CN108164267A - 一种多组元纳米晶金属硼化物的制备方法 - Google Patents

一种多组元纳米晶金属硼化物的制备方法 Download PDF

Info

Publication number
CN108164267A
CN108164267A CN201810007655.XA CN201810007655A CN108164267A CN 108164267 A CN108164267 A CN 108164267A CN 201810007655 A CN201810007655 A CN 201810007655A CN 108164267 A CN108164267 A CN 108164267A
Authority
CN
China
Prior art keywords
powder
pressure
multicomponent
metal boride
high temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810007655.XA
Other languages
English (en)
Inventor
沈同德
赵燕燕
辛圣炜
张咪
孙宝茹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yanshan University
Original Assignee
Yanshan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yanshan University filed Critical Yanshan University
Priority to CN201810007655.XA priority Critical patent/CN108164267A/zh
Publication of CN108164267A publication Critical patent/CN108164267A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/5805Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides
    • C04B35/58064Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides based on refractory borides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • C04B35/62615High energy or reactive ball milling
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/65Reaction sintering of free metal- or free silicon-containing compositions
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/404Refractory metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering
    • C04B2235/662Annealing after sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/781Nanograined materials, i.e. having grain sizes below 100 nm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Ceramic Products (AREA)

Abstract

一种多组元纳米晶金属硼化物的制备方法,其主要是将Ti、Zr、Ta、Hf、Nb、B2元素的混合粉末在球磨罐中研磨后,将粉末用正己烷浸泡后烘干;装入BN模具中,用六面顶液压机进行高温高压处理,然后开启加热装置升温至800‑1500℃,保压、保温0.5小时后;对块体进行水冷,形成块体材料;将块体材料放入石墨模具中,在SPS设备上施40MPa压力,Ar气氛保护下升温至1500‑1700℃,随炉冷却至50℃以下,卸压通入空气,解除真空,打磨去除表面层以及抛光,获得多组元纳米晶金属硼化物。本发明在较低的烧结温度下,获得了高硬度、高韧性的烧结块体,维氏硬度为达到28GPa,断裂韧性达到11.2MPa·m1/2;烧结体物相组成为单相的TMB2,晶体结构较为简单。

Description

一种多组元纳米晶金属硼化物的制备方法
技术领域
本发明属于材料技术领域,特别涉及一种金属硼化物的制备方法。
背景技术
20世纪50年代中期美国通用电气公司先后成功合成出世界上第一颗人造金刚石和立方氮化硼(c-BN),推动了超硬材料的大规模工业化应用。超硬材料是指维氏硬度大于40GPa的材料,具有高硬度和高强度,优异的耐磨性质,因此广泛应用于切屑加工工具、耐磨涂层、研磨材料等领域,在工业生产和航空航天中发挥着不可替代的作用。随着工业的发展,人类对超硬材料的性能要求也越来越高,现有的超硬材料越来越难以满足人类的需求。因此设计并合成出具有优异性能的新型超硬材料来代替金刚石和立方氮化硼在工业上的应用非常重要。
在探寻新型超硬材料的道路上,科研工作者做了大量的研究工作,发现超硬材料一般具备以下几个特征:1、构成化合物的单原子的平均价电子数高;2、单位体积内的共价键的数量尽可能多;3、高的平均键能;4、共价键具有较强的方向性。
过渡金属又名过渡元素,指元素周期表中d区的一系列金属元素,包括3到12一共十个族的元素,但不包括f区内的过渡元素。大多数过渡元素都有较高的熔点和沸点,有较高的的硬度和密度。过渡金属由于具有未充满的价层d轨道,基于十八电子规则,这一区很多元素的电子构型中都有不少单电子,最外层s电子和次外层d电子都可以参与形成金属键,使键的强度增加,性质与其他元素有明显差别,很容易形成配合物。部分过渡金属拥有较高的价电子密度,将B元素加入到这些过渡族金属中,在几乎不改变其价电子密度的同时引入共价键,满足了高的价电子密度和短而强、具有方向性的共价键结合的条件,形成了新的超硬材料的设计思路。
在过去的几十年中,科学家对这一领域进行了深入的研究。Veprek S等人通过理论计算,预测了过渡金属硼化物具有高的硬度,是潜在的超硬材料,如ReB4、MoB4、WB4等。2007年Chung等采用电弧熔炼法制备出了ReB4,其维式硬度值达到了55.5GPa。2011年Liu等在已经合成的二元过渡金属硼化物的基础上,加入了第三种元素形成多硼化物固溶体,使硼化物的硬度提高。M.A.Avile′s等人通过机械合金化研究了二组元的金属硼化物,TixZr1-xB2和TixHf1-xB2,这些研究都充分表明了过渡金属硼化物具有高的硬度、强的耐磨性、高的熔点和良好的抗氧化、抗腐蚀性能,是极端条件下磨削和涂层材料的极佳选择。在这些研究中,科学家分别采用碳热还原法、金属热还原法、高温熔炼法等方法合成出了过渡金属-非金属化合物,但是合成出来的多为微米晶,且存在纯度低、能力消耗高等缺点。采用气相还原法合成出了纳米晶的硼化物,但是存在氯化钠等多种残余物质;选用SPS方法合成出的高硬度的二硼化铼,晶粒尺寸达到了微米级别。但是到目前为止,没有高效合成出多于二组元的过渡金属硼化物。
发明内容
本发明的目的在于提供一种在高温高压下、维氏硬度可以达到25GPa、断裂韧性增强11.18MPa*m1/2的多组元纳米晶金属硼化物的制备方法。本发明主要是以纯的单质粉末为原材料,在机械合金化的过程中诱发自蔓延反应,合成出多组元纳米晶金属-非金属化合物,并选用高温高压和SPS技术进行固化处理,得到相应的高致密度的块体材料。
本发明方法如下:
(1)按摩尔比Ti:Zr:Ta:Hf:Nb:B2=0.2:0.2:0.2:0.2:0.2:2的比例配置元素混合物,
(2)按步骤(1)将各元素充分混合,混合后的粉末与WC球密封于充满氩气的WC球磨罐中,球料比为3:1,使用高能球磨机对罐体中的粉末进行机械研磨,每球磨2小时,暂停15分钟为一个循环,共8-12个循环,机械研磨16-24个小时后,在手套箱中取出研磨的粉末;
(3)将步骤(2)中的粉末用正己烷浸泡,然后在干燥箱中80℃烘干24小时;
(4)将步骤(3)烘干后的粉末装入BN模具中,用六面顶液压机对装在BN模具中的粉末进行高温高压处理,粉末实际所受的压力为5GPa,在超压结束后的100秒开启加热装置,升温至800-1500℃,相应的压力下保压、保温0.5小时;
(5)对高温高压后的块体进行水冷,冷却时间为10分钟,最终形成块体材料;
(6)将高温高压后的块体材料放入石墨模具中,在SPS设备上施40MPa压力,Ar气氛保护下以50℃/min升温至1500-1700℃,随炉冷却至50℃以下,卸压通入空气,解除真空,取出烧结体,对烧结体进行打磨、去除表面层以及抛光等处理,获得致密的烧结块体材料即多组元纳米晶金属硼化物。
本发明与现有技术相比具有以下优点:
(1)通过高能球磨机研磨后的粉体的晶粒尺寸约为十几个纳米,晶体结构简单,为单相化合物。
(2)合成的纳米晶TMB2在1000℃退火1h后,晶粒尺寸仍可达到纳米级别。
(3)合成的纳米晶TMB2的维氏硬度可以达到25GPa,断裂韧性增强11.18MPa*m1/2
附图说明:
图1是本发明实施例1制备的粉体纳米晶TMB2的X射线衍射图。
图2是本发明实施例1制备的粉体纳米晶TMB2在不同温度退火后的X射线衍射图。
图3是本发明实施例1制备的粉体纳米晶TMB2在不同温度退火后晶粒尺寸变化图。
图4是本发明实施例1制备的块体纳米晶TMB2在高温高压后的硬度随载荷变化图。
图5是为本发明实施案例2制备的块体纳米晶TMB2的电镜图。
图6是为本发明实施案例2制备的块体纳米晶TMB2的电镜图。
图7是为本发明实施案例2制备的块体纳米晶TMB2的透射电子显微镜衍射图。
图8是本发明实施例3制备的块体纳米晶TMB2在高温高压+SPS处理后的X射线衍射图。
图9是本发明实施例3制备的块体纳米晶TMB2在高温高压+SPS处理后的硬度随载荷变化图。
图10是本发明实施例3制备的块体纳米晶TMB2在高温高压+SPS处理后的硬度和断裂韧性随烧结温度变化关系图。
具体实施方式
实施例1:
按Ti:Zr:Ta:Hf:Nb:B=0.2:0.2:0.2:0.2:0.2:2的比例配置粉末,在手套箱中将粉末混合均匀,置于WC球磨罐中,按球:料为3:1的比例,加入WC球,将球磨罐密封,装于高能球磨机(SPEX D.Prep 8000M)中,每球磨2小时,暂停15分钟为一个循环,共12个循环,机械研磨24h后,在手套箱中取出粉末,并置于正己烷中充分浸泡后取出,在干燥箱中80℃烘干24h;将1.5g粉末装入BN模具中,用六面顶液压机对装在BN模具中的粉末进行高温高压处理,压力为59MPa,粉末实际所受的压力为5GPa;在超压结束后的100s开启加热装置,升温到达1500℃后,保温、保压0.5h,保温保压结束后,关闭压力和温控系统,用水对粉末压块冷却10min,得到块体材料;将高温高压后的块体材料放入石墨模具中,在SPS设备上施40MPa压力,Ar气氛保护下以50℃/min升温至1500℃,随炉冷却至48℃,卸压通入空气,解除真空,取出烧结体,对烧结体进行打磨、去除表面层以及抛光等处理,获得致密的烧结块体纳米晶(TaNbHfTiZr)B2即多组元纳米晶金属硼化物。经过X射线衍射仪分析,确定为TMB2的烧结体,测试材料硬度,约为24.9GPa。
如图1所示,衍射峰与标准衍射峰相匹配,半高宽较大,经过谢乐公示计算,晶粒尺寸约为15nm。
如图2所示,不同温度退火后,衍射峰变得尖锐,半高宽减小,经过计算材料的经历尺寸长大到了约60nm。
如图3所示,标识了随着退火温度的升高材料晶粒尺寸的变化趋势,证实了该材料晶粒在高温下长大不明显。
如图4所示,样品的硬度随着加载载荷的增加呈现逐渐下降趋势,最后达到某一稳定值,在该材料中,硬度值达到了约25GPa。
实施案例2:
按Ti:Zr:Ta:Hf:Nb:B=0.2:0.2:0.2:0.2:0.2:2的比例配置粉末,在手套箱中将粉末混合均匀,置于硬质钢球磨罐中,按球料比为3:1的比例,放入直径为6mm的轴承钢球,将球磨罐密封装于高能球磨机(SPEX D.Prep 8000M)中,每球磨2h,暂停15分钟为一个循环,共10个循环,机械研磨20h后,在手套箱中取出粉末,将粉末置于正己烷中充分浸泡后取出,在干燥箱中80℃烘干24h;将2g粉末装入BN模具中,用六面顶液压机对装在BN模具中的粉末进行高温高压处理,压力为59MPa,粉末实际所受的压力为5GPa,在超压结束后的100s开启加热装置,升温至1000℃后,保温、保压0.5h,保温保压结束后,关闭压力和温控系统,用水对粉末压块冷却10min,得到块体材料;将高温高压后的块体材料放入石墨模具中,在SPS设备上施40MPa压力,Ar气氛保护下以50℃/min升温至1500℃、1550℃、1600℃、1650℃、1700℃,随炉冷却至室温,卸压通入空气,解除真空,取出烧结体,对烧结体进行打磨、去除表面层以及抛光等处理,获得致密的烧结块体纳米晶(TaNbHfTiZr)B2即多组元纳米晶金属硼化物。
如图5所示,从材料的TEM图明场像可以看出,材料的颗粒尺寸达到了微米级别。
如图6所示,从材料的TEM暗场像可以看出,材料的颗粒内部存在大量的纳米晶结构,证实了高温高压处理后的材料为纳米晶结构的材料,进而导致了优异的力学性能。
如图7所示,材料的高分辨晶格相显示,在该材料内部,因为引入的5种元素,材料出现了一定的晶格畸变,其晶面间距和晶胞参数标识在图中。
实施例3:
按Ti:Zr:Ta:Hf:Nb:B=0.2:0.2:0.2:0.2:0.2:2的比例配置粉末,在手套箱中粉末混合均匀,置于WC球磨罐中,按球料比为3:1的比例,加入WC球,将球磨罐密封,装于高能球磨机(SPEX D.Prep 8000M)中,每球磨2h,暂停15min为一个循环,共8个循环,机械研磨16h后,在手套箱中取出粉末,将粉末置于正己烷中充分浸泡后取出,在干燥箱中80℃烘干24h;将1.5g粉末装入BN模具中,用六面顶液压机对装在BN模具中的粉末进行高温高压处理,压力为59MPa,粉末实际所受的压力为5GPa;在超压结束后的100s开启加热装置,将功率升至836W,对应烧结温度为800℃,保温、保压0.5h,保温保压结束后,关闭压力和温控系统,用水对粉末压块冷却10min,得到块体陶瓷材料;将高温高压后的块体陶瓷材料放入石墨模具中,在SPS设备上施40MPa压力,Ar气氛保护下以50℃/min升温至升温至1500℃、1550℃、1600℃、1650℃、1700℃,随炉冷却至室温,卸压通入空气,解除真空,取出烧结体,对烧结体进行打磨、去除表面层以及抛光等处理,获得致密的烧结块体纳米晶(TaNbHfTiZr)B2即多组元纳米晶金属硼化物。经过X射线衍射仪分析,确定为TMB2的烧结体,维氏硬度27.2GPa,断裂韧性约11.2MPa*m1/2
如图8所示,XRD图显示材料在烧结后主相为多组元金属硼化物,存在少量的氧化相。
如图9所示,样品的硬度随着加载载荷的增加而成减小趋势,在不同温度烧结后的样品其硬度差异较大,在1600度烧结的样品硬度最高,达到28GPa。
如图10所示,硬度和断裂韧性随着烧结温度变化存在较大的变化,综合性能显示在经过1600度SPS烧结的样品,力学性能最好。
实施例4:
按Ti:Zr:Ta:Hf:Nb:B=0.2:0.2:0.2:0.2:0.2:2的比例配置粉末,在手套箱中将粉末混合均匀,置于WC球磨罐中,按球料比为3:1的比例,加入WC球,将球磨罐密封之后装于高能球磨机(SPEX D.Prep 8000M)中,每球磨2h,暂停15min为一个循环,共10个循环,机械研磨20h后,在手套箱中取出粉末,将粉末置于正己烷中充分浸泡后取出,在干燥箱中80℃烘干24h;将2g粉末装入BN模具中,用六面顶液压机对装在BN模具中的粉体进行高温高压处理,压力为59MPa,粉末实际所受的压力为5GPa;在超压结束后的100s,开启加热装置,升温至1400℃后,保温、保压0.5h,保温保压结束后,关闭压力和温控系统,用水对粉末压块冷却10min,得到块体陶瓷材料;将高温高压后的块体陶瓷材料放入石墨模具中,在SPS设备上施40MPa压力,Ar气氛保护下以50℃/min升温至1700℃,随炉冷却至47℃,卸压通入空气,解除真空,取出烧结体,对烧结体进行打磨、去除表面层以及抛光等处理,获得致密的烧结块体纳米晶(TaNbHfTiZr)B2即多组元纳米晶金属硼化物。
经过X射线衍射仪分析,确定为TMB2的烧结体,维氏硬度25.09GPa,断裂韧性约9.1MPa*m1/2

Claims (1)

1.一种多组元纳米晶金属硼化物的制备方法,其特征在于:它包括如下步骤:
(1)按摩尔比Ti:Zr:Ta:Hf:Nb:B2=0.2:0.2:0.2:0.2:0.2:2的比例配置元素混合物;
(2)按步骤(1)将各元素充分混合,混合后的粉末与WC球密封于充满氩气的WC球磨罐中,球料比为1:3,使用高能球磨机对罐体中的粉末进行机械研磨,每球磨2小时,暂停15分钟为一个循环,共8-12个循环,机械研磨16-24个小时后,在手套箱中取出研磨的粉末;
(3)将步骤(2)中的粉末用正己烷浸泡,然后在干燥箱中80℃烘干24小时;
(4)将步骤(3)烘干后的粉末装入BN模具中,用六面顶液压机对装在BN模具中的粉末进行高温高压处理,粉末实际所受的压力为5GPa,在超压结束后的100秒开启加热装置,升温至800-1500℃,在5GPa保压、保温0.5小时;
(5)对高温高压后的块体进行水冷,冷却时间为10分钟,最终形成块体材料;
(6)将高温高压后的块体材料放入石墨模具中,在SPS设备上施40MPa压力,Ar气氛保护下以50℃/min升温至1500-1700℃,随炉冷却至50℃以下,卸压通入空气,解除真空,取出烧结体,对烧结体进行打磨、去除表面层以及抛光等处理,获得致密的烧结块体材料即多组元纳米晶金属硼化物。
CN201810007655.XA 2018-01-04 2018-01-04 一种多组元纳米晶金属硼化物的制备方法 Pending CN108164267A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810007655.XA CN108164267A (zh) 2018-01-04 2018-01-04 一种多组元纳米晶金属硼化物的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810007655.XA CN108164267A (zh) 2018-01-04 2018-01-04 一种多组元纳米晶金属硼化物的制备方法

Publications (1)

Publication Number Publication Date
CN108164267A true CN108164267A (zh) 2018-06-15

Family

ID=62517386

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810007655.XA Pending CN108164267A (zh) 2018-01-04 2018-01-04 一种多组元纳米晶金属硼化物的制备方法

Country Status (1)

Country Link
CN (1) CN108164267A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109012732A (zh) * 2018-08-24 2018-12-18 中山大学 一种制备类单原子催化剂的方法
CN111072041A (zh) * 2019-12-24 2020-04-28 燕山大学 快速制备二维硼烯的方法
CN112469519A (zh) * 2018-12-07 2021-03-09 斯沃奇集团研究和开发有限公司 制造贵金属合金的方法和由此获得的贵金属合金
CN115057709A (zh) * 2022-06-21 2022-09-16 山东大学 一种高熵过渡金属二硼化物及其制备方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109012732A (zh) * 2018-08-24 2018-12-18 中山大学 一种制备类单原子催化剂的方法
CN109012732B (zh) * 2018-08-24 2021-05-04 中山大学 一种制备类单原子催化剂的方法
CN112469519A (zh) * 2018-12-07 2021-03-09 斯沃奇集团研究和开发有限公司 制造贵金属合金的方法和由此获得的贵金属合金
CN112469519B (zh) * 2018-12-07 2024-01-19 斯沃奇集团研究和开发有限公司 制造贵金属合金的方法和由此获得的贵金属合金
CN111072041A (zh) * 2019-12-24 2020-04-28 燕山大学 快速制备二维硼烯的方法
CN115057709A (zh) * 2022-06-21 2022-09-16 山东大学 一种高熵过渡金属二硼化物及其制备方法
CN115057709B (zh) * 2022-06-21 2023-07-18 山东大学 一种高熵过渡金属二硼化物及其制备方法

Similar Documents

Publication Publication Date Title
Dash et al. Synthesis of Ti3SiC2 MAX phase powder by a molten salt shielded synthesis (MS3) method in air
CN108164267A (zh) 一种多组元纳米晶金属硼化物的制备方法
US20230382747A1 (en) Metal borides and uses thereof
JP2015529611A (ja) 超高硬度ナノ双晶窒化ホウ素バルク材料及びその合成方法
CN110102752B (zh) 一种金属陶瓷用固溶合金粉末及制备方法
Haizhou et al. Synthesis and microstructure evolution during vacuum sintering of Mo2FeB2 based cermets
CN110342943B (zh) 工业压力下合成无粘结剂聚晶氮化硼块材的方法及其应用
Zhao et al. Solid-solution hardening of WC by rhenium
Chen et al. Structure of mechanically alloyed Ti-Al-Nb powders
CN106587088B (zh) 一种新型三元锇钌硼化物硬质材料及其制备方法
Yin et al. Microstructure and mechanical properties of Al2O3/Ti (C, N) ceramic tool materials by one-step and two-step microwave sintering
Shanenkov et al. Studies on the thermal stability of nanosized powder of WC1-x-based product prepared by plasma dynamic method, compaction feasibility of the powder and preparation of composite with aluminium
Liu et al. Liquid phase assisted high pressure sintering of dense TiC nanoceramics
Wu et al. Ultrafine/nano WC-Co cemented carbide: Overview of preparation and key technologies
Naidoo et al. Preparation of (Ti, Ta)–(C, N) by mechanical alloying
CN107188565A (zh) 一种三元系锇钨二硼化物硬质材料及其制备方法和应用
CN107043260A (zh) 一种新型三元锇铼二硼化物(Os1‑xRexB2)硬质材料及其制备方法
Singhal et al. Sintering of boron carbide under high pressures and temperatures
Zhang et al. Hybrid Ti2AlC bonded diamond composites prepared by a self-propagation sintering approach
CN108623306A (zh) 一种微纳层次结构TiB2的制备方法
Wu et al. The effect of reaction time on the syntheses of Fe-TiCN composites from titanomagnetite concentrate by carbothermal reduction
Zhan et al. High Temperature Decomposition Behavior of CaZrO3 Coating on Graphite for TiNi Alloy Melting
Guo et al. Fabrication of Ti 3 AlC 2 ceramic material by mechanical alloying
Yu-Cheng et al. Cubic BN sintered with Al under high temperature and high pressure
Zmanovsky Perspectives of Zirconium Carbide in the Modern World

Legal Events

Date Code Title Description
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20180615

WD01 Invention patent application deemed withdrawn after publication