Conversion Beamsplitter Based on Multimode Interference Coupling |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108196340A true CN108196340A (en) | 2018-06-22 |
CN108196340B CN108196340B (en) | 2019-11-12 |
Family
ID=62588547
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810021513.9A Active CN108196340B (en) | 2018-01-10 | 2018-01-10 | A 3D Mode Conversion Beamsplitter Based on Multimode Interference Coupling |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108196340B (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111830628A (en) * | 2020-07-24 | 2020-10-27 | 联合微电子中心有限责任公司 | Coarse wavelength division multiplexer/demultiplexer and optical communication equipment |
CN116243424A (en) * | 2023-05-09 | 2023-06-09 | 之江实验室 | Beam splitting mode converter, design method, preparation method and optical device thereof |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020039469A1 (en) * | 2000-10-02 | 2002-04-04 | Jong Sool Jeong | Spot size converter and method of manufacturing the same |
CN1643420A (en) * | 2002-01-29 | 2005-07-20 | 秦内蒂克有限公司 | Multi-mode interference optical waveguide device |
CN102944913A (en) * | 2012-11-22 | 2013-02-27 | 中国科学院半导体研究所 | Optical beam splitter performing separation based on coupled mode |
JP2013152272A (en) * | 2012-01-24 | 2013-08-08 | Nippon Telegr & Teleph Corp <Ntt> | Higher order mode planar light wave circuit |
CN103345022A (en) * | 2013-07-03 | 2013-10-09 | 吉林大学 | Asymmetric planar optical waveguide mode multiplexing/demultiplexing device based on few-mode fibers |
CN104914506A (en) * | 2015-06-23 | 2015-09-16 | 中国科学院半导体研究所 | InP-based mode division multiplexer/demultiplexer structure based on multimode interference coupler |
CN105759357A (en) * | 2016-05-13 | 2016-07-13 | 东南大学 | Compact mode order converter based on groove type waveguides |
JP2017037270A (en) * | 2015-08-13 | 2017-02-16 | 日本電信電話株式会社 | Waveguide type mode converter |
CN106842422A (en) * | 2017-04-14 | 2017-06-13 | 吉林大学 | A kind of three-dimensional perpendicular coupling optical mode conversion isolation multiple device |
-
2018
- 2018-01-10 CN CN201810021513.9A patent/CN108196340B/en active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020039469A1 (en) * | 2000-10-02 | 2002-04-04 | Jong Sool Jeong | Spot size converter and method of manufacturing the same |
CN1643420A (en) * | 2002-01-29 | 2005-07-20 | 秦内蒂克有限公司 | Multi-mode interference optical waveguide device |
JP2013152272A (en) * | 2012-01-24 | 2013-08-08 | Nippon Telegr & Teleph Corp <Ntt> | Higher order mode planar light wave circuit |
CN102944913A (en) * | 2012-11-22 | 2013-02-27 | 中国科学院半导体研究所 | Optical beam splitter performing separation based on coupled mode |
CN103345022A (en) * | 2013-07-03 | 2013-10-09 | 吉林大学 | Asymmetric planar optical waveguide mode multiplexing/demultiplexing device based on few-mode fibers |
CN104914506A (en) * | 2015-06-23 | 2015-09-16 | 中国科学院半导体研究所 | InP-based mode division multiplexer/demultiplexer structure based on multimode interference coupler |
JP2017037270A (en) * | 2015-08-13 | 2017-02-16 | 日本電信電話株式会社 | Waveguide type mode converter |
CN105759357A (en) * | 2016-05-13 | 2016-07-13 | 东南大学 | Compact mode order converter based on groove type waveguides |
CN106842422A (en) * | 2017-04-14 | 2017-06-13 | 吉林大学 | A kind of three-dimensional perpendicular coupling optical mode conversion isolation multiple device |
Non-Patent Citations (1)
Title |
---|
NA FANG ; ZHIFENG YANG ; AIMIN WU ; JING CHEN ; MIAO ZHANG ; SHI: "《A novel method of fabricating 3D spot-size converter on (111) SOI》", 《2008 IEEE INTERNATIONAL SOI CONFERENCE》 * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111830628A (en) * | 2020-07-24 | 2020-10-27 | 联合微电子中心有限责任公司 | Coarse wavelength division multiplexer/demultiplexer and optical communication equipment |
CN111830628B (en) * | 2020-07-24 | 2022-06-28 | 联合微电子中心有限责任公司 | Coarse wavelength division multiplexer/demultiplexer and optical communication equipment |
CN116243424A (en) * | 2023-05-09 | 2023-06-09 | 之江实验室 | Beam splitting mode converter, design method, preparation method and optical device thereof |
CN116243424B (en) * | 2023-05-09 | 2023-08-11 | 之江实验室 | Beam splitting mode converter, design method, preparation method and optical device thereof |
Also Published As
Publication number | Publication date |
---|---|
CN108196340B (en) | 2019-11-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8744225B2 (en) | Optical coupling device and optical coupling-branching device | |
CN100406937C (en) | Waveguide type optical branching device | |
CN107329209B (en) | M×N Multicast Transmission Optical Switch | |
US20160246009A1 (en) | Photonic Chip Surface Grating Coupler (SGC)-Based Optical Splitter and Optical Combiner | |
JP5747384B2 (en) | Multi-layer waveguide type optical input / output terminal | |
CN103308988B (en) | 4*4 nonblocking optical switching network based on five microring resonators | |
CN105829933A (en) | Waveguide polarization splitter and polarization rotator | |
CN103076659B (en) | Multi-core fiber optical interconnection structure | |
CN108027476A (en) | A kind of waveguide intersects | |
CN111239910A (en) | A photonic lantern type degenerate module multiplexer/demultiplexer and transmission method | |
CN113885137B (en) | Wavelength demultiplexing device based on-chip super lens structure | |
CN106842430A (en) | A kind of asymmetrical directional coupler | |
JP4705067B2 (en) | 3D crossed waveguide | |
CN108196340B (en) | A 3D Mode Conversion Beamsplitter Based on Multimode Interference Coupling | |
CN114895402A (en) | Thermal insulation guided wave system of skew | |
CN204188832U (en) | Polarization beam apparatus | |
JP6473739B2 (en) | Mode multiplexer / demultiplexer | |
US20240069286A1 (en) | Dual Layer Optical Coupling Configuration Between Photonic Integrated Circuit And External Single Mode Optical Fiber | |
CN108196339B (en) | An on-chip mode multiplexing and demultiplexing device | |
JP2003195077A (en) | Optical waveguide circuit | |
CN112230337B (en) | An on-chip mode division multiplexing device based on reflection effect | |
CN103576238A (en) | N-mode multiplexer/demultiplexer based on asymmetric Y-furcate structure | |
CN106569329B (en) | A method and apparatus for mode and space optical switching | |
US10409002B2 (en) | Integrated circuit optical interconnect | |
CN115857098B (en) | Optical circulator on silicon substrate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |