CN108176355A - 一种多层次宏孔-介孔-微孔聚合物衍生陶瓷吸附材料及其制备方法 - Google Patents
一种多层次宏孔-介孔-微孔聚合物衍生陶瓷吸附材料及其制备方法 Download PDFInfo
- Publication number
- CN108176355A CN108176355A CN201711332941.5A CN201711332941A CN108176355A CN 108176355 A CN108176355 A CN 108176355A CN 201711332941 A CN201711332941 A CN 201711332941A CN 108176355 A CN108176355 A CN 108176355A
- Authority
- CN
- China
- Prior art keywords
- ceramics
- mesoporous
- sorbing material
- polymer derived
- macro hole
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/02—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
- B01J20/20—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/02—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
- B01J20/0203—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
- B01J20/0251—Compounds of Si, Ge, Sn, Pb
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/02—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
- B01J20/10—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/28—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
- B01J20/28054—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/28—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
- B01J20/28054—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
- B01J20/28057—Surface area, e.g. B.E.T specific surface area
- B01J20/28061—Surface area, e.g. B.E.T specific surface area being in the range 100-500 m2/g
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/28—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
- B01J20/28054—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
- B01J20/28057—Surface area, e.g. B.E.T specific surface area
- B01J20/28064—Surface area, e.g. B.E.T specific surface area being in the range 500-1000 m2/g
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/28—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
- B01J20/28054—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
- B01J20/28095—Shape or type of pores, voids, channels, ducts
Landscapes
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Inorganic Chemistry (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
Abstract
本发明提供了一种多层次宏孔‑介孔‑微孔聚合物衍生陶瓷吸附材料制备方法,包括如下步骤:制备固体聚硅氧烷;分别将木屑和稻壳经过粉碎、筛分后球磨,然后取出烘干;将固体聚硅氧烷、木粉与稻壳粉末混合后球磨至均匀;将均匀的混合物置于管式炉内,在惰性气体保护下高温烧结,再保温后随炉冷却;采用氢氟酸溶液对得到的多孔SiOC陶瓷粉体进行酸刻蚀,然后水洗至中性后再干燥,即得宏孔‑介孔‑微孔SiOC陶瓷吸附材料。本发明可以通过原位反应合成高比表面积的多层次多孔聚合物衍生陶瓷,具有丰富的微孔和介孔,能形成较大的贮存空间与疏散通道;同时足够多的大孔提高污水处理过程中反应物和产物的快速传输速率,能形成较大的吸附空间与传输通道。
Description
技术领域
本发明涉及多孔陶瓷材料技术领域,特别涉及一种多层次宏孔-介孔-微孔聚合物衍生陶瓷吸附材料及其制备方法。
背景技术
近年来,随着染料工业的迅速发展,染料废水表现出成分复杂、有机物浓度高、脱色困难、难降解物质多、毒性强等特点,严重污染水体环境,危害人体健康。多孔陶瓷因其具有质量轻、耐高温、抗热震、高强度、高化学稳定性和高比表面积等优点被广泛用于污水净化领域,对解决水资源短缺和构建和谐环境具有重大意义。传统的多孔陶瓷表现出吸附率低、吸附时间长、降解有机污染物效率低等缺点限制其在污水处理领域的应用。
利用陶瓷前驱体高温裂解转化为可设计的聚合物衍生陶瓷(PCDs)的研究越来越广泛。由于陶瓷先驱体在裂解过程中能逸出大量的气体,合成的PCDs可获得高比表面积及丰富的孔隙,将PCDs设计成多孔材料具有制备温度低、陶瓷组成和结构可设计、复杂构件易成型等优点。目前,利用陶瓷前驱体合成多孔PCDs的方法主要有发泡法、反应技术法、人工模板法及溶胶-凝胶法。直接发泡法和反应技术法制备的多孔PCDs仅具有连通的宏孔,其比表面积很低;人工模板法合成的多孔PCDs的孔尺寸、孔形貌和比表面积强烈依赖于模板本身的孔结构;溶胶-凝胶法合成的多孔PCDs陶瓷一般能形成均匀分布的介孔。利用上述方法合成的多孔PCDs均表现出孔径单一分布、孔径分布较窄、比表面积低的缺点,限制其在污水处理领域的应用。因此,开发兼具高比表面积和大量吸附质可进入孔隙的多层次多孔结构的PCDs吸附材料及催化剂载体至关重要。
发明内容
针对现有技术中存在不足,本发明提供了一种多层次宏孔-介孔-微孔聚合物衍生陶瓷吸附材料及其制备方法,原料来源范围广泛,工艺简单,成本较低。利用氢氟酸刻蚀聚合物衍生陶瓷中形成的SiO2,起到造孔的作用。
本发明是通过以下技术手段实现上述技术目的的。
一种多层次宏孔-介孔-微孔聚合物衍生陶瓷吸附材料制备方法,包括如下步骤:
S01:制备固体聚硅氧烷;
S02:分别将木屑和稻壳经过粉碎、筛分后球磨,然后取出烘干;将处理后的木屑经筛分后取粒径小于64μm,得到木粉;将处理后的稻壳经筛分后取粒径小于64μm,得到稻壳粉末;
S03:将固体聚硅氧烷、木粉与稻壳粉末混合后球磨至均匀,其中固体聚硅氧烷作为陶瓷前驱体,木粉作为天然多孔模板,稻壳粉末作为SiO2源;
S04:将S03中得到的均匀的混合物置于管式炉内,在惰性气体保护下高温烧结,烧结温度为1000~1300℃再保温后随炉冷却,即得多孔SiOC陶瓷粉体;
S05:采用氢氟酸溶液对得到的多孔SiOC陶瓷粉体进行酸刻蚀,然后水洗至中性后再干燥,即得宏孔-介孔-微孔SiOC陶瓷吸附材料。
进一步,所述S01步骤具体为:将含氢硅油、二乙烯基苯和氯铂酸案子按质量比为6:3:1混合,超声振荡混合均匀后在120℃下交联固化合成固体聚硅氧烷;其中含氢硅油作为高分子先驱体,二乙烯基苯作为交联剂,氯铂酸溶液作为催化剂;所述氯铂酸溶液的浓度为11.3ppm;交联固化时间为12h。
进一步,所述S02步骤中球磨时间为24h,球磨机转速250r/min。
进一步,所述S03步骤中的聚硅氧烷、木粉和稻壳的质量比为1:(1~3):(1~3);所述S03步骤中球磨时间为12h,球磨机速率为250r/min。
进一步,所述S04步骤中升温至1000~1300℃后的保温时间为3~5h,整个烧结过程中的惰性气体为Ar,所述惰性气体气流量为0.1L/min。
进一步,所述S04步骤中烧结过程为:烧结起始温度为50℃,以5℃/min的速度升至400℃,保温30min;再以5℃/min的速度升温至1000~1300℃。
进一步,所述S05步骤中氢氟酸溶液溶度为20%,刻蚀时间为4~10h,干燥温度为80℃,干燥时间为12h。
一种根据权利要求1所述的方法制备的多层次宏孔-介孔-微孔聚合物衍生陶瓷吸附材料,所述聚合物衍生陶瓷吸附材料主要成分包括SiOC玻璃相、自由碳和SiC材料;所述聚合物衍生陶瓷吸附材料的微观结构为多层次宏孔-介孔-微孔分级结构,其比表面积为574.8~65.9m2/g,其微孔表面积为472.7~55.7m2/g;所述聚合物衍生陶瓷吸附材料最大吸附量为53.7~226.3mg/g。
本发明的有益效果在于:
1.本发明所述的多层次宏孔-介孔-微孔聚合物衍生陶瓷吸附材料及其制备方法,以木粉为生物多孔模板,稻壳作为SiO2源,聚硅氧烷为高分子前驱体,通过原位反应合成高比表面积的多层次多孔聚合物衍生陶瓷,该聚合物衍生陶瓷吸附材料主要成分包括SiOC玻璃相、自由碳及SiC材料。本技术中原料来源范围广泛,工艺简单,成本较低。
2.本发明所述的多层次宏孔-介孔-微孔聚合物衍生陶瓷吸附材料及其制备方法,利用氢氟酸刻蚀聚合物衍生陶瓷中形成的SiO2,起到造孔的作用。
3.本发明所述的多层次宏孔-介孔-微孔聚合物衍生陶瓷吸附材料,具有丰富的微孔和介孔,能形成较大的“贮存空间”与“疏散通道”;同时足够多的大孔提高污水处理过程中反应物和产物的快速传输速率,能形成较大的“吸附空间”与“传输通道”。
4.本发明所述的多层次宏孔-介孔-微孔聚合物衍生陶瓷吸附材料,该方法能良好的构筑PCDs多层次宏孔-介孔-微孔分级结构,比表面积为574.8~65.9m2/g,微孔表面积为472.7~55.7m2/g,合成的材料能在短时间内(30min)完全移除染料,可用作催化剂载体并能有效提高材料的吸附性能。
附图说明
图1为本发明实施例中案例12的样品XRD图。
图2为本发明实施例中案例12的样品放大比例1μm的SEM图。
图3为本发明实施例中案例12的样品放大比例100nm的SEM图。
具体实施方式
下面结合附图以及具体实施例对本发明作进一步的说明,但本发明的保护范围并不限于此。
一种多层次宏孔-介孔-微孔聚合物衍生陶瓷吸附材料制备方法,包括如下步骤:
S01:制备固体聚硅氧烷;具体为:将含氢硅油、二乙烯基苯和氯铂酸按质量比为6:3:1混合,超声振荡混合均匀后在120℃下交联固化合成固体聚硅氧烷;其中含氢硅油作为高分子先驱体,二乙烯基苯作为交联剂,氯铂酸溶液作为催化剂;所述氯铂酸溶液的浓度为11.3ppm;交联固化时间为12h。
S02:分别将木屑和稻壳经过粉碎、筛分后球磨24h,球磨机转速250r/min,然后取出烘干;将处理后的木屑经筛分后取粒径小于64μm,得到木粉;将处理后的稻壳经筛分后取粒径小于64μm,得到稻壳粉末;
S03:将固体聚硅氧烷、木粉与稻壳粉末按质量比为1:(1~3):(1~3)混合后球磨12h至均匀,球磨机速率为250r/min,其中固体聚硅氧烷作为陶瓷前驱体,木粉作为天然多孔模板,稻壳粉末作为SiO2源;
S04:将S03中得到的均匀的混合物置于管式炉内,在惰性气体保护下高温烧结,烧结起始温度为50℃,以5℃/min的速度升至400℃,保温30min;再以5℃/min的速度升温至1000~1300℃再保温后随炉冷却,保温时间为3~5h,即得多孔SiOC陶瓷粉体;整个烧结过程中的惰性气体为Ar,所述惰性气体气流量为0.1L/min。
S05:采用溶度为20%的氢氟酸溶液对得到的多孔SiOC陶瓷粉体进行酸刻蚀,刻蚀时间为4~10h,然后水洗至中性后再干燥,干燥温度为80℃,干燥时间为12h,即得宏孔-介孔-微孔SiOC陶瓷吸附材料。
利用上述方式制得的所述聚合物衍生陶瓷吸附材料,主要成分包括SiOC玻璃相、自由碳和SiC材料;所述聚合物衍生陶瓷吸附材料的微观结构为多层次宏孔-介孔-微孔分级结构,其比表面积为574.8~65.9m2/g,其微孔表面积为472.7~55.7m2/g;所述聚合物衍生陶瓷吸附材料最大吸附量为53.7~226.3mg/g。
本发明各实施的原料配比、工艺条件及参数如表1所示。
表1实施例原料配比和工艺条件
各实施例所制备的聚合物衍生陶瓷吸附材料的性能测试包括BET比表面积、采用t-plot方法计算得到的微孔表面积及材料的最大吸附性能及对应30min、60min、120min时样品对染料的吸附率,测试结果如表2所示。从表2中看出,实施例12为聚硅氧烷、木粉及稻壳粉末三者质量比为1:3:3,烧结温度为1300℃,保温5h且完全刻蚀6h,聚合物衍生陶瓷吸附材料的比表面积较高,能形成宏孔-介孔-微孔的多层次孔隙,此时样品获得的最大吸附量较高,且在30min内能完全吸附染料。表2中吸附实验条件如下:配制浓度为10mg/L的甲基橙溶液,称取5mg产物分别放入100ml的甲基橙水溶液中,暗反应120min至吸附-脱附平衡,分别在不同时间取样,用分光光度计测试不同吸附时间下溶液的吸光度,得出其吸附率。
表2实施例制备得到的多孔SiOC陶瓷的性能指标
图1为合成的多层次多孔结构的吸附材料的物相组成图,从图1中可知样品中不存在SiO2组分,表明氢氟酸刻蚀较完全,且吸附材料的主要成分有SiOC玻璃相、自由碳及SiC材料。
图2和图3为吸附材料的微观形貌图,图2为本发明实施例中案例12的样品放大比例1μm的SEM图,图中可以看出吸附材料中存在较多的孔隙;图3为本发明实施例中案例12的样品放大比例100nm的SEM图,图3可以看出孔隙中形成了SiC纳米线。
所述实施例为本发明的优选的实施方式,但本发明并不限于上述实施方式,在不背离本发明的实质内容的情况下,本领域技术人员能够做出的任何显而易见的改进、替换或变型均属于本发明的保护范围。
Claims (8)
1.一种多层次宏孔-介孔-微孔聚合物衍生陶瓷吸附材料制备方法,其特征在于,包括如下步骤:
S01:制备固体聚硅氧烷;
S02:分别将木屑和稻壳经过粉碎、筛分后球磨,然后取出烘干;将处理后的木屑经筛分后取粒径小于64μm,得到木粉;将处理后的稻壳经筛分后取粒径小于64μm,得到稻壳粉末;
S03:将固体聚硅氧烷、木粉与稻壳粉末混合后球磨至均匀,其中固体聚硅氧烷作为陶瓷前驱体,木粉作为天然多孔模板,稻壳粉末作为SiO2源;
S04:将S03中得到的均匀的混合物置于管式炉内,在惰性气体保护下高温烧结,烧结温度为1000~1300℃再保温后随炉冷却,即得多孔SiOC陶瓷粉体;
S05:采用氢氟酸溶液对得到的多孔SiOC陶瓷粉体进行酸刻蚀,然后水洗至中性后再干燥,即得宏孔-介孔-微孔SiOC陶瓷吸附材料。
2.根据权利要求1所述的多层次宏孔-介孔-微孔聚合物衍生陶瓷吸附材料制备方法,其特征在于,所述S01步骤具体为:将含氢硅油、二乙烯基苯和氯铂酸按质量比为6:3:1混合,超声振荡混合均匀后在120℃下交联固化合成固体聚硅氧烷;其中含氢硅油作为高分子先驱体,二乙烯基苯作为交联剂,氯铂酸溶液作为催化剂;所述氯铂酸溶液的浓度为11.3ppm;交联固化时间为12h。
3.根据权利要求1所述的多层次宏孔-介孔-微孔聚合物衍生陶瓷吸附材料制备方法,其特征在于,所述S02步骤中球磨时间为24h,球磨机转速250r/min。
4.根据权利要求1所述的多层次宏孔-介孔-微孔聚合物衍生陶瓷吸附材料制备方法,其特征在于,所述S03步骤中的聚硅氧烷、木粉和稻壳的质量比为1:(1~3):(1~3);所述S03步骤中球磨时间为12h,球磨机速率为250r/min。
5.根据权利要求1所述的多层次宏孔-介孔-微孔聚合物衍生陶瓷吸附材料制备方法,其特征在于,所述S04步骤中升温至1000~1300℃后的保温时间为3~5h,整个烧结过程中的惰性气体为Ar,所述惰性气体气流量为0.1L/min。
6.根据权利要求1所述的多层次宏孔-介孔-微孔聚合物衍生陶瓷吸附材料制备方法,其特征在于,所述S04步骤中烧结过程为:烧结起始温度为50℃,以5℃/min的速度升至400℃,保温30min;再以5℃/min的速度升温至1000~1300℃。
7.根据权利要求1所述的多层次宏孔-介孔-微孔聚合物衍生陶瓷吸附材料制备方法,其特征在于,所述S05步骤中氢氟酸溶液溶度为20%,刻蚀时间为4~10h,干燥温度为80℃,干燥时间为12h。
8.一种根据权利要求1所述的方法制备的多层次宏孔-介孔-微孔聚合物衍生陶瓷吸附材料,其特征在于,所述聚合物衍生陶瓷吸附材料主要成分包括SiOC玻璃相、自由碳和SiC材料;所述聚合物衍生陶瓷吸附材料的微观结构为多层次宏孔-介孔-微孔分级结构,其比表面积为574.8~65.9m2/g,其微孔表面积为472.7~55.7m2/g;所述聚合物衍生陶瓷吸附材料最大吸附量为53.7~226.3mg/g。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201711332941.5A CN108176355B (zh) | 2017-12-08 | 2017-12-08 | 一种多层次宏孔-介孔-微孔聚合物衍生陶瓷吸附材料及其制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201711332941.5A CN108176355B (zh) | 2017-12-08 | 2017-12-08 | 一种多层次宏孔-介孔-微孔聚合物衍生陶瓷吸附材料及其制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108176355A true CN108176355A (zh) | 2018-06-19 |
CN108176355B CN108176355B (zh) | 2020-01-24 |
Family
ID=62545899
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201711332941.5A Active CN108176355B (zh) | 2017-12-08 | 2017-12-08 | 一种多层次宏孔-介孔-微孔聚合物衍生陶瓷吸附材料及其制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108176355B (zh) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109742298A (zh) * | 2019-01-08 | 2019-05-10 | 桑顿新能源科技有限公司 | 多孔陶瓷隔膜浆料及其制备方法、电池隔膜及电池 |
CN111302357A (zh) * | 2020-02-24 | 2020-06-19 | 吉林大学 | 孔外含有亲水基团孔内含有亲油基团的多孔级双亲分子筛、制备方法及其应用 |
CN113578285A (zh) * | 2021-08-06 | 2021-11-02 | 福建德尔科技有限公司 | 一种高内聚能氟化物吸附剂、制备及应用 |
US11684896B2 (en) | 2020-02-05 | 2023-06-27 | King Fahd University Of Petroleum And Minerals | Rice-husk derived silicon carbide membrane sorbent for oil removal |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107162629A (zh) * | 2017-05-14 | 2017-09-15 | 吴刚 | 一种泡沫陶瓷的制备方法 |
-
2017
- 2017-12-08 CN CN201711332941.5A patent/CN108176355B/zh active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107162629A (zh) * | 2017-05-14 | 2017-09-15 | 吴刚 | 一种泡沫陶瓷的制备方法 |
Non-Patent Citations (4)
Title |
---|
L. BIASETTO,ET AL.: "Etching of SiOC ceramic foams", 《ADVANCES IN APPLIED CERAMICS》 * |
NILOOFAR SOLTANI,ET AL.: "Macroporous polymer-derived SiO2/SiOC monoliths freeze-cast from polysiloxane and amorphous silica derived from rice husk", 《JOURNAL OF THE EUROPEAN CERAMIC SOCIETY》 * |
潘建梅: "先驱体转化多孔硅氧碳陶瓷及其复合材料的制备与性能研究", 《中国博士学位论文全文数据库工程科技I辑》 * |
潘建梅等: "前驱体热解制备多孔SiOC复合材料及性能", 《硅酸盐学报》 * |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109742298A (zh) * | 2019-01-08 | 2019-05-10 | 桑顿新能源科技有限公司 | 多孔陶瓷隔膜浆料及其制备方法、电池隔膜及电池 |
CN109742298B (zh) * | 2019-01-08 | 2024-07-12 | 桑顿新能源科技有限公司 | 多孔陶瓷隔膜浆料及其制备方法、电池隔膜及电池 |
US11684896B2 (en) | 2020-02-05 | 2023-06-27 | King Fahd University Of Petroleum And Minerals | Rice-husk derived silicon carbide membrane sorbent for oil removal |
CN111302357A (zh) * | 2020-02-24 | 2020-06-19 | 吉林大学 | 孔外含有亲水基团孔内含有亲油基团的多孔级双亲分子筛、制备方法及其应用 |
CN113578285A (zh) * | 2021-08-06 | 2021-11-02 | 福建德尔科技有限公司 | 一种高内聚能氟化物吸附剂、制备及应用 |
CN113578285B (zh) * | 2021-08-06 | 2022-04-19 | 福建德尔科技有限公司 | 一种高内聚能氟化物吸附剂、制备及应用 |
WO2023010643A1 (zh) * | 2021-08-06 | 2023-02-09 | 福建德尔科技股份有限公司 | 一种高内聚能氟化物吸附剂、制备及应用 |
US11707730B2 (en) | 2021-08-06 | 2023-07-25 | Fujian Deer Technology Co., Ltd. | Large cohesive energy adsorbent for fluoride removal, preparation and application thereof |
JP2023539396A (ja) * | 2021-08-06 | 2023-09-14 | 福建徳尓科技股▲ふん▼有限公司 | 高凝集エネルギーフッ化物吸着剤、その製造方法及び応用 |
JP7445764B2 (ja) | 2021-08-06 | 2024-03-07 | 福建徳尓科技股▲ふん▼有限公司 | 高凝集エネルギーフッ化物吸着剤の製造方法及び応用 |
Also Published As
Publication number | Publication date |
---|---|
CN108176355B (zh) | 2020-01-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108176355A (zh) | 一种多层次宏孔-介孔-微孔聚合物衍生陶瓷吸附材料及其制备方法 | |
Rodríguez-Mirasol et al. | Preparation and characterization of activated carbons from eucalyptus kraft lignin | |
Tseng et al. | Preparation of high surface area carbons from Corncob with KOH etching plus CO2 gasification for the adsorption of dyes and phenols from water | |
CN104148021B (zh) | 一种用于吸附水中重金属离子的双功能化介孔二氧化硅的制备方法 | |
CN106732353B (zh) | 一种对抗生素具有高吸附能力的生物炭制备方法 | |
CN104474791B (zh) | 有催化功能的微晶竹炭蜂窝陶质空气过滤板及其制备方法 | |
CN107282033B (zh) | 一种用于空气voc处理的光催化剂及其制备方法 | |
CN106179244A (zh) | 一种纤维素基多孔复合材料及其制备方法和用途 | |
CN105396552B (zh) | 一种成型生物碳及其制备方法 | |
CN109304141A (zh) | 一种用于吸附挥发性有机污染物的硅藻土/分子筛复合材料的制备方法 | |
CN114797766A (zh) | 一种多孔生物炭及其制备方法和应用 | |
US20210113992A1 (en) | Biological morph-genetic wo3 photocatalyst and preparation method and application thereof | |
Yang et al. | Degradation of formaldehyde and methylene blue using wood-templated biomimetic TiO2 | |
CN101531375A (zh) | 一种双峰硅铝介孔材料的合成方法 | |
CN109453743A (zh) | 一种氧化石墨烯/膨润土纳米片气凝胶、其制备方法及应用 | |
CN104477876A (zh) | 一种固相高温煅烧合成多孔碳的方法 | |
CN108097313A (zh) | 一种氮化碳/壳聚糖气凝胶复合光催化剂及其制备方法和应用 | |
CN107827108A (zh) | 一种极微孔碳材料及其制备方法 | |
CN114669268A (zh) | 一种生物炭-钢渣复合吸附材料制备方法及其应用 | |
CN110252247A (zh) | 一种球形微珠状核桃壳基多孔碳吸附材料及其制备方法和应用 | |
CN108275682A (zh) | 三维分级多孔空心碳球材料的制备方法 | |
CN104689813B (zh) | 一种WxTiO2+3x/SiO2气凝胶复合光催化剂及制备方法 | |
CN109529908A (zh) | 一种多孔g-C3N4材料的制备方法及其应用 | |
CN116351391A (zh) | 一种煤气化细渣合成沸石/多孔炭复合吸附剂材料的制备方法及其应用 | |
CN109264713A (zh) | 一种二氧化碳物理吸附用生物质焦油基高比表面积多孔碳的制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |