CN108147705A - 一种水泥混凝土用镁质高效抗裂剂、其制备方法及其应用 - Google Patents

一种水泥混凝土用镁质高效抗裂剂、其制备方法及其应用 Download PDF

Info

Publication number
CN108147705A
CN108147705A CN201711473357.1A CN201711473357A CN108147705A CN 108147705 A CN108147705 A CN 108147705A CN 201711473357 A CN201711473357 A CN 201711473357A CN 108147705 A CN108147705 A CN 108147705A
Authority
CN
China
Prior art keywords
magnesia
cement
efficient
concrete
antimitotic agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201711473357.1A
Other languages
English (en)
Other versions
CN108147705B (zh
Inventor
陆安群
田倩
王育江
王文彬
张守治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sobute New Materials Co Ltd
Original Assignee
Sobute New Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sobute New Materials Co Ltd filed Critical Sobute New Materials Co Ltd
Priority to CN201711473357.1A priority Critical patent/CN108147705B/zh
Publication of CN108147705A publication Critical patent/CN108147705A/zh
Application granted granted Critical
Publication of CN108147705B publication Critical patent/CN108147705B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B40/00Processes, in general, for influencing or modifying the properties of mortars, concrete or artificial stone compositions, e.g. their setting or hardening ability
    • C04B40/0028Aspects relating to the mixing step of the mortar preparation
    • C04B40/0039Premixtures of ingredients

Abstract

本发明公开了一种水泥混凝土用镁质高效抗裂剂、其制备方法及其应用。本发明所述水泥混凝土用镁质高效抗裂剂包括镁质膨胀组分及其内部孔隙填充与表面覆盖的一层水泥水化热调控组分;所述水泥水化热调控组分与镁质膨胀组分的质量比为6:94~20:80;所述水泥水化热调控组分为糊精。本发明制备的水泥混凝土用镁质高效抗裂剂,克服了高活性氧化镁膨胀材料对混凝土工作性的不利影响,解决了掺高活性氧化镁后混凝土坍落度降低且坍落度损失较大的问题;提升了高活性氧化镁的膨胀效能;内部孔隙阻碍了水泥碱性溶液的接触面积,缓释了水泥水化热调控材料,与现有技术相比明显提升了温控效果。

Description

一种水泥混凝土用镁质高效抗裂剂、其制备方法及其应用
技术领域
本发明属于建筑材料混凝土外加剂技术领域,具体涉及一种水泥混凝土用镁质、温控高效抗裂剂,其制备方法及其应用。
背景技术
混凝土的裂缝控制问题是建筑工程中最重要的问题之一,而其中温度收缩裂缝又是最常见的混凝土裂缝形式。混凝土浇筑后,由于水泥水化产生大量的水化热,使混凝土温度升高,产生体积热膨胀。待达到最高温度以后,随着热量向外部环境的散发,混凝土温度将由最高值降至环境温度。这种温度降低会引起混凝土收缩,在约束条件下,当温度变形形成的拉应力超过混凝土的极限抗拉强度,就将导致混凝土开裂。水泥混凝土结构的收缩变形(特别是温降收缩)引起的开裂已经为工程界普遍关注。经过多年的研究和实践,人们从工艺、材料等不同角度探索了补偿混凝土收缩(特别是温降收缩)、抑制混凝土温升的技术途径。
我国科技人员利用氧化镁膨胀剂特有的延迟膨胀补偿大体积混凝土温降收缩,可有效控制混凝土的应变,防止大体积混凝土的温度开裂,并据此发展了拥有自主知识产权的“氧化镁微膨胀混凝土筑坝技术”。迄今为止,氧化镁微膨胀混凝土筑坝技术已经在我国三十几座水利工程中得到了成功应用,其主要优点在于简化温控措施、加快施工进度缩短工期,节约工程投资,同时对混凝土的温降收缩具有明显的补偿效果,为减少大体积混凝土温度开裂风险发挥了重要作用。
氧化镁膨胀剂具有水化需水量少、水化产物物理化学性质稳定、膨胀过程可调控设计等优点。温升值高、温降速率慢的水工大坝基础混凝土的温降收缩主要采用稳定、均匀制备的水化活性值200~300s氧化镁膨胀剂。刘加平等研究发现,较高活性氧化镁膨胀剂既具有较大的早期膨胀、又具有持续的后期微膨胀,对混凝土的温降收缩和干燥收缩均具有较好的补偿作用;且在规定掺量条件下,不存在安定性问题;适用于民用建筑用的补偿收缩混凝土。为此,江苏苏博特新材料股份有限公司与清华大学合作编制了中国建筑材料协会标准《混凝土用氧化镁膨胀剂》。单个氧化镁颗粒是由氧化镁微晶聚集而成;氧化镁颗粒是一种多孔材料,会吸附混凝土减水剂等液体。在推广应用高活性氧化镁膨胀剂的过程中发现,氧化镁膨胀剂掺入混凝土时,获得相同坍落度时,会增加混凝土减水剂用量;且容易引起新拌混凝土的坍落度损失加快,严重时会使新拌混凝土在半个小时内失去流动性,难以满足正常施工的要求,严重影响了这一技术在民用建筑工程中的推广应用。
中国专利CN103058549B公开了与氧化镁膨胀剂相适配的缓凝剂及其制备方法。采用5-10%草酸铵、10-20%磷酸铵和20-30%柠檬酸铵复配而成的水性缓凝剂。此种缓凝剂中含有大量草酸根离子、磷酸根离子和柠檬酸根离子。上述离子在与氧化镁熟料作用同时,也与水泥水化产生的钙离子作用,使用水泥水化延缓,产生缓凝并影响混凝土后期强度。此缓凝剂中大量的NH4 +,会在水泥浆体的碱性条件挥发产生氨气,使混凝土内部产生大量气泡。且溢出的氨气对人体具有危害。
为了改善MgO对混凝土流动性的不利影响和调控混凝土中轻烧MgO水化膨胀时间,吴莉等采用18碳不饱和脂肪酸对轻烧MgO的表面进行处理。结果表明,油酸改性的MgO能增大水泥浆体的流动度,减小流动度经时损失。但油酸会增大浆体早期的自收缩、减小早期膨胀量,且降低水泥浆体的抗压强度。
降低混凝土中的温度变化、抑制混凝土的温升,是降低混凝土温降收缩开裂风险的另一条技术途径。目前采用水化热调控材料调控混凝土的温升,降低混凝土温降开裂风险的技术手段成为研究热点。专利JP3729340B2、EP1233008A1、CN104592403B、CN104098288B等均介绍一种主体为糊精的水化热调控材料。研究人员发现,糊精能有效降低水泥水化速率本质原因是:糊精在水泥颗粒表面形成了一层吸附层,这层吸附层降低了水分由外向水泥颗粒内部迁移的速率,进而降低了水泥的水化速率;而糊精在碱性条件容易水解,生成小分子的羟基酸,这使得吸附层被破坏,进而影响其水化调控性能,并且糊精降解形成的小分子羟基酸还引起水泥水化诱导期大幅度延长。如果可以减少糊精与水泥碱性溶液的接触面积,减少糊精在水化诱导期被降解的比例,进而减少糊精对水化诱导期的影响,则可大幅度提升糊精对水泥加速期水化速率的调控作用。
CN104710131B公开了一种水泥水化速率调控材料及其制备方法。所述水泥水化速率调控材料为非水溶性聚合物包裹改性的糊精。所叙非水溶性聚合物为易成膜的乙烯-醋酸乙烯酯共聚物。此共聚物在碱性条件极易分解,且形成的膜在混凝土搅拌过程中易破裂。一旦糊精颗粒表面的膜破裂,水化热调控材料的调控效果将大幅度降低,不能形成缓慢释放的效果。
CN104592403B公开了一种水化热调控剂及其制备方法与应用。在氧化还原引发剂存在下,于微波辐射条件下,由糊精、交联剂聚合交联反应指得。本方法虽能降低水化放热速率峰值、但采用微波辐射的方法,工艺复杂、时间较长,形成的水化热调控剂的成本较高。
CN104628296B公开了一种复合改性水化热调控材料及其制备方法与应用。采用淀粉先与酸催化剂、交联剂反应,产物再与烯酸琥珀酸酐反应制得。其引入的极性乙酰基功能团,降低了水泥孔溶液的表面张力会产生大量的气泡,导致混凝土中含气量大幅提升。此水化热调控材料不适宜用于含气量低的民用工程结构混凝土。水化热调控材料虽显示交联后效果有一定的提升,但工艺复杂、且时间较长;烯酸琥珀酸酐的价格较贵,会明显提升水化热调控材料的成本,不利于大规模应用。
在上述技术中,涉及补偿混凝土收缩的氧化镁熟料(特别是高活性氧化镁)是一种多孔材料,会吸附混凝土减水剂。氧化镁熟料掺入混凝土时,存在减水剂用量增加、混凝土坍落度损失加快等影响混凝土工作性的问题。因此,亟需对上述问题进行解决,改善其对混凝土工作性的影响。
在上述技术中,涉及抑制混凝土温升的以糊精为主的水化热调控材料,在水泥碱性条件下很容易碱化溶解,不能充分发挥水泥水化速率调控作用。目前,采用交联杂化、非水溶性聚合物包裹、微波工艺等技术手段,工艺复杂,生产成本高不利于推广应用。且一旦糊精颗粒表面的膜破裂,水泥水化热调控材料的调控效果将大幅度降低,不能形成缓慢释放的效果。因此,亟需对上述问题进行解决,降低糊精制备的水化热调控材料的生产成本,并使其在水泥浆体中缓慢释放,提升温控效能。
发明内容
针对现有技术中氧化镁熟料(特别是高活性氧化镁)掺入混凝土时,存在相同坍落度条件减水剂用量增加,混凝土坍落度损失加快等影响工作性的问题;以及针对现有技术中糊精制备的水化热调控材料,在水泥碱性溶液条件下易碱化溶解,不能缓慢释放及充分发挥水化热调控作用等问题,本发明提供了一种水泥混凝土用镁质高效抗裂剂及其制备方法。
本发明的目的是提供一种不吸附混凝土减水剂、改善混凝土工作性,并具有明显缓释、温控效果的镁质、温控高效抗裂剂。在糊精制备的水泥水化热调控材料液体的喷雾干燥过程中加入轻烧氧化镁粉体,以轻烧氧化镁颗粒为干燥的水泥水化热调控材料载体;利用氧化镁颗粒的多孔性,通过物理吸附和化学反应的方式使水泥水化热调控材料吸附于氧化镁颗粒孔内并覆盖颗粒表面制备而成。本发明制备的水泥混凝土用镁质、温控高效抗裂剂,克服氧化镁膨胀材料(特别是高活性氧化镁)对混凝土工作性的不利影响;提升氧化镁的膨胀性能;内部孔隙阻碍水泥碱性溶液与水泥水化热调控材料的接触面积,缓释水泥水化热调控材料,提升水泥水化热调控材料的调控效能,实现补偿收缩与温控协调作用,提升混凝土抗裂性能。
为实现上述目标,本发明的具体技术方案如下:
一种水泥混凝土用镁质高效抗裂剂,包括镁质膨胀组分及其内部孔隙填充与表面覆盖的一层水泥水化热调控组分;所述水泥水化热调控组分与镁质膨胀组分的质量比为6:94~20:80;
所述镁质膨胀组分由富镁质矿物采用悬浮窑煅烧技术制备而成,所述富镁质矿物为菱镁矿、菱镁矿尾矿、蛇纹石中的任意一种或两种以上以任意比例混合;
所述水泥水化热调控组分为具有水泥水化速率调控功能的糊精。
所述镁质膨胀组分中MgO含量≥80wt%,水化活性值为35s-200s,80μm方孔筛筛余≤5.0%。
所述水泥水化热调控组分优选糊精数均分子量在7000~20000g/mol。
本发明所述一种水泥混凝土用镁质高效抗裂剂的制备方法,包括如下步骤:
(1)将悬浮窑煅烧制备的比表面积为200-400m2/kg的镁质膨胀组分粉体加入到喷雾干燥塔的粉体加料器中,通过压力为0.1~0.3MPa的压缩空气将镁质膨胀组分输送到喷雾干燥塔的顶部热风分配器的前端,通过干燥塔内的热风将镁质膨胀组分均匀分散在热气流中;
(2)开启喷雾干燥塔,利用螺杆泵将糊精制备的水泥水化热调控材料液体输送到喷雾干燥塔顶部的液体进料口,通过进料口的高速离心雾化盘将水泥水化热调控材料组分雾化成雾滴直径10~50μm的微液珠;
(3)步骤(1)中热风分配器出来的、混有镁质膨胀组分粉体的高温气流快速加热步骤(2)得到的微液珠,以镁质膨胀组分为水泥水化热调控材料液体的载体,通过物理吸附和化学反应的方式使水泥水化热调控组分吸附于镁质膨胀组分颗粒孔内并覆盖颗粒表面,微液珠中水分被高温气流快速干燥;
(4)将气流中快速干燥的孔内及表面覆盖水泥水化热调控组分的镁质膨胀组分分离出来,即得所述水泥混凝土用镁质高效抗裂剂。
步骤(2)中所述水泥水化热调控材料液体由糊精与水混合而成,其中糊精的质量分数在40~80wt%,优选糊精质量分数为60~70wt%,糊精数均分子量在7000~20000g/mol。
所述水泥水化热调控材料组分雾化成雾滴直径为10~50μm,优选雾滴直径为20~40μm。
所述干燥塔内部温度控制在80~150℃,优选温度为96-105℃。
本发明所述一种水泥混凝土用镁质高效抗裂剂需达到通常的镁质膨胀材料对粉磨细度的要求。作为优选方案,所述水泥混凝土用镁质高效抗裂剂的比表面积为150-300m2/kg。
本发明所述一种水泥混凝土用镁质高效抗裂剂适用于:具有补偿收缩、抗裂、抗渗、温控要求的侧墙、底板和顶板C30及以上强度等级的混凝土结构。
本发明所述一种水泥混凝土用镁质高效抗裂剂,在C30-C60混凝土掺入量占胶材总质量的3%-10%。
与现有技术相比,本发明的有益效果是:
(1)本发明制备的水泥混凝土用镁质高效抗裂剂,克服了氧化镁膨胀材料(特别是高活性氧化镁)对混凝土工作性的不利影响;提升氧化镁的膨胀效能;内部孔隙阻碍水泥碱性溶液的接触面积,缓释水泥水化热调控材料,提升水泥水化速率调控材料的调控效能,实现补偿收缩与温控协调作用,提升混凝土抗裂性能。
(2)本发明提供的水泥混凝土用镁质高效抗裂剂的制备方法,利用水泥水化热调控材料制备过程需要喷雾干燥的技术特征,省去了现有技术制备高效水泥水化热调控材料的工艺;制备工艺简单易行,生成成本大幅降低,社会经济效益显著。
附图说明
图1(a)为实施例1所得的掺镁质高效抗裂剂、相同水泥水化热调控材料、活性值35s的相同的MgO膨胀材料的C50混凝土的绝热温升;1#为基准C50混凝土,2#为掺5.64wt%35s MgO膨胀材料,3#为掺0.36wt%水化热调控材料,4#为掺实施例1中6.00wt%的镁质高效抗裂剂(镁质组分与水化热调控组分的比例为94wt%:6wt%)。
图1(b)为实施例1所得的掺镁质高效抗裂剂、活性值35s的相同的MgO膨胀材料的C50混凝土的绝热条件下的升温速率;1#为基准C50混凝土,2#为掺5.64wt%35s MgO膨胀材料,4#为掺实施例1中6.00wt%的镁质高效抗裂剂(镁质组分与水化热调控组分的比例为94wt%:6wt%)。
图1(c)为实施例1所得的掺镁质高效抗裂剂、相同水泥水化热调控材料的C50混凝土的绝热条件下的升温速率;1#为基准C50混凝土,3#为掺0.36wt%水化热调控材料,4#为掺实施例1中6.00wt%的镁质高效抗裂剂(镁质组分与水化热调控组分的比例为94wt%:6wt%)。
图2为实施例2所制得的掺镁质高效抗裂剂、相同水泥水化热调控材料、活性值100s的相同的MgO膨胀材料在40℃、10%内掺、W/C=0.4时的砂浆限制膨胀率;2-1号—基准样,2-2号—掺相同水泥水化热调控材料,2-3号—掺15%同种水化热调控材料粉体与85%100s MgO膨胀材料粉体复配样、2-4号—掺实施例2中制备的镁质高效抗裂剂(镁质组分与水化热调控组分的比例为85wt%:15wt%)。
具体实施方式
下面结合具体实施例对本发明所述水泥混凝土用镁质温控高效抗裂剂、其制备方法及其应用的技术特征进一步阐述,但不限于实施例;在本发明中,除有特别说明,所有百分含量均为质量百分数。
实施例1
(一)一种水泥混凝土用镁质高效抗裂剂的制备
镁质膨胀组分为悬浮窑生产的水化活性值35s(采用DL/T 5296-2013检测方法)、MgO含量80.0%、比表面积400m2/kg的镁质膨胀材料;水泥水化热调控组分选自江苏苏博特新材料股份有限公司。水泥水化热调控材料液体中糊精含量在40wt%,糊精数均分子量在7000~20000g/mol。
将镁质膨胀组分粉体加入到喷雾干燥塔的粉体加料器中,通过压力0.1MPa的压缩空气将镁质膨胀组分输送到干燥塔的顶部热风分配器的前段。通过干燥塔内的热风将镁质膨胀组分分散在热气流中。干燥塔内部温度控制在80~95℃。
开启喷雾干燥塔,利用螺杆泵将糊精制备的水泥水化热调控材料液体输送到喷雾干燥塔顶部的液体进料口,通过进料口的高速离心雾化盘将水化热调控组分雾化成雾滴直径10~30μm的微液珠。热风分配器出来的、混有镁质膨胀组分粉体的高温气流快速加热微液珠,以镁质膨胀组分为水泥水化热调控材料液体的载体;通过物理吸附和化学反应的方式使水化热调控组分吸附于镁质膨胀组分颗粒孔内并覆盖颗粒表面;微液珠中水分被高温气流快速干燥。将气流中快速干燥的孔内及表面覆盖水泥水化热调控组分的镁质膨胀组分分离出来,形成比表面积300m2/kg的水泥混凝土用镁质高效抗裂剂。
表1上述制备的镁质高效抗裂剂中水化热调控与镁质膨胀组分的比例
(二)水泥混凝土用镁质高效抗裂剂的工作性能测试
采用净浆试验评价镁质高效抗裂剂对胶凝材料净浆的流动性能的影响。胶凝材料的净浆流动度测试方法参照GB80770-2000《混凝土外加剂匀质性实验方法》的相关规定执行;胶凝材料净浆的水胶比均为0.35。
表2为镁质高效抗裂剂与相同的水化活性值35s MgO膨胀材料的性能对比
表2的试验结果表明,本发明制备的镁质高效抗裂剂可有效改善水化活性值35s镁质膨胀材料的水泥净浆的初始流动度,而且能够显著提升水泥净浆60min后的流动性保持能力,为高活性镁质膨胀材料的推广应用提供了保障。
(三)水泥混凝土用镁质高效抗裂剂的温控效果测试
表3为某工程用的C50混凝土配合比,镁质高效抗裂剂(样品1-1)替代矿粉;选用制备镁质高效抗裂剂相同的水化热调控材料(代号TRA)替代矿粉;选用相同的水化活性值35sMgO膨胀材料替代矿粉。
水泥使用海螺P·Ⅱ42.5水泥;粉煤灰来自南京华能电厂;矿粉来自梅宝公司;砂为河沙;石子为安徽和县采石场生产;减水剂采用江苏苏博特减水剂(不带缓凝组分)。
表3 C50混凝土配合比(kg/m3)
名称 水泥 粉煤灰 矿粉 石子 样品1-1 TRA 35s MgO
1# 245 90 85 756 1044 145 0 0 0
2# 245 90 84.64 756 1044 145 0 1.512 0
3# 245 90 79.36 756 1044 145 0 0 23.688
4# 245 90 79.00 756 1044 145 25.2 0 0
依据标准《水工混凝土试验规程》DL/T 5150-2001试验方法,对上述配比混凝土进行绝热温升和绝热条件下水化放热速率测试(见图1(a)、图1(b)和图1(c))。
图1(a)表明,C50基准混凝土、掺5.64wt%35s MgO膨胀材料、掺0.36wt%水化热调控材料和6.00wt%上述制备的镁质高效抗裂剂9d龄期的绝热温升值分别为50.49℃、52.50℃、48.30℃和45.70℃。C50混凝土中掺入MgO膨胀材料,混凝土早期的绝热温升值增大,高于基准2.01℃;单掺0.36wt%水泥水化热调控材料能够降低混凝土早期的绝热温升值约2.19℃;采用上述方法制备的镁质高效抗裂剂能明显降低混凝土早期的绝热温升值达4.79℃。
图1(b)和图1(c)表明,掺5.64wt%35s MgO膨胀材料会加速混凝土早期的放热速率;掺0.36wt%水化热调控材料能减缓混凝土早期的放热速率;但采用上述工艺制备的镁质高效抗裂剂能明显减缓混凝土早期的放热速率,起到削除混凝土放热速率峰的作用。
图1(a)、图1(b)和图1(c)表明,此种制备方法的MgO颗粒内孔储存了水化热调控材料,减少了糊精在水化诱导期被降解的比例,明显提升了水泥水化热调控材料的调控效能。
(四)水泥混凝土用镁质高效抗裂剂的膨胀性能测试
依据标准CBMF 19-2017《混凝土用氧化镁膨胀剂》试验方法,对上述制备的镁质高效抗裂剂、相同的水泥水化热调控材料和相同的35s MgO膨胀材料进行了水养条件下的砂浆限制膨胀率测试。
表4为样品与选用的水化热调控材料、35sMgO膨胀组分的砂浆限制膨胀率(单位:%)
表4测试结果表明,水化热调控材料不具有补偿收缩、产生膨胀的作用;采用上述工艺制备的镁质高效抗裂剂提升了镁质膨胀材料的膨胀性能。
实施例2
(一)一种水泥混凝土用镁质高效抗裂剂的制备
镁质膨胀组分为悬浮窑生产的水化活性值100s(采用DL/T 5296-2013检测方法)、MgO含量90.0%、比表面积400m2/kg的镁质膨胀材料;水泥水化热调控组分选自江苏苏博特新材料股份有限公司。水泥水化热调控材料液体中糊精含量在60wt%,糊精数均分子量在7000~20000g/mol。
将镁质膨胀组分粉体加入到喷雾干燥塔的粉体加料器中,通过压力0.2MPa的压缩空气将镁质膨胀组分输送到干燥塔的顶部热风分配器的前段。通过干燥塔内的热风将镁质膨胀组分分散在热气流中。干燥塔内部温度控制在96~105℃。
开启喷雾干燥塔,利用螺杆泵将糊精制备的水泥水化热调控材料液体输送到喷雾干燥塔顶部的液体进料口,通过进料口的高速离心雾化盘将水化热调控组分雾化成雾滴直径20~40μm的微液珠。热风分配器出来的、混有镁质膨胀组分粉体的高温气流快速加热微液珠,以镁质膨胀组分为水泥水化热调控材料液体的载体;通过物理吸附和化学反应的方式使水化热调控组分吸附于镁质膨胀组分颗粒孔内并覆盖颗粒表面;微液珠中水分被高温气流快速干燥。将气流中快速干燥的孔内及表面覆盖水泥水化热调控组分的镁质膨胀组分分离出来,形成比表面积250m2/kg的水泥混凝土用镁质高效抗裂剂。
表5为上述制备的镁质高效抗裂剂中水化热调控与镁质膨胀组分的比例
(二)水泥混凝土用镁质高效抗裂剂的工作性能测试
采用净浆试验评价镁质高效抗裂剂对胶凝材料净浆的流动性能的影响。胶凝材料的净浆流动度测试方法参照GB80770-2000《混凝土外加剂匀质性实验方法》的相关规定执行;胶凝材料净浆的水胶比均为0.35。
表6为镁质高效抗裂剂与相同的水化活性值100s MgO膨胀材料的性能对比
表6的试验结果表明,本发明制备的镁质高效抗裂剂可有效改善掺镁质膨胀材料的水泥净浆的初始流动度,而且能够显著提升水泥净浆60min后的流动性保持能力。采用简单的氧化镁膨胀组分与水泥水化热调控组分复配的方式,不能改善氧化镁膨胀材料对水泥净浆流动度的影响。
(三)水泥混凝土用镁质温控高效抗裂剂的温控效果测试
表7为某工程用C50混凝土配比,镁质、温控抗裂剂替代矿粉,选用的水化热调控材料也替代矿粉。除上述外,混凝土温控效果试验的处理过程与实施例1同样地进行。
表7为C50基准混凝土配合比(kg/m3)
强度等级 水泥 煤灰 矿粉 小石 大石 W/C
C50 245 90 115 756 306 738 145 0.33
依据标准《水工混凝土试验规程》DL/T 5150-2001试验方法,对上述配比混凝土进行绝热温升测试。
表8为样品与选用的水化热调控材料粉体、100s MgO膨胀组分的温控效果对比。
表8表明,此种方法制备的MgO颗粒内孔储存了水化热调控材料,减少了糊精在水化诱导期阶段被降解的比例,明显提升了水泥水化热调控材料的调控效果。
表9为样品与选用的水化热调控材料、100s MgO膨胀组分的温控效果对比。
表9中的复配样是15%同种水化热调控材料粉体与85%100s MgO膨胀材料粉体简单混合而成。表9表明,采用简单的氧化镁膨胀组分与水泥水化热调控组分复配的方式,不能提升水泥水化热调控材料的调控效能。
(四)水泥混凝土用镁质高效抗裂剂的膨胀性能测试
依据标准CBMF 19-2017《混凝土用氧化镁膨胀剂》试验方法,对上述制备的镁质高效抗裂剂、相同的水泥水化热调控材料和相同的100s MgO膨胀材料进行了40℃水养条件下的砂浆限制膨胀率测试(见图2)。
图2测试结果表明,水化热调控材料不具有补偿收缩、产生膨胀的作用;采用上述工艺制备的镁质高效抗裂剂提升了镁质膨胀材料的膨胀性能。采用简单的氧化镁膨胀组分与水泥水化热调控组分复配的方式,不能提升镁质膨胀材料的膨胀效能。
实施例3
(一)一种水泥混凝土用镁质高效抗裂剂的制备
镁质膨胀组分为悬浮窑生产的水化活性值150s(采用DL/T 5296-2013检测方法)、MgO含量85.0%、比表面积300m2/kg的镁质膨胀材料;水泥水化热调控组分选自江苏苏博特新材料股份有限公司。水泥水化热调控材料液体中糊精含量在80wt%,糊精数均分子量在7000~20000g/mol。
将镁质膨胀组分粉体加入到喷雾干燥塔的粉体加料器中,通过压力0.3MPa的压缩空气将镁质膨胀组分输送到干燥塔的顶部热风分配器的前段。通过干燥塔内的热风将镁质膨胀组分分散在热气流中。干燥塔内部温度控制在105~150℃。
开启喷雾干燥塔,利用螺杆泵将糊精制备的水泥水化热调控材料液体输送到喷雾干燥塔顶部的液体进料口,通过进料口的高速离心雾化盘将水化热调控组分雾化成雾滴直径20~40μm的微液珠。热风分配器出来的、混有镁质膨胀组分粉体的高温气流快速加热微液珠,以镁质膨胀组分为水泥水化热调控材料液体的载体;通过物理吸附和化学反应的方式使水化热调控组分吸附于镁质膨胀组分颗粒孔内并覆盖颗粒表面;微液珠中水分被高温气流快速干燥。将气流中快速干燥的孔内及表面覆盖水泥水化热调控组分的镁质膨胀组分分离出来,形成比表面积200m2/kg的水泥混凝土用镁质高效抗裂剂。
表10为上述制备的镁质高效抗裂剂中水化热调控与镁质膨胀组分的比例
(二)水泥混凝土用镁质高效抗裂剂的工作性能测试
采用净浆试验评价镁质高效抗裂剂对胶凝材料净浆的流动性能的影响。胶凝材料的净浆流动度测试方法参照GB80770-2000《混凝土外加剂匀质性实验方法》的相关规定执行;胶凝材料净浆的水胶比均为0.35。
表11为镁质高效抗裂剂与相同的水化活性值150s MgO膨胀材料的性能对比
表11的试验结果表明,本发明制备的镁质高效抗裂剂可有效改善掺镁质膨胀材料的水泥净浆的初始流动度,而且能够显著提升水泥净浆60min后的流动性保持能力。采用简单的氧化镁膨胀组分与水泥水化热调控组分复配的方式,不能改善氧化镁膨胀材料对水泥净浆流动度的影响。
(三)水泥混凝土用镁质温控高效抗裂剂的温控效果测试
表12为某工程用C50混凝土配比,镁质、温控抗裂剂替代矿粉,选用的水化热调控材料也替代矿粉。除上述外,混凝土温控效果试验的处理过程与实施例1同样地进行。
表12为C50基准混凝土配合比(kg/m3)
强度等级 水泥 煤灰 矿粉 小石 大石 W/C
C50 245 90 115 756 306 738 145 0.33
依据标准《水工混凝土试验规程》DL/T 5150-2001试验方法,对上述配比混凝土进行绝热温升测试。
表13为样品与选用的水化热调控材料粉体、150s MgO膨胀组分的温控效果对比。
表13表明,此种方法制备的MgO颗粒内孔储存了水化热调控材料,减少了糊精在水化诱导期阶段被降解的比例,明显提升了水泥水化热调控材料的调控效果。
表14为样品与选用的水化热调控材料、150s MgO膨胀组分的温控效果对比。
表14中的复配样是15%同种水化热调控材料粉体与85%150s MgO膨胀材料粉体简单混合而成。表14表明,采用简单的氧化镁膨胀组分与水泥水化热调控组分复配的方式,不能提升了水泥水化热调控材料的调控效能。
实施例4
(一)一种水泥混凝土用镁质高效抗裂剂的制备
镁质膨胀组分为悬浮窑生产的水化活性值200s(采用DL/T 5296-2013检测方法)、MgO含量85.0%、比表面积200m2/kg的镁质膨胀材料;水泥水化热调控组分选自江苏苏博特新材料股份有限公司。水泥水化热调控材料液体中糊精含量在80wt%,糊精数均分子量在7000~20000g/mol。
将镁质膨胀组分粉体加入到喷雾干燥塔的粉体加料器中,通过压力0.3MPa的压缩空气将镁质膨胀组分输送到干燥塔的顶部热风分配器的前段。通过干燥塔内的热风将镁质膨胀组分分散在热气流中。干燥塔内部温度控制在96~105℃。
开启喷雾干燥塔,利用螺杆泵将糊精制备的水泥水化热调控材料液体输送到喷雾干燥塔顶部的液体进料口,通过进料口的高速离心雾化盘将水化热调控组分雾化成雾滴直径20~40μm的微液珠。热风分配器出来的、混有镁质膨胀组分粉体的高温气流快速加热微液珠,以镁质膨胀组分为水泥水化热调控材料液体的载体;通过物理吸附和化学反应的方式使水化热调控组分吸附于镁质膨胀组分颗粒孔内并覆盖颗粒表面;微液珠中水分被高温气流快速干燥。将气流中快速干燥的孔内及表面覆盖水泥水化热调控组分的镁质膨胀组分分离出来,形成比表面积150m2/kg的水泥混凝土用镁质高效抗裂剂。
表15为上述制备的镁质高效抗裂剂中水化热调控与镁质膨胀组分的比例
(二)水泥混凝土用镁质高效抗裂剂的工作性能测试
采用净浆试验评价镁质高效抗裂剂对胶凝材料净浆的流动性能的影响。胶凝材料的净浆流动度测试方法参照GB80770-2000《混凝土外加剂匀质性实验方法》的相关规定执行;胶凝材料净浆的水胶比均为0.35。
表16为镁质高效抗裂剂与相同的水化活性值200s MgO膨胀材料的性能对比
表16的试验结果表明,本发明制备的镁质高效抗裂剂可有效改善掺镁质膨胀材料的水泥净浆的初始流动度,而且能够显著提升水泥净浆60min后的流动性保持能力。采用简单的氧化镁膨胀组分与水泥水化热调控组分复配的方式,不能改善氧化镁膨胀材料对水泥净浆流动度的影响。
(三)水泥混凝土用镁质温控高效抗裂剂的温控效果及力学性能测试
表17为某工程用C50混凝土配比,镁质、温控抗裂剂替代矿粉,选用的水化热调控材料也替代矿粉。除上述外,混凝土温控效果试验的处理过程与实施例1同样地进行。
表17为C50基准混凝土配合比(kg/m3)
强度等级 水泥 煤灰 矿粉 小石 大石 W/C
C50 245 90 115 756 306 738 145 0.33
依据标准《水工混凝土试验规程》DL/T 5150-2001试验方法,对上述配比混凝土进行绝热温升测试。
表18为样品与选用的水化热调控材料粉体、200s MgO膨胀组分的温控效果对比。
表18表明,此种方法制备的MgO颗粒内孔储存了水化热调控材料,减少了糊精在水化诱导期阶段被降解的比例,明显提升了水泥水化热调控材料的调控效果。
表19为样品与选用的水化热调控材料、200s MgO膨胀组分的温控效果对比。
表19中的复配样是15%同种水化热调控材料粉体与85%200s MgO膨胀材料粉体简单混合而成。表19表明,采用简单的氧化镁膨胀组分与水泥水化热调控组分复配的方式,不能提升了水泥水化热调控材料的调控效能。
依据标准《普通混凝土力学性能试验方法标准》GB/T 50081-2002试验方法,对上述配比混凝土进行28d抗压强度测试。
表20为样品与选用的水化热调控材料粉体、200s MgO膨胀组分的C50混凝土的抗压强度。
表20中的复配样是15%同种水化热调控材料粉体与85%200s MgO膨胀材料粉体简单混合而成。表20表明,相比于复配样品,采用实施例4中样品4-3水泥混凝土用镁质高效抗裂剂的C50混凝土的28d抗压强度得到提升。

Claims (8)

1.一种水泥混凝土用镁质高效抗裂剂,其特征在于:包括镁质膨胀组分及其内部孔隙填充与表面覆盖的一层水泥水化热调控组分;所述水泥水化热调控组分与镁质膨胀组分的质量比为6:94~20:80;
所述镁质膨胀组分由富镁质矿物采用悬浮窑煅烧技术制备而成,所述富镁质矿物为菱镁矿、菱镁矿尾矿、蛇纹石中的任意一种或两种以上以任意比例混合;
所述水泥水化热调控组分为糊精。
2.根据权利要求1所述的一种水泥混凝土用镁质高效抗裂剂,其特征在于,所述镁质膨胀组分中MgO含量≥80wt%,水化活性值为35s-200s,80μm方孔筛筛余≤5.0%。
3.根据权利要求1或2所述的一种水泥混凝土用镁质高效抗裂剂,其特征在于,所述水泥水化热调控组分为数均分子量在7000~20000g/mol的糊精。
4.权利要求1至3任一项所述的一种水泥混凝土用镁质高效抗裂剂的制备方法,其特征在于,包括如下步骤:
(1)将悬浮窑煅烧制备的比表面积为200-400m2/kg的镁质膨胀组分粉体加入到喷雾干燥塔的粉体加料器中,通过压力为0.1~0.3MPa的压缩空气将镁质膨胀组分输送到喷雾干燥塔的顶部热风分配器的前端,通过干燥塔内的热风将镁质膨胀组分均匀分散在热气流中;
(2)开启喷雾干燥塔,利用螺杆泵将糊精制备的水泥水化热调控材料液体输送到喷雾干燥塔顶部的液体进料口,通过进料口的高速离心雾化盘将水泥水化热调控材料组分雾化成雾滴直径10~50μm的微液珠;
(3)步骤(1)中热风分配器出来的、混有镁质膨胀组分粉体的高温气流快速加热步骤(2)得到的微液珠,以镁质膨胀组分为水泥水化热调控材料液体的载体,通过物理吸附和化学反应的方式使水泥水化热调控组分吸附于镁质膨胀组分颗粒孔内并覆盖颗粒表面,微液珠中水分被高温气流快速干燥;
(4)将气流中快速干燥的孔内及表面覆盖水泥水化热调控组分的镁质膨胀组分分离出来,即得所述水泥混凝土用镁质高效抗裂剂。
步骤(2)中所述水泥水化热调控材料液体由糊精与水混合而成,其中糊精的质量分数在40~80wt%;
所述干燥塔内部温度控制在80~150℃。
5.根据权利要求4所述的一种水泥混凝土用镁质高效抗裂剂的制备方法,其特征在于,步骤(2)中所述水泥水化热调控材料液体中糊精质量分数为60~70wt%;
所述水泥水化热调控材料组分雾化成雾滴直径为20~40μm的微液珠;
所述干燥塔内部温度为96-105℃。
6.根据权利要求4或5所述的一种水泥混凝土用镁质高效抗裂剂的制备方法,其特征在于,所述水泥混凝土用镁质高效抗裂剂的比表面积为150-300m2/kg。
7.权利要求1至3任一项所述的一种水泥混凝土用镁质高效抗裂剂的应用方法,其特征在于,所述水泥混凝土用镁质高效抗裂剂应用于具有补偿收缩、抗裂、抗渗、温控要求的侧墙、底板和顶板C30及以上强度等级的混凝土结构。
8.根据权利要求7所述的一种水泥混凝土用镁质高效抗裂剂的应用方法,其特征在于,所述水泥混凝土用镁质高效抗裂剂在C30-C60混凝土中掺入量占胶材总质量的3%-10%。
CN201711473357.1A 2017-12-29 2017-12-29 一种水泥混凝土用镁质高效抗裂剂、其制备方法及其应用 Active CN108147705B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711473357.1A CN108147705B (zh) 2017-12-29 2017-12-29 一种水泥混凝土用镁质高效抗裂剂、其制备方法及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711473357.1A CN108147705B (zh) 2017-12-29 2017-12-29 一种水泥混凝土用镁质高效抗裂剂、其制备方法及其应用

Publications (2)

Publication Number Publication Date
CN108147705A true CN108147705A (zh) 2018-06-12
CN108147705B CN108147705B (zh) 2020-10-23

Family

ID=62462349

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711473357.1A Active CN108147705B (zh) 2017-12-29 2017-12-29 一种水泥混凝土用镁质高效抗裂剂、其制备方法及其应用

Country Status (1)

Country Link
CN (1) CN108147705B (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111377653A (zh) * 2018-12-31 2020-07-07 江苏苏博特新材料股份有限公司 一种水泥混凝土用高效抗裂剂及其制备方法和应用
CN111377648A (zh) * 2018-12-31 2020-07-07 江苏苏博特新材料股份有限公司 一种水泥混凝土用镁质、控温控湿高效抗裂剂及其制备方法和应用
CN112551930A (zh) * 2020-12-11 2021-03-26 河南理工大学 一种用于碱矿渣水泥的包裹型激发剂及其制备方法
CN113563003A (zh) * 2021-07-27 2021-10-29 武汉源锦建材科技有限公司 一种混凝土用镁质高性能抗裂剂及其制备方法和应用
CN113929346A (zh) * 2020-06-29 2022-01-14 江苏苏博特新材料股份有限公司 适配于重混凝土的抗裂剂、及基于铁矿石骨料的重混凝土
CN115259783A (zh) * 2022-06-28 2022-11-01 江苏苏博特新材料股份有限公司 一种用于水工大体积混凝土的高镁低热抗裂水泥及其制备方法
CN115304321A (zh) * 2022-07-11 2022-11-08 武汉三源特种建材有限责任公司 一种核工程用高耐久性混凝土及其制备方法
CN115745462A (zh) * 2022-11-03 2023-03-07 中交武汉港湾工程设计研究院有限公司 抗裂掺合料及其在高标号大体积混凝土中的应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3344095A (en) * 1965-02-18 1967-09-26 Dow Chemical Co Resin bonded magnesium oxychloride cement composition
JPS5575949A (en) * 1978-11-29 1980-06-07 Denki Kagaku Kogyo Kk Cement mortar for grout
JPH0797246A (ja) * 1993-09-28 1995-04-11 Denki Kagaku Kogyo Kk セメント混和材及びセメント組成物
CN102674738A (zh) * 2012-05-09 2012-09-19 江苏博特新材料有限公司 一种多功能抗裂外加剂
CN104098288A (zh) * 2013-12-09 2014-10-15 江苏苏博特新材料股份有限公司 一种混凝土水化热抑制材料
CN104817289A (zh) * 2015-03-27 2015-08-05 武汉三源特种建材有限责任公司 补偿收缩混凝土用缓释型缓凝剂及其制备方法和应用
CN105601152A (zh) * 2015-12-17 2016-05-25 江苏苏博特新材料股份有限公司 一种高效减缩抗裂剂及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3344095A (en) * 1965-02-18 1967-09-26 Dow Chemical Co Resin bonded magnesium oxychloride cement composition
JPS5575949A (en) * 1978-11-29 1980-06-07 Denki Kagaku Kogyo Kk Cement mortar for grout
JPH0797246A (ja) * 1993-09-28 1995-04-11 Denki Kagaku Kogyo Kk セメント混和材及びセメント組成物
CN102674738A (zh) * 2012-05-09 2012-09-19 江苏博特新材料有限公司 一种多功能抗裂外加剂
CN104098288A (zh) * 2013-12-09 2014-10-15 江苏苏博特新材料股份有限公司 一种混凝土水化热抑制材料
CN104817289A (zh) * 2015-03-27 2015-08-05 武汉三源特种建材有限责任公司 补偿收缩混凝土用缓释型缓凝剂及其制备方法和应用
CN105601152A (zh) * 2015-12-17 2016-05-25 江苏苏博特新材料股份有限公司 一种高效减缩抗裂剂及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
姜在渭: "《上海建筑材料工业志》", 31 July 1997, 上海社会科学院出版社 *
陶方元等: ""镁质抗裂剂性能及其在混凝土工程中的应用研究"", 《中国建筑防水》 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111377653A (zh) * 2018-12-31 2020-07-07 江苏苏博特新材料股份有限公司 一种水泥混凝土用高效抗裂剂及其制备方法和应用
CN111377648A (zh) * 2018-12-31 2020-07-07 江苏苏博特新材料股份有限公司 一种水泥混凝土用镁质、控温控湿高效抗裂剂及其制备方法和应用
CN113929346A (zh) * 2020-06-29 2022-01-14 江苏苏博特新材料股份有限公司 适配于重混凝土的抗裂剂、及基于铁矿石骨料的重混凝土
CN112551930A (zh) * 2020-12-11 2021-03-26 河南理工大学 一种用于碱矿渣水泥的包裹型激发剂及其制备方法
CN112551930B (zh) * 2020-12-11 2021-08-17 河南理工大学 一种用于碱矿渣水泥的包裹型激发剂及其制备方法
CN113563003A (zh) * 2021-07-27 2021-10-29 武汉源锦建材科技有限公司 一种混凝土用镁质高性能抗裂剂及其制备方法和应用
CN113563003B (zh) * 2021-07-27 2022-07-08 武汉源锦建材科技有限公司 一种混凝土用镁质高性能抗裂剂及其制备方法和应用
CN115259783A (zh) * 2022-06-28 2022-11-01 江苏苏博特新材料股份有限公司 一种用于水工大体积混凝土的高镁低热抗裂水泥及其制备方法
CN115304321A (zh) * 2022-07-11 2022-11-08 武汉三源特种建材有限责任公司 一种核工程用高耐久性混凝土及其制备方法
CN115745462A (zh) * 2022-11-03 2023-03-07 中交武汉港湾工程设计研究院有限公司 抗裂掺合料及其在高标号大体积混凝土中的应用
CN115745462B (zh) * 2022-11-03 2024-01-16 中交武汉港湾工程设计研究院有限公司 抗裂掺合料及其在高标号大体积混凝土中的应用

Also Published As

Publication number Publication date
CN108147705B (zh) 2020-10-23

Similar Documents

Publication Publication Date Title
CN108147705A (zh) 一种水泥混凝土用镁质高效抗裂剂、其制备方法及其应用
CN107324735B (zh) 一种超轻泡沫混凝土及其制备方法
CN106242327B (zh) 一种再生微粉水泥混合材及其制备方法
CN102936115B (zh) 一种水泥基灌浆料的生产方法
CN110451839B (zh) 一种早强型聚羧酸减水剂及其制备方法和应用
CN105439615A (zh) 泡沫混凝土
CN104692694B (zh) 一种改性氧化钙类水泥混凝土膨胀剂及其制备方法
CN105906262A (zh) 一种持续精细膨胀控制钢管混凝土
CN104817289B (zh) 补偿收缩混凝土用缓释型缓凝剂及其制备方法和应用
CN108328961A (zh) 一种膨胀历程可控的改性氧化钙类膨胀剂及其制备方法
CN105801065A (zh) 一种高强度抹灰石膏及其制备方法
CN110342888B (zh) 一种高延性保温砂浆
CN104478386A (zh) 一种混合增强型粘结石膏及其制备方法
CN111170758A (zh) 一种泡沫混凝土、其制备方法和用途
CN107840927A (zh) 一种石膏基自流平砂浆用聚羧酸减水剂粉体的制备方法
CN111253142B (zh) 一种耐水性好的磷酸镁水泥及其应用
CN113636767A (zh) 低碳水泥及其制备方法
CN109665743A (zh) 一种以大理石石粉为主的降低泌水型混凝土掺合料及其制备方法
CN113860821B (zh) 一种绿色环保型轻集料混凝土及其制备方法
CN104478385A (zh) 保水型粉刷石膏及其制备方法
CN112897929B (zh) 一种缓释型聚羧酸减水剂微球及其制备方法
CN104261773B (zh) 耐水性水泥基自流平材料
CN112047698A (zh) 一种低损失轻质高强泵送混凝土及其制备方法
CN116375399B (zh) 一种干混薄层抗裂抹灰砂浆及其制备方法
CN107311509A (zh) 一种湿拌砂浆凝结时间调节剂及其制备方法与应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
PE01 Entry into force of the registration of the contract for pledge of patent right

Denomination of invention: The invention relates to a magnesium high-efficiency anti crack agent for cement concrete, a preparation method and application thereof

Effective date of registration: 20211222

Granted publication date: 20201023

Pledgee: Huaxia Bank Co.,Ltd. Nanjing Shuiximen sub branch

Pledgor: SOBUTE NEW MATERIALS Co.,Ltd.

Registration number: Y2021320000400

PE01 Entry into force of the registration of the contract for pledge of patent right