CN108138593A - 工业设备中废弃能量的回收和再利用 - Google Patents

工业设备中废弃能量的回收和再利用 Download PDF

Info

Publication number
CN108138593A
CN108138593A CN201680056303.2A CN201680056303A CN108138593A CN 108138593 A CN108138593 A CN 108138593A CN 201680056303 A CN201680056303 A CN 201680056303A CN 108138593 A CN108138593 A CN 108138593A
Authority
CN
China
Prior art keywords
heat exchanger
stock
heated
stream
buffer fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201680056303.2A
Other languages
English (en)
Other versions
CN108138593B (zh
Inventor
马哈茂德·巴希耶·马哈茂德·努尔丁
哈尼·穆罕默德·阿尔赛义德
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saudi Arabian Oil Co
Original Assignee
Saudi Arabian Oil Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saudi Arabian Oil Co filed Critical Saudi Arabian Oil Co
Publication of CN108138593A publication Critical patent/CN108138593A/zh
Application granted granted Critical
Publication of CN108138593B publication Critical patent/CN108138593B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/0066Multi-circuit heat-exchangers, e.g. integrating different heat exchange sections in the same unit or heat-exchangers for more than two fluids
    • F28D7/0083Multi-circuit heat-exchangers, e.g. integrating different heat exchange sections in the same unit or heat-exchangers for more than two fluids with units having particular arrangement relative to a supplementary heat exchange medium, e.g. with interleaved units or with adjacent units arranged in common flow of supplementary heat exchange medium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/007Energy recuperation; Heat pumps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/14Fractional distillation or use of a fractionation or rectification column
    • B01D3/32Other features of fractionating columns ; Constructional details of fractionating columns not provided for in groups B01D3/16 - B01D3/30
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D51/00Auxiliary pretreatment of gases or vapours to be cleaned
    • B01D51/10Conditioning the gas to be cleaned
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/047Pressure swing adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1456Removing acid components
    • B01D53/1462Removing mixtures of hydrogen sulfide and carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/18Absorbing units; Liquid distributors therefor
    • B01D53/185Liquid distributors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/343Heat recovery
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/48Sulfur compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8603Removing sulfur compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/96Regeneration, reactivation or recycling of reactants
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/22Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of gaseous or liquid organic compounds
    • C01B3/24Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of gaseous or liquid organic compounds of hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/58Treatment of water, waste water, or sewage by removing specified dissolved compounds
    • C02F1/586Treatment of water, waste water, or sewage by removing specified dissolved compounds by removing ammoniacal nitrogen
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C7/00Purification; Separation; Use of additives
    • C07C7/04Purification; Separation; Use of additives by distillation
    • C07C7/05Purification; Separation; Use of additives by distillation with the aid of auxiliary compounds
    • C07C7/08Purification; Separation; Use of additives by distillation with the aid of auxiliary compounds by extractive distillation
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G33/00Dewatering or demulsification of hydrocarbon oils
    • C10G33/06Dewatering or demulsification of hydrocarbon oils with mechanical means, e.g. by filtration
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G35/00Reforming naphtha
    • C10G35/04Catalytic reforming
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/02Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/44Hydrogenation of the aromatic hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G47/00Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G65/00Treatment of hydrocarbon oils by two or more hydrotreatment processes only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G65/00Treatment of hydrocarbon oils by two or more hydrotreatment processes only
    • C10G65/02Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only
    • C10G65/12Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only including cracking steps and other hydrotreatment steps
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G69/00Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one other conversion process
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K3/00Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide
    • C10K3/02Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide by catalytic treatment
    • C10K3/04Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide by catalytic treatment reducing the carbon monoxide content, e.g. water-gas shift [WGS]
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L3/00Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
    • C10L3/06Natural gas; Synthetic natural gas obtained by processes not covered by C10G, C10K3/02 or C10K3/04
    • C10L3/10Working-up natural gas or synthetic natural gas
    • C10L3/101Removal of contaminants
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L3/00Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
    • C10L3/06Natural gas; Synthetic natural gas obtained by processes not covered by C10G, C10K3/02 or C10K3/04
    • C10L3/10Working-up natural gas or synthetic natural gas
    • C10L3/101Removal of contaminants
    • C10L3/102Removal of contaminants of acid contaminants
    • C10L3/103Sulfur containing contaminants
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L3/00Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
    • C10L3/06Natural gas; Synthetic natural gas obtained by processes not covered by C10G, C10K3/02 or C10K3/04
    • C10L3/10Working-up natural gas or synthetic natural gas
    • C10L3/101Removal of contaminants
    • C10L3/102Removal of contaminants of acid contaminants
    • C10L3/104Carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D17/00Regulating or controlling by varying flow
    • F01D17/10Final actuators
    • F01D17/12Final actuators arranged in stator parts
    • F01D17/14Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits
    • F01D17/141Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits by means of shiftable members or valves obturating part of the flow path
    • F01D17/145Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits by means of shiftable members or valves obturating part of the flow path by means of valves, e.g. for steam turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K13/00General layout or general methods of operation of complete plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K13/00General layout or general methods of operation of complete plants
    • F01K13/02Controlling, e.g. stopping or starting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/064Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle in combination with an industrial process, e.g. chemical, metallurgical
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K25/00Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
    • F01K25/06Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using mixtures of different fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K25/00Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
    • F01K25/08Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K27/00Plants for converting heat or fluid energy into mechanical energy, not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K27/00Plants for converting heat or fluid energy into mechanical energy, not otherwise provided for
    • F01K27/02Plants modified to use their waste heat, other than that of exhaust, e.g. engine-friction heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K3/00Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein
    • F01K3/18Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein having heaters
    • F01K3/185Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein having heaters using waste heat from outside the plant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/26Arrangements for connecting different sections of heat-exchange elements, e.g. of radiators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/18Structural association of electric generators with mechanical driving motors, e.g. with turbines
    • H02K7/1807Rotary generators
    • H02K7/1823Rotary generators structurally associated with turbines or similar engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/20Organic absorbents
    • B01D2252/204Amines
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0233Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a steam reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0283Processes for making hydrogen or synthesis gas containing a CO-shift step, i.e. a water gas shift step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/042Purification by adsorption on solids
    • C01B2203/043Regenerative adsorption process in two or more beds, one for adsorption, the other for regeneration
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1258Pre-treatment of the feed
    • C01B2203/1264Catalytic pre-treatment of the feed
    • C01B2203/127Catalytic desulfurisation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/101Sulfur compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/16Nitrogen compounds, e.g. ammonia
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/18Nature of the water, waste water, sewage or sludge to be treated from the purification of gaseous effluents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/34Nature of the water, waste water, sewage or sludge to be treated from industrial activities not provided for in groups C02F2103/12 - C02F2103/32
    • C02F2103/36Nature of the water, waste water, sewage or sludge to be treated from industrial activities not provided for in groups C02F2103/12 - C02F2103/32 from the manufacture of organic compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/201Impurities
    • C10G2300/202Heteroatoms content, i.e. S, N, O, P
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/201Impurities
    • C10G2300/207Acid gases, e.g. H2S, COS, SO2, HCN
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/40Characteristics of the process deviating from typical ways of processing
    • C10G2300/4006Temperature
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/40Characteristics of the process deviating from typical ways of processing
    • C10G2300/4056Retrofitting operations
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/04Diesel oil
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/30Aromatics
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2290/00Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
    • C10L2290/06Heat exchange, direct or indirect
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2290/00Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
    • C10L2290/54Specific separation steps for separating fractions, components or impurities during preparation or upgrading of a fuel
    • C10L2290/541Absorption of impurities during preparation or upgrading of a fuel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/129Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Biomedical Technology (AREA)
  • Inorganic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Water Supply & Treatment (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Hydrology & Water Resources (AREA)
  • Power Engineering (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Gas Separation By Absorption (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

描述了直接或间接(或两者)装置内和热连接的加热系统的配置和相关加工方案,其整合用于草根中级原油半转化精炼厂以提高来自低级废热源的特定部分的能量效率。还描述了直接或间接(或两者)装置内和热连接的加热系统的配置和相关加工方案,其整合用于综合中级原油半转化精炼厂和芳烃联合装置以提高来自低级废物源的特定部分的能量效率。

Description

工业设备中废弃能量的回收和再利用
相关申请的交叉引用
本申请要求于2015年8月24日提交的美国临时专利申请号62/209,217、于2015年8月24日提交的美国临时专利申请号62/209,147、于2015年8月24日提交的美国临时专利申请号62/209,188和于2015年8月24日提交的美国临时专利申请62/209,223号的优先权。将这些在先申请中的每一个的整个内容以它们各自的整体通过引用并入本文。
技术领域
本说明书涉及运行工业设备(工业设施,industrial facilities),例如,原油精炼设备或包括运行产生热量的装置(plant)的其他工业设备。
背景
石油精炼过程(工艺,process)是在石油精炼厂(refineries)中用于将原油转化为产物,例如,液化石油气(LPG)、汽油、煤油、喷气燃料、柴油、燃料油和其他产物的化工过程和其他设备。石油精炼厂是涉及许多不同加工单元和辅助设备例如公用工程(utility)单元、储罐和其他辅助设备的大型工业联合装置(industrial complex)。各个精炼厂都可以具有例如通过精炼厂位置、所需产物、经济考虑或其他因素决定的其自身独特的精炼过程的布置和组合。被实施(执行,implement)以将原油转化为产物如先前列举的那些的石油精炼过程可以产生可能不被再利用的热量,和可能污染大气的副产物,例如温室气体(GHG)。据信,世界环境已经受部分由于GHG释放到大气中造成的全球变暖负面影响。
概述
本说明书描述与用于来自工业设备中废弃能量(waste energy)的综合精炼石化设备的热能消耗减少的装置内废热回收方案和装置的热连接(thermal coupling)相关的技术。
本说明书中描述的主题的一种或多种实施方式的细节在附图和之后的描述中提出。所述主题的其他特征、方面和优点根据该描述、附图和权利要求书将变得明显。
附图简述
图1A-1R(由1RA和1RB组成)举例说明了用于热整合原油精炼设备中的芳烃装置的精炼子单元的配置和相关方案细节。
详述
工业废热是在许多工业设备,例如原油精炼厂、石化和化学联合装置以及其他工业设备中用于可能的无碳发电的来源。例如,对于沿原油和芳烃位置延伸的空气冷却器的网络,具有多达4000MM英热单位/小时(British Thermal Units per hour,Btu/h)的芳烃的中等尺寸综合原油精炼厂可能是浪费的。废热中的一些可以被再利用以加热在该原油精炼厂的精炼子单元中的流股(流或物流,stream),由此减少在其他方面将需要被使用以加热这些流股的热量的量。以此方式,可以降低被原油精炼厂消耗的热量的量。另外,也可以降低温室气体(GHG)排放的量。在一些实施方式中,在不影响原油精炼厂的经营理念的情况下,可以实现加热公用工程消耗的约34%的减少和冷却公用工程消耗的约20%的减少。
此处描述的废热回收和再利用技术可以在中级原油精炼半转化设备以及综合中级原油精炼半转化炼油和芳烃设备中实施。这些实施方式可以导致可以消耗由现有和新的原油精炼设备的现有技术设计所消耗的加热公用工程的约66%的能量高效系统。这些实施方式还可以导致相对于来自现有和新的原油精炼设备的现有技术设计的GHG排放的约三分之一的污染和GHG排放的降低。
在某些现有炼油设备中,装置(例如,石脑油加氢处理装置、酸性污水(含硫的污水,sour water)汽提塔装置或其他装置)中的流股使用蒸汽再沸器(steam reboiler)加热。在此处描述的主题的一些实施方式中,所述装置中的流股可以使用由另一装置(例如,加氢裂化装置、加氢处理装置、制氢装置或其他装置)中的另一流股携带的废热加热。通过这样做,可以减少或消除在蒸汽再沸器中产生的热能。换言之,蒸汽再沸器不需要是用于加热所述装置中的流股的热能的唯一来源。由其他装置中的其他流股携带的废热可以替代蒸汽再沸器中产生的热能或者补充热能,由此减少来自蒸汽再沸器的所需热能的量。
此处描述的主题可以以不同装置的特定操作模式实施,并且可以在不需要改变原油精炼厂中的现有热交换器设计的网络设计的情况下进行改造。在废热回收和再利用过程中使用的最小接近温度可以低至3℃。在一些实施方式中,在初始阶段以较少的废弃热量/能量回收为代价,可以使用较高的最小接近温度,同时在后续阶段在使用对于特定热源使用的最小接近温度时实现相对较好的节能。
总之,本公开内容描述了多种用于提高加热/冷却公用工程的能效的原油精炼厂领域的分离/蒸馏网络、配置和加工方案。通过再利用全部或部分废热,例如由多个分散的低级能量品质过程流股携带的低级废热,实现了能效提高。
原油精炼厂装置的实例
1.制氢装置(hydrogen plant)
氢通常在精炼厂中用于烃产物的硫去除和质量改善。随着对汽油和柴油的硫限制变得严格,对于氢的精炼需求持续增长。在特地产氢装置中采用两种过程方案-常规过程和基于变压吸附(PSA)的过程。氢制备可以包括加氢脱硫、蒸汽重整、变换(shiftconversion)和纯化。常规过程制得中等纯度的氢,而基于PSA的过程将氢回收并且纯化至高纯度,例如大于99.9%的纯度。
2.芳烃联合装置(aromatics complex)
典型的芳烃联合装置包括用于使用利用连续催化重整(CCR)技术的石脑油的催化重整来制备苯、甲苯和二甲苯(BTX)的基础石化中间体的过程单元的组合。
3.气体分离装置
气体分离装置包括脱乙烷塔和脱丙烷塔,其是分别用于分离在气体装置和精炼厂中的天然气液体(NGL)和轻端馏分中的乙烷和丙烷的蒸馏塔。脱乙烷塔从丙烷、丁烷和其他较重组分的混合物中去除乙烷。将脱乙烷塔的输出进料到脱丙烷塔中以从该混合物中分离丙烷。
4.胺再生装置
硫化氢和二氧化碳是天然气中存在的最常见污染物,并且与其他污染物(如果未去除可能负面影响天然气加工设备)相比以相对较大的量存在。胺在酸性气体吸收塔(acidgas absorber)和再生器(再生塔,regenerator)中用于使化学过程中的酸气脱臭(脱硫,sweeten),在所述化学过程中弱碱(例如,胺)与弱酸如硫化氢和二氧化碳反应而形成弱盐。
5.加氢裂化装置
加氢裂化是将催化裂化和氢化进行组合的两阶段过程。在该过程中,重质原料(进料,feedstock)在氢的存在下裂化而产生更理想的产物。该过程采用高压、高温、催化剂和氢。加氢裂化用于难以通过催化裂化或重整进行加工的原料,因为这些原料的特征通常在于高的多环芳烃含量或高浓度的两种主要催化剂毒物,即硫和氮化合物(或它们的组合)。
加氢裂化过程依赖于原料的性质和两种竞争性反应(氢化和裂化)的相对速率。重质芳烃原料在宽范围的高压力和高温度下在氢和特殊催化剂的存在下转化为较轻的产物。当原料具有高的烷烃含量时,氢防止多环芳烃化合物的形成。氢还减少焦油形成并且防止炭在催化剂上的积聚。氢化另外将在原料中存在的硫和氮化合物转化为硫化氢和氨。加氢裂化产生用于烷基化原料的异丁烷,以及进行异构化用于倾点控制和烟点控制,它们两者在高品质喷气燃料中都是重要的。
6.柴油加氢处理装置
加氢处理是用于减少硫、氮和芳烃同时提高十六烷值、密度和烟点的精炼过程。加氢处理帮助精炼工业的工作以符合严格的清洁燃料规格的全球趋势、运输燃料的增长需求和朝向柴油的转变。在该过程中,将新鲜的进料加热并与氢混合。反应器流出物与合并的进料交换热量并且加热循环气和汽提塔装填物。然后将硫化物(例如,二硫化铵和硫化氢)从进料中去除。
7.酸性污水汽提塔公用工程装置(SWSUP)
SWSUP接收来自酸性气体去除、硫回收和燃烧单元(放空单元,flare unit)的酸性污水流股,以及经汽提且由烟灰水闪蒸容器释放的酸性气体(sour gas)。SWSUP汽提来自酸性污水流股的酸性组分,主要为二氧化碳(CO2)、硫化氢(H2S)和氨(NH3)。
8.脱硫装置(sulfure removal plant)
精炼厂中的脱硫设备运行以调控硫化合物至大气的排放从而满足环境规章。在脱硫装置中,可以例如通过加热、用冷凝器冷却、使用硫转化催化剂、以及通过其他加工技术来加工包括硫的燃烧产物。
9.石脑油加氢处理装置和连续催化重整装置
石脑油加氢处理(NHT)产生101研究法辛烷值(RON)重整油(reformate),其具有最大4.0psi(磅/平方英寸)雷德蒸气压(Reid Vapor Pressure)(RVP),作为汽油总合(gasline pool)中的调合料。其通常具有用于加工来自原油蒸馏装置(Crude Unit)、气体冷凝物分割塔(Gas Condensate Splitter)、加氢裂化装置(Hydrocracker)、轻质直馏石脑油(Light Straight-Run Naphtha)(LSRN)和减粘裂化装置(Visbreaker Plant)的石脑油的共混物的灵活性。NHT加工石脑油以产生用于CCR铂重整装置(platformer)和汽油共混的脱硫进料。
热交换器(换热器,heat exchanger)
在本公开内容中描述的配置中,热交换器用于将热量从一种介质(例如,流过原油精炼设备中的装置的流股、缓冲流体或其他介质)转移至另一种介质(例如,缓冲流体或流过原油设备中的装置的不同流股)。热交换器是典型地将热量从较热的流体流股转移(交换)至相对较不热的流体流股的装置。热交换器可以用于加热和冷却应用,例如用于冰箱、空调或其他冷却应用。热交换器可以基于其中液体流动的方向区分彼此。例如,热交换器可以是并流、错流或逆流。在并流热交换器中,所涉及的两种流体在相同方向上的移动,并排地进入和离开热交换器。在错流热交换器中,流体路径彼此垂直地行进。在逆流热交换器中,流体路径以相反方向流动,其中一种流体离开而另一流体进入。逆流热交换器有时比其他类型的热交换器更有效。
除了基于流体方向分类热交换器之外,热交换器还可以基于它们的构造分类。一些热交换器由多个管构成。一些热交换器包括具有用于流体在其间流动的空间的板。一些热交换器能够实现液体至液体的热交换,同时一些热交换器能够实现使用其他介质的热交换。
在原油精炼和石化设备中的热交换器通常是包括液体流过的多个管的壳管型热交换器。管分为两组-第一组容纳待加热或冷却的液体;第二组容纳负责激发热交换的液体,即通过将热量吸收和传送离开而从第一组管移出热量或者通过将其自身的热量传送至内部的液体而使第一组升温的流体。当设计此类型的交换器时,必须注意确定适当的管壁厚度以及管径,以允许最佳的热交换。就流动而言,壳管式热交换器可以采取三种流路方式中的任一种。
在原油精炼和石化设备中的热交换器也可以是板框型热交换器。板式热交换器包括其间具有通常通过橡胶衬垫保持的少量空间的结合在一起的薄板。表面积大,并且各个矩形板的角落以流体可以在板间流动通过的开口为特征,随着其流动从板提取热量。流体通道本身使热和冷的液体交替,意味着热交换器可以有效地冷却以及加热流体。因为板式热交换器具有大的表面积,所以它们有时可以比壳管式热交换器更有效。
其他类型的热交换器可以包括再生热交换器(回热式热交换器,regenerativeheat exchanger)和绝热轮式热交换器。在再生热交换器中,相同的流体沿着热交换器的两侧通过,所述热交换器可以是板式热交换器或壳管式热交换器。因为流体可以变得非常热,所以离开的流体被用于使进入的流体升温,保持接近恒温。在再生热交换器中节省能量,因为该过程是循环的,其中几乎所有相关的热量从离开的流体转移至进入的流体。为了保持恒温,需要少量的额外能量以升高和降低整体流体温度。在绝热轮式热交换器中,中间流体被用于储存热量,该热量然后转移至热交换器的相对侧。绝热轮由具有旋转穿过液体(热和冷的两者)以提取或转移热量的线状体(threats)的大轮组成。本公开内容中描述的热交换器可以包括先前描述的热交换器、其他热交换器或它们的组合中的任一种。
在每种配置中的各个热交换器都可以与各自的热负荷(热力负荷)相关联。热交换器的热负荷可以定义为可以由热交换器从热流股转移至冷流股的热量的量。热量的量可以由热和冷流股两者的条件和热性质计算。从热流股的角度看,热交换器的热负荷是热流股流速、热流股比热和在至热交换器的热流股入口温度与来自热交换器的热流股出口温度之间的温度差的乘积。从冷流股的角度看,热交换器的热负荷是冷流股流速、冷流股比热和在来自热交换器的冷流股出口温度与来自热交换器的冷流股入口温度之间的温度差的乘积。在多种应用中,假定对于这些单元没有至环境的热量损失,特别地,在这些单元良好绝热的情况下,可以认为这两个量相等。可以以瓦(W)、兆瓦(MW)、百万英热单位/小时(Btu/h)或百万千卡/小时(Kcal/h)测量热交换器的热负荷。在此处描述的配置中,热交换器的热负荷作为“约X MW”提供,其中“X”表示数字热负荷值。数字热负荷值不是绝对的。即,热交换器的实际热负荷可以大致等于X、大于X或小于X。
其中热交换器被描述为串联的配置可以具有多种实施方式。在一些实施方式中,热交换器可以以一种顺序(例如,按顺序的第一热交换器、第二热交换器和第三热交换器)串联布置,而在其他实施方式中,热交换器可以以不同顺序(例如,按顺序的第三热交换器、第一热交换器和第二热交换器)串联布置。换言之,在一个实施方式中被描述为与第二热交换器串联且在其下游的第一热交换器在第二种不同的实施方式中可以与第二热交换器串联且在其上游。
流动控制系统
在之后描述的配置的每一种中,过程流股(也称作“流股”)在原油精炼设备中的各个装置内以及在原油精炼设备中的装置之间流动。可以使用在整个原油精炼设备实施的一个或多个流动控制系统使过程流股流动。流动控制系统可以包括一个或多个用于泵送过程流股的泵、一个或多个过程流股流过的流动管和一个或多个用于调节流股穿过管的流动的阀门。
在一些实施方式中,流动控制系统可以手动操作。例如,操作人员可以设定各个泵的流速(流率,flow rate)并且设定阀门打开或关闭位置以调节过程流穿过流动控制系统中的管的流动。一旦操作人员已经设定分布在原油精炼设备上的所有流动控制系统的流速和阀门打开或关闭位置,流动控制系统就可以使流股在装置内或在装置之间在恒流条件例如恒定体积速率或其他流动条件下流动。为了改变流动条件,操作人员可以例如通过改变泵流速或者阀门打开或关闭位置来手动地操作流动控制系统。
在一些实施方式中,流动控制系统可以自动操作。例如,流动控制系统可以连接至计算机系统以操作流动控制系统。计算机系统可以包括存储由一个或多个处理器可执行的指令(如流动控制指令和其他指令)的计算机可读介质以进行操作(如流动控制操作)。操作人员可以使用计算机系统来设定分布在原油精炼设备上的所有流动控制系统的流速和阀门打开或关闭位置。在这样的实施方式中,操作人员可以通过经由计算机系统提供输入而手动改变流动条件。另外,在这样的实施方式中,计算机系统可以例如使用在一个或多个装置中实施且连接至计算机系统的反馈系统自动(即,无需手动干预)控制所述流动控制系统中的一个或多个。例如,传感器(如压力传感器、温度传感器或其他传感器)可以连接至过程流股流过的管道。传感器可以监测并提供过程流股的流动条件(如压力、温度或其他流动条件)至计算系统。响应于超过阈值(如阈值压力值、阈值温度值或其他阈值)的流动条件,计算机系统可以自动进行操作。例如,如果管道中的压力或温度分别超过阈值压力值或阈值温度值,则计算机系统可以向泵提供用于降低流速的信号,提供用于打开阀门以释放压力的信号,提供用于关闭过程流股流的信号,或提供其他信号。
本公开内容描述了经由同时的装置内整合和装置的热连接的用于综合中级半转化原油精炼设备和芳烃联合装置的新型能量高效配置和相关具体加工方案。
在一些实施方式中,半转化中级原油精炼设备包括芳烃联合装置。本公开内容描述了用于这样的精炼设备的废热回收和再利用网络。如之后描述的,可以从精炼设备中的一个或多个单元回收废热。这样的精炼厂典型地在加热公用工程中消耗几百兆瓦的能量(例如,约650MW)。实施此处描述的配置不仅可以减少能量消耗,而且可以减少基于能量的温室气体(GHG)排放。特别地,本公开内容描述了在原油精炼设备中实施以使用在原油精炼设备中的芳烃装置中包括的一个或多个芳烃装置子单元中的一个或多个流股加热在原油精炼设备的多个装置中的多个流股的方法。后文参照以下附图来描述用于这样做的过程方案的多种配置。
配置1
图1A-1H举例说明了用于将原油精炼厂中的芳烃联合装置子单元与其他芳烃联合装置子单元和硫回收装置热整合(热集成,thermally integrate)的配置和相关方案细节。在某些方案中,过程流股(例如,来自芳烃装置的一个精炼子单元的流股或其他过程流股)可以用于直接加热另一过程流股(例如,来自芳烃装置的另一精炼子单元的另一流股或其他过程流股)。在某些配置中,过程流股之间的热交换可以使用中间缓冲流体,例如,水、油或其他缓冲流体来实施。
配置1-方案A
图1A-1D举例说明了用于热整合原油精炼设备中的不同精炼装置的配置和相关方案细节。在这些配置中描述且在图1A-1D中示出的热整合(thermal integration)可以减少原油精炼设备的能量消耗(例如,加热和冷却公用工程)。例如,约36MW(例如,35.6MW)的能量消耗减少,其可以转换为原油精炼设备中的约6%的能量消耗。如之后描述的,在某些方案中,过程流股(例如,芳烃联合装置二甲苯产物单元流股或其他过程流股)可以用于直接加热另一过程流股(例如,硫回收装置流股或其他过程流股)。
在一些实施方式中,可以使用在单一第二装置中的第二流股直接加热在多个第一装置中的多个第一流股。在一些实施方式中,多个第一装置可以包括硫回收装置和芳烃联合装置苯提取单元(aromatics complex benzene extraction unit),并且多个第一流股可以包括胺再生器塔底产物(amine regenerator bottoms)、苯塔塔底产物(benzenecolumn bottoms)和提余液分割塔塔底产物(raffinate splitter bottoms)流股。第二装置可以包括芳烃联合装置二甲苯产物分离单元(aromatics complex xylene productsseparation unit),并且第二流股可以包括提余液塔塔顶产物流股(raffinate columnoverheads stream)。
图1A示出了原油精炼设备中的芳烃联合装置二甲苯产物分离单元420。提余液塔塔顶产物流股可以作为单一流股在装置中流动并且分裂成多个流股,或者其可以作为多个流股流动到装置中。在一些实施方式中,如图1A中所示,提余液塔顶产物流股分离成三个流股以有利于热回收。第一提余液塔塔顶产物流股在具有可以为约15MW至25MW(例如,21MW)的热负荷的第一热交换器中直接加热胺再生器塔底流股。第二提余液塔塔顶产物流股在具有可以为约1MW至10MW(例如,6MW)的热负荷的第二热交换器中直接加热苯塔塔底流股。第三提余液塔塔顶产物流股在具有可以为约5MW至15MW(例如,8.6MW)的热负荷的第三热交换器中直接加热提余液分割塔塔底流股。以此方式,相对于提余液塔塔顶流股的流动,第一热交换器、第二热交换器和第三热交换器彼此并联地连接(耦接,couple)。对于各个提余液塔塔顶产物流股,热量直接至另一过程流股的转移捕获否则将被排出到环境中的热量。将提余液塔顶产物流股重新合并并且返回到二甲苯产物分离单元420用于进一步加工。
图1B示出了原油精炼设备中的硫回收装置402。经加热的胺再生器塔底流股流动到硫回收装置402。如图1B中所示,用于胺再生器的蒸汽热输入可以是0MW,因为在此配置中公开的备选流动路径(流程,flow path)可以满足用于该塔的操作(运行,operation)的整个热负荷。在一个备选实施方案中,可以减少用于硫回收装置胺再生器的蒸汽热输入,因为在此配置中公开的备选流动路径可以部分地满足用于该塔的操作的热负荷。
图1C示出了原油精炼设备中的苯提取单元418。经加热的苯塔塔底流股流动到苯提取单元418。如图1C中所示,用于苯塔的蒸汽热输入可以是0MW,因为在此配置中公开的备选流动路径可以满足用于该塔的操作的整个热负荷。在一个备选实施方案中,可以减少用于苯塔的蒸汽热输入,因为在此配置中公开的备选流动路径可以部分地满足用于该塔的操作的热负荷。
图1D也示出了原油精炼设备中的苯提取单元418。经加热的提余液分割塔塔底流股然后流动到苯提取单元418。如图1D中所示,用于提余液分割塔的蒸汽热输入可以是0MW,因为在此配置中公开的备选流动路径可以满足用于该塔的操作的整个热负荷。在一个备选实施方案中,可以减少用于提余液分割塔的蒸汽热输入,因为在此配置中公开的备选流动路径可以部分地满足用于该塔的操作的热负荷。
以此方式,芳烃联合装置二甲苯产物分离单元使用回收的废热直接加热硫回收装置和芳烃联合装置苯提取单元两者,节省约36MW的热能。
配置1-方案B
如图1E-1H中所示,在一些实施方式中,可以使用在单一第二装置中的第二流股间接地加热在多个第一装置中的多个第一流股。在一些实施方式中,多个第一装置可以包括硫回收装置和芳烃联合装置苯提取单元,并且第二流股可以包括胺再生器塔底产物、苯塔塔底产物和提余液分割塔塔底产物流股。第二装置可以包括芳烃联合装置二甲苯产物分离单元,并且第二装置流股可以包括提余液塔塔顶产物流股。
所描述且在图1E-1H中示出的热整合可以减少原油精炼设备的能量消耗(例如,加热和冷却公用工程)。例如,约36MW的能量消耗减少可以转换为原油精炼设备中约6%的能量消耗。如之后描述的,过程流股之间的热交换可以使用中间缓冲流体,例如,水、油或其他缓冲流体实施。
间接加热流股可以包括通过缓冲流体,例如,油、水或其他缓冲流体加热流股。来自缓冲流体罐(例如,热水罐)的缓冲流体(例如,高压水)流动到芳烃联合装置二甲苯产物分离单元420,如图1E中所示。缓冲流体可以作为单一流股流入到装置中并且分裂成多个流股,或者其可以作为多个流股流入到装置中。
图1E示出了芳烃联合装置二甲苯产物分离单元420。在一些实施方式中,来自缓冲流体收集罐的缓冲流体流动到芳烃装置二甲苯产物分离单元420。提余液塔塔顶产物流股在具有可以为约30MW至40MW(例如,36MW)的热负荷的第一热交换器中加热缓冲流体。热量从过程流股到缓冲流体中的转移捕获否则将被排出到环境中的热量。将提余液塔塔顶产物流股返回到二甲苯产物分离单元420用于进一步加工。
经加热的缓冲流体流动到经加热的缓冲流体收集集管(collection header)。来自收集集管(或在一些实施方案中,可以将经加热的所收集缓冲流体在使用前保持一段时间的经加热或绝热的缓冲流体罐或储存单元)的经加热的缓冲流体可以流动到硫回收装置402或苯提取单元418。如图1E中所示,经加热的缓冲流体以三个支流分布至硫回收装置402和苯提取单元418两者。
图1F示出了原油精炼设备中的硫回收装置402。第一经加热的缓冲流体流股流动到硫回收装置402。第一经加热的缓冲流体流股在具有可以为约15MW至25MW(例如,21MW)的热负荷的第二热交换器中加热胺再生器塔底流股。相对于经加热的缓冲流体的流动,第二热交换器与第一热交换器串联地连接并且在第一热交换器的下游。如图1F中所示,用于胺再生器的蒸汽热输入可以是0MW,因为在此配置中公开的备选流动路径可以满足用于该塔的操作的整个热负荷。在一个备选实施方案中,可以减少用于胺再生器的蒸汽热输入,因为在此配置中公开的备选流动路径可以部分地满足用于该塔的操作的热负荷。
图1G示出了原油精炼设备中的苯提取单元418。第二经加热的缓冲流体流动到芳烃联合装置苯提取单元418。第二经加热的缓冲流体流股在具有可以为约1MW至10MW(例如,6MW)的热负荷的第三热交换器中加热苯塔塔底流股。相对于经加热的缓冲流体的流动,第三热交换器与第一热交换器串联地连接并且在第一热交换器的下游。如图1G中所示,用于苯塔的蒸汽热输入可以是0MW,因为在此配置中公开的备选流动路径可以满足用于该塔的操作的整个热负荷。在一个备选实施方案中,可以减少用于苯塔的蒸汽热输入,因为在此配置中公开的备选流动路径可以部分地满足用于该塔的操作的热负荷。
图1G示出了原油精炼设备中的苯提取单元418。第三经加热的缓冲流体流动到芳烃联合装置苯提取单元418。第三经加热的缓冲流体流股在具有可以为约5MW至15MW(例如,8.6MW)的热负荷的第四热交换器中加热提余液分流器塔塔底流股。相对于经加热的缓冲流体的流动,第四热交换器与第一热交换器串联地连接并且在第一热交换器的下游。如图1H中所示,用于苯塔的蒸汽热输入可以是0MW,因为在此配置中公开的备选流动路径可以满足用于该塔的操作的整个热负荷。在一个备选实施方案中,可以减少用于苯塔的蒸汽热输入,因为在此配置中公开的备选流动路径可以部分地满足用于该塔的操作的热负荷。
离开第二热交换器、第三热交换器和第四热交换器的经加热的缓冲流体各自流动到收集集管或缓冲液体罐。以此方式,第二热交换器、第三热交换器和第四热交换器相对于经加热的缓冲流体的流动彼此并联地流体连接。
图1E-1H示出了这样的间接来自第一芳烃联合装置子单元的废热的回收和再利用可以导致减少或消除用于加热在硫回收装置和第二芳烃联合装置子单元两者中的流股的热能需求如约36MW。
配置2
图1I-1P举例说明了用于将原油精炼设备中的芳烃装置子单元与其他芳烃联合装置子单元和酸性污水汽提塔装置热整合的配置和相关方案细节。在某些方案中,过程流股(例如,来自芳烃装置的一个精炼子单元的流股或其他过程流股)可以用于直接加热另一过程流股(例如,来自芳烃装置的另一精炼子单元的另一流股或其他过程流股)。在某些配置中,过程流股之间的热交换可以使用中间缓冲流体,例如,水、油或其他缓冲流体实施。
配置2-方案A
如图1I-1L中所示,热整合原油精炼设备中的不同精炼装置。在这些配置中描述且在图1I-1L中示出的热整合可以减少原油精炼设备的能量消耗(例如,加热和冷却公用工程)。例如,约47MW的能量消耗减少可以转换为原油精炼设备中约7%的能量消耗。如之后描述的,在某些方案中,过程流股(例如,芳烃联合装置二甲苯产物单元流股或其他过程流股)可以用于直接加热另一过程流股(例如,酸性污水汽提塔装置流股或其他过程流股)。
在一些实施方式中,可以使用在单一第二装置中的第二流股直接加热在多个第一装置中的多个第一流股。在一些实施方式中,多个第一装置可以包括酸性污水汽提塔装置和芳烃联合装置苯提取单元,并且多个第一流股可以包括酸性污水汽提塔再生器塔底产物、苯塔塔底产物和提余液分流器塔底产物流股。第二装置可以包括芳烃联合装置二甲苯产物分离单元,并且第二流股可以包括提余液塔塔顶产物流股。
图1I示出了原油精炼设备中的芳烃联合装置二甲苯产物分离单元420。提余液塔塔顶产物流股可以作为单一流股在装置中流动并且分离成多个流股,或者其可以作为多个流股流入到装置中。在一些实施方式中,如图1I中所示,提余液塔塔顶流股分成三个流股以有利于热回收。第一提余液塔顶产物流股在具有可以为约25MW至35MW(例如,32MW)的热负荷的第一热交换器中直接加热酸性污水汽提塔塔底流股。第二提余液塔塔顶产物流股在具有可以为约1MW至10MW(例如,6MW)的热负荷的第二热交换器中直接加热苯塔塔底流股。第三提余液塔塔顶产物流股在具有可以为约5MW至15MW(例如,8.6MW)的热负荷的第三热交换器中直接加热提余液分割塔塔底流股。以此方式,相对于提余液塔塔顶产物的流动,第一热交换器、第二热交换器和第三热交换器彼此并联地连接。对于各个提余液塔塔顶产物流股,热量直接至另一过程流股的转移捕获否则将被排出到环境中的热量。将提余液塔顶流股重新合并并且返回到二甲苯产物分离单元420用于进一步加工。
图1J示出了原油精炼设备中的酸性污水汽提塔装置410。经加热的酸性污水汽提塔塔底流股流动到酸性污水汽提塔装置410。如图1J中所示,用于酸性污水汽提塔的蒸汽热输入可以是0MW,因为在此配置中公开的备选流动路径可以满足用于该塔的操作的整个热负荷。在一个备选实施方案中,可以减少用于酸性污水汽提塔的蒸汽热输入,因为在此配置中公开的备选流动路径可以部分地满足用于该塔的操作的热负荷。
图1K示出了原油精炼设备中的苯提取单元418。经加热的苯塔塔底流股流动到苯提取单元418。如图1K中所示,用于苯塔的蒸汽热输入可以是0MW,因为在此配置中公开的备选流动路径可以满足用于该塔的操作的整个热负荷。在一个备选实施方案中,可以减少用于苯塔的蒸汽热输入,因为在此配置中公开的备选流动路径可以部分地满足用于该塔的操作的热负荷。
图1L也示出了原油精炼设备中的苯提取单元418。经加热的提余液分割塔塔底流股流动到苯提取单元418。如图1L中所示,用于提余液分割塔的蒸汽热输入可以是0MW,因为在此配置中公开的备选流动路径可以满足用于该塔的操作的整个热负荷。在一个备选实施方案中,可以减少用于提余液分割塔的蒸汽热输入,因为在此配置中公开的备选流动路径可以部分地满足用于该塔的操作的热负荷。
以此方式,芳烃联合装置二甲苯产物分离单元使用回收的废热直接加热酸性污水汽提塔装置和芳烃联合装置苯提取单元两者,节省约47MW的热能。
配置2-方案B
如图1M-1P中所示,在一些实施方式中,可以使用在单一第二装置中的第二流股间接加热在多个第一装置中的多个第一流股。在一些实施方式中,多个第一装置可以包括酸性污水汽提塔装置和芳烃联合装置苯提取单元,并且多个第一流股包括酸性污水汽提塔再生器塔底产物、苯塔塔底产物和提余液分流器塔底产物流股。第二装置可以包括芳烃联合装置二甲苯产物分离单元,并且第二流股可以包括提余液塔塔顶产物流股。
所描述且在图1M-1P中示出的热整合可以减少原油精炼设备的能量消耗(例如,加热和冷却公用工程)。例如,约47MW,例如46.6MW的能量消耗减少可以转换为原油精炼设备中约7%的能量消耗。如之后描述的,过程流股之间的热交换可以使用中间缓冲流体,例如,水、油或其他缓冲流体实施。
间接加热流股可以包括经由缓冲流体,例如,油、水或其他缓冲流体加热流股。来自缓冲流体罐(例如,热水罐)的缓冲流体(例如,高压水)流动到芳烃联合装置二甲苯产物分离单元420,如图1M中所示。缓冲流体可以作为单一流股流入到装置中并且分裂成多个流股,或者其可以作为多个流股流入到装置中。
图1M示出芳烃联合装置二甲苯产物分离单元420。在一些实施方式中,来自缓冲流体收集罐的缓冲流体流动到芳烃装置二甲苯产物分离单元420。提余液塔塔顶产物流股在具有可以为约40MW至50MW(例如,47MW)的热负荷的第一热交换器中加热缓冲流体。热量从过程流股到缓冲流体中的转移捕获否则将被排出到环境中的热量。将提余液塔塔顶产物流股返回到二甲苯产物分离单元420用于进一步加工。
经加热的缓冲流体流动到经加热的缓冲流体收集集管。来自收集集管(或在一些实施方案中,可以将经加热的所收集缓冲流体在使用前保持一段时间的经加热或绝热的缓冲流体罐或储存单元)的经加热的缓冲流体可以流动到酸性污水汽提塔装置410或苯提取单元418。
在此情形中,离开第一热交换器的经加热的缓冲流体流动到苯提取单元418。图1N示出了原油精炼设备中的芳烃联合装置苯提取单元420。经加热的缓冲流体在具有可以为约1MW至10MW(例如,6MW)的热负荷的第三热交换器中加热苯塔塔底流股。相对于经加热的缓冲流体的流动,第三热交换器与第一热交换器串联地连接并且在第一热交换器的下游。如图1N中所示,用于苯塔的蒸汽热输入可以是0MW,因为在此配置中公开的备选流动路径可以满足用于该塔的操作的整个热负荷。在一个备选实施方案中,可以减少用于苯塔的蒸汽热输入,因为在此配置中公开的备选流动路径可以部分地满足用于该塔的操作的热负荷。
离开第三热交换器的经加热的缓冲流体被分裂成两个经加热的缓冲流体流股。图1O示出了原油精炼设备中的酸性污水汽提塔装置410。第一经加热的缓冲流体流股流动到酸性污水汽提塔装置410。第一经加热的缓冲流体流股在具有可以为约15MW至25MW(例如,21MW)的热负荷的第二热交换器中加热酸性污水汽提塔塔底流股。相对于经加热的缓冲流体的流动,第二热交换器与第一热交换器串联地连接并且在第一热交换器的下游。如图1O中所示,用于酸性污水汽提塔的蒸汽热输入可以是0MW,因为在此配置中公开的备选流动路径可以满足用于该塔的操作的整个热负荷。在一个备选实施方案中,可以减少用于酸性污水汽提塔的蒸汽热输入,因为在此配置中公开的备选流动路径可以部分地满足用于该塔的操作的热负荷。
图1P也示出了原油精炼设备中的芳烃联合装置苯提取单元420。第二经加热的缓冲流体流动到芳烃联合装置苯提取单元418。第二经加热的缓冲流体流股在具有可以为约5MW至15MW(例如,8.6MW)的热负荷的第四热交换器中加热提余液分割塔塔底流股。相对于经加热的缓冲流体的流动,第四热交换器与第一热交换器串联地连接并且在第一热交换器的下游。如图1P中所示,用于提余液分流器的蒸汽热输入可以是0MW,因为在此配置中公开的备选流动路径可以满足用于该塔的操作的整个热负荷。在一个备选实施方案中,可以减少用于提余液分流器的蒸汽热输入,因为在此配置中公开的备选流动路径可以部分地满足用于该塔的操作的热负荷。
离开第二热交换器和第四热交换器的经加热的缓冲流体支流各自流动到收集集管或缓冲液体罐。以此方式,第二热交换器和第四热交换器相对于经加热的缓冲流体的流动彼此并联地流体连接。
在一些实施方式中,合并的经加热的缓冲流体可以按顺序流过不同的装置。例如,合并的经加热的缓冲流体首先流过苯提取单元和硫回收装置的组合,然后合并以流过苯提取单元。以该顺序离开最后的一个或多个热交换器的经加热的缓冲流体然后可以流动到缓冲流体罐。来自缓冲流体罐的缓冲流体然后可以流动到不同的装置以重新开始废热回收和再利用循环。
图1M-1P示出了这样的间接来自第一芳烃联合装置子单元的废热的回收和再利用可以导致减少或消除用于加热酸性污水汽提塔装置和第二芳烃联合装置子单元两者中的流股的热能需求如约47MW。
配置3
图1QA-1RB举例说明了用于将原油精炼厂中的精炼芳烃联合装置子单元与其他芳烃联合装置子单元和胺再生装置热整合的配置和相关方案细节。在某些方案中,过程流股(例如,酸性气体回收装置流股或其他过程流股)可以用于直接加热另一过程流股(例如,芳烃装置流股或其他过程流股)。在某些配置中,过程流股之间的热交换可以使用中间缓冲流体,例如,水、油或其他缓冲流体实施。
配置3-方案A
图1Q(由图1QA和1QB组成)示出了用于热整合原油精炼设备中的不同精炼装置的配置和相关方案细节。在这些配置中描述且在图1Q中示出的热整合可以减少原油精炼设备的能量消耗(例如,加热和冷却公用工程)。例如,约48MW(例如,47.8MW)的能量消耗减少,其可以转换为原油精炼设备中至少约7%的能量消耗。如之后描述的,在某些方案中,过程流股(例如,芳烃联合装置二甲苯产物单元流股或其他过程流股)可以用于直接加热另一过程流股(例如,酸性气体再生器或其他过程流股)。
在一些实施方式中,可以使用在单一第二装置中的第二流股直接加热在第一装置中的第一流股。在一些实施方式中,第一装置可以包括胺再生装置,并且第一流股是酸性气体再生器塔底流股。第二装置可以包括芳烃联合装置二甲苯产物分离单元,并且第二流股可以包括提余液塔塔顶产物流股。
图1QA示出了原油精炼设备中的芳烃联合装置二甲苯产物分离单元420。提余液塔顶流股在具有可以为约45MW至55MW(例如,47.8MW)的热负荷的第一热交换器中直接加热酸性气体再生器塔底流股。热量直接至另一过程流股的转移捕获否则将被排出到环境中的热量。将提余液塔顶流股返回到二甲苯产物分离单元420用于进一步加工。
图1QB示出了原油精炼设备中的胺再生装置406。经加热的酸性气体再生器塔底流股流动到胺再生装置406。如图1QB中所示,用于酸性气体再生器的蒸汽热输入可以是0MW,因为在此配置中公开的备选流动路径可以满足用于该塔的操作的整个热负荷。在一个备选实施方案中,可以减少用于酸性气体再生器的蒸汽热输入,因为在此配置中公开的备选流动路径可以部分地满足用于该塔的操作的热负荷。
以此方式,芳烃联合装置二甲苯产物分离单元使用回收的废热直接加热胺再生装置,节省约48MW的热能。
配置3-方案B
如图1R(由图1RA和1RB组成)中所示,在一些实施方式中,可以使用在单一第二装置中的第二流股间接加热在单一第一装置中的第一流股。在一些实施方式中,第一装置可以包括胺再生装置,并且第一流股是酸性气体再生器塔底流股。第二装置可以包括芳烃联合装置二甲苯产物分离单元,并且第二流股可以包括提余液塔塔顶产物流股。
在这些配置中描述且在图1R中示出的热整合可以减少原油精炼设备的能量消耗(例如,加热和冷却公用工程)。例如,约48MW(例如,47.8MW)的能量消耗减少可以转换为原油精炼设备中至少约7%的能量消耗。如之后描述的,过程流股之间的热交换可以使用中间缓冲流体,例如,水、油或其他缓冲流体实施。
间接加热流股可以包括经由缓冲流体,例如,油、水或其他缓冲流体加热流股。来自缓冲流体罐(例如,热水罐)的缓冲流体(例如,高压水)流动到芳烃联合装置二甲苯产物分离单元420,如图1R中所示。缓冲流体可以作为单一流股流入到装置中并且分裂成多个流股,或者其可以作为多个流股流入到装置中。
图1RA示出了芳烃联合装置二甲苯产物分离单元420。来自缓冲流体收集罐(如图1RB中所示)的缓冲流体流动到芳烃装置二甲苯产物分离单元420(如图1RA中所示)。提余液塔塔顶产物流股在具有可以为约45MW至55MW(例如,47.8MW)的热负荷的第一热交换器中加热缓冲流体。热量从过程流股到缓冲流体中的转移捕获否则将被排出到环境中的热量。将提余液塔塔顶产物流股返回到二甲苯产物分离单元420用于进一步加工。
经加热的缓冲流体流动到经加热的缓冲流体收集集管。离开第一热交换器的来自收集集管(或在一些实施方案中,可以将经加热的所收集缓冲流体在使用前保持一段时间的经加热或绝热的缓冲流体罐或储存单元)的经加热的缓冲流体流动到胺再生装置406。
图1RB示出了原油精炼设备中的胺再生装置406。流动到胺再生装置406的经加热的缓冲流体在具有可以为约45MW至55MW(例如,47.8MW)的热负荷的第二热交换器中加热酸性气体再生器塔底流股。相对于缓冲流体的流动,第一热交换器和第二热交换器与第一热交换器连接并且在第一热交换器的下游。如图1RB中所示,用于酸性气体再生器的蒸汽热输入可以是0MW,因为在此配置中公开的备选流动路径可以满足用于该塔的操作的整个热负荷。在一个备选实施方案中,可以减少用于酸性气体再生器的蒸汽热输入,因为在此配置中公开的备选流动路径可以部分地满足用于该塔的操作的热负荷。
离开第二热交换器的缓冲流体流回到缓冲流体罐或收集集管,在那里缓冲流体可以再利用并重复加热循环。
图1RA-1RB示出了这样的间接来自芳烃联合装置子单元的废热的回收和再利用可以导致减少或消除用于加热胺再生装置中的流股的热能需求如约48MW。
总之,本公开内容描述了用于综合精炼-石化设备中的热能消耗减少的动力装置内废热回收方案和装置热连接的配置和相关加工方案,其整合用于草根中级原油半转化精炼厂以提高来自低级废热源的特定部分的能量效率。本公开内容还描述了用于综合精炼-石化设备中的热能消耗减少的特定装置内废热回收方案和装置热连接的配置和相关加工方案,其整合用于综合中级原油半转化精炼厂和芳烃联合装置以提高来自低级废物源的特定部分的能量效率。
对于所有工业,工业生产的经济性、全球能量供应的局限性和环境保护的现实都是关注点。据信,世界环境已经受部分由GHG到大气中的释放造成的全球变暖负面影响。此处描述的主题的实施方式可以缓解这些问题中的一些,并且在一些情况下,防止在减少它们的GHG排放方面有困难的某些精炼厂不得不关闭。通过实施此处描述的技术,可以通过来自低级废热源的特定部分的回收和再利用使精炼厂中的特定装置或精炼厂作为整体更高效并且污染性更低。
因此,已经描述了所述主题的特定实施方式。其他实施方式在所附权利要求的范围内。

Claims (21)

1.一种在原油精炼设备中实施的方法,所述方法包括:
在包括多个炼油装置的原油精炼设备中,各个炼油装置被配置为进行至少一个炼油过程,各个炼油装置包括多个互相连接的炼油子系统,其中处于各自温度的多个流股在所述多个炼油子系统之间流动:
使多个流股流动到一个或多个热交换器,各个流股来自在所述多个炼油装置的芳烃装置中包括的多个芳烃装置子单元中的子单元;
使来自所述多个炼油装置的第一炼油装置的流股流动到所述一个或多个热交换器,所述第一炼油装置与所述芳烃装置不同,其中所述一个或多个热交换器将热量从所述多个流股中的一个或多个转移至来自所述第一炼油装置的流股;和
在所述第一炼油装置的炼油过程中利用通过所述多个流股中的一个或多个加热的来自所述第一炼油装置的流股。
2.根据权利要求1所述的方法,其中所述一个或多个芳烃装置子单元包括芳烃联合装置二甲苯产物分离单元和芳烃联合装置苯提取装置,并且其中所述第一炼油装置包括硫回收装置。
3.根据权利要求2所述的方法,其中加热来自所述第一炼油装置的流股包括使用来自所述多个芳烃装置子单元的多个流股直接加热来自所述第一炼油装置的流股。
4.根据权利要求3所述的方法,其中所述多个流股中的流股包括在所述芳烃联合装置二甲苯产物分离单元中的提余液塔顶流股,并且其中直接加热来自所述第一炼油装置的流股包括:
在第一热交换器中,使用所述提余液塔顶流股的第一支流加热在所述多个炼油装置的硫回收装置中的胺再生器塔底产物流股;
在第二热交换器中,使用所述提余液塔顶流股的第二支流加热在所述多个芳烃装置子单元的芳烃联合装置苯提取装置中的苯塔塔底产物流股;
在第三热交换器中,使用所述提余液塔顶流股的第三支流加热在所述芳烃联合装置苯提取装置中的提余液分割塔塔底产物流股;
使经加热的所述胺再生器塔底产物流股流动到所述硫回收装置;和
使经加热的所述苯塔塔底产物流股和经加热的所述提余液分割塔塔底产物流股流动到所述芳烃装置。
5.根据权利要求4所述的方法,其中所述第一热交换器、所述第二热交换器和所述第三热交换器彼此并联地流体连接。
6.根据权利要求3所述的方法,其中所述多个芳烃装置子单元包括芳烃联合装置二甲苯产物分离单元和芳烃联合装置苯提取装置,其中所述多个流股中的流股包括在所述芳烃联合装置二甲苯产物分离单元中的提余液塔顶流股,其中所述第一炼油装置包括所述原油设备中的酸性污水汽提塔装置,并且其中直接加热所述流股包括:
在第一热交换器中,使用所述提余液塔顶流股的第一支流加热在所述酸性污水汽提塔装置中的酸性污水汽提塔塔底流股;
在第二热交换器中,使用所述提余液塔顶流股的第二支流加热在所述芳烃联合装置苯提取装置中的苯塔塔底产物流股;和
在第三热交换器中,使用所述提余液塔顶流股的第三支流加热在所述芳烃联合装置苯提取装置中的提余液分割塔塔底产物流股;和
使经加热的所述酸性污水汽提塔塔底流股、经加热的所述苯塔塔底产物流股和经加热的所述提余液分割塔塔底产物流股流动到所述芳烃装置。
7.根据权利要求6所述的方法,其中所述第一热交换器、所述第二热交换器和所述第三热交换器彼此并联地流体连接。
8.根据权利要求1所述的方法,其中在所述第一炼油装置中的流股包括在胺再生装置分离段中的酸性气体再生器塔底流股,其中所述多个芳烃装置子单元的多个流股包括在芳烃联合装置二甲苯产物分离单元中的提余液塔顶流股,并且其中所述方法还包括在热交换器中使用所述提余液塔塔顶流股直接加热所述胺再生装置分离段酸性气体再生器塔底流股。
9.根据权利要求1所述的方法,其中在所述第一炼油装置中的流股包括在所述胺再生装置分离段中的胺再生装置分离段酸性气体再生器塔底流股,其中所述多个芳烃装置子单元的多个流股包括在所述芳烃联合装置二甲苯产物分离单元中的提余液塔顶流股,并且其中所述方法还包括:
在第一热交换器中使用所述提余液塔塔顶流股加热缓冲流体;和
在第二热交换器中使用经加热的所述缓冲流体加热所述胺再生装置分离段酸性气体再生器塔底流股。
10.根据权利要求2所述的方法,其中加热来自所述第一炼油装置的流股包括使用来自所述多个芳烃装置子单元的多个流股经由缓冲流体间接加热来自所述第一炼油装置的流股。
11.根据权利要求10所述的方法,其中所述缓冲流体包括油或水中的至少一种。
12.根据权利要求10所述的方法,其中使用来自所述多个芳烃装置子单元的多个流股间接加热来自所述第一炼油装置的流股包括:
在第一热交换器中,使用在所述多个芳烃装置子单元的所述芳烃联合装置二甲苯产物分离单元中的提余液塔顶流股加热所述缓冲流体。
13.根据权利要求12所述的方法,所述方法还包括:
使经加热的所述缓冲流体流动到收集集管;
将经加热的所述缓冲流体分裂成经加热的所述缓冲流体的第一支流、第二支流和第三支流;
使经加热的所述缓冲流体的第一支流流动到硫回收装置;
在第二热交换器中,使用经加热的所述缓冲流体的第一支流加热在所述硫回收装置中的胺再生器塔底产物流股;
使经加热的所述缓冲流体的第二支流流动到芳烃联合装置苯提取单元;和
在第三热交换器中,使用经加热的所述缓冲流体的第二支流加热在所述芳烃联合装置苯提取单元中的苯塔塔底产物流股。
14.根据权利要求13所述的方法,其中所述第一热交换器和所述第二热交换器彼此串联地流体连接,其中所述第一热交换器和所述第三热交换器彼此串联地流体连接,其中所述第二热交换器和所述第三热交换器彼此并联地流体连接,其中所述第一热交换器和所述第四热交换器彼此串联地流体连接,其中所述第二热交换器与所述第三热交换器的组合和所述第四换热器彼此并联地流体连接。
15.根据权利要求12所述的方法,所述方法还包括:
使经加热的所述缓冲流体流动到芳烃联合装置苯提取单元;和
在第三热交换器中,使用经加热的所述缓冲流体加热在所述芳烃联合装置苯提取单元中的苯塔塔底产物流股。
16.根据权利要求15所述的方法,所述方法还包括:
将离开所述第三热交换器的经加热的所述缓冲流体分裂成经加热的所述缓冲流体的第一支流和第二支流;
使经加热的所述缓冲流体的第一支流流动到酸性污水汽提塔装置;
在第二热交换器中,使用经加热的所述缓冲流体的第一支流加热在所述酸性污水汽提塔装置中的酸性污水汽提塔塔底流股;
使经加热的所述缓冲流体的第二支流流动到所述芳烃联合装置苯提取单元;和
在第四热交换器中,使用经加热的所述缓冲流体的第二支流加热在所述芳烃联合装置苯提取单元中的提余液分割塔塔底产物流股。
17.根据权利要求15所述的方法,其中所述第一热交换器和所述第三热交换器彼此串联地流体连接,其中所述第二热交换器和所述第一交换器彼此串联地流体连接,其中所述第四热交换器和所述第三热交换器彼此串联地流体连接,其中所述第二热交换器和所述第四热交换器彼此并联地流体连接。
18.根据权利要求13所述的方法,所述方法还包括:
使经加热的所述缓冲流体流动到胺再生装置分离段;和
在第二热交换器中,使用经加热的所述缓冲流体加热在所述胺再生装置分离段中的酸性气体再生器塔底流股。
19.根据权利要求18所述的方法,其中所述第一热交换器和所述第二热交换器彼此串联地流体连接。
20.一种在原油精炼设备中实施的系统,所述系统被配置为实施根据权利要求1所述的方法。
21.根据权利要求20所述的系统,其中所述系统包括流动控制系统。
CN201680056303.2A 2015-08-24 2016-08-22 工业设备中废弃能量的回收和再利用 Active CN108138593B (zh)

Applications Claiming Priority (9)

Application Number Priority Date Filing Date Title
US201562209147P 2015-08-24 2015-08-24
US201562209188P 2015-08-24 2015-08-24
US201562209223P 2015-08-24 2015-08-24
US201562209217P 2015-08-24 2015-08-24
US62/209,147 2015-08-24
US62/209,217 2015-08-24
US62/209,223 2015-08-24
US62/209,188 2015-08-24
PCT/US2016/048067 WO2017035084A1 (en) 2015-08-24 2016-08-22 Recovery and re-use of waste energy in industrial facilities

Publications (2)

Publication Number Publication Date
CN108138593A true CN108138593A (zh) 2018-06-08
CN108138593B CN108138593B (zh) 2020-12-22

Family

ID=56843063

Family Applications (13)

Application Number Title Priority Date Filing Date
CN201680060979.9A Active CN108138056B (zh) 2015-08-24 2016-08-22 工业设备中废弃能量的回收和再利用
CN201680056304.7A Active CN108026789B (zh) 2015-08-24 2016-08-22 工业设备中废弃能量的回收和再利用
CN201680061004.8A Active CN108138591B (zh) 2015-08-24 2016-08-22 工业设备中废弃能量的回收和再利用
CN201680059774.9A Active CN108138055B (zh) 2015-08-24 2016-08-22 工业设备中废弃能量的回收和再利用
CN201680056303.2A Active CN108138593B (zh) 2015-08-24 2016-08-22 工业设备中废弃能量的回收和再利用
CN202011466449.9A Pending CN112745954A (zh) 2015-08-24 2016-08-22 工业设备中废弃能量的回收和再利用
CN201680060985.4A Active CN108138590B (zh) 2015-08-24 2016-08-22 工业设备中废弃能量的回收和再利用
CN201680060986.9A Active CN108138594B (zh) 2015-08-24 2016-08-22 工业设备中废弃能量的回收和再利用
CN201680061070.5A Active CN108138592B (zh) 2015-08-24 2016-08-22 工业设备中废弃能量的回收和再利用
CN201680061739.0A Active CN108350762B (zh) 2015-08-24 2016-08-23 由综合原油精炼、芳烃和公用工程设备中的废热发电
CN201680061069.2A Active CN108138605B (zh) 2015-08-24 2016-08-23 由综合加氢裂化和柴油加氢处理设备中的废热发电
CN201680061260.7A Active CN108138607B (zh) 2015-08-24 2016-08-23 由综合原油精炼和芳烃设备中的废热发电
CN201680061248.6A Active CN108138606B (zh) 2015-08-24 2016-08-23 使用独立的三个有机物兰金循环由综合原油精炼和芳烃设备中的废热发电

Family Applications Before (4)

Application Number Title Priority Date Filing Date
CN201680060979.9A Active CN108138056B (zh) 2015-08-24 2016-08-22 工业设备中废弃能量的回收和再利用
CN201680056304.7A Active CN108026789B (zh) 2015-08-24 2016-08-22 工业设备中废弃能量的回收和再利用
CN201680061004.8A Active CN108138591B (zh) 2015-08-24 2016-08-22 工业设备中废弃能量的回收和再利用
CN201680059774.9A Active CN108138055B (zh) 2015-08-24 2016-08-22 工业设备中废弃能量的回收和再利用

Family Applications After (8)

Application Number Title Priority Date Filing Date
CN202011466449.9A Pending CN112745954A (zh) 2015-08-24 2016-08-22 工业设备中废弃能量的回收和再利用
CN201680060985.4A Active CN108138590B (zh) 2015-08-24 2016-08-22 工业设备中废弃能量的回收和再利用
CN201680060986.9A Active CN108138594B (zh) 2015-08-24 2016-08-22 工业设备中废弃能量的回收和再利用
CN201680061070.5A Active CN108138592B (zh) 2015-08-24 2016-08-22 工业设备中废弃能量的回收和再利用
CN201680061739.0A Active CN108350762B (zh) 2015-08-24 2016-08-23 由综合原油精炼、芳烃和公用工程设备中的废热发电
CN201680061069.2A Active CN108138605B (zh) 2015-08-24 2016-08-23 由综合加氢裂化和柴油加氢处理设备中的废热发电
CN201680061260.7A Active CN108138607B (zh) 2015-08-24 2016-08-23 由综合原油精炼和芳烃设备中的废热发电
CN201680061248.6A Active CN108138606B (zh) 2015-08-24 2016-08-23 使用独立的三个有机物兰金循环由综合原油精炼和芳烃设备中的废热发电

Country Status (6)

Country Link
US (21) US9803509B2 (zh)
EP (14) EP3341579B1 (zh)
JP (12) JP2018535279A (zh)
CN (13) CN108138056B (zh)
SA (5) SA518390985B1 (zh)
WO (12) WO2017035081A1 (zh)

Families Citing this family (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9803513B2 (en) 2015-08-24 2017-10-31 Saudi Arabian Oil Company Power generation from waste heat in integrated aromatics, crude distillation, and naphtha block facilities
US9803511B2 (en) 2015-08-24 2017-10-31 Saudi Arabian Oil Company Power generation using independent dual organic rankine cycles from waste heat systems in diesel hydrotreating-hydrocracking and atmospheric distillation-naphtha hydrotreating-aromatics facilities
US9803507B2 (en) * 2015-08-24 2017-10-31 Saudi Arabian Oil Company Power generation using independent dual organic Rankine cycles from waste heat systems in diesel hydrotreating-hydrocracking and continuous-catalytic-cracking-aromatics facilities
US9803509B2 (en) 2015-08-24 2017-10-31 Saudi Arabian Oil Company Power generation from waste heat in integrated crude oil refining and aromatics facilities
US9803508B2 (en) 2015-08-24 2017-10-31 Saudi Arabian Oil Company Power generation from waste heat in integrated crude oil diesel hydrotreating and aromatics facilities
US9803505B2 (en) 2015-08-24 2017-10-31 Saudi Arabian Oil Company Power generation from waste heat in integrated aromatics and naphtha block facilities
US9803506B2 (en) 2015-08-24 2017-10-31 Saudi Arabian Oil Company Power generation from waste heat in integrated crude oil hydrocracking and aromatics facilities
US10443453B2 (en) 2017-08-08 2019-10-15 Saudi Araabian Oil Company Natural gas liquid fractionation plant cooling capacity and potable water generation using integrated vapor compression-ejector cycle and modified multi-effect distillation system
US10684079B2 (en) 2017-08-08 2020-06-16 Saudi Arabian Oil Company Natural gas liquid fractionation plant waste heat conversion to simultaneous power and cooling capacities using modified goswami system
US10494958B2 (en) 2017-08-08 2019-12-03 Saudi Arabian Oil Company Natural gas liquid fractionation plant waste heat conversion to simultaneous power and cooling capacities using integrated organic-based compressor-ejector-expander triple cycles system
US10690407B2 (en) 2017-08-08 2020-06-23 Saudi Arabian Oil Company Natural gas liquid fractionation plant waste heat conversion to simultaneous power and potable water using organic Rankine cycle and modified multi-effect-distillation systems
US10663234B2 (en) 2017-08-08 2020-05-26 Saudi Arabian Oil Company Natural gas liquid fractionation plant waste heat conversion to simultaneous cooling capacity and potable water using kalina cycle and modified multi-effect distillation system
US10480355B2 (en) 2017-08-08 2019-11-19 Saudi Arabian Oil Company Natural gas liquid fractionation plant waste heat conversion to simultaneous power, cooling and potable water using modified goswami cycle and new modified multi-effect-distillation system
US10480354B2 (en) * 2017-08-08 2019-11-19 Saudi Arabian Oil Company Natural gas liquid fractionation plant waste heat conversion to simultaneous power and potable water using Kalina cycle and modified multi-effect-distillation system
US10626756B2 (en) 2017-08-08 2020-04-21 Saudi Arabian Oil Company Natural gas liquid fractionation plant waste heat conversion to power using dual turbines organic Rankine cycle
US10662824B2 (en) 2017-08-08 2020-05-26 Saudi Arabian Oil Company Natural gas liquid fractionation plant waste heat conversion to power using organic Rankine cycle
US10436077B2 (en) 2017-08-08 2019-10-08 Saudi Arabian Oil Company Natural gas liquid fractionation plant waste heat conversion to potable water using modified multi-effect distillation system
US10487699B2 (en) 2017-08-08 2019-11-26 Saudi Arabian Oil Company Natural gas liquid fractionation plant waste heat conversion to cooling capacity using kalina cycle
US10677104B2 (en) 2017-08-08 2020-06-09 Saudi Arabian Oil Company Natural gas liquid fractionation plant waste heat conversion to simultaneous power, cooling and potable water using integrated mono-refrigerant triple cycle and modified multi-effect-distillation system
US11131218B2 (en) 2018-03-16 2021-09-28 Uop Llc Processes for adjusting at least one process condition of a chemical processing unit with a turbine
US10690010B2 (en) 2018-03-16 2020-06-23 Uop Llc Steam reboiler with turbine
US10794225B2 (en) 2018-03-16 2020-10-06 Uop Llc Turbine with supersonic separation
US11507031B2 (en) 2018-03-16 2022-11-22 Uop Llc Recovered electric power measuring system and method for collecting data from a recovered electric power measuring system
US10829698B2 (en) 2018-03-16 2020-11-10 Uop Llc Power recovery from quench and dilution vapor streams
US10753235B2 (en) 2018-03-16 2020-08-25 Uop Llc Use of recovered power in a process
US10745631B2 (en) 2018-03-16 2020-08-18 Uop Llc Hydroprocessing unit with power recovery turbines
US10508568B2 (en) 2018-03-16 2019-12-17 Uop Llc Process improvement through the addition of power recovery turbine equipment in existing processes
US11194301B2 (en) 2018-03-16 2021-12-07 Uop Llc System for power recovery from quench and dilution vapor streams
US10871085B2 (en) 2018-03-16 2020-12-22 Uop Llc Energy-recovery turbines for gas streams
US10811884B2 (en) 2018-03-16 2020-10-20 Uop Llc Consolidation and use of power recovered from a turbine in a process unit
CN108707473B (zh) * 2018-04-25 2020-05-19 清华大学 一种基于结构导向集总的加氢裂化过程建模方法
US10920624B2 (en) 2018-06-27 2021-02-16 Uop Llc Energy-recovery turbines for gas streams
CN108854456B (zh) * 2018-07-17 2021-07-06 九三粮油工业集团有限公司 一种解析塔热能回收利用系统和利用方法
KR102128663B1 (ko) * 2018-11-28 2020-06-30 주식회사 포스코아이씨티 연료전지 배출가스를 이용한 열전달매체 순환장치 및 이를 포함하는 발전 시스템
CN109847547A (zh) * 2019-04-08 2019-06-07 重庆中科检测技术服务有限公司 一种重金属螯合剂及其制备方法
CN109915235A (zh) * 2019-04-08 2019-06-21 上海蓝魂环保科技有限公司 一种万箱轮船舶尾气脱硫集气系统和集气方法
CN109943377B (zh) * 2019-04-17 2021-08-06 哈尔滨工业大学 一种以亚硝酸盐为电子受体的沼气净化同步强化污水脱氮的方法
CN110185506B (zh) * 2019-05-27 2022-02-08 西南石油大学 一种天然气调压站压力能综合利用系统
CN110255500A (zh) * 2019-07-25 2019-09-20 海南汉地阳光石油化工有限公司 一种循环氢脱氨提纯系统及方法
CN110566302A (zh) * 2019-09-25 2019-12-13 昆山三一环保科技有限公司 一种低温余热回收系统的装置
CN110665244B (zh) * 2019-10-09 2021-10-22 万华化学集团股份有限公司 气相反应装置和二环己胺的制备方法
US20210130705A1 (en) * 2019-10-31 2021-05-06 Saudi Arabian Oil Company Enhanced hydroprocessing process with ammonia and carbon dioxide recovery
US11480101B1 (en) * 2020-01-17 2022-10-25 William Honjas Waste heat gathering and transfer system and method
US11891300B2 (en) * 2021-11-01 2024-02-06 Chevron U.S.A. Inc. Clean liquid fuels hydrogen carrier processes

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6733636B1 (en) * 1999-05-07 2004-05-11 Ionics, Inc. Water treatment method for heavy oil production
CN101389736A (zh) * 2006-02-21 2009-03-18 三菱重工业株式会社 石油化学系统装置
CN101424453A (zh) * 2008-12-05 2009-05-06 上海九元石油化工有限公司 炼油厂高温热联合系统及其应用
US20090266540A1 (en) * 2008-04-29 2009-10-29 American Air Liquide, Inc. Zero Emission Liquid Fuel Production By Oxygen Injection
WO2014127913A2 (en) * 2013-02-21 2014-08-28 Faramarz Bairamijamal High pressure process for co2 capture, utilization for heat recovery, power cycle, super-efficient hydrogen based fossil power generation and conversion of liquid co2 with water to syngas and oxygen
CN104093818A (zh) * 2012-01-27 2014-10-08 沙特阿拉伯石油公司 用于直接加工原油的整合的溶剂脱沥青、加氢处理以及水蒸气热解方法
CN104560082A (zh) * 2014-12-30 2015-04-29 山东益大新材料有限公司 一种针状焦用精芳烃油的改进方法

Family Cites Families (146)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU295317A1 (ru) 1967-11-28 1977-10-25 Специальное Конструкторское Бюро По Автоматике В Нефтепереработке И Нефтехимии Способ автоматического управлени блоком печь-реактор установки гидрокренинга
US3995428A (en) 1975-04-24 1976-12-07 Roberts Edward S Waste heat recovery system
US4024908A (en) 1976-01-29 1977-05-24 Milton Meckler Solar powered heat reclamation air conditioning system
US4109469A (en) 1977-02-18 1978-08-29 Uop Inc. Power generation from refinery waste heat streams
US4291232A (en) 1979-07-09 1981-09-22 Cardone Joseph T Liquid powered, closed loop power generating system and process for using same
US4476680A (en) 1979-08-14 1984-10-16 Sundstrand Corporation Pressure override control
US4512155A (en) 1979-12-03 1985-04-23 Itzhak Sheinbaum Flowing geothermal wells and heat recovery systems
US4428201A (en) 1982-07-01 1984-01-31 Uop Inc. Power generation with fractionator overhead vapor stream
US4471619A (en) 1982-08-23 1984-09-18 Uop Inc. Fractionation process with power generation by depressurizing the overhead vapor stream
US4548043A (en) * 1984-10-26 1985-10-22 Kalina Alexander Ifaevich Method of generating energy
US4743356A (en) 1986-09-24 1988-05-10 Amoco Corporation Increasing resid hydrotreating conversion
FR2615523B1 (fr) 1987-05-22 1990-06-01 Electricite De France Procede d'hydrocraquage d'une charge d'hydrocarbures et installation d'hydrocraquage pour la mise en oeuvre de ce procede
US4792390A (en) 1987-09-21 1988-12-20 Uop Inc. Combination process for the conversion of a distillate hydrocarbon to produce middle distillate product
US5007240A (en) 1987-12-18 1991-04-16 Babcock-Hitachi Kabushiki Kaisha Hybrid Rankine cycle system
US5240476A (en) 1988-11-03 1993-08-31 Air Products And Chemicals, Inc. Process for sulfur removal and recovery from a power generation plant using physical solvent
IL88571A (en) 1988-12-02 1998-06-15 Ormat Turbines 1965 Ltd Method of and apparatus for producing power using steam
US4962238A (en) 1989-10-04 1990-10-09 Exxon Research And Engineering Company Removal of glycols from a polyalkylene glycol dialkyl ether solution
US5005360A (en) 1990-02-22 1991-04-09 Mcmurtry J A Solar energy system for generating electricity
US5164070A (en) 1991-03-06 1992-11-17 Uop Hydrocracking product recovery process
DK171201B1 (da) 1994-02-17 1996-07-22 Soeren Qvist Vestesen Fremgangsmåde og anlæg til brug i stand-alone anlæg, fortrinsvis et vind/diesel-anlæg
US5667051A (en) 1995-03-01 1997-09-16 Sundstrand Corporation Hydraulic control and lubrication system with compressed air pre-heat circuit for rapid response at low ambient temperatures
US5685152A (en) 1995-04-19 1997-11-11 Sterling; Jeffrey S. Apparatus and method for converting thermal energy to mechanical energy
US5562190A (en) 1995-06-07 1996-10-08 Sundstrand Corporation Hydraulic clutch control system with fluid coupling pre-heat circuit for rapid response at low ambient temperatures
US5804060A (en) 1995-12-13 1998-09-08 Ormat Process Technologies, Inc. Method of and apparatus for producing power in solvent deasphalting units
FR2744071B1 (fr) 1996-01-31 1998-04-10 Valeo Climatisation Dispositif de chauffage pour vehicule utilisant le circuit de fluide refrigerant
JP3824364B2 (ja) * 1996-12-17 2006-09-20 日揮株式会社 レイアウト図作成装置
IT1299034B1 (it) 1998-04-07 2000-02-07 Agip Petroli Procedimento per determinare il tenore in azoto dell'effluente del reattore di pretrattamento in un impianto di cracking catalitico
JP4495791B2 (ja) * 1998-07-03 2010-07-07 日揮株式会社 コンバインドサイクル発電システム
AU3914600A (en) 1999-03-24 2000-10-09 University Of Wyoming System for recovery of sulfur and hydrogen from sour gas
US6677496B2 (en) * 2001-08-29 2004-01-13 David Netzer Process for the coproduction of benzene from refinery sources and ethylene by steam cracking
US6740226B2 (en) * 2002-01-16 2004-05-25 Saudi Arabian Oil Company Process for increasing hydrogen partial pressure in hydroprocessing processes
JP4133176B2 (ja) * 2002-09-30 2008-08-13 出光興産株式会社 原油常圧蒸留装置における熱回収方法
US6993714B2 (en) 2002-10-03 2006-01-31 Microsoft Corporation Grouping and nesting hierarchical namespaces
US6880344B2 (en) * 2002-11-13 2005-04-19 Utc Power, Llc Combined rankine and vapor compression cycles
US7109389B2 (en) 2003-03-19 2006-09-19 China Petroleum & Chemical Corporation Process for the disproportionation and transalkylation of toluene and heavy aromatics
US7305829B2 (en) 2003-05-09 2007-12-11 Recurrent Engineering, Llc Method and apparatus for acquiring heat from multiple heat sources
US7428816B2 (en) 2004-07-16 2008-09-30 Honeywell International Inc. Working fluids for thermal energy conversion of waste heat from fuel cells using Rankine cycle systems
US7340899B1 (en) 2004-10-26 2008-03-11 Solar Energy Production Corporation Solar power generation system
CA2600155C (en) 2005-03-30 2010-04-27 Fluor Technologies Corporation Integrated of lng regasification with refinery and power generation
CA2621185A1 (en) * 2005-09-08 2007-03-15 Millennium Synfuels, Llc. Hybrid energy system
JP2007083137A (ja) * 2005-09-21 2007-04-05 Sumitomo Chemical Co Ltd 廃熱の利用方法
CN100366709C (zh) 2006-04-17 2008-02-06 中国石油化工集团公司 一种重油加工的组合工艺
RU2455381C2 (ru) * 2006-04-21 2012-07-10 Шелл Интернэшнл Рисерч Маатсхаппий Б.В. Высокопрочные сплавы
US20080257413A1 (en) 2006-06-23 2008-10-23 Saudi Arabian Oil Company System, Program Product, and Related Methods for Global Targeting of Process Utilities Under Varying Conditions
CN101067095A (zh) * 2006-09-09 2007-11-07 何巨堂 一种烃类加氢转化过程热量回收方法
RU2460871C2 (ru) 2006-10-20 2012-09-10 Шелл Интернэшнл Рисерч Маатсхаппий Б.В. СПОСОБ ТЕРМИЧЕСКОЙ ОБРАБОТКИ in situ С ИСПОЛЬЗОВАНИЕМ НАГРЕВАТЕЛЬНОЙ СИСТЕМЫ С ЗАМКНУТЫМ КОНТУРОМ
US9764314B2 (en) * 2006-11-07 2017-09-19 Saudi Arabian Oil Company Control of fluid catalytic cracking process for minimizing additive usage in the desulfurization of petroleum feedstocks
CN101190781B (zh) * 2006-11-23 2011-05-11 成都汉尊能源有限公司 小型轻烃水蒸气转化制氢工艺方法
US7934383B2 (en) 2007-01-04 2011-05-03 Siemens Energy, Inc. Power generation system incorporating multiple Rankine cycles
BRPI0721569A2 (pt) 2007-04-18 2013-01-22 Sgc En Sgps S A sistema de refino de resÍduos para hidrocarbonetos lÍquidos
CA2684437C (en) * 2007-04-20 2015-11-24 Shell Internationale Research Maatschappij B.V. In situ heat treatment of a tar sands formation after drive process treatment
US7730854B2 (en) 2007-05-23 2010-06-08 Uop Llc Process for steam heat recovery from multiple heat streams
US7799288B2 (en) 2007-06-29 2010-09-21 Uop Llc Apparatus for recovering power from FCC product
US8561405B2 (en) 2007-06-29 2013-10-22 General Electric Company System and method for recovering waste heat
JP2010540837A (ja) * 2007-10-04 2010-12-24 ユナイテッド テクノロジーズ コーポレイション 往復機関からの廃熱を利用するカスケード型有機ランキンサイクル(orc)システム
CN102317595A (zh) 2007-10-12 2012-01-11 多蒂科技有限公司 带有气体分离的高温双源有机朗肯循环
US7811446B2 (en) * 2007-12-21 2010-10-12 Uop Llc Method of recovering energy from a fluid catalytic cracking unit for overall carbon dioxide reduction
US20090173081A1 (en) * 2008-01-07 2009-07-09 Paul Steven Wallace Method and apparatus to facilitate substitute natural gas production
WO2009114169A2 (en) 2008-03-12 2009-09-17 Utc Power Corporation Cooling, heating and power system with an integrated part-load, active, redundant chiller
US8058492B2 (en) 2008-03-17 2011-11-15 Uop Llc Controlling production of transportation fuels from renewable feedstocks
US9378313B2 (en) * 2009-10-30 2016-06-28 Saudi Arabian Oil Company Methods for enhanced energy efficiency via systematic hybrid inter-processes integration
US9360910B2 (en) 2009-10-30 2016-06-07 Saudi Arabian Oil Company Systems, computer readable media, and computer programs for enhancing energy efficiency via systematic hybrid inter-processes integration
CA2668243A1 (en) * 2008-06-10 2009-12-10 Alexandre A. Borissov System and method for producing power from thermal energy stored in a fluid produced during heavy oil extraction
US20130091843A1 (en) 2008-12-05 2013-04-18 Honeywell International Inc. Fluoro olefin compounds useful as organic rankine cycle working fluids
US20100146974A1 (en) 2008-12-16 2010-06-17 General Electric Company System for recovering waste heat
US8471079B2 (en) * 2008-12-16 2013-06-25 Uop Llc Production of fuel from co-processing multiple renewable feedstocks
US20120000175A1 (en) 2008-12-23 2012-01-05 Wormser Energy Solutions, Inc. Mild gasification combined-cycle powerplant
US20100242476A1 (en) 2009-03-30 2010-09-30 General Electric Company Combined heat and power cycle system
US9377449B2 (en) 2009-06-15 2016-06-28 William Marsh Rice University Nanocomposite oil sensors for downhole hydrocarbon detection
US20100319346A1 (en) 2009-06-23 2010-12-23 General Electric Company System for recovering waste heat
US20100326076A1 (en) * 2009-06-30 2010-12-30 General Electric Company Optimized system for recovering waste heat
US8544274B2 (en) 2009-07-23 2013-10-01 Cummins Intellectual Properties, Inc. Energy recovery system using an organic rankine cycle
US9320985B2 (en) 2009-08-11 2016-04-26 Fluor Technologies Corporation Configurations and methods of generating low-pressure steam
US20110041500A1 (en) 2009-08-19 2011-02-24 William Riley Supplemental heating for geothermal energy system
US20110072819A1 (en) 2009-09-28 2011-03-31 General Electric Company Heat recovery system based on the use of a stabilized organic rankine fluid, and related processes and devices
US8459030B2 (en) 2009-09-30 2013-06-11 General Electric Company Heat engine and method for operating the same
US20110083437A1 (en) 2009-10-13 2011-04-14 General Electric Company Rankine cycle system
GB0922410D0 (en) 2009-12-22 2010-02-03 Johnson Matthey Plc Conversion of hydrocarbons to carbon dioxide and electrical power
EP2525892A4 (en) * 2010-01-22 2014-01-22 Exxonmobil Upstream Res Co REMOVAL OF ACIDIC GAS FROM A GASEOUS FLOW WITH CO2 CAPTURE AND SEQUESTRATION
WO2011103560A2 (en) 2010-02-22 2011-08-25 University Of South Florida Method and system for generating power from low- and mid- temperature heat sources
CN201737903U (zh) * 2010-05-27 2011-02-09 上海九元石油化工有限公司 蒸馏装置、重整装置与汽柴油加氢精制装置的热联合系统
US8544284B2 (en) 2010-06-25 2013-10-01 Petrochina North China Petrochemical Company Method and apparatus for waste heat recovery and absorption gases used as working fluid therein
US20120031096A1 (en) 2010-08-09 2012-02-09 Uop Llc Low Grade Heat Recovery from Process Streams for Power Generation
CN102371108A (zh) * 2010-08-20 2012-03-14 中国石油化工集团公司 含硫化氢酸性气富氧空气焚烧生产硫酸的方法
US8916740B2 (en) 2010-08-25 2014-12-23 Uop Llc Energy conservation in heavy-hydrocarbon distillation
US20120047889A1 (en) 2010-08-27 2012-03-01 Uop Llc Energy Conversion Using Rankine Cycle System
WO2012048127A2 (en) * 2010-10-06 2012-04-12 Chevron U.S.A. Inc. Improving capacity and performance of process columns by overhead heat recovery into an organic rankine cycle for power generation
SG188593A1 (en) 2010-10-06 2013-04-30 Chevron Usa Inc Utilization of process heat by-product
US8529202B2 (en) 2010-10-12 2013-09-10 General Electric Company System and method for turbine compartment ventilation
US8857186B2 (en) 2010-11-29 2014-10-14 Echogen Power Systems, L.L.C. Heat engine cycles for high ambient conditions
US8551222B2 (en) 2010-12-08 2013-10-08 Fisonic Holding Limited Apparatus for combustion products utilization and heat generation
DE102012000100A1 (de) 2011-01-06 2012-07-12 Cummins Intellectual Property, Inc. Rankine-kreisprozess-abwärmenutzungssystem
FI20115038L (fi) 2011-01-14 2012-07-15 Vapo Oy Menetelmä btl-tehtaassa muodostuvien kaasujen sisältämän lämpöenergian hyödyntämiseksi
US9816402B2 (en) * 2011-01-28 2017-11-14 Johnson Controls Technology Company Heat recovery system series arrangements
US8992640B2 (en) 2011-02-07 2015-03-31 General Electric Company Energy recovery in syngas applications
US20120234263A1 (en) 2011-03-18 2012-09-20 Uop Llc Processes and systems for generating steam from multiple hot process streams
US9321972B2 (en) 2011-05-02 2016-04-26 Saudi Arabian Oil Company Energy-efficient and environmentally advanced configurations for naptha hydrotreating process
US8302399B1 (en) * 2011-05-13 2012-11-06 General Electric Company Organic rankine cycle systems using waste heat from charge air cooling
EP2707453B8 (en) 2011-05-13 2019-11-27 Saudi Arabian Oil Company Carbon-based fluorescent tracers as oil reservoir nano-agents
US9023193B2 (en) 2011-05-23 2015-05-05 Saudi Arabian Oil Company Process for delayed coking of whole crude oil
CN102796558B (zh) * 2011-05-26 2015-09-23 中国石油化工股份有限公司 一种石油烃的高效催化转化方法
JP5800295B2 (ja) 2011-08-19 2015-10-28 国立大学法人佐賀大学 蒸気動力サイクルシステム
US9593599B2 (en) 2011-08-19 2017-03-14 The Chemours Company Fc, Llc Processes and compositions for organic rankine cycles for generating mechanical energy from heat
US8959885B2 (en) 2011-08-22 2015-02-24 General Electric Company Heat recovery from a gasification system
CN202208704U (zh) * 2011-08-25 2012-05-02 中国石油化工股份有限公司 一种加氢装置低温热回收装置
JP5450540B2 (ja) 2011-09-12 2014-03-26 株式会社日立製作所 Co2回収装置を備えたボイラーの熱回収システム
WO2013055391A1 (en) 2011-10-03 2013-04-18 Echogen Power Systems, Llc Carbon dioxide refrigeration cycle
US8889747B2 (en) 2011-10-11 2014-11-18 Bp Corporation North America Inc. Fischer Tropsch reactor with integrated organic rankine cycle
EP2765894B1 (en) 2011-10-14 2021-01-06 Techtronic Floor Care Technology Limited Steering assembly for surface cleaning device
US10690121B2 (en) 2011-10-31 2020-06-23 University Of South Florida Integrated cascading cycle solar thermal plants
EP2597406A1 (en) * 2011-11-25 2013-05-29 Shell Internationale Research Maatschappij B.V. Method and apparatus for removing nitrogen from a cryogenic hydrocarbon composition
WO2013086337A1 (en) 2011-12-09 2013-06-13 Access Energy Llc Recovery for thermal cycles
FR2984177B1 (fr) * 2011-12-20 2014-07-04 IFP Energies Nouvelles Procede de craquage catalytique associe a une unite de traitement aux amines avec bilan co2 ameliore
WO2013095772A1 (en) 2011-12-21 2013-06-27 Rentech, Inc. System and method for production of fischer-tropsch synthesis products and power
US20150073188A1 (en) 2012-03-01 2015-03-12 The Trustees Of Princeton University Processes for producing synthetic hydrocarbons from coal, biomass, and natural gas
FR2990990B1 (fr) 2012-05-22 2016-03-11 IFP Energies Nouvelles Procede de production d'electricite par valorisation de la chaleur residuelle des fluides issus d'une raffinerie
US10422046B2 (en) 2012-06-13 2019-09-24 Saudi Arabian Oil Company Hydrogen production from an integrated electrolysis cell and hydrocarbon gasification reactor
WO2014005163A1 (en) 2012-06-27 2014-01-03 Patel Pankil A display unit
JP2015528083A (ja) * 2012-08-03 2015-09-24 テーエルイー−オー−ヘン・グループ・ベスローテン・フェンノートシャップTri−O−Gen Group B.V. 複数の熱源から有機ランキンサイクル(orc)を通じてエネルギーを回収するためのシステム
JP6033050B2 (ja) * 2012-11-16 2016-11-30 東洋エンジニアリング株式会社 芳香族炭化水素製造装置
FR2998301B1 (fr) * 2012-11-22 2016-01-01 Axens Methode de recuperation de chaleur a basse temperature et application de la methode au complexe aromatique
ITMI20130375A1 (it) 2013-03-12 2014-09-13 Newcomen S R L Impianto a ciclo chiuso
WO2014153570A2 (en) 2013-03-15 2014-09-25 Transtar Group, Ltd New and improved system for processing various chemicals and materials
EP2973819B1 (en) 2013-03-15 2018-10-31 ExxonMobil Research and Engineering Company Integration of molten carbonate fuel cells in fischer-tropsch synthesis
MX2015017408A (es) 2013-06-19 2017-05-01 j lewis Michael Proceso para recuperacion mejorada de petroleo usando captura de dioxido de carbono.
US20160325109A1 (en) * 2013-07-17 2016-11-10 Meditech International Inc. System and method for multi-colour light treatment
US9518497B2 (en) 2013-07-24 2016-12-13 Cummins, Inc. System and method for determining the net output torque from a waste heat recovery system
US9890612B2 (en) 2013-09-17 2018-02-13 Oil Addper Services S.R.L. Self-contained portable unit for steam generation and injection by means of injector wellhead hanger of coiled jacketed capillary tubing with closed circuit and procedure for its operations in oil wells
CN103541780A (zh) * 2013-10-22 2014-01-29 中国石油化工集团公司 石油化工中跨装置热联合低温热回收系统及回收方法
US20150159079A1 (en) 2013-12-10 2015-06-11 Board Of Regents, The University Of Texas System Methods and compositions for conformance control using temperature-triggered polymer gel with magnetic nanoparticles
CN204097413U (zh) * 2014-04-27 2015-01-14 中石化南京工程有限公司 生产汽柴油、石油焦及高档润滑油基础油的系统
US20150361831A1 (en) 2014-06-12 2015-12-17 General Electric Company System and method for thermal management
CN203928084U (zh) * 2014-06-13 2014-11-05 淮南中科储能科技有限公司 一种天然气和低谷电互补储热发电供热系统
US9562201B2 (en) 2014-06-28 2017-02-07 Saudi Arabian Oil Company Energy efficient apparatus employing energy efficient process schemes providing enhanced integration of gasification-based multi-generation and hydrocarbon refining facilities and related methods
CN104745224A (zh) * 2015-03-10 2015-07-01 河北新启元能源技术开发股份有限公司 余热回收装置及其回收工艺
US9725652B2 (en) 2015-08-24 2017-08-08 Saudi Arabian Oil Company Delayed coking plant combined heating and power generation
US9803507B2 (en) 2015-08-24 2017-10-31 Saudi Arabian Oil Company Power generation using independent dual organic Rankine cycles from waste heat systems in diesel hydrotreating-hydrocracking and continuous-catalytic-cracking-aromatics facilities
US9803509B2 (en) 2015-08-24 2017-10-31 Saudi Arabian Oil Company Power generation from waste heat in integrated crude oil refining and aromatics facilities
US9803506B2 (en) 2015-08-24 2017-10-31 Saudi Arabian Oil Company Power generation from waste heat in integrated crude oil hydrocracking and aromatics facilities
US9803511B2 (en) 2015-08-24 2017-10-31 Saudi Arabian Oil Company Power generation using independent dual organic rankine cycles from waste heat systems in diesel hydrotreating-hydrocracking and atmospheric distillation-naphtha hydrotreating-aromatics facilities
US10113448B2 (en) 2015-08-24 2018-10-30 Saudi Arabian Oil Company Organic Rankine cycle based conversion of gas processing plant waste heat into power
US9745871B2 (en) 2015-08-24 2017-08-29 Saudi Arabian Oil Company Kalina cycle based conversion of gas processing plant waste heat into power
US9803508B2 (en) 2015-08-24 2017-10-31 Saudi Arabian Oil Company Power generation from waste heat in integrated crude oil diesel hydrotreating and aromatics facilities
US9803505B2 (en) 2015-08-24 2017-10-31 Saudi Arabian Oil Company Power generation from waste heat in integrated aromatics and naphtha block facilities
US9803513B2 (en) 2015-08-24 2017-10-31 Saudi Arabian Oil Company Power generation from waste heat in integrated aromatics, crude distillation, and naphtha block facilities
CN107364424A (zh) 2017-07-17 2017-11-21 吴江中至高五金电器有限公司 用于汽车的监控识别装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6733636B1 (en) * 1999-05-07 2004-05-11 Ionics, Inc. Water treatment method for heavy oil production
CN101389736A (zh) * 2006-02-21 2009-03-18 三菱重工业株式会社 石油化学系统装置
US20090266540A1 (en) * 2008-04-29 2009-10-29 American Air Liquide, Inc. Zero Emission Liquid Fuel Production By Oxygen Injection
CN101424453A (zh) * 2008-12-05 2009-05-06 上海九元石油化工有限公司 炼油厂高温热联合系统及其应用
CN104093818A (zh) * 2012-01-27 2014-10-08 沙特阿拉伯石油公司 用于直接加工原油的整合的溶剂脱沥青、加氢处理以及水蒸气热解方法
WO2014127913A2 (en) * 2013-02-21 2014-08-28 Faramarz Bairamijamal High pressure process for co2 capture, utilization for heat recovery, power cycle, super-efficient hydrogen based fossil power generation and conversion of liquid co2 with water to syngas and oxygen
CN104560082A (zh) * 2014-12-30 2015-04-29 山东益大新材料有限公司 一种针状焦用精芳烃油的改进方法

Also Published As

Publication number Publication date
US20170059261A1 (en) 2017-03-02
US9803930B2 (en) 2017-10-31
US9845995B2 (en) 2017-12-19
US10443946B2 (en) 2019-10-15
JP2018535280A (ja) 2018-11-29
US20170058714A1 (en) 2017-03-02
EP3341592A1 (en) 2018-07-04
CN108026789A (zh) 2018-05-11
US20170082373A1 (en) 2017-03-23
US20180202721A1 (en) 2018-07-19
CN108138056B (zh) 2020-11-20
WO2017035153A1 (en) 2017-03-02
US9915477B2 (en) 2018-03-13
US20170059259A1 (en) 2017-03-02
US20190072337A1 (en) 2019-03-07
WO2017035089A1 (en) 2017-03-02
WO2017035146A1 (en) 2017-03-02
CN108138593B (zh) 2020-12-22
EP3341579A1 (en) 2018-07-04
CN108138606A (zh) 2018-06-08
EP3341577A1 (en) 2018-07-04
EP3553287A1 (en) 2019-10-16
US10767932B2 (en) 2020-09-08
EP3341455A1 (en) 2018-07-04
SA518391003B1 (ar) 2021-09-05
SA518390985B1 (ar) 2022-05-09
WO2017035160A1 (en) 2017-03-02
JP6813160B2 (ja) 2021-01-13
CN108138605A (zh) 2018-06-08
EP3341593B1 (en) 2019-08-14
US10429135B2 (en) 2019-10-01
US9845996B2 (en) 2017-12-19
JP2018532929A (ja) 2018-11-08
JP6784456B2 (ja) 2020-11-11
US9803145B2 (en) 2017-10-31
US9879918B2 (en) 2018-01-30
EP3341577B1 (en) 2021-12-29
EP3553287B1 (en) 2020-10-07
JP6797899B2 (ja) 2020-12-09
US10126067B2 (en) 2018-11-13
US10502494B2 (en) 2019-12-10
WO2017035091A1 (en) 2017-03-02
JP2018529004A (ja) 2018-10-04
CN108138605B (zh) 2021-03-12
CN108138607B (zh) 2019-09-24
US10502495B2 (en) 2019-12-10
WO2017035084A1 (en) 2017-03-02
EP3341578A1 (en) 2018-07-04
CN108138592B (zh) 2020-09-08
EP3341589B1 (en) 2022-02-16
EP3341593A1 (en) 2018-07-04
JP2018532928A (ja) 2018-11-08
JP2018534460A (ja) 2018-11-22
WO2017035093A1 (en) 2017-03-02
JP2018536035A (ja) 2018-12-06
US20170058208A1 (en) 2017-03-02
EP3341591A1 (en) 2018-07-04
SA518390999B1 (ar) 2021-12-18
EP3341588B1 (en) 2022-03-23
JP2018530693A (ja) 2018-10-18
CN108350762A (zh) 2018-07-31
US20180094861A1 (en) 2018-04-05
EP3341579B1 (en) 2022-01-12
US20170059260A1 (en) 2017-03-02
EP3341580A1 (en) 2018-07-04
SA518390990B1 (ar) 2021-08-24
EP3341592B1 (en) 2020-06-10
US20170082374A1 (en) 2017-03-23
WO2017035081A1 (en) 2017-03-02
JP2018529003A (ja) 2018-10-04
EP3341591B1 (en) 2019-06-05
US20170058718A1 (en) 2017-03-02
US10436517B2 (en) 2019-10-08
CN108138607A (zh) 2018-06-08
US20190072336A1 (en) 2019-03-07
CN108026789B (zh) 2020-12-22
CN108138055A (zh) 2018-06-08
CN108350762B (zh) 2019-08-09
US20180094863A1 (en) 2018-04-05
EP3341580B1 (en) 2022-02-23
US10801785B2 (en) 2020-10-13
US9891004B2 (en) 2018-02-13
CN108138590B (zh) 2020-09-29
WO2017035075A1 (en) 2017-03-02
US20170058720A1 (en) 2017-03-02
CN108138055B (zh) 2020-12-15
US20170058206A1 (en) 2017-03-02
US10119764B2 (en) 2018-11-06
CN108138594B (zh) 2020-12-29
EP3341588A1 (en) 2018-07-04
US20180094865A1 (en) 2018-04-05
JP2018535279A (ja) 2018-11-29
US10480864B2 (en) 2019-11-19
WO2017035087A1 (en) 2017-03-02
EP3584415A1 (en) 2019-12-25
CN108138591B (zh) 2021-01-26
EP3341590B1 (en) 2019-05-15
CN108138056A (zh) 2018-06-08
CN108138606B (zh) 2020-07-10
EP3341589A1 (en) 2018-07-04
JP2018536721A (ja) 2018-12-13
JP2018534376A (ja) 2018-11-22
EP3584415B1 (en) 2021-04-07
EP3341578B1 (en) 2021-12-15
EP3341590A1 (en) 2018-07-04
CN108138594A (zh) 2018-06-08
WO2017035165A1 (en) 2017-03-02
US20170058703A1 (en) 2017-03-02
WO2017035083A1 (en) 2017-03-02
CN108138592A (zh) 2018-06-08
CN108138590A (zh) 2018-06-08
US10113805B2 (en) 2018-10-30
US20170058207A1 (en) 2017-03-02
CN112745954A (zh) 2021-05-04
CN108138591A (zh) 2018-06-08
US20180094862A1 (en) 2018-04-05
US20180094864A1 (en) 2018-04-05
US9816759B2 (en) 2017-11-14
JP6813159B2 (ja) 2021-01-13
US20180094866A1 (en) 2018-04-05
SA518391001B1 (ar) 2022-05-11
US9803509B2 (en) 2017-10-31
EP3341456A1 (en) 2018-07-04
JP2018535278A (ja) 2018-11-29
US9851153B2 (en) 2017-12-26

Similar Documents

Publication Publication Date Title
CN108138593A (zh) 工业设备中废弃能量的回收和再利用
CN108138587A (zh) 由综合原油柴油加氢处理和芳烃设备中的废热发电

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant