CN108064236A - 新颖的il33形式、il33的突变形式、抗体、测定及其使用方法 - Google Patents

新颖的il33形式、il33的突变形式、抗体、测定及其使用方法 Download PDF

Info

Publication number
CN108064236A
CN108064236A CN201680019480.3A CN201680019480A CN108064236A CN 108064236 A CN108064236 A CN 108064236A CN 201680019480 A CN201680019480 A CN 201680019480A CN 108064236 A CN108064236 A CN 108064236A
Authority
CN
China
Prior art keywords
seq
variable region
antibody
binding molecule
present disclosure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201680019480.3A
Other languages
English (en)
Other versions
CN108064236B (zh
Inventor
E.S.科亨
D.C.洛
R.巴特勒
I.C.斯科特
K.A.沃斯登
M.D.斯特兰
S.卡门
E.H.恩格兰
B.P.肯普
D.G.里斯
C.L.奥弗雷-赛耶
T.M.穆斯特林
M.斯利曼
K.豪斯莱
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MedImmune Ltd
Original Assignee
MedImmune Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MedImmune Ltd filed Critical MedImmune Ltd
Publication of CN108064236A publication Critical patent/CN108064236A/zh
Application granted granted Critical
Publication of CN108064236B publication Critical patent/CN108064236B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/395Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
    • A61K39/39533Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum against materials from animals
    • A61K39/3955Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum against materials from animals against proteinaceous materials, e.g. enzymes, hormones, lymphokines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/395Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
    • A61K39/39533Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum against materials from animals
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K67/00Rearing or breeding animals, not otherwise provided for; New or modified breeds of animals
    • A01K67/027New or modified breeds of vertebrates
    • A01K67/0275Genetically modified vertebrates, e.g. transgenic
    • A01K67/0278Knock-in vertebrates, e.g. humanised vertebrates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • A61P11/06Antiasthmatics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/08Antiallergic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/52Cytokines; Lymphokines; Interferons
    • C07K14/54Interleukins [IL]
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/24Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against cytokines, lymphokines or interferons
    • C07K16/244Interleukins [IL]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • G01N33/6863Cytokines, i.e. immune system proteins modifying a biological response such as cell growth proliferation or differentiation, e.g. TNF, CNF, GM-CSF, lymphotoxin, MIF or their receptors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • G01N33/6863Cytokines, i.e. immune system proteins modifying a biological response such as cell growth proliferation or differentiation, e.g. TNF, CNF, GM-CSF, lymphotoxin, MIF or their receptors
    • G01N33/6869Interleukin
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2217/00Genetically modified animals
    • A01K2217/07Animals genetically altered by homologous recombination
    • A01K2217/072Animals genetically altered by homologous recombination maintaining or altering function, i.e. knock in
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2227/00Animals characterised by species
    • A01K2227/10Mammal
    • A01K2227/105Murine
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2267/00Animals characterised by purpose
    • A01K2267/03Animal model, e.g. for test or diseases
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/505Medicinal preparations containing antigens or antibodies comprising antibodies
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/20Immunoglobulins specific features characterized by taxonomic origin
    • C07K2317/21Immunoglobulins specific features characterized by taxonomic origin from primates, e.g. man
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/30Immunoglobulins specific features characterized by aspects of specificity or valency
    • C07K2317/33Crossreactivity, e.g. for species or epitope, or lack of said crossreactivity
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/30Immunoglobulins specific features characterized by aspects of specificity or valency
    • C07K2317/34Identification of a linear epitope shorter than 20 amino acid residues or of a conformational epitope defined by amino acid residues
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/56Immunoglobulins specific features characterized by immunoglobulin fragments variable (Fv) region, i.e. VH and/or VL
    • C07K2317/565Complementarity determining region [CDR]
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/56Immunoglobulins specific features characterized by immunoglobulin fragments variable (Fv) region, i.e. VH and/or VL
    • C07K2317/567Framework region [FR]
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/60Immunoglobulins specific features characterized by non-natural combinations of immunoglobulin fragments
    • C07K2317/62Immunoglobulins specific features characterized by non-natural combinations of immunoglobulin fragments comprising only variable region components
    • C07K2317/622Single chain antibody (scFv)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/76Antagonist effect on antigen, e.g. neutralization or inhibition of binding
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/90Immunoglobulins specific features characterized by (pharmaco)kinetic aspects or by stability of the immunoglobulin
    • C07K2317/92Affinity (KD), association rate (Ka), dissociation rate (Kd) or EC50 value
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/30Non-immunoglobulin-derived peptide or protein having an immunoglobulin constant or Fc region, or a fragment thereof, attached thereto
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/435Assays involving biological materials from specific organisms or of a specific nature from animals; from humans
    • G01N2333/52Assays involving cytokines
    • G01N2333/54Interleukins [IL]

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biochemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Genetics & Genomics (AREA)
  • Biophysics (AREA)
  • Public Health (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Environmental Sciences (AREA)
  • Pulmonology (AREA)
  • Biotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Microbiology (AREA)
  • Urology & Nephrology (AREA)
  • Cell Biology (AREA)
  • Hematology (AREA)
  • Biomedical Technology (AREA)
  • Toxicology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Animal Husbandry (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Mycology (AREA)
  • Epidemiology (AREA)
  • Pathology (AREA)
  • Food Science & Technology (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)

Abstract

本发明提供了经分离的IL‑33蛋白、其活性片段;以及针对IL‑33蛋白的抗体、其抗原结合片段。例如出于治疗免疫和炎性障碍的目的,还提供了调节细胞因子活性的方法。

Description

新颖的IL33形式、IL33的突变形式、抗体、测定及其使用方法
发明人:Suzanne Cohen(GB/GB),David Lowe(GB/GB),Robin Butler(GB/GB),IanScott(GB/GB),Katherine Vousden(GB/GB),Martin Strain(GB/GB),Sara Carmen(GB/GB),Elizabeth England(GB/GB),Benjamin Kemp(GB/GB),Gareth Rees(GB/GB),Catherine Overed-Sayer(GB/GB),Tomas Mustelin(US/US),Matthew Sleeman(GB/GB),Kirsty Houslay(GB/GB)
本披露涉及新颖的IL-33形式;新颖的IL-33突变体;结合蛋白,诸如对所述蛋白质中任一种具有特异性的抗体,尤其是能够调节当前所述形式的量的结合蛋白;包含蛋白质或结合蛋白(诸如根据本披露的抗体)的组合物;以及上述中任一种尤其是在治疗中的用途,例如在炎性疾病的预防治疗中的用途。本文的披露还延伸至用于鉴定和/或定量不同IL-33形式的测定。
背景技术
白介素-33(IL-33),也称为IL-1F11,是刺激二型免疫应答特有的细胞、细胞因子和免疫球蛋白的产生的IL-1细胞因子家族的一员。IL-33是270个氨基酸的蛋白质,其由两个结构域组成:同源结构域和细胞因子(IL-1样)结构域。同源结构域含有核定位信号(NLS)。IL-33介导信号经由ST2转导,ST2是在Th2细胞、肥大细胞和多种其他细胞类型上表达的受体。
Schmitz等人首次将IL-33鉴定为孤儿受体ST2的配体(也称为IL-1R4)(Schmitz等人,Immunity[免疫力]23(5)479-90(2005))。IL-33受体由异源二聚体分子形成。ST2和IL-1R辅助蛋白(IL-1RAcP)二聚形成IL-33受体(ST2:IL-1RAcP)。IL-1RAcP是IL-1α、IL-1β、IL-1F6、IL1F8和IL1F9的受体的共享组分。IL-1RAcP不为结合所需,但对于信号传导至关重要。IL-33受体的TIR结构域补充(recruit)MyD88和TRAF6,并且受体信号导致NFκB和MAP激酶途径的激活(Oboki等人,Allergology International[变态反应学国际杂志]59:143-160(2010))。IL-33受体可能潜在地与其他受体相关联,并且据报道在肥大细胞上与c-kit相互作用(Drube等人,Blood[血液]115:3899-3906(2010))
最近,已显示IL-33结合第二IL-33受体异源二聚体复合物:ST2还与另一IL-1R家族分子“单一IgIL-1R相关分子”(SIGIRR)(也称为TollIL-1R8(TIR8))形成复合物,以形成ST2:SIGIRR。SIGIRR/TIR8被视为充当IL-1R和Toll样受体(TLR)介导的免疫应答的负调节剂(Garlanda等人,Trends Immunol.[免疫学趋势]30:439-46(2009))。与ST2:IL-1RAcP相比之下,ST2:SIGIRR似乎充当IL-33的负调节剂(Oboki等人(2010))。
ST2受体的唯一已知配体是IL-33(参见例如,Schmitz等人,Immunity[免疫力]23(5)479-90(2005);Chackerian等人,J.Immunol.[免疫学杂志]179(4):2551-5(2007))。ST2受体在基线由Th2细胞和肥大细胞表达,两种细胞类型已知是过敏性哮喘的重要介质。胞外IL-33形式通过与ST2结合且随后激活NFκB和MAP激酶途径而刺激靶细胞,导致包括产生细胞因子和趋化因子的一系列功能反应。可溶性ST2(sST2)被认为是诱饵受体,阻止IL-33信号传导。
在人类中,发现IL-33在平滑肌和支气管上皮中组成性地表达。表达可以通过IL-1β和TNF-α在肺和真皮纤维母细胞中诱导(Schmitz等人(2005))。可溶性ST2蛋白和IL-33mRNA/蛋白的水平在患有哮喘的患者的血清和组织中增加(Oboki等人,AllergologyInternational[变态反应学国际杂志]59:143-160(2010))。
在体内,IL-33诱导IL-4、IL-5和IL-13表达,并且导致黏膜器官中的严重病理变化。向小鼠给予IL-33具有有力的炎症效应,包括大量的血液嗜酸性粒细胞增多、血清IL-5和IgE水平增加和杯状细胞在黏膜表面增生(Schmitz等人(2005))。向小鼠腹膜内或鼻内给予IL-33导致经由IL-13和STAT6依赖性途径在肺和肠黏膜中诱导嗜酸性粒细胞炎症(Oboki等人(2010))。因此,IL-33可能在诸如哮喘的过敏性疾病以及其他炎性气道疾病中起作用。
文献中的一些报道表明杯状细胞分泌CXCL8/IL-8,并且这通过IL-33经由ST2R-ERK途径增加,表明在具有杯状细胞化生的哮喘气道中增强的气道炎症的机制(Clin ExpAllergy.[临床与实验过敏]2014年4月;44(4):540-52)。
因此,已对IL-33作为治疗靶标感兴趣。然而,迄今为止,尚未完全明白阻断此治疗靶标的治疗益处。诸位发明人第一次确定IL-33以还原形式(在本文中也称为redIL-33)和氧化形式存在。诸位发明人已第一次表征如本文所述的IL-33的氧化形式。诸位发明人进行的体外和体内研究已显示redIL-33(还原形式)的消失与氧化型IL-33的出现相关。在体外生理流体中,redIL-33被快速氧化形成二硫键合形式。氧化形式(在本文中也称为IL-33-DSB)具有至少一个(例如,两个)二硫键,其间有选自Cys208、Cys 227、Cys 232和Cys259的组的半胱氨酸(参照如UniProt O97560中所披露的全长人类IL-33来编号,其残基112至270列于SEQ ID NO.632内)。先前尚未意识到,可商购的测定似乎主要地检测此氧化形式。诸位发明人因此需要将测定设计成选择性地检测负责与ST2相互作用且驱动与IL-33释放相关的生物活性的redIL-33。
还原形式似乎是产生信号级联的蛋白质活性形式,并且实际上在体内似乎还原形式被转化成氧化形式,作为终止经由ST2的信号传导的机制。诸位发明人已发现redIL-33结合ST2(图24A)。相比之下,IL-33-DSB显示无ST2结合(图24B)。这使得诸位发明人假设体内氧化可以是断开IL-33-ST2活性的机制。另外,诸位发明人第一次确定IL-33的氧化形式(IL-33-DSB)与晚期糖基化终产物的受体(RAGE)结合且经由此替代途径进行信号传导(图56)。
诸位发明人认为此理解可用于产生更有效的治疗剂。在一个实施例中,诸位发明人已鉴定出优先结合氧化形式,但通过基本上催化还原形式向氧化形式的转化而出人意料地减弱还原形式的活性的抗体。有利的是,此机制仅增强终止经由ST2的信号传导的体内机制。
在另一实施例中,诸位发明人已鉴定出优先以飞摩尔亲和力结合IL-33的还原形式(redIL-33),并且减弱和/或抑制IL-33介导的经由ST2的信号传导的抗体。此抗体第一次提供了治疗或预防IL-33/ST2介导的炎性反应的机制。
在又一实施例中,本发明的抗体可以减弱或抑制先前未识别的经由RAGE的IL-33-DSB信号传导途径和任何IL-33/RAGE介导的效应。本发明的抗体可通过直接结合IL-33-DSB和减弱或抑制与RAGE的配体/受体相互作用,或者可替代地可与redIL-33结合和防止或减少其转化为IL-33-DSB,从而间接减弱或抑制与RAGE的配体/受体相互作用来起作用。
发明内容
因此,在第一方面中,提供了经分离的还原形式的IL-33(redIL-33)或其结合片段。
在一个方面中,提供了经分离的IL-33蛋白,其通过防止在天然半胱氨酸之间形成二硫桥键的修饰而呈还原形式来稳定。这类修饰可包含一个或多个半胱氨酸残基缺失、一个或多个天然半胱氨酸经替代氨基酸置换的突变和/或与化学实体轭合。
在一个实施例中,提供了如本文所述的,尤其是如SEQ ID NO:634至648中所示的IL-33突变形式。
在一个实施例中,化学实体是生物素,其降低或消除redIL-33转化为IL-33-DSB的能力。
在一个方面中,提供了突变型IL-33,其中一个或多个半胱氨酸经非半胱氨酸氨基酸置换,例如其中选自Cys-208、Cys-227、Cys-232和Cys-259的一个、两个、三个、四个或更多个半胱氨酸例如经诸如丝氨酸的氨基酸置换。在一个实施例中,半胱氨酸残基独立地选自Cys-208、Cys-227、Cys-232和Cys-259。因此,在一个实施例中,根据本披露的突变体不能形成IL-33-DSB中的二硫键中的一者或两者。
在一个实施例中,本披露是针对经分离的结合分子,其减弱根据本披露的redIL-33(包括其稳定形式)的活性,例如抑制所述活性。在一个实施例中,减弱是经由特异性结合redIL-33。在一个实施例中,减弱是经由结合IL-33-DSB,以及例如催化或加速redIL-33转化为IL-33-DSB。
在一个实施例中,减弱使ST2依赖性信号传导下调或断开。
在某些实施例中,本披露的结合分子或抗体或其抗原结合片段抑制例如在肥大细胞中IL-33驱动的细胞因子产生。
在一个实施例中,减弱下调或防止自ST2途径的IL-5释放。
在一个实施例中,减弱下调或防止嗜酸性粒细胞激活。
在一个实施例中,减弱下调或防止NFκB释放。在一个实施例中,减弱下调或防止IL-4释放。在一个实施例中,减弱下调或防止IL-6释放。在一个实施例中,减弱下调或防止IL-8释放。在一个实施例中,减弱下调或防止IL-13释放。
在某些实施例中,本披露的结合分子或抗体或其抗原结合片段减弱或抑制IL-33/RAGE介导的信号传导。RAGE介导的信号传导的减弱或抑制可以使上皮迁移相对于未经调节的IL-33驱动的炎性反应中可见的增强(参见图58)。这样的增强的上皮迁移可在组织修复和伤口愈合中,尤其是在诸如肺上皮的肺组织中起作用。
在一个实施例中,本披露是针对经分离的结合分子,其特异性地结合至redIL-33或redIL-33的结合片段。
在一个实施例中,本披露是针对经分离的结合分子,其特异性地结合至redIL-33且抑制redIL-33与ST2结合。
在一个实施例中,本披露是针对经分离的结合分子,其特异性地结合至redIL-33且通过以物理方式阻断IL-33与其受体相互作用来抑制redIL-33信号传导。
在一个实施例中,本披露是针对分子,其结合IL-33且催化redIL-33转化为IL-33-DSB,从而下调或断开ST-2信号传导。
在一个实施例中,本披露是针对具有竞争性作用方式的结合分子。
在一个实施例中,本披露是针对具有别构作用方式的结合分子。
在一些实施例中,本发明的结合分子包含抗体或其抗原结合片段。
下式采用单字母氨基酸代码。
在一个实施例中,结合分子(诸如抗体或其结合片段)包含式(I)的CDRH1:
SYAMX (I)
其中X是氨基酸,例如S或N,诸如S。
在一个实施例中,结合分子(诸如抗体或其结合片段)包含式(II)的CDRH2:
X1IX2X3X4X5X6X7X8X9X10X11YADX12VKG (II)
其中:
X1是A、G或S 尤其是A或G,诸如A;
X2是A、D、G、N、S 尤其是A、D或S,诸如S;
X3是A、D或G 尤其是A或G,诸如G
X4不存在或是D 尤其是不存在;
X5不存在或是G 尤其是不存在;
X6是D、I或S 尤其是I或S,诸如S;
X7是D、F、G或S 尤其是D或G,诸如G;
X8是D、G、Q、S、T 尤其是G、Q或T,诸如G;
X9是R或S 尤其是S;
X10是P或T 尤其是P;
X11是H或Y 尤其是Y;并且
X12是P或S 尤其是S。
在一个实施例中,结合分子(诸如抗体或其结合片段)包含式(III)的CDRH3:
X13X14X15X16X17X18X19X20X21GGLRYPX22 (III)
其中:
X13是A、D、H、L或Q尤其是D或Q,诸如D;
X14是K或L 尤其是K;
X15是F或W 尤其是F;
X16是I或M 尤其是M;
X17是Q或E 尤其是Q;
X18是L或N 尤其是L;
X19是W或Y 尤其是W;
X20是A、G或V 尤其是G;并且
X21是F或L 尤其是F。
在一个实施例中,结合分子(诸如抗体或其结合片段)包含如上文所定义的式(I)的CDRH1和式(II)的CDRH2。
在一个实施例中,结合分子(诸如抗体或其结合片段)包含如上文所定义的式(I)的CDRH1和式(III)的CDRH3。
在一个实施例中,结合分子(诸如抗体或其结合片段)包含如上文所定义的式(II)的CDRH2和式(III)的CDRH3。
在一个实施例中,结合分子(诸如抗体或其结合片段)包含如上文所定义的式(I)的CDRH1和式(II)的CDRH2和式(III)的CDRH3。
在一个实施例中,结合分子(诸如抗体或其结合片段)包含式(IV)的CDRL1:
SGEX22X23GDKYAA (IV)
其中:
X22是氨基酸,例如R或G,尤其是R;并且
X23是氨基酸,例如M或I,尤其是M。
在一个实施例中,结合分子(诸如抗体或其结合片段)包含式(V)的CDRL2:
X24DTKRPS (V)
其中:
X24是氨基酸,例如Q或R,尤其是R。
在一个实施例中,结合分子(诸如抗体或其结合片段)包含式(VI)的CDRL3:
X25VX26X27X28X29X30X31X32X33 (VI)
其中:
X25是E、G或Q 尤其是G或Q,诸如G;
X26是I、K、L或W 尤其是L或W,诸如W;
X27是A、D、K、Q、R或V 尤其是D或K,诸如K;
X28是A、D、K、Q或S 尤其是Q或S,诸如S;
X29是D、N或S 尤其是D或S,诸如D;
X30是D、S或T 尤其是D或S,诸如D;
X31不存在或是T 尤其是不存在;
X32是G或P 尤其是G;并且
X33是I或V 尤其是V。
在一个实施例中,结合分子(诸如抗体或其结合片段)包含如上文所定义的式(IV)的CDRL1和式(V)的CDRL2。
在一个实施例中,结合分子(诸如抗体或其结合片段)包含如上文所定义的式(IV)的CDRL1和式(VI)的CDRL3。
在一个实施例中,结合分子(诸如抗体或其结合片段)包含如上文所定义的式(V)的CDRL2和式(VI)的CDRL3。
在一个实施例中,结合分子(诸如抗体或其结合片段)包含如上文所定义的式(IV)的CDRL1和式(V)的CDRL2和式(VI)的CDRL3。
在一个实施例中,结合分子(诸如抗体或其结合片段)包含式(I)的CDRH1和式(IV)的CDRL1。
在一个实施例中,结合分子(诸如抗体或其结合片段)包含式(I)的CDRH1和式(V)的CDRL2。
在一个实施例中,结合分子(诸如抗体或其结合片段)包含式(I)的CDRH1和式(VI)的CDRL3。
在一个实施例中,结合分子(诸如抗体或其结合片段)包含式(II)的CDRH2和式(IV)的CDRL1。
在一个实施例中,结合分子(诸如抗体或其结合片段)包含式(II)的CDRH2和式(V)的CDRL2。
在一个实施例中,结合分子(诸如抗体或其结合片段)包含式(II)的CDRH2和式(VI)的CDRL3。
在一个实施例中,结合分子(诸如抗体或其结合片段)包含式(III)的CDRH3和式(IV)的CDRL1。
在一个实施例中,结合分子(诸如抗体或其结合片段)包含式(III)的CDRH3和式(V)的CDRL2。
在一个实施例中,结合分子(诸如抗体或其结合片段)包含式(III)的CDRH3和式(VI)的CDRL3。
在一个实施例中,结合分子(诸如抗体或其结合片段)包含式(I)的CDRH1、式(II)的CDRH2和式(IV)的CDRL1。
在一个实施例中,结合分子(诸如抗体或其结合片段)包含式(I)的CDRH1、式(II)的CDRH2和式(V)的CDRL2。
在一个实施例中,结合分子(诸如抗体或其结合片段)包含式(I)的CDRH1、式(II)的CDRH2和式(VI)的CDRL3。
在一个实施例中,结合分子(诸如抗体或其结合片段)包含式(I)的CDRH1、式(III)的CDRH3和式(IV)的CDRL1。
在一个实施例中,结合分子(诸如抗体或其结合片段)包含式(I)的CDRH1、式(III)的CDRH3和式(V)的CDRL2。
在一个实施例中,结合分子(诸如抗体或其结合片段)包含式(I)的CDRH1、式(II)的CDRH3和式(VI)的CDRL3。
在一个实施例中,结合分子(诸如抗体或其结合片段)包含式(II)的CDRH2、式(III)的CDRH3和式(IV)的CDRL1。
在一个实施例中,结合分子(诸如抗体或其结合片段)包含式(II)的CDRH2、式(III)的CDRH3和式(V)的CDRL2。
在一个实施例中,结合分子(诸如抗体或其结合片段)包含式(II)的CDRH2、式(II)的CDRH3和式(VI)的CDRL3。
在一个实施例中,结合分子(诸如抗体或其结合片段)包含式(I)的CDRH1、式(II)的CDRH2、式(III)的CDRH3和式(IV)的CDRL1。
在一个实施例中,结合分子(诸如抗体或其结合片段)包含式(I)的CDRH1、式(II)的CDRH2、式(III)的CDRH3和式(V)的CDRL2。
在一个实施例中,结合分子(诸如抗体或其结合片段)包含式(I)的CDRH1、式(II)的CDRH2、式(II)的CDRH3和式(VI)的CDRL3。
在一个实施例中,结合分子(诸如抗体或其结合片段)包含式(I)的CDRH1、式(II)的CDRH2、式(III)的CDRH3、式(IV)的CDRL1和式(V)的CDRL2。
在一个实施例中,结合分子(诸如抗体或其结合片段)包含式(I)的CDRH1、式(II)的CDRH2、式(III)的CDRH3、式(IV)的CDRL1和式(VI)的CDRL3。
在一个实施例中,结合分子(诸如抗体或其结合片段)包含式(I)的CDRH1、式(II)的CDRH2、式(II)的CDRH3、式(V)的CDRL2和式(VI)的CDRL3。
在一个实施例中,结合分子(诸如抗体或其结合片段)包含式(I)的CDRH1、式(II)的CDRH2、式(II)的CDRH3、式(IV)的CDRL1、式(V)的CDRL2和式(VI)的CDRL3。
在一个实施例中,本披露的结合分子例如在重链可变区中包含独立地选自以下项的3个CDR:SEQ ID NO:3、4、5、13、14、15、23、24、25、33、34、35、43、44、45、53、54、55、63、64、65、73、74、75、83、84、85、93、94、95、103、104、105、113、114、115、153、154、155、163、164、165、173、174、175、183、184、185、193、194、195、203、204、205、213、214、215、223、224、225、233、234、235、243、244、245、253、254、255、263、264、265、273、274、275、283、284、285、293、294、295、303、304、305、313、314、315、353、354、355、363、364、365、373、374、375、383、384、385、393、394、395、403、404、405、413、414、415、453、454、455、463、464、465、473、474、475、483、484、485、493、494、495、503、504、505、513、514、515、553、554、555、563、564、565、573、574、575、583、584和585。
在一个实施例中,本披露的结合分子例如在轻链可变区中包含独立地选自以下项的3个CDR:SEQ ID NO:8、9、10、18、19、20、28、29、30、38、39、40、48、49、50、58、59、60、68、69、70、78、79、80、88、89、90、98、99、100、108、109、118、119、120、158、159、160、168、169、170、178、179、180、188、189、190、198、199、200、208、209、210、218、219、220、228、229、230、238、239、240、248、249、250、258、259、260、268、269、270、278、279、280、288、289、290、298、299、300、308、309、310、318、319、320、328、329、330、338、339、340、348、349、350、358、359、360、368、369、370、378、379、380、388、389、390、398、399、400、408、409、410、418、419、420、428、429、430、438、439、440、448、449、450、458、459、460、468、469、470、478、479、480、488、489、490、498、499、500、508、509、510、518、519、520、528、529、530、538、539、540、548、549、550、558、559、560、568、569、570、578、579、580、588、589和590。
在一个实施例中,本披露的结合分子例如在重链可变区中包含独立地选自以下项的3个CDR:SEQ ID NO:3、4、5、13、14、15、23、24、25、33、34、35、43、44、45、53、54、55、63、64、65、73、74、75、83、84、85、93、94、95、103、104、105、113、114、115、153、154、155、163、164、165、173、174、175、183、184、185、193、194、195、203、204、205、213、214、215、223、224、225、233、234、235、243、244、245、253、254、255、263、264、265、273、274、275、283、284、285、293、294、295、303、304、305、313、314、315、353、354、355、363、364、365、373、374、375、383、384、385、393、394、395、403、404、405、413、414、415、453、454、455、463、464、465、473、474、475、483、484、485、493、494、495、503、504、505、513、514、515、553、554、555、563、564、565、573、574、575、583、584和585;并且例如在轻链可变区中包含独立地选自以下项的3个CDR:SEQID NO:8、9、10、18、19、20、28、29、30、38、39、40、48、49、50、58、59、60、68、69、70、78、79、80、88、89、90、98、99、100、108、109、118、119、120、158、159、160、168、169、170、178、179、180、188、189、190、198、199、200、208、209、210、218、219、220、228、229、230、238、239、240、248、249、250、258、259、260、268、269、270、278、279、280、288、289、290、298、299、300、308、309、310、318、319、320、328、329、330、338、339、340、348、349、350、358、359、360、368、369、370、378、379、380、388、389、390、398、399、400、408、409、410、418、419、420、428、429、430、438、439、440、448、449、450、458、459、460、468、469、470、478、479、480、488、489、490、498、499、500、508、509、510、518、519、520、528、529、530、538、539、540、548、549、550、558、559、560、568、569、570、578、579、580、588、589和590。
在一个实施例中,本披露的结合分子包含选自SEQ ID NO:3、4和5(例如SEQ IDNO:3和4、SEQ ID NO:3和5或SEQ ID NO:4和5)的至少一个CDR,诸如包含SEQ ID NO:3(对于CDRH1)、SEQ ID NO:4(对于CDRH2)和SEQ ID NO:5(对于CDRH3)的重链可变区。
在一个实施例中,本披露的结合分子包含选自SEQ ID NO:13、14和15(例如SEQ IDNO:13和14、SEQ ID NO:13和15或SEQ ID NO:14和15)的至少一个CDR,诸如包含SEQ ID NO:13(对于CDRH1)、SEQ ID NO:14(对于CDRH2)和SEQ ID NO:15(对于CDRH3)的重链可变区。
在一个实施例中,本披露的结合分子包含选自SEQ ID NO:23、24和25(例如SEQ IDNO:23和24、SEQ ID NO:23和25或SEQ ID NO:24和25)的至少一个CDR,诸如包含SEQ ID NO:23(对于CDRH1)、SEQ ID NO:24(对于CDRH2)和SEQ ID NO:25(对于CDRH3)的重链可变区。
在一个实施例中,本披露的结合分子包含选自SEQ ID NO:33、34和35(例如SEQ IDNO:33和34、SEQ ID NO:33和35或SEQ ID NO:34和35)的至少一个CDR,诸如包含SEQ ID NO:33(对于CDRH1)、SEQ ID NO:34(对于CDRH2)和SEQ ID NO:35(对于CDRH3)的重链可变区。
在一个实施例中,本披露的结合分子包含选自SEQ ID NO:43、44和45(例如SEQ IDNO:43和44、SEQ ID NO:43和45或SEQ ID NO:44和45)的至少一个CDR,诸如包含SEQ ID NO:43(对于CDRH1)、SEQ ID NO:44(对于CDRH2)和SEQ ID NO:45(对于CDRH3)的重链可变区。
在一个实施例中,本披露的结合分子包含选自SEQ ID NO:53、54和55(例如SEQ IDNO:53和54、SEQ ID NO:53和55或SEQ ID NO:54和55)的至少一个CDR,诸如包含SEQ ID NO:53(对于CDRH1)、SEQ ID NO:54(对于CDRH2)和SEQ ID NO:55(对于CDRH3)的重链可变区。
在一个实施例中,本披露的结合分子包含选自SEQ ID NO:63、64和65(例如SEQ IDNO:63和64、SEQ ID NO:63和65或SEQ ID NO:64和65)的至少一个CDR,诸如包含SEQ ID NO:63(对于CDRH1)、SEQ ID NO:64(对于CDRH2)和SEQ ID NO:65(对于CDRH3)的重链可变区。
在一个实施例中,本披露的结合分子包含选自SEQ ID NO:73、74和75(例如SEQ IDNO:73和74、SEQ ID NO:73和75或SEQ ID NO:74和75)的至少一个CDR,诸如包含SEQ ID NO:73(对于CDRH1)、SEQ ID NO:74(对于CDRH2)和SEQ ID NO:75(对于CDRH3)的重链可变区。
在一个实施例中,本披露的结合分子包含选自SEQ ID NO:83、84和85(例如SEQ IDNO:83和84、SEQ ID NO:83和85或SEQ ID NO:84和85)的至少一个CDR,诸如包含SEQ ID NO:83(对于CDRH1)、SEQ ID NO:84(对于CDRH2)和SEQ ID NO:85(对于CDRH3)的重链可变区。
在一个实施例中,本披露的结合分子包含选自SEQ ID NO:93、94和95(例如SEQ IDNO:93和94、SEQ ID NO:93和95或SEQ ID NO:94和95)的至少一个CDR,诸如包含SEQ ID NO:93(对于CDRH1)、SEQ ID NO:94(对于CDRH2)和SEQ ID NO:95(对于CDRH3)的重链可变区。
在一个实施例中,本披露的结合分子包含选自SEQ ID NO:103、104和105(例如SEQID NO:103和104、SEQ ID NO:103和105或SEQ ID NO:104和105)的至少一个CDR,诸如包含SEQ ID NO:103(对于CDRH1)、SEQ ID NO:104(对于CDRH2)和SEQ ID NO:105(对于CDRH3)的重链可变区。
在一个实施例中,本披露的结合分子包含选自SEQ ID NO:113、114和115(例如SEQID NO:113和114、SEQ ID NO:113和115或SEQ ID NO:114和115)的至少一个CDR,诸如包含SEQ ID NO:113(对于CDRH1)、SEQ ID NO:114(对于CDRH2)和SEQ ID NO:115(对于CDRH3)的重链可变区。
在一个实施例中,本披露的结合分子包含选自SEQ ID NO:123、124和125(例如SEQID NO:123和124、SEQ ID NO:123和125或SEQ ID NO:124和125)的至少一个CDR,诸如包含SEQ ID NO:123(对于CDRH1)、SEQ ID NO:124(对于CDRH2)和SEQ ID NO:125(对于CDRH3)的重链可变区。
在一个实施例中,本披露的结合分子包含选自SEQ ID NO:133、134和135(例如SEQID NO:133和134、SEQ ID NO:133和135或SEQ ID NO:134和135)的至少一个CDR,诸如包含SEQ ID NO:133(对于CDRH1)、SEQ ID NO:134(对于CDRH2)和SEQ ID NO:135(对于CDRH3)的重链可变区。
在一个实施例中,本披露的结合分子包含选自SEQ ID NO:143、144和145(例如SEQID NO:143和144、SEQ ID NO:143和145或SEQ ID NO:144和145)的至少一个CDR,诸如包含SEQ ID NO:143(对于CDRH1)、SEQ ID NO:144(对于CDRH2)和SEQ ID NO:145(对于CDRH3)的重链可变区。
在一个实施例中,本披露的结合分子包含选自SEQ ID NO:153、154和155(例如SEQID NO:153和154、SEQ ID NO:153和155或SEQ ID NO:154和155)的至少一个CDR,诸如包含SEQ ID NO:153(对于CDRH1)、SEQ ID NO:154(对于CDRH2)和SEQ ID NO:155(对于CDRH3)的重链可变区。
在一个实施例中,本披露的结合分子包含选自SEQ ID NO:163、164和165(例如SEQID NO:163和164、SEQ ID NO:163和165或SEQ ID NO:164和165)的至少一个CDR,诸如包含SEQ ID NO:163(对于CDRH1)、SEQ ID NO:164(对于CDRH2)和SEQ ID NO:165(对于CDRH3)的重链可变区。
在一个实施例中,本披露的结合分子包含选自SEQ ID NO:173、174和175(例如SEQID NO:173和174、SEQ ID NO:173和175或SEQ ID NO:174和175)的至少一个CDR,诸如包含SEQ ID NO:173(对于CDRH1)、SEQ ID NO:174(对于CDRH2)和SEQ ID NO:175(对于CDRH3)的重链可变区。
在一个实施例中,本披露的结合分子包含选自SEQ ID NO:183、184和185(例如SEQID NO:183和184、SEQ ID NO:183和185或SEQ ID NO:184和185)的至少一个CDR,诸如包含SEQ ID NO:183(对于CDRH1)、SEQ ID NO:184(对于CDRH2)和SEQ ID NO:185(对于CDRH3)的重链可变区。
在一个实施例中,本披露的结合分子包含选自SEQ ID NO:193、194和195(例如SEQID NO:193和194、SEQ ID NO:193和195或SEQ ID NO:194和195)的至少一个CDR,诸如包含SEQ ID NO:193(对于CDRH1)、SEQ ID NO:194(对于CDRH2)和SEQ ID NO:195(对于CDRH3)的重链可变区。
在一个实施例中,本披露的结合分子包含选自SEQ ID NO:203、204和205(例如SEQID NO:203和204、SEQ ID NO:203和205或SEQ ID NO:204和205)的至少一个CDR,诸如包含SEQ ID NO:203(对于CDRH1)、SEQ ID NO:204(对于CDRH2)和SEQ ID NO:205(对于CDRH3)的重链可变区。
在一个实施例中,本披露的结合分子包含选自SEQ ID NO:213、214和215(例如SEQID NO:213和214、SEQ ID NO:213和215或SEQ ID NO:214和215)的至少一个CDR,诸如包含SEQ ID NO:213(对于CDRH1)、SEQ ID NO:214(对于CDRH2)和SEQ ID NO:215(对于CDRH3)的重链可变区。
在一个实施例中,本披露的结合分子包含选自SEQ ID NO:223、224和225(例如SEQID NO:223和224、SEQ ID NO:223和225或SEQ ID NO:224和225)的至少一个CDR,诸如包含SEQ ID NO:223(对于CDRH1)、SEQ ID NO:224(对于CDRH2)和SEQ ID NO:225(对于CDRH3)的重链可变区。
在一个实施例中,本披露的结合分子包含选自SEQ ID NO:233、234和235(例如SEQID NO:233和234、SEQ ID NO:233和235或SEQ ID NO:234和235)的至少一个CDR,诸如包含SEQ ID NO:233(对于CDRH1)、SEQ ID NO:234(对于CDRH2)和SEQ ID NO:235(对于CDRH3)的重链可变区。
在一个实施例中,本披露的结合分子包含选自SEQ ID NO:243、244和245(例如SEQID NO:243和244、SEQ ID NO:243和245或SEQ ID NO:244和245)的至少一个CDR,诸如包含SEQ ID NO:243(对于CDRH1)、SEQ ID NO:244(对于CDRH2)和SEQ ID NO:245(对于CDRH3)的重链可变区。
在一个实施例中,本披露的结合分子包含选自SEQ ID NO:253、254和255(例如SEQID NO:253和254、SEQ ID NO:253和255或SEQ ID NO:254和255)的至少一个CDR,诸如包含SEQ ID NO:253(对于CDRH1)、SEQ ID NO:254(对于CDRH2)和SEQ ID NO:255(对于CDRH3)的重链可变区。
在一个实施例中,本披露的结合分子包含选自SEQ ID NO:263、264和265(例如SEQID NO:263和264、SEQ ID NO:263和265或SEQ ID NO:264和265)的至少一个CDR,诸如包含SEQ ID NO:263(对于CDRH1)、SEQ ID NO:264(对于CDRH2)和SEQ ID NO:265(对于CDRH3)的重链可变区。
在一个实施例中,本披露的结合分子包含选自SEQ ID NO:273、274和275(例如SEQID NO:273和274、SEQ ID NO:273和275或SEQ ID NO:274和275)的至少一个CDR,诸如包含SEQ ID NO:273(对于CDRH1)、SEQ ID NO:274(对于CDRH2)和SEQ ID NO:275(对于CDRH3)的重链可变区。
在一个实施例中,本披露的结合分子包含选自SEQ ID NO:283、284和285(例如SEQID NO:283和284、SEQ ID NO:283和285或SEQ ID NO:284和285)的至少一个CDR,诸如包含SEQ ID NO:283(对于CDRH1)、SEQ ID NO:284(对于CDRH2)和SEQ ID NO:285(对于CDRH3)的重链可变区。
在一个实施例中,本披露的结合分子包含选自SEQ ID NO:293、294和295(例如SEQID NO:293和294、SEQ ID NO:293和295或SEQ ID NO:294和295)的至少一个CDR,诸如包含SEQ ID NO:293(对于CDRH1)、SEQ ID NO:294(对于CDRH2)和SEQ ID NO:295(对于CDRH3)的重链可变区。
在一个实施例中,本披露的结合分子包含选自SEQ ID NO:303、304和305(例如SEQID NO:303和304、SEQ ID NO:303和305或SEQ ID NO:304和305)的至少一个CDR,诸如包含SEQ ID NO:303(对于CDRH1)、SEQ ID NO:304(对于CDRH2)和SEQ ID NO:305(对于CDRH3)的重链可变区。
在一个实施例中,本披露的结合分子包含选自SEQ ID NO:313、314和315(例如SEQID NO:313和314、SEQ ID NO:313和315或SEQ ID NO:314和315)的至少一个CDR,诸如包含SEQ ID NO:313(对于CDRH1)、SEQ ID NO:314(对于CDRH2)和SEQ ID NO:315(对于CDRH3)的重链可变区。
在一个实施例中,本披露的结合分子包含选自SEQ ID NO:323、324和325(例如SEQID NO:323和324、SEQ ID NO:323和325或SEQ ID NO:324和325)的至少一个CDR,诸如包含SEQ ID NO:323(对于CDRH1)、SEQ ID NO:324(对于CDRH2)和SEQ ID NO:325(对于CDRH3)的重链可变区。
在一个实施例中,本披露的结合分子包含选自SEQ ID NO:333、334和335(例如SEQID NO:333和334、SEQ ID NO:333和335或SEQ ID NO:334和335)的至少一个CDR,诸如包含SEQ ID NO:333(对于CDRH1)、SEQ ID NO:334(对于CDRH2)和SEQ ID NO:335(对于CDRH3)的重链可变区。
在一个实施例中,本披露的结合分子包含选自SEQ ID NO:343、344和345(例如SEQID NO:343和344、SEQ ID NO:343和345或SEQ ID NO:344和345)的至少一个CDR,诸如包含SEQ ID NO:343(对于CDRH1)、SEQ ID NO:344(对于CDRH2)和SEQ ID NO:345(对于CDRH3)的重链可变区。
在一个实施例中,本披露的结合分子包含选自SEQ ID NO:353、354和355(例如SEQID NO:353和354、SEQ ID NO:353和355或SEQ ID NO:354和355)的至少一个CDR,诸如包含SEQ ID NO:353(对于CDRH1)、SEQ ID NO:354(对于CDRH2)和SEQ ID NO:355(对于CDRH3)的重链可变区。
在一个实施例中,本披露的结合分子包含选自SEQ ID NO:363、364和365(例如SEQID NO:363和364、SEQ ID NO:363和365或SEQ ID NO:364和365)的至少一个CDR,诸如包含SEQ ID NO:363(对于CDRH1)、SEQ ID NO:364(对于CDRH2)和SEQ ID NO:365(对于CDRH3)的重链可变区。
在一个实施例中,本披露的结合分子包含选自SEQ ID NO:373、374和375(例如SEQID NO:373和374、SEQ ID NO:373和375或SEQ ID NO:374和375)的至少一个CDR,诸如包含SEQ ID NO:373(对于CDRH1)、SEQ ID NO:374(对于CDRH2)和SEQ ID NO:375(对于CDRH3)的重链可变区。
在一个实施例中,本披露的结合分子包含选自SEQ ID NO:383、384和385(例如SEQID NO:383和384、SEQ ID NO:383和385或SEQ ID NO:384和385)的至少一个CDR,诸如包含SEQ ID NO:383(对于CDRH1)、SEQ ID NO:384(对于CDRH2)和SEQ ID NO:385(对于CDRH3)的重链可变区。
在一个实施例中,本披露的结合分子包含选自SEQ ID NO:393、394和395(例如SEQID NO:393和394、SEQ ID NO:393和395或SEQ ID NO:394和395)的至少一个CDR,诸如包含SEQ ID NO:393(对于CDRH1)、SEQ ID NO:394(对于CDRH2)和SEQ ID NO:395(对于CDRH3)的重链可变区。
在一个实施例中,本披露的结合分子包含选自SEQ ID NO:403、404和405(例如SEQID NO:403和404、SEQ ID NO:403和405或SEQ ID NO:404和405)的至少一个CDR,诸如包含SEQ ID NO:403(对于CDRH1)、SEQ ID NO:404(对于CDRH2)和SEQ ID NO:405(对于CDRH3)的重链可变区。
在一个实施例中,本披露的结合分子包含选自SEQ ID NO:413、414和415(例如SEQID NO:413和414、SEQ ID NO:413和415或SEQ ID NO:414和415)的至少一个CDR,诸如包含SEQ ID NO:413(对于CDRH1)、SEQ ID NO:414(对于CDRH2)和SEQ ID NO:415(对于CDRH3)的重链可变区。
在一个实施例中,本披露的结合分子包含选自SEQ ID NO:423、424和425(例如SEQID NO:423和424、SEQ ID NO:423和425或SEQ ID NO:424和425)的至少一个CDR,诸如包含SEQ ID NO:423(对于CDRH1)、SEQ ID NO:424(对于CDRH2)和SEQ ID NO:425(对于CDRH3)的重链可变区。
在一个实施例中,本披露的结合分子包含选自SEQ ID NO:433、434和435(例如SEQID NO:433和434、SEQ ID NO:433和435或SEQ ID NO:434和435)的至少一个CDR,诸如包含SEQ ID NO:433(对于CDRH1)、SEQ ID NO:434(对于CDRH2)和SEQ ID NO:435(对于CDRH3)的重链可变区。
在一个实施例中,本披露的结合分子包含选自SEQ ID NO:443、444和445(例如SEQID NO:443和444、SEQ ID NO:443和445或SEQ ID NO:444和445)的至少一个CDR,诸如包含SEQ ID NO:443(对于CDRH1)、SEQ ID NO:444(对于CDRH2)和SEQ ID NO:445(对于CDRH3)的重链可变区。
在一个实施例中,本披露的结合分子包含选自SEQ ID NO:453、454和455(例如SEQID NO:453和454、SEQ ID NO:453和455或SEQ ID NO:454和455)的至少一个CDR,诸如包含SEQ ID NO:453(对于CDRH1)、SEQ ID NO:454(对于CDRH2)和SEQ ID NO:455(对于CDRH3)的重链可变区。
在一个实施例中,本披露的结合分子包含选自SEQ ID NO:463、464和465(例如SEQID NO:463和464、SEQ ID NO:463和465或SEQ ID NO:464和465)的至少一个CDR,诸如包含SEQ ID NO:463(对于CDRH1)、SEQ ID NO:464(对于CDRH2)和SEQ ID NO:465(对于CDRH3)的重链可变区。
在一个实施例中,本披露的结合分子包含选自SEQ ID NO:473、474和475(例如SEQID NO:473和474、SEQ ID NO:473和475或SEQ ID NO:474和475)的至少一个CDR,诸如包含SEQ ID NO:473(对于CDRH1)、SEQ ID NO:474(对于CDRH2)和SEQ ID NO:475(对于CDRH3)的重链可变区。
在一个实施例中,本披露的结合分子包含选自SEQ ID NO:483、484和485(例如SEQID NO:483和484、SEQ ID NO:483和485或SEQ ID NO:484和485)的至少一个CDR,诸如包含SEQ ID NO:483(对于CDRH1)、SEQ ID NO:484(对于CDRH2)和SEQ ID NO:485(对于CDRH3)的重链可变区。
在一个实施例中,本披露的结合分子包含选自SEQ ID NO:493、494和495(例如SEQID NO:493和494、SEQ ID NO:493和495或SEQ ID NO:494和495)的至少一个CDR,诸如包含SEQ ID NO:493(对于CDRH1)、SEQ ID NO:494(对于CDRH2)和SEQ ID NO:495(对于CDRH3)的重链可变区。
在一个实施例中,本披露的结合分子包含选自SEQ ID NO:503、504和505(例如SEQID NO:503和504、SEQ ID NO:503和505或SEQ ID NO:504和505)的至少一个CDR,诸如包含SEQ ID NO:503(对于CDRH1)、SEQ ID NO:504(对于CDRH2)和SEQ ID NO:505(对于CDRH3)的重链可变区。
在一个实施例中,本披露的结合分子包含选自SEQ ID NO:513、514和515(例如SEQID NO:513和514、SEQ ID NO:513和515或SEQ ID NO:514和515)的至少一个CDR,诸如包含SEQ ID NO:513(对于CDRH1)、SEQ ID NO:514(对于CDRH2)和SEQ ID NO:515(对于CDRH3)的重链可变区。
在一个实施例中,本披露的结合分子包含选自SEQ ID NO:523、524和525(例如SEQID NO:523和524、SEQ ID NO:523和525或SEQ ID NO:524和525)的至少一个CDR,诸如包含SEQ ID NO:523(对于CDRH1)、SEQ ID NO:524(对于CDRH2)和SEQ ID NO:525(对于CDRH3)的重链可变区。
在一个实施例中,本披露的结合分子包含选自SEQ ID NO:533、534和535(例如SEQID NO:533和534、SEQ ID NO:533和535或SEQ ID NO:534和535)的至少一个CDR,诸如包含SEQ ID NO:533(对于CDRH1)、SEQ ID NO:534(对于CDRH2)和SEQ ID NO:535(对于CDRH3)的重链可变区。
在一个实施例中,本披露的结合分子包含选自SEQ ID NO:543、544和545(例如SEQID NO:543和544、SEQ ID NO:543和545或SEQ ID NO:544和545)的至少一个CDR,诸如包含SEQ ID NO:543(对于CDRH1)、SEQ ID NO:544(对于CDRH2)和SEQ ID NO:545(对于CDRH3)的重链可变区。
在一个实施例中,本披露的结合分子包含选自SEQ ID NO:553、554和555(例如SEQID NO:553和554、SEQ ID NO:553和555或SEQ ID NO:554和555)的至少一个CDR,诸如包含SEQ ID NO:553(对于CDRH1)、SEQ ID NO:554(对于CDRH2)和SEQ ID NO:555(对于CDRH3)的重链可变区。
在一个实施例中,本披露的结合分子包含选自SEQ ID NO:563、564和565(例如SEQID NO:563和564、SEQ ID NO:563和565或SEQ ID NO:564和565)的至少一个CDR,诸如包含SEQ ID NO:563(对于CDRH1)、SEQ ID NO:564(对于CDRH2)和SEQ ID NO:565(对于CDRH3)的重链可变区。
在一个实施例中,本披露的结合分子包含选自SEQ ID NO:573、574和575(例如SEQID NO:573和574、SEQ ID NO:573和575或SEQ ID NO:574和575)的至少一个CDR,诸如包含SEQ ID NO:573(对于CDRH1)、SEQ ID NO:574(对于CDRH2)和SEQ ID NO:575(对于CDRH3)的重链可变区。
在一个实施例中,本披露的结合分子包含选自SEQ ID NO:583、584和585(例如SEQID NO:583和584、SEQ ID NO:583和585或SEQ ID NO:584和585)的至少一个CDR,诸如包含SEQ ID NO:583(对于CDRH1)、SEQ ID NO:584(对于CDRH2)和SEQ ID NO:585(对于CDRH3)的重链可变区。
在一个实施例中,本披露的结合分子包含选自SEQ ID NO:8、9和10(例如SEQ IDNO:8和9、SEQ ID NO:8和10或SEQ ID NO:9和10)的至少一个CDR,诸如包含SEQ ID NO:8(对于CDRL1)、SEQ ID NO:9(对于CDRL2)和SEQ ID NO:10(对于CDRL3)的轻链可变区。
在一个实施例中,本披露的结合分子包含选自SEQ ID NO:18、19和20(例如SEQ IDNO:18和19、SEQ ID NO:18和20或SEQ ID NO:19和20)的至少一个CDR,诸如包含SEQ ID NO:18(对于CDRL1)、SEQ ID NO:19(对于CDRL2)和SEQ ID NO:20(对于CDRL3)的轻链可变区。
在一个实施例中,本披露的结合分子包含选自SEQ ID NO:28、29和30(例如SEQ IDNO:28和29、SEQ ID NO:28和30或SEQ ID NO:29和30)的至少一个CDR,诸如包含SEQ ID NO:28(对于CDRL1)、SEQ ID NO:29(对于CDRL2)和SEQ ID NO:30(对于CDRL3)的轻链可变区。
在一个实施例中,本披露的结合分子包含选自SEQ ID NO:38、39和40(例如SEQ IDNO:38和39、SEQ ID NO:38和40或SEQ ID NO:39和40)的至少一个CDR,诸如包含SEQ ID NO:38(对于CDRL1)、SEQ ID NO:39(对于CDRL2)和SEQ ID NO:40(对于CDRL3)的轻链可变区。
在一个实施例中,本披露的结合分子包含选自SEQ ID NO:48、49和50(例如SEQ IDNO:48和49、SEQ ID NO:48和50或SEQ ID NO:49和50)的至少一个CDR,诸如包含SEQ ID NO:48(对于CDRL1)、SEQ ID NO:49(对于CDRL2)和SEQ ID NO:50(对于CDRL3)的轻链可变区。
在一个实施例中,本披露的结合分子包含选自SEQ ID NO:58、59和60(例如SEQ IDNO:58和59、SEQ ID NO:58和60或SEQ ID NO:59和60)的至少一个CDR,诸如包含SEQ ID NO:58(对于CDRL1)、SEQ ID NO:59(对于CDRL2)和SEQ ID NO:60(对于CDRL3)的轻链可变区。
在一个实施例中,本披露的结合分子包含选自SEQ ID NO:68、69和70(例如SEQ IDNO:68和69、SEQ ID NO:68和70或SEQ ID NO:69和70)的至少一个CDR,诸如包含SEQ ID NO:68(对于CDRL1)、SEQ ID NO:69(对于CDRL2)和SEQ ID NO:70(对于CDRL3)的轻链可变区。
在一个实施例中,本披露的结合分子包含选自SEQ ID NO:78、79和80(例如SEQ IDNO:78和79、SEQ ID NO:78和80或SEQ ID NO:79和80)的至少一个CDR,诸如包含SEQ ID NO:78(对于CDRL1)、SEQ ID NO:79(对于CDRL2)和SEQ ID NO:80(对于CDRL3)的轻链可变区。
在一个实施例中,本披露的结合分子包含选自SEQ ID NO:88、89和90(例如SEQ IDNO:88和89、SEQ ID NO:88和90或SEQ ID NO:89和90)的至少一个CDR,诸如包含SEQ ID NO:88(对于CDRL1)、SEQ ID NO:89(对于CDRL2)和SEQ ID NO:90(对于CDRL3)的轻链可变区。
在一个实施例中,本披露的结合分子包含选自SEQ ID NO:98、99和100(例如SEQID NO:98和99、SEQ ID NO:98和100或SEQ ID NO:99和100)的至少一个CDR,诸如包含SEQID NO:98(对于CDRL1)、SEQ ID NO:99(对于CDRL2)和SEQ ID NO:100(对于CDRL3)的轻链可变区。
在一个实施例中,本披露的结合分子包含选自SEQ ID NO:108、109和110(例如SEQID NO:108和109、SEQ ID NO:108和110或SEQ ID NO:109和110)的至少一个CDR,诸如包含SEQ ID NO:108(对于CDRL1)、SEQ ID NO:109(对于CDRL2)和SEQ ID NO:110(对于CDRL3)的轻链可变区。
在一个实施例中,本披露的结合分子包含选自SEQ ID NO:118、119和120(例如SEQID NO:118和119、SEQ ID NO:118和120或SEQ ID NO:119和120)的至少一个CDR,诸如包含SEQ ID NO:118(对于CDRL1)、SEQ ID NO:119(对于CDRL2)和SEQ ID NO:120(对于CDRL3)的轻链可变区。
在一个实施例中,本披露的结合分子包含选自SEQ ID NO:128、129和130(例如SEQID NO:128和129、SEQ ID NO:128和130或SEQ ID NO:129和130)的至少一个CDR,诸如包含SEQ ID NO:128(对于CDRL1)、SEQ ID NO:129(对于CDRL2)和SEQ ID NO:130(对于CDRL3)的轻链可变区。
在一个实施例中,本披露的结合分子包含选自SEQ ID NO:138、139和140(例如SEQID NO:138和139、SEQ ID NO:138和140或SEQ ID NO:139和140)的至少一个CDR,诸如包含SEQ ID NO:138(对于CDRL1)、SEQ ID NO:139(对于CDRL2)和SEQ ID NO:140(对于CDRL3)的轻链可变区。
在一个实施例中,本披露的结合分子包含选自SEQ ID NO:148、149和150(例如SEQID NO:148和149、SEQ ID NO:148和150或SEQ ID NO:149和150)的至少一个CDR,诸如包含SEQ ID NO:148(对于CDRL1)、SEQ ID NO:149(对于CDRL2)和SEQ ID NO:150(对于CDRL3)的轻链可变区。
在一个实施例中,本披露的结合分子包含选自SEQ ID NO:158、159和160(例如SEQID NO:158和159、SEQ ID NO:158和160或SEQ ID NO:159和160)的至少一个CDR,诸如包含SEQ ID NO:158(对于CDRL1)、SEQ ID NO:159(对于CDRL2)和SEQ ID NO:160(对于CDRL3)的轻链可变区。
在一个实施例中,本披露的结合分子包含选自SEQ ID NO:168、169和170(例如SEQID NO:168和169、SEQ ID NO:168和170或SEQ ID NO:169和170)的至少一个CDR,诸如包含SEQ ID NO:168(对于CDRL1)、SEQ ID NO:169(对于CDRL2)和SEQ ID NO:170(对于CDRL3)的轻链可变区。
在一个实施例中,本披露的结合分子包含选自SEQ ID NO:178、179和180(例如SEQID NO:178和179、SEQ ID NO:178和180或SEQ ID NO:179和180)的至少一个CDR,诸如包含SEQ ID NO:178(对于CDRL1)、SEQ ID NO:179(对于CDRL2)和SEQ ID NO:180(对于CDRL3)的轻链可变区。
在一个实施例中,本披露的结合分子包含选自SEQ ID NO:188、189和190(例如SEQID NO:188和189、SEQ ID NO:188和190或SEQ ID NO:189和190)的至少一个CDR,诸如包含SEQ ID NO:188(对于CDRL1)、SEQ ID NO:189(对于CDRL2)和SEQ ID NO:190(对于CDRL3)的轻链可变区。
在一个实施例中,本披露的结合分子包含选自SEQ ID NO:198、199和200(例如SEQID NO:198和199、SEQ ID NO:198和200或SEQ ID NO:199和200)的至少一个CDR,诸如包含SEQ ID NO:198(对于CDRL1)、SEQ ID NO:199(对于CDRL2)和SEQ ID NO:200(对于CDRL3)的轻链可变区。
在一个实施例中,本披露的结合分子包含选自SEQ ID NO:208、209和210(例如SEQID NO:208和209、SEQ ID NO:208和210或SEQ ID NO:209和210)的至少一个CDR,诸如包含SEQ ID NO:208(对于CDRL1)、SEQ ID NO:209(对于CDRL2)和SEQ ID NO:210(对于CDRL3)的轻链可变区。
在一个实施例中,本披露的结合分子包含选自SEQ ID NO:218、219和220(例如SEQID NO:218和219、SEQ ID NO:218和220或SEQ ID NO:219和220)的至少一个CDR,诸如包含SEQ ID NO:218(对于CDRL1)、SEQ ID NO:219(对于CDRL2)和SEQ ID NO:220(对于CDRL3)的轻链可变区。
在一个实施例中,本披露的结合分子包含选自SEQ ID NO:228、229和230(例如SEQID NO:228和229、SEQ ID NO:228和230或SEQ ID NO:229和230)的至少一个CDR,诸如包含SEQ ID NO:228(对于CDRL1)、SEQ ID NO:229(对于CDRL2)和SEQ ID NO:230(对于CDRL3)的轻链可变区。
在一个实施例中,本披露的结合分子包含选自SEQ ID NO:238、239和240(例如SEQID NO:238和239、SEQ ID NO:238和240或SEQ ID NO:239和240)的至少一个CDR,诸如包含SEQ ID NO:238(对于CDRL1)、SEQ ID NO:239(对于CDRL2)和SEQ ID NO:240(对于CDRL3)的轻链可变区。
在一个实施例中,本披露的结合分子包含选自SEQ ID NO:248、249和250(例如SEQID NO:248和249、SEQ ID NO:248和250或SEQ ID NO:249和250)的至少一个CDR,诸如包含SEQ ID NO:248(对于CDRL1)、SEQ ID NO:249(对于CDRL2)和SEQ ID NO:250(对于CDRL3)的轻链可变区。
在一个实施例中,本披露的结合分子包含选自SEQ ID NO:258、259和260(例如SEQID NO:258和259、SEQ ID NO:258和260或SEQ ID NO:259和260)的至少一个CDR,诸如包含SEQ ID NO:258(对于CDRL1)、SEQ ID NO:259(对于CDRL2)和SEQ ID NO:260(对于CDRL3)的轻链可变区。
在一个实施例中,本披露的结合分子包含选自SEQ ID NO:268、269和270(例如SEQID NO:268和269、SEQ ID NO:268和270或SEQ ID NO:269和270)的至少一个CDR,诸如包含SEQ ID NO:268(对于CDRL1)、SEQ ID NO:269(对于CDRL2)和SEQ ID NO:270(对于CDRL3)的轻链可变区。
在一个实施例中,本披露的结合分子包含选自SEQ ID NO:278、279和280(例如SEQID NO:278和279、SEQ ID NO:278和280或SEQ ID NO:279和280)的至少一个CDR,诸如包含SEQ ID NO:278(对于CDRL1)、SEQ ID NO:279(对于CDRL2)和SEQ ID NO:280(对于CDRL3)的轻链可变区。
在一个实施例中,本披露的结合分子包含选自SEQ ID NO:288、289和290(例如SEQID NO:288和289、SEQ ID NO:288和290或SEQ ID NO:289和290)的至少一个CDR,诸如包含SEQ ID NO:288(对于CDRL1)、SEQ ID NO:289(对于CDRL2)和SEQ ID NO:290(对于CDRL3)的轻链可变区。
在一个实施例中,本披露的结合分子包含选自SEQ ID NO:298、299和300(例如SEQID NO:298和299、SEQ ID NO:298和300或SEQ ID NO:299和300)的至少一个CDR,诸如包含SEQ ID NO:298(对于CDRL1)、SEQ ID NO:299(对于CDRL2)和SEQ ID NO:300(对于CDRL3)的轻链可变区。
在一个实施例中,本披露的结合分子包含选自SEQ ID NO:308、309和310(例如SEQID NO:308和309、SEQ ID NO:308和310或SEQ ID NO:309和310)的至少一个CDR,诸如包含SEQ ID NO:308(对于CDRL1)、SEQ ID NO:309(对于CDRL2)和SEQ ID NO:310(对于CDRL3)的轻链可变区。
在一个实施例中,本披露的结合分子包含选自SEQ ID NO:318、319和320(例如SEQID NO:318和319、SEQ ID NO:318和320或SEQ ID NO:319和320)的至少一个CDR,诸如包含SEQ ID NO:318(对于CDRL1)、SEQ ID NO:319(对于CDRL2)和SEQ ID NO:320(对于CDRL3)的轻链可变区。
在一个实施例中,本披露的结合分子包含选自SEQ ID NO:328、329和330(例如SEQID NO:328和329、SEQ ID NO:328和330或SEQ ID NO:329和330)的至少一个CDR,诸如包含SEQ ID NO:328(对于CDRL1)、SEQ ID NO:329(对于CDRL2)和SEQ ID NO:330(对于CDRL3)的轻链可变区。
在一个实施例中,本披露的结合分子包含选自SEQ ID NO:338、339和340(例如SEQID NO:338和339、SEQ ID NO:338和340或SEQ ID NO:339和340)的至少一个CDR,诸如包含SEQ ID NO:338(对于CDRL1)、SEQ ID NO:339(对于CDRL2)和SEQ ID NO:340(对于CDRL3)的轻链可变区。
在一个实施例中,本披露的结合分子包含选自SEQ ID NO:348、349和350(例如SEQID NO:348和349、SEQ ID NO:348和350或SEQ ID NO:349和350)的至少一个CDR,诸如包含SEQ ID NO:348(对于CDRL1)、SEQ ID NO:349(对于CDRL2)和SEQ ID NO:350(对于CDRL3)的轻链可变区。
在一个实施例中,本披露的结合分子包含选自SEQ ID NO:358、359和360(例如SEQID NO:358和359、SEQ ID NO:358和360或SEQ ID NO:359和360)的至少一个CDR,诸如包含SEQ ID NO:358(对于CDRL1)、SEQ ID NO:359(对于CDRL2)和SEQ ID NO:360(对于CDRL3)的轻链可变区。
在一个实施例中,本披露的结合分子包含选自SEQ ID NO:368、369和370(例如SEQID NO:368和369、SEQ ID NO:368和370或SEQ ID NO:369和370)的至少一个CDR,诸如包含SEQ ID NO:368(对于CDRL1)、SEQ ID NO:369(对于CDRL2)和SEQ ID NO:370(对于CDRL3)的轻链可变区。
在一个实施例中,本披露的结合分子包含选自SEQ ID NO:378、379和380(例如SEQID NO:378和379、SEQ ID NO:378和380或SEQ ID NO:379和380)的至少一个CDR,诸如包含SEQ ID NO:378(对于CDRL1)、SEQ ID NO:379(对于CDRL2)和SEQ ID NO:380(对于CDRL3)的轻链可变区。
在一个实施例中,本披露的结合分子包含选自SEQ ID NO:388、389和390(例如SEQID NO:388和389、SEQ ID NO:388和390或SEQ ID NO:389和390)的至少一个CDR,诸如包含SEQ ID NO:388(对于CDRL1)、SEQ ID NO:389(对于CDRL2)和SEQ ID NO:390(对于CDRL3)的轻链可变区。
在一个实施例中,本披露的结合分子包含选自SEQ ID NO:398、399和400(例如SEQID NO:398和399、SEQ ID NO:398和400或SEQ ID NO:399和400)的至少一个CDR,诸如包含SEQ ID NO:398(对于CDRL1)、SEQ ID NO:399(对于CDRL2)和SEQ ID NO:400(对于CDRL3)的轻链可变区。
在一个实施例中,本披露的结合分子包含选自SEQ ID NO:408、409和410(例如SEQID NO:408和409、SEQ ID NO:408和410或SEQ ID NO:409和410)的至少一个CDR,诸如包含SEQ ID NO:408(对于CDRL1)、SEQ ID NO:409(对于CDRL2)和SEQ ID NO:410(对于CDRL3)的轻链可变区。
在一个实施例中,本披露的结合分子包含选自SEQ ID NO:418、419和420(例如SEQID NO:418和419、SEQ ID NO:418和420或SEQ ID NO:419和420)的至少一个CDR,诸如包含SEQ ID NO:418(对于CDRL1)、SEQ ID NO:419(对于CDRL2)和SEQ ID NO:420(对于CDRL3)的轻链可变区。
在一个实施例中,本披露的结合分子包含选自SEQ ID NO:428、429和430(例如SEQID NO:428和429、SEQ ID NO:428和430或SEQ ID NO:429和430)的至少一个CDR,诸如包含SEQ ID NO:428(对于CDRL1)、SEQ ID NO:429(对于CDRL2)和SEQ ID NO:430(对于CDRL3)的轻链可变区。
在一个实施例中,本披露的结合分子包含选自SEQ ID NO:438、439和440(例如SEQID NO:438和439、SEQ ID NO:438和440或SEQ ID NO:439和440)的至少一个CDR,诸如包含SEQ ID NO:438(对于CDRL1)、SEQ ID NO:439(对于CDRL2)和SEQ ID NO:440(对于CDRL3)的轻链可变区。
在一个实施例中,本披露的结合分子包含选自SEQ ID NO:448、449和450(例如SEQID NO:448和449、SEQ ID NO:448和450或SEQ ID NO:449和450)的至少一个CDR,诸如包含SEQ ID NO:448(对于CDRL1)、SEQ ID NO:449(对于CDRL2)和SEQ ID NO:450(对于CDRL3)的轻链可变区。
在一个实施例中,本披露的结合分子包含选自SEQ ID NO:458、459和460(例如SEQID NO:458和459、SEQ ID NO:458和460或SEQ ID NO:459和460)的至少一个CDR,诸如包含SEQ ID NO:458(对于CDRL1)、SEQ ID NO:459(对于CDRL2)和SEQ ID NO:460(对于CDRL3)的轻链可变区。
在一个实施例中,本披露的结合分子包含选自SEQ ID NO:468、469和470(例如SEQID NO:468和469、SEQ ID NO:468和470或SEQ ID NO:469和470)的至少一个CDR,诸如包含SEQ ID NO:468(对于CDRL1)、SEQ ID NO:469(对于CDRL2)和SEQ ID NO:470(对于CDRL3)的轻链可变区。
在一个实施例中,本披露的结合分子包含选自SEQ ID NO:478、479和480(例如SEQID NO:478和479、SEQ ID NO:478和480或SEQ ID NO:479和480)的至少一个CDR,诸如包含SEQ ID NO:478(对于CDRL1)、SEQ ID NO:479(对于CDRL2)和SEQ ID NO:480(对于CDRL3)的轻链可变区。
在一个实施例中,本披露的结合分子包含选自SEQ ID NO:488、489和490(例如SEQID NO:488和489、SEQ ID NO:488和490或SEQ ID NO:489和490)的至少一个CDR,诸如包含SEQ ID NO:488(对于CDRL1)、SEQ ID NO:489(对于CDRL2)和SEQ ID NO:490(对于CDRL3)的轻链可变区。
在一个实施例中,本披露的结合分子包含选自SEQ ID NO:498、499和500(例如SEQID NO:498和499、SEQ ID NO:498和500或SEQ ID NO:499和500)的至少一个CDR,诸如包含SEQ ID NO:498(对于CDRL1)、SEQ ID NO:499(对于CDRL2)和SEQ ID NO:500(对于CDRL3)的轻链可变区。
在一个实施例中,本披露的结合分子包含选自SEQ ID NO:508、509和510(例如SEQID NO:508和509、SEQ ID NO:508和510或SEQ ID NO:509和510)的至少一个CDR,诸如包含SEQ ID NO:508(对于CDRL1)、SEQ ID NO:509(对于CDRL2)和SEQ ID NO:510(对于CDRL3)的轻链可变区。
在一个实施例中,本披露的结合分子包含选自SEQ ID NO:518、519和520(例如SEQID NO:518和519、SEQ ID NO:518和520或SEQ ID NO:519和520)的至少一个CDR,诸如包含SEQ ID NO:518(对于CDRL1)、SEQ ID NO:519(对于CDRL2)和SEQ ID NO:520(对于CDRL3)的轻链可变区。
在一个实施例中,本披露的结合分子包含选自SEQ ID NO:528、529和530(例如SEQID NO:528和529、SEQ ID NO:528和530或SEQ ID NO:529和530)的至少一个CDR,诸如包含SEQ ID NO:528(对于CDRL1)、SEQ ID NO:529(对于CDRL2)和SEQ ID NO:530(对于CDRL3)的轻链可变区。
在一个实施例中,本披露的结合分子包含选自SEQ ID NO:538、539和540(例如SEQID NO:538和539、SEQ ID NO:538和540或SEQ ID NO:539和540)的至少一个CDR,诸如包含SEQ ID NO:538(对于CDRL1)、SEQ ID NO:539(对于CDRL2)和SEQ ID NO:540(对于CDRL3)的轻链可变区。
在一个实施例中,本披露的结合分子包含选自SEQ ID NO:548、549和550(例如SEQID NO:548和549、SEQ ID NO:548和550或SEQ ID NO:549和550)的至少一个CDR,诸如包含SEQ ID NO:548(对于CDRL1)、SEQ ID NO:549(对于CDRL2)和SEQ ID NO:550(对于CDRL3)的轻链可变区。
在一个实施例中,本披露的结合分子包含选自SEQ ID NO:558、559和560(例如SEQID NO:558和559、SEQ ID NO:558和560或SEQ ID NO:559和560)的至少一个CDR,诸如包含SEQ ID NO:558(对于CDRL1)、SEQ ID NO:559(对于CDRL2)和SEQ ID NO:560(对于CDRL3)的轻链可变区。
在一个实施例中,本披露的结合分子包含选自SEQ ID NO:568、569和570(例如SEQID NO:568和569、SEQ ID NO:568和570或SEQ ID NO:569和570)的至少一个CDR,诸如包含SEQ ID NO:568(对于CDRL1)、SEQ ID NO:569(对于CDRL2)和SEQ ID NO:570(对于CDRL3)的轻链可变区。
在一个实施例中,本披露的结合分子包含选自SEQ ID NO:578、579和580(例如SEQID NO:578和579、SEQ ID NO:578和580或SEQ ID NO:579和580)的至少一个CDR,诸如包含SEQ ID NO:578(对于CDRL1)、SEQ ID NO:579(对于CDRL2)和SEQ ID NO:580(对于CDRL3)的轻链可变区。
在一个实施例中,本披露的结合分子包含选自SEQ ID NO:588、589和590(例如SEQID NO:588和589、SEQ ID NO:588和590或SEQ ID NO:589和590)的至少一个CDR,诸如包含SEQ ID NO:588(对于CDRL1)、SEQ ID NO:589(对于CDRL2)和SEQ ID NO:590(对于CDRL3)的轻链可变区。
在一个实施例中,本披露的结合分子包含有包含SEQ ID NO:103(对于CDRH1)、SEQID NO:104(对于CDRH2)和SEQ ID NO:105(对于CDRH3)的重链可变区,以及轻链可变区中独立地选自SEQ ID NO:108、109和120的至少一个CDR,尤其是包含SEQ ID NO:108(对于CDRL1)、SEQ ID NO:109(对于CDRL2)和SEQ ID NO:120(对于CDRL3)的轻链可变区。
在一个实施例中,本披露的结合分子包含有包含SEQ ID NO:113(对于CDRH1)、SEQID NO:114(对于CDRH2)和SEQ ID NO:115(对于CDRH3)的重链可变区,以及轻链可变区中独立地选自SEQ ID NO:118、119和120的至少一个CDR,尤其是包含SEQ ID NO:118(对于CDRL1)、SEQ ID NO:119(对于CDRL2)和SEQ ID NO:120(对于CDRL3)的轻链可变区。
在一个实施例中,本披露的结合分子包含有包含SEQ ID NO:123(对于CDRH1)、SEQID NO:124(对于CDRH2)和SEQ ID NO:125(对于CDRH3)的重链可变区,以及轻链可变区中独立地选自SEQ ID NO:128、129和130的至少一个CDR,尤其是包含SEQ ID NO:128(对于CDRL1)、SEQ ID NO:129(对于CDRL2)和SEQ ID NO:130(对于CDRL3)的轻链可变区。
在一个实施例中,本披露的结合分子包含有包含SEQ ID NO:133(对于CDRH1)、SEQID NO:134(对于CDRH2)和SEQ ID NO:135(对于CDRH3)的重链可变区,以及轻链可变区中独立地选自SEQ ID NO:138、139和140的至少一个CDR,尤其是包含SEQ ID NO:138(对于CDRL1)、SEQ ID NO:139(对于CDRL2)和SEQ ID NO:140(对于CDRL3)的轻链可变区。
在一个实施例中,本披露的结合分子包含有包含SEQ ID NO:143(对于CDRH1)、SEQID NO:144(对于CDRH2)和SEQ ID NO:145(对于CDRH3)的重链可变区,以及轻链可变区中独立地选自SEQ ID NO:148、149和150的至少一个CDR,尤其是包含SEQ ID NO:148(对于CDRL1)、SEQ ID NO:149(对于CDRL2)和SEQ ID NO:150(对于CDRL3)的轻链可变区。
在一个实施例中,本披露的结合分子包含有包含SEQ ID NO:153(对于CDRH1)、SEQID NO:154(对于CDRH2)和SEQ ID NO:155(对于CDRH3)的重链可变区,以及轻链可变区中独立地选自SEQ ID NO:158、159和160的至少一个CDR,尤其是包含SEQ ID NO:158(对于CDRL1)、SEQ ID NO:159(对于CDRL2)和SEQ ID NO:160(对于CDRL3)的轻链可变区。
在一个实施例中,本披露的结合分子包含有包含SEQ ID NO:163(对于CDRH1)、SEQID NO:164(对于CDRH2)和SEQ ID NO:165(对于CDRH3)的重链可变区,以及轻链可变区中独立地选自SEQ ID NO:168、169和170的至少一个CDR,尤其是包含SEQ ID NO:168(对于CDRL1)、SEQ ID NO:169(对于CDRL2)和SEQ ID NO:170(对于CDRL3)的轻链可变区。
在一个实施例中,本披露的结合分子包含有包含SEQ ID NO:173(对于CDRH1)、SEQID NO:174(对于CDRH2)和SEQ ID NO:175(对于CDRH3)的重链可变区,以及轻链可变区中独立地选自SEQ ID NO:178、179和180的至少一个CDR,尤其是包含SEQ ID NO:178(对于CDRL1)、SEQ ID NO:179(对于CDRL2)和SEQ ID NO:180(对于CDRL3)的轻链可变区。
在一个实施例中,本披露的结合分子包含有包含SEQ ID NO:183(对于CDRH1)、SEQID NO:184(对于CDRH2)和SEQ ID NO:185(对于CDRH3)的重链可变区,以及轻链可变区中独立地选自SEQ ID NO:188、189和190的至少一个CDR,尤其是包含SEQ ID NO:188(对于CDRL1)、SEQ ID NO:189(对于CDRL2)和SEQ ID NO:190(对于CDRL3)的轻链可变区。
在一个实施例中,本披露的结合分子包含有包含SEQ ID NO:193(对于CDRH1)、SEQID NO:194(对于CDRH2)和SEQ ID NO:195(对于CDRH3)的重链可变区,以及轻链可变区中独立地选自SEQ ID NO:198、199和200的至少一个CDR,尤其是包含SEQ ID NO:198(对于CDRL1)、SEQ ID NO:199(对于CDRL2)和SEQ ID NO:200(对于CDRL3)的轻链可变区。
在一个实施例中,本披露的结合分子包含有包含SEQ ID NO:203(对于CDRH1)、SEQID NO:204(对于CDRH2)和SEQ ID NO:205(对于CDRH3)的重链可变区,以及轻链可变区中独立地选自SEQ ID NO:208、209和220的至少一个CDR,尤其是包含SEQ ID NO:208(对于CDRL1)、SEQ ID NO:209(对于CDRL2)和SEQ ID NO:220(对于CDRL3)的轻链可变区。
在一个实施例中,本披露的结合分子包含有包含SEQ ID NO:213(对于CDRH1)、SEQID NO:214(对于CDRH2)和SEQ ID NO:215(对于CDRH3)的重链可变区,以及轻链可变区中独立地选自SEQ ID NO:218、219和220的至少一个CDR,尤其是包含SEQ ID NO:218(对于CDRL1)、SEQ ID NO:219(对于CDRL2)和SEQ ID NO:220(对于CDRL3)的轻链可变区。
在一个实施例中,本披露的结合分子包含有包含SEQ ID NO:223(对于CDRH1)、SEQID NO:224(对于CDRH2)和SEQ ID NO:225(对于CDRH3)的重链可变区,以及轻链可变区中独立地选自SEQ ID NO:228、229和230的至少一个CDR,尤其是包含SEQ ID NO:228(对于CDRL1)、SEQ ID NO:229(对于CDRL2)和SEQ ID NO:230(对于CDRL3)的轻链可变区。
在一个实施例中,本披露的结合分子包含有包含SEQ ID NO:233(对于CDRH1)、SEQID NO:234(对于CDRH2)和SEQ ID NO:235(对于CDRH3)的重链可变区,以及轻链可变区中独立地选自SEQ ID NO:238、239和240的至少一个CDR,尤其是包含SEQ ID NO:238(对于CDRL1)、SEQ ID NO:239(对于CDRL2)和SEQ ID NO:240(对于CDRL3)的轻链可变区。
在一个实施例中,本披露的结合分子包含有包含SEQ ID NO:243(对于CDRH1)、SEQID NO:244(对于CDRH2)和SEQ ID NO:245(对于CDRH3)的重链可变区,以及轻链可变区中独立地选自SEQ ID NO:248、249和250的至少一个CDR,尤其是包含SEQ ID NO:248(对于CDRL1)、SEQ ID NO:249(对于CDRL2)和SEQ ID NO:250(对于CDRL3)的轻链可变区。
在一个实施例中,本披露的结合分子包含有包含SEQ ID NO:253(对于CDRH1)、SEQID NO:254(对于CDRH2)和SEQ ID NO:255(对于CDRH3)的重链可变区,以及轻链可变区中独立地选自SEQ ID NO:258、259和260的至少一个CDR,尤其是包含SEQ ID NO:258(对于CDRL1)、SEQ ID NO:259(对于CDRL2)和SEQ ID NO:260(对于CDRL3)的轻链可变区。
在一个实施例中,本披露的结合分子包含有包含SEQ ID NO:263(对于CDRH1)、SEQID NO:264(对于CDRH2)和SEQ ID NO:265(对于CDRH3)的重链可变区,以及轻链可变区中独立地选自SEQ ID NO:268、269和270的至少一个CDR,尤其是包含SEQ ID NO:268(对于CDRL1)、SEQ ID NO:269(对于CDRL2)和SEQ ID NO:270(对于CDRL3)的轻链可变区。
在一个实施例中,本披露的结合分子包含有包含SEQ ID NO:273(对于CDRH1)、SEQID NO:274(对于CDRH2)和SEQ ID NO:275(对于CDRH3)的重链可变区,以及轻链可变区中独立地选自SEQ ID NO:278、279和280的至少一个CDR,尤其是包含SEQ ID NO:278(对于CDRL1)、SEQ ID NO:279(对于CDRL2)和SEQ ID NO:280(对于CDRL3)的轻链可变区。
在一个实施例中,本披露的结合分子包含有包含SEQ ID NO:283(对于CDRH1)、SEQID NO:284(对于CDRH2)和SEQ ID NO:285(对于CDRH3)的重链可变区,以及轻链可变区中独立地选自SEQ ID NO:288、289和290的至少一个CDR,尤其是包含SEQ ID NO:288(对于CDRL1)、SEQ ID NO:289(对于CDRL2)和SEQ ID NO:290(对于CDRL3)的轻链可变区。
在一个实施例中,本披露的结合分子包含有包含SEQ ID NO:293(对于CDRH1)、SEQID NO:294(对于CDRH2)和SEQ ID NO:295(对于CDRH3)的重链可变区,以及轻链可变区中独立地选自SEQ ID NO:298、299和300的至少一个CDR,尤其是包含SEQ ID NO:298(对于CDRL1)、SEQ ID NO:299(对于CDRL2)和SEQ ID NO:300(对于CDRL3)的轻链可变区。
在一个实施例中,本披露的结合分子包含有包含SEQ ID NO:303(对于CDRH1)、SEQID NO:304(对于CDRH2)和SEQ ID NO:305(对于CDRH3)的重链可变区,以及轻链可变区中独立地选自SEQ ID NO:308、309和320的至少一个CDR,尤其是包含SEQ ID NO:308(对于CDRL1)、SEQ ID NO:309(对于CDRL2)和SEQ ID NO:320(对于CDRL3)的轻链可变区。
在一个实施例中,本披露的结合分子包含有包含SEQ ID NO:313(对于CDRH1)、SEQID NO:314(对于CDRH2)和SEQ ID NO:315(对于CDRH3)的重链可变区,以及轻链可变区中独立地选自SEQ ID NO:318、319和320的至少一个CDR,尤其是包含SEQ ID NO:318(对于CDRL1)、SEQ ID NO:319(对于CDRL2)和SEQ ID NO:320(对于CDRL3)的轻链可变区。
在一个实施例中,本披露的结合分子包含有包含SEQ ID NO:323(对于CDRH1)、SEQID NO:324(对于CDRH2)和SEQ ID NO:325(对于CDRH3)的重链可变区,以及轻链可变区中独立地选自SEQ ID NO:328、329和330的至少一个CDR,尤其是包含SEQ ID NO:328(对于CDRL1)、SEQ ID NO:329(对于CDRL2)和SEQ ID NO:330(对于CDRL3)的轻链可变区。
在一个实施例中,本披露的结合分子包含有包含SEQ ID NO:333(对于CDRH1)、SEQID NO:334(对于CDRH2)和SEQ ID NO:335(对于CDRH3)的重链可变区,以及轻链可变区中独立地选自SEQ ID NO:338、339和340的至少一个CDR,尤其是包含SEQ ID NO:338(对于CDRL1)、SEQ ID NO:339(对于CDRL2)和SEQ ID NO:340(对于CDRL3)的轻链可变区。
在一个实施例中,本披露的结合分子包含有包含SEQ ID NO:343(对于CDRH1)、SEQID NO:344(对于CDRH2)和SEQ ID NO:345(对于CDRH3)的重链可变区,以及轻链可变区中独立地选自SEQ ID NO:348、349和350的至少一个CDR,尤其是包含SEQ ID NO:348(对于CDRL1)、SEQ ID NO:349(对于CDRL2)和SEQ ID NO:350(对于CDRL3)的轻链可变区。
在一个实施例中,本披露的结合分子包含有包含SEQ ID NO:353(对于CDRH1)、SEQID NO:354(对于CDRH2)和SEQ ID NO:355(对于CDRH3)的重链可变区,以及轻链可变区中独立地选自SEQ ID NO:358、359和360的至少一个CDR,尤其是包含SEQ ID NO:358(对于CDRL1)、SEQ ID NO:359(对于CDRL2)和SEQ ID NO:360(对于CDRL3)的轻链可变区。
在一个实施例中,本披露的结合分子包含有包含SEQ ID NO:363(对于CDRH1)、SEQID NO:364(对于CDRH2)和SEQ ID NO:365(对于CDRH3)的重链可变区,以及轻链可变区中独立地选自SEQ ID NO:368、369和370的至少一个CDR,尤其是包含SEQ ID NO:368(对于CDRL1)、SEQ ID NO:369(对于CDRL2)和SEQ ID NO:370(对于CDRL3)的轻链可变区。
在一个实施例中,本披露的结合分子包含有包含SEQ ID NO:373(对于CDRH1)、SEQID NO:374(对于CDRH2)和SEQ ID NO:375(对于CDRH3)的重链可变区,以及轻链可变区中独立地选自SEQ ID NO:378、379和380的至少一个CDR,尤其是包含SEQ ID NO:378(对于CDRL1)、SEQ ID NO:379(对于CDRL2)和SEQ ID NO:380(对于CDRL3)的轻链可变区。
在一个实施例中,本披露的结合分子包含有包含SEQ ID NO:383(对于CDRH1)、SEQID NO:384(对于CDRH2)和SEQ ID NO:385(对于CDRH3)的重链可变区,以及轻链可变区中独立地选自SEQ ID NO:388、389和390的至少一个CDR,尤其是包含SEQ ID NO:388(对于CDRL1)、SEQ ID NO:389(对于CDRL2)和SEQ ID NO:390(对于CDRL3)的轻链可变区。
在一个实施例中,本披露的结合分子包含有包含SEQ ID NO:393(对于CDRH1)、SEQID NO:394(对于CDRH2)和SEQ ID NO:395(对于CDRH3)的重链可变区,以及轻链可变区中独立地选自SEQ ID NO:398、399和400的至少一个CDR,尤其是包含SEQ ID NO:398(对于CDRL1)、SEQ ID NO:399(对于CDRL2)和SEQ ID NO:400(对于CDRL3)的轻链可变区。
在一个实施例中,本披露的结合分子包含有包含SEQ ID NO:403(对于CDRH1)、SEQID NO:404(对于CDRH2)和SEQ ID NO:405(对于CDRH3)的重链可变区,以及轻链可变区中独立地选自SEQ ID NO:408、409和420的至少一个CDR,尤其是包含SEQ ID NO:408(对于CDRL1)、SEQ ID NO:409(对于CDRL2)和SEQ ID NO:420(对于CDRL3)的轻链可变区。
在一个实施例中,本披露的结合分子包含有包含SEQ ID NO:413(对于CDRH1)、SEQID NO:414(对于CDRH2)和SEQ ID NO:415(对于CDRH3)的重链可变区,以及轻链可变区中独立地选自SEQ ID NO:418、419和420的至少一个CDR,尤其是包含SEQ ID NO:418(对于CDRL1)、SEQ ID NO:419(对于CDRL2)和SEQ ID NO:420(对于CDRL3)的轻链可变区。
在一个实施例中,本披露的结合分子包含有包含SEQ ID NO:423(对于CDRH1)、SEQID NO:424(对于CDRH2)和SEQ ID NO:425(对于CDRH3)的重链可变区,以及轻链可变区中独立地选自SEQ ID NO:428、429和430的至少一个CDR,尤其是包含SEQ ID NO:428(对于CDRL1)、SEQ ID NO:429(对于CDRL2)和SEQ ID NO:430(对于CDRL3)的轻链可变区。
在一个实施例中,本披露的结合分子包含有包含SEQ ID NO:433(对于CDRH1)、SEQID NO:434(对于CDRH2)和SEQ ID NO:435(对于CDRH3)的重链可变区,以及轻链可变区中独立地选自SEQ ID NO:438、439和440的至少一个CDR,尤其是包含SEQ ID NO:438(对于CDRL1)、SEQ ID NO:439(对于CDRL2)和SEQ ID NO:440(对于CDRL3)的轻链可变区。
在一个实施例中,本披露的结合分子包含有包含SEQ ID NO:443(对于CDRH1)、SEQID NO:444(对于CDRH2)和SEQ ID NO:445(对于CDRH3)的重链可变区,以及轻链可变区中独立地选自SEQ ID NO:448、449和450的至少一个CDR,尤其是包含SEQ ID NO:448(对于CDRL1)、SEQ ID NO:449(对于CDRL2)和SEQ ID NO:450(对于CDRL3)的轻链可变区。
在一个实施例中,本披露的结合分子包含有包含SEQ ID NO:453(对于CDRH1)、SEQID NO:454(对于CDRH2)和SEQ ID NO:455(对于CDRH3)的重链可变区,以及轻链可变区中独立地选自SEQ ID NO:458、459和460的至少一个CDR,尤其是包含SEQ ID NO:458(对于CDRL1)、SEQ ID NO:459(对于CDRL2)和SEQ ID NO:460(对于CDRL3)的轻链可变区。
在一个实施例中,本披露的结合分子包含有包含SEQ ID NO:463(对于CDRH1)、SEQID NO:464(对于CDRH2)和SEQ ID NO:465(对于CDRH3)的重链可变区,以及轻链可变区中独立地选自SEQ ID NO:468、469和470的至少一个CDR,尤其是包含SEQ ID NO:468(对于CDRL1)、SEQ ID NO:469(对于CDRL2)和SEQ ID NO:470(对于CDRL3)的轻链可变区。
在一个实施例中,本披露的结合分子包含有包含SEQ ID NO:473(对于CDRH1)、SEQID NO:474(对于CDRH2)和SEQ ID NO:475(对于CDRH3)的重链可变区,以及轻链可变区中独立地选自SEQ ID NO:478、479和480的至少一个CDR,尤其是包含SEQ ID NO:478(对于CDRL1)、SEQ ID NO:479(对于CDRL2)和SEQ ID NO:480(对于CDRL3)的轻链可变区。
在一个实施例中,本披露的结合分子包含有包含SEQ ID NO:483(对于CDRH1)、SEQID NO:484(对于CDRH2)和SEQ ID NO:485(对于CDRH3)的重链可变区,以及轻链可变区中独立地选自SEQ ID NO:488、489和490的至少一个CDR,尤其是包含SEQ ID NO:488(对于CDRL1)、SEQ ID NO:489(对于CDRL2)和SEQ ID NO:490(对于CDRL3)的轻链可变区。
在一个实施例中,本披露的结合分子包含有包含SEQ ID NO:493(对于CDRH1)、SEQID NO:494(对于CDRH2)和SEQ ID NO:495(对于CDRH3)的重链可变区,以及轻链可变区中独立地选自SEQ ID NO:498、499和500的至少一个CDR,尤其是包含SEQ ID NO:498(对于CDRL1)、SEQ ID NO:499(对于CDRL2)和SEQ ID NO:500(对于CDRL3)的轻链可变区。
在一个实施例中,本披露的结合分子包含有包含SEQ ID NO:503(对于CDRH1)、SEQID NO:504(对于CDRH2)和SEQ ID NO:505(对于CDRH3)的重链可变区,以及轻链可变区中独立地选自SEQ ID NO:508、509和520的至少一个CDR,尤其是包含SEQ ID NO:508(对于CDRL1)、SEQ ID NO:509(对于CDRL2)和SEQ ID NO:520(对于CDRL3)的轻链可变区。
在一个实施例中,本披露的结合分子包含有包含SEQ ID NO:513(对于CDRH1)、SEQID NO:514(对于CDRH2)和SEQ ID NO:515(对于CDRH3)的重链可变区,以及轻链可变区中独立地选自SEQ ID NO:518、519和520的至少一个CDR,尤其是包含SEQ ID NO:518(对于CDRL1)、SEQ ID NO:519(对于CDRL2)和SEQ ID NO:520(对于CDRL3)的轻链可变区。
在一个实施例中,本披露的结合分子包含有包含SEQ ID NO:523(对于CDRH1)、SEQID NO:524(对于CDRH2)和SEQ ID NO:525(对于CDRH3)的重链可变区,以及轻链可变区中独立地选自SEQ ID NO:528、529和530的至少一个CDR,尤其是包含SEQ ID NO:528(对于CDRL1)、SEQ ID NO:529(对于CDRL2)和SEQ ID NO:530(对于CDRL3)的轻链可变区。
在一个实施例中,本披露的结合分子包含有包含SEQ ID NO:533(对于CDRH1)、SEQID NO:534(对于CDRH2)和SEQ ID NO:535(对于CDRH3)的重链可变区,以及轻链可变区中独立地选自SEQ ID NO:538、539和540的至少一个CDR,尤其是包含SEQ ID NO:538(对于CDRL1)、SEQ ID NO:539(对于CDRL2)和SEQ ID NO:540(对于CDRL3)的轻链可变区。
在一个实施例中,本披露的结合分子包含有包含SEQ ID NO:543(对于CDRH1)、SEQID NO:544(对于CDRH2)和SEQ ID NO:545(对于CDRH3)的重链可变区,以及轻链可变区中独立地选自SEQ ID NO:548、549和550的至少一个CDR,尤其是包含SEQ ID NO:548(对于CDRL1)、SEQ ID NO:549(对于CDRL2)和SEQ ID NO:550(对于CDRL3)的轻链可变区。
在一个实施例中,本披露的结合分子包含有包含SEQ ID NO:553(对于CDRH1)、SEQID NO:554(对于CDRH2)和SEQ ID NO:555(对于CDRH3)的重链可变区,以及轻链可变区中独立地选自SEQ ID NO:558、559和560的至少一个CDR,尤其是包含SEQ ID NO:558(对于CDRL1)、SEQ ID NO:559(对于CDRL2)和SEQ ID NO:560(对于CDRL3)的轻链可变区。
在一个实施例中,本披露的结合分子包含有包含SEQ ID NO:563(对于CDRH1)、SEQID NO:564(对于CDRH2)和SEQ ID NO:565(对于CDRH3)的重链可变区,以及轻链可变区中独立地选自SEQ ID NO:568、569和570的至少一个CDR,尤其是包含SEQ ID NO:568(对于CDRL1)、SEQ ID NO:569(对于CDRL2)和SEQ ID NO:570(对于CDRL3)的轻链可变区。
在一个实施例中,本披露的结合分子包含有包含SEQ ID NO:573(对于CDRH1)、SEQID NO:574(对于CDRH2)和SEQ ID NO:575(对于CDRH3)的重链可变区,以及轻链可变区中独立地选自SEQ ID NO:578、579和580的至少一个CDR,尤其是包含SEQ ID NO:578(对于CDRL1)、SEQ ID NO:579(对于CDRL2)和SEQ ID NO:580(对于CDRL3)的轻链可变区。
在一个实施例中,本披露的结合分子包含有包含SEQ ID NO:583(对于CDRH1)、SEQID NO:584(对于CDRH2)和SEQ ID NO:585(对于CDRH3)的重链可变区,以及轻链可变区中独立地选自SEQ ID NO:588、589和590的至少一个CDR,尤其是包含SEQ ID NO:588(对于CDRL1)、SEQ ID NO:589(对于CDRL2)和SEQ ID NO:590(对于CDRL3)的轻链可变区。
在一个实施例中,本披露的结合分子包含SEQ ID NO:2的可变区,例如作为重链中的可变区。
在一个实施例中,本披露的结合分子包含SEQ ID NO:7的可变区,例如作为轻链中的可变区。
在一个实施例中,本披露的结合分子包含SEQ ID NO:2的重链可变区和SEQ IDNO:7的轻链可变区。
在一个实施例中,本披露的结合分子包含SEQ ID NO:12的可变区,例如作为重链中的可变区。
在一个实施例中,本披露的结合分子包含SEQ ID NO:17的可变区,例如作为轻链中的可变区。
在一个实施例中,本披露的结合分子包含SEQ ID NO:12的重链可变区和SEQ IDNO:17的轻链可变区。
在一个实施例中,本披露的结合分子包含SEQ ID NO:22的可变区,例如作为重链中的可变区。
在一个实施例中,本披露的结合分子包含SEQ ID NO:27的可变区,例如作为轻链中的可变区。
在一个实施例中,本披露的结合分子包含SEQ ID NO:22的重链可变区和SEQ IDNO:27的轻链可变区。
在一个实施例中,本披露的结合分子包含SEQ ID NO:32的可变区,例如作为重链中的可变区。
在一个实施例中,本披露的结合分子包含SEQ ID NO:37的可变区,例如作为轻链中的可变区。
在一个实施例中,本披露的结合分子包含SEQ ID NO:32的重链可变区和SEQ IDNO:37的轻链可变区。
在一个实施例中,本披露的结合分子包含SEQ ID NO:52的可变区,例如作为重链中的可变区。
在一个实施例中,本披露的结合分子包含SEQ ID NO:57的可变区,例如作为轻链中的可变区。
在一个实施例中,本披露的结合分子包含SEQ ID NO:52的重链可变区和SEQ IDNO:57的轻链可变区。
在一个实施例中,本披露的结合分子包含SEQ ID NO:62的可变区,例如作为重链中的可变区。
在一个实施例中,本披露的结合分子包含SEQ ID NO:67的可变区,例如作为轻链中的可变区。
在一个实施例中,本披露的结合分子包含SEQ ID NO:62的重链可变区和SEQ IDNO:67的轻链可变区。
在一个实施例中,本披露的结合分子包含SEQ ID NO:72的可变区,例如作为重链中的可变区。
在一个实施例中,本披露的结合分子包含SEQ ID NO:77的可变区,例如作为轻链中的可变区。
在一个实施例中,本披露的结合分子包含SEQ ID NO:72的重链可变区和SEQ IDNO:77的轻链可变区。
在一个实施例中,本披露的结合分子包含SEQ ID NO:82的可变区,例如作为重链中的可变区。
在一个实施例中,本披露的结合分子包含SEQ ID NO:87的可变区,例如作为轻链中的可变区。
在一个实施例中,本披露的结合分子包含SEQ ID NO:82的重链可变区和SEQ IDNO:87的轻链可变区。
在一个实施例中,本披露的结合分子包含SEQ ID NO:92的可变区,例如作为重链中的可变区。
在一个实施例中,本披露的结合分子包含SEQ ID NO:97的可变区,例如作为轻链中的可变区。
在一个实施例中,本披露的结合分子包含SEQ ID NO:92的重链可变区和SEQ IDNO:97的轻链可变区。
在一个实施例中,本披露的结合分子包含SEQ ID NO:102的可变区,例如作为重链中的可变区。
在一个实施例中,本披露的结合分子包含SEQ ID NO:107的可变区,例如作为轻链中的可变区。
在一个实施例中,本披露的结合分子包含SEQ ID NO:102的重链可变区和SEQ IDNO:107的轻链可变区。
在一个实施例中,本披露的结合分子包含SEQ ID NO:112的可变区,例如作为重链中的可变区。
在一个实施例中,本披露的结合分子包含SEQ ID NO:117的可变区,例如作为轻链中的可变区。
在一个实施例中,本披露的结合分子包含SEQ ID NO:112的重链可变区和SEQ IDNO:117的轻链可变区。
在一个实施例中,本披露的结合分子包含SEQ ID NO:122的可变区,例如作为重链中的可变区。
在一个实施例中,本披露的结合分子包含SEQ ID NO:127的可变区,例如作为轻链中的可变区。
在一个实施例中,本披露的结合分子包含SEQ ID NO:122的重链可变区和SEQ IDNO:127的轻链可变区。
在一个实施例中,本披露的结合分子包含SEQ ID NO:132的可变区,例如作为重链中的可变区。
在一个实施例中,本披露的结合分子包含SEQ ID NO:137的可变区,例如作为轻链中的可变区。
在一个实施例中,本披露的结合分子包含SEQ ID NO:132的重链可变区和SEQ IDNO:137的轻链可变区。
在一个实施例中,本披露的结合分子包含SEQ ID NO:152的可变区,例如作为重链中的可变区。
在一个实施例中,本披露的结合分子包含SEQ ID NO:157的可变区,例如作为轻链中的可变区。
在一个实施例中,本披露的结合分子包含SEQ ID NO:152的重链可变区和SEQ IDNO:157的轻链可变区。
在一个实施例中,本披露的结合分子包含SEQ ID NO:162的可变区,例如作为重链中的可变区。
在一个实施例中,本披露的结合分子包含SEQ ID NO:167的可变区,例如作为轻链中的可变区。
在一个实施例中,本披露的结合分子包含SEQ ID NO:162的重链可变区和SEQ IDNO:167的轻链可变区。
在一个实施例中,本披露的结合分子包含SEQ ID NO:172的可变区,例如作为重链中的可变区。
在一个实施例中,本披露的结合分子包含SEQ ID NO:177的可变区,例如作为轻链中的可变区。
在一个实施例中,本披露的结合分子包含SEQ ID NO:172的重链可变区和SEQ IDNO:177的轻链可变区。
在一个实施例中,本披露的结合分子包含SEQ ID NO:182的可变区,例如作为重链中的可变区。
在一个实施例中,本披露的结合分子包含SEQ ID NO:187的可变区,例如作为轻链中的可变区。
在一个实施例中,本披露的结合分子包含SEQ ID NO:182的重链可变区和SEQ IDNO:187的轻链可变区。
在一个实施例中,本披露的结合分子包含SEQ ID NO:192的可变区,例如作为重链中的可变区。
在一个实施例中,本披露的结合分子包含SEQ ID NO:197的可变区,例如作为轻链中的可变区。
在一个实施例中,本披露的结合分子包含SEQ ID NO:192的重链可变区和SEQ IDNO:197的轻链可变区。
在一个实施例中,本披露的结合分子包含SEQ ID NO:202的可变区,例如作为重链中的可变区。
在一个实施例中,本披露的结合分子包含SEQ ID NO:207的可变区,例如作为轻链中的可变区。
在一个实施例中,本披露的结合分子包含SEQ ID NO:202的重链可变区和SEQ IDNO:207的轻链可变区。
在一个实施例中,本披露的结合分子包含SEQ ID NO:212的可变区,例如作为重链中的可变区。
在一个实施例中,本披露的结合分子包含SEQ ID NO:217的可变区,例如作为轻链中的可变区。
在一个实施例中,本披露的结合分子包含SEQ ID NO:212的重链可变区和SEQ IDNO:217的轻链可变区。
在一个实施例中,本披露的结合分子包含SEQ ID NO:222的可变区,例如作为重链中的可变区。
在一个实施例中,本披露的结合分子包含SEQ ID NO:227的可变区,例如作为轻链中的可变区。
在一个实施例中,本披露的结合分子包含SEQ ID NO:222的重链可变区和SEQ IDNO:227的轻链可变区。
在一个实施例中,本披露的结合分子包含SEQ ID NO:232的可变区,例如作为重链中的可变区。
在一个实施例中,本披露的结合分子包含SEQ ID NO:237的可变区,例如作为轻链中的可变区。
在一个实施例中,本披露的结合分子包含SEQ ID NO:232的重链可变区和SEQ IDNO:237的轻链可变区。
在一个实施例中,本披露的结合分子包含SEQ ID NO:242的可变区,例如作为重链中的可变区。
在一个实施例中,本披露的结合分子包含SEQ ID NO:247的可变区,例如作为轻链中的可变区。
在一个实施例中,本披露的结合分子包含SEQ ID NO:242的重链可变区和SEQ IDNO:247的轻链可变区。
在一个实施例中,本披露的结合分子包含SEQ ID NO:252的可变区,例如作为重链中的可变区。
在一个实施例中,本披露的结合分子包含SEQ ID NO:257的可变区,例如作为轻链中的可变区。
在一个实施例中,本披露的结合分子包含SEQ ID NO:252的重链可变区和SEQ IDNO:257的轻链可变区。
在一个实施例中,本披露的结合分子包含SEQ ID NO:262的可变区,例如作为重链中的可变区。
在一个实施例中,本披露的结合分子包含SEQ ID NO:267的可变区,例如作为轻链中的可变区。
在一个实施例中,本披露的结合分子包含SEQ ID NO:262的重链可变区和SEQ IDNO:267的轻链可变区。
在一个实施例中,本披露的结合分子包含SEQ ID NO:272的可变区,例如作为重链中的可变区。
在一个实施例中,本披露的结合分子包含SEQ ID NO:277的可变区,例如作为轻链中的可变区。
在一个实施例中,本披露的结合分子包含SEQ ID NO:272的重链可变区和SEQ IDNO:277的轻链可变区。
在一个实施例中,本披露的结合分子包含SEQ ID NO:282的可变区,例如作为重链中的可变区。
在一个实施例中,本披露的结合分子包含SEQ ID NO:287的可变区,例如作为轻链中的可变区。
在一个实施例中,本披露的结合分子包含SEQ ID NO:282的重链可变区和SEQ IDNO:287的轻链可变区。
在一个实施例中,本披露的结合分子包含SEQ ID NO:292的可变区,例如作为重链中的可变区。
在一个实施例中,本披露的结合分子包含SEQ ID NO:297的可变区,例如作为轻链中的可变区。
在一个实施例中,本披露的结合分子包含SEQ ID NO:292的重链可变区和SEQ IDNO:297的轻链可变区。
在一个实施例中,本披露的结合分子包含SEQ ID NO:302的可变区,例如作为重链中的可变区。
在一个实施例中,本披露的结合分子包含SEQ ID NO:307的可变区,例如作为轻链中的可变区。
在一个实施例中,本披露的结合分子包含SEQ ID NO:302的重链可变区和SEQ IDNO:307的轻链可变区。
在一个实施例中,本披露的结合分子包含SEQ ID NO:312的可变区,例如作为重链中的可变区。
在一个实施例中,本披露的结合分子包含SEQ ID NO:317的可变区,例如作为轻链中的可变区。
在一个实施例中,本披露的结合分子包含SEQ ID NO:312的重链可变区和SEQ IDNO:317的轻链可变区。
在一个实施例中,本披露的结合分子包含SEQ ID NO:322的可变区,例如作为重链中的可变区。
在一个实施例中,本披露的结合分子包含SEQ ID NO:327的可变区,例如作为轻链中的可变区。
在一个实施例中,本披露的结合分子包含SEQ ID NO:322的重链可变区和SEQ IDNO:327的轻链可变区。
在一个实施例中,本披露的结合分子包含SEQ ID NO:332的可变区,例如作为重链中的可变区。
在一个实施例中,本披露的结合分子包含SEQ ID NO:337的可变区,例如作为轻链中的可变区。
在一个实施例中,本披露的结合分子包含SEQ ID NO:332的重链可变区和SEQ IDNO:337的轻链可变区。
在一个实施例中,本披露的结合分子包含SEQ ID NO:352的可变区,例如作为重链中的可变区。
在一个实施例中,本披露的结合分子包含SEQ ID NO:357的可变区,例如作为轻链中的可变区。
在一个实施例中,本披露的结合分子包含SEQ ID NO:352的重链可变区和SEQ IDNO:357的轻链可变区。
在一个实施例中,本披露的结合分子包含SEQ ID NO:362的可变区,例如作为重链中的可变区。
在一个实施例中,本披露的结合分子包含SEQ ID NO:367的可变区,例如作为轻链中的可变区。
在一个实施例中,本披露的结合分子包含SEQ ID NO:362的重链可变区和SEQ IDNO:367的轻链可变区。
在一个实施例中,本披露的结合分子包含SEQ ID NO:372的可变区,例如作为重链中的可变区。
在一个实施例中,本披露的结合分子包含SEQ ID NO:377的可变区,例如作为轻链中的可变区。
在一个实施例中,本披露的结合分子包含SEQ ID NO:372的重链可变区和SEQ IDNO:377的轻链可变区。
在一个实施例中,本披露的结合分子包含SEQ ID NO:382的可变区,例如作为重链中的可变区。
在一个实施例中,本披露的结合分子包含SEQ ID NO:387的可变区,例如作为轻链中的可变区。
在一个实施例中,本披露的结合分子包含SEQ ID NO:382的重链可变区和SEQ IDNO:387的轻链可变区。
在一个实施例中,本披露的结合分子包含SEQ ID NO:392的可变区,例如作为重链中的可变区。
在一个实施例中,本披露的结合分子包含SEQ ID NO:397的可变区,例如作为轻链中的可变区。
在一个实施例中,本披露的结合分子包含SEQ ID NO:392的重链可变区和SEQ IDNO:397的轻链可变区。
在一个实施例中,本披露的结合分子包含SEQ ID NO:402的可变区,例如作为重链中的可变区。
在一个实施例中,本披露的结合分子包含SEQ ID NO:407的可变区,例如作为轻链中的可变区。
在一个实施例中,本披露的结合分子包含SEQ ID NO:402的重链可变区和SEQ IDNO:407的轻链可变区。
在一个实施例中,本披露的结合分子包含SEQ ID NO:412的可变区,例如作为重链中的可变区。
在一个实施例中,本披露的结合分子包含SEQ ID NO:417的可变区,例如作为轻链中的可变区。
在一个实施例中,本披露的结合分子包含SEQ ID NO:412的重链可变区和SEQ IDNO:417的轻链可变区。
在一个实施例中,本披露的结合分子包含SEQ ID NO:422的可变区,例如作为重链中的可变区。
在一个实施例中,本披露的结合分子包含SEQ ID NO:427的可变区,例如作为轻链中的可变区。
在一个实施例中,本披露的结合分子包含SEQ ID NO:422的重链可变区和SEQ IDNO:427的轻链可变区。
在一个实施例中,本披露的结合分子包含SEQ ID NO:432的可变区,例如作为重链中的可变区。
在一个实施例中,本披露的结合分子包含SEQ ID NO:437的可变区,例如作为轻链中的可变区。
在一个实施例中,本披露的结合分子包含SEQ ID NO:432的重链可变区和SEQ IDNO:437的轻链可变区。
在一个实施例中,本披露的结合分子包含SEQ ID NO:452的可变区,例如作为重链中的可变区。
在一个实施例中,本披露的结合分子包含SEQ ID NO:457的可变区,例如作为轻链中的可变区。
在一个实施例中,本披露的结合分子包含SEQ ID NO:452的重链可变区和SEQ IDNO:457的轻链可变区。
在一个实施例中,本披露的结合分子包含SEQ ID NO:462的可变区,例如作为重链中的可变区。
在一个实施例中,本披露的结合分子包含SEQ ID NO:467的可变区,例如作为轻链中的可变区。
在一个实施例中,本披露的结合分子包含SEQ ID NO:462的重链可变区和SEQ IDNO:467的轻链可变区。
在一个实施例中,本披露的结合分子包含SEQ ID NO:472的可变区,例如作为重链中的可变区。
在一个实施例中,本披露的结合分子包含SEQ ID NO:477的可变区,例如作为轻链中的可变区。
在一个实施例中,本披露的结合分子包含SEQ ID NO:472的重链可变区和SEQ IDNO:477的轻链可变区。
在一个实施例中,本披露的结合分子包含SEQ ID NO:482的可变区,例如作为重链中的可变区。
在一个实施例中,本披露的结合分子包含SEQ ID NO:487的可变区,例如作为轻链中的可变区。
在一个实施例中,本披露的结合分子包含SEQ ID NO:482的重链可变区和SEQ IDNO:487的轻链可变区。
在一个实施例中,本披露的结合分子包含SEQ ID NO:492的可变区,例如作为重链中的可变区。
在一个实施例中,本披露的结合分子包含SEQ ID NO:497的可变区,例如作为轻链中的可变区。
在一个实施例中,本披露的结合分子包含SEQ ID NO:492的重链可变区和SEQ ID NO:497的轻链可变区。
在一个实施例中,本披露的结合分子包含SEQ ID NO:502的可变区,例如作为重链中的可变区。
在一个实施例中,本披露的结合分子包含SEQ ID NO:507的可变区,例如作为轻链中的可变区。
在一个实施例中,本披露的结合分子包含SEQ ID NO:502的重链可变区和SEQ IDNO:507的轻链可变区。
在一个实施例中,本披露的结合分子包含SEQ ID NO:512的可变区,例如作为重链中的可变区。
在一个实施例中,本披露的结合分子包含SEQ ID NO:517的可变区,例如作为轻链中的可变区。
在一个实施例中,本披露的结合分子包含SEQ ID NO:512的重链可变区和SEQ IDNO:517的轻链可变区。
在一个实施例中,本披露的结合分子包含SEQ ID NO:522的可变区,例如作为重链中的可变区。
在一个实施例中,本披露的结合分子包含SEQ ID NO:527的可变区,例如作为轻链中的可变区。
在一个实施例中,本披露的结合分子包含SEQ ID NO:522的重链可变区和SEQ IDNO:527的轻链可变区。
在一个实施例中,本披露的结合分子包含SEQ ID NO:532的可变区,例如作为重链中的可变区。
在一个实施例中,本披露的结合分子包含SEQ ID NO:537的可变区,例如作为轻链中的可变区。
在一个实施例中,本披露的结合分子包含SEQ ID NO:532的重链可变区和SEQ IDNO:537的轻链可变区。
在一个实施例中,本披露的结合分子包含SEQ ID NO:552的可变区,例如作为重链中的可变区。
在一个实施例中,本披露的结合分子包含SEQ ID NO:557的可变区,例如作为轻链中的可变区。
在一个实施例中,本披露的结合分子包含SEQ ID NO:552的重链可变区和SEQ IDNO:557的轻链可变区。
在一个实施例中,本披露的结合分子包含SEQ ID NO:562的可变区,例如作为重链中的可变区。
在一个实施例中,本披露的结合分子包含SEQ ID NO:567的可变区,例如作为轻链中的可变区。
在一个实施例中,本披露的结合分子包含SEQ ID NO:562的重链可变区和SEQ IDNO:567的轻链可变区。
在一个实施例中,本披露的结合分子包含SEQ ID NO:572的可变区,例如作为重链中的可变区。
在一个实施例中,本披露的结合分子包含SEQ ID NO:577的可变区,例如作为轻链中的可变区。
在一个实施例中,本披露的结合分子包含SEQ ID NO:572的重链可变区和SEQ IDNO:577的轻链可变区。
在一个实施例中,本披露的结合分子包含SEQ ID NO:582的可变区,例如作为重链中的可变区。
在一个实施例中,本披露的结合分子包含SEQ ID NO:587的可变区,例如作为轻链中的可变区。
在一个实施例中,本披露的结合分子包含SEQ ID NO:582的重链可变区和SEQ IDNO:587的轻链可变区。
在一个实施例中,本披露的结合分子包含SEQ ID NO:592的可变区,例如作为重链中的可变区。
在一个实施例中,本披露的结合分子包含SEQ ID NO:594的可变区,例如作为轻链中的可变区。
在一个实施例中,本披露的结合分子包含SEQ ID NO:592的重链可变区和SEQ IDNO:59的轻链可变区。
在一个实施例中,本披露的结合分子包含SEQ ID NO:596的可变区,例如作为重链中的可变区。
在一个实施例中,本披露的结合分子包含SEQ ID NO:598的可变区,例如作为轻链中的可变区。
在一个实施例中,本披露的结合分子包含SEQ ID NO:596的重链可变区和SEQ IDNO:598的轻链可变区。
在一个实施例中,本披露的结合分子包含SEQ ID NO:600的可变区,例如作为重链中的可变区。
在一个实施例中,本披露的结合分子包含SEQ ID NO:602的可变区,例如作为轻链中的可变区。
在一个实施例中,本披露的结合分子包含SEQ ID NO:600的重链可变区和SEQ IDNO:602的轻链可变区。
在一个实施例中,本披露的结合分子包含SEQ ID NO:604的可变区,例如作为重链中的可变区。
在一个实施例中,本披露的结合分子包含SEQ ID NO:606的可变区,例如作为轻链中的可变区。
在一个实施例中,本披露的结合分子包含SEQ ID NO:604的重链可变区和SEQ IDNO:606的轻链可变区。
在一个实施例中,本披露的结合分子包含SEQ ID NO:608的可变区,例如作为重链中的可变区。
在一个实施例中,本披露的结合分子包含SEQ ID NO:610的可变区,例如作为轻链中的可变区。
在一个实施例中,本披露的结合分子包含SEQ ID NO:608的重链可变区和SEQ IDNO:610的轻链可变区。
在一个实施例中,本披露的结合分子包含SEQ ID NO:612的可变区,例如作为重链中的可变区。
在一个实施例中,本披露的结合分子包含SEQ ID NO:614的可变区,例如作为轻链中的可变区。
在一个实施例中,本披露的结合分子包含SEQ ID NO:612的重链可变区和SEQ IDNO:614的轻链可变区。
在一个实施例中,本披露的结合分子包含SEQ ID NO:616的可变区,例如作为重链中的可变区。
在一个实施例中,本披露的结合分子包含SEQ ID NO:618的可变区,例如作为轻链中的可变区。
在一个实施例中,本披露的结合分子包含SEQ ID NO:616的重链可变区和SEQ IDNO:618的轻链可变区。
在一个实施例中,本披露的结合分子包含SEQ ID NO:620的可变区,例如作为重链中的可变区。
在一个实施例中,本披露的结合分子包含SEQ ID NO:622的可变区,例如作为轻链中的可变区。
在一个实施例中,本披露的结合分子包含SEQ ID NO:620的重链可变区和SEQ IDNO:622的轻链可变区。
在一个实施例中,本披露的结合分子包含SEQ ID NO:624的可变区,例如作为重链中的可变区。
在一个实施例中,本披露的结合分子包含SEQ ID NO:626的可变区,例如作为轻链中的可变区。
在一个实施例中,本披露的结合分子包含SEQ ID NO:624的重链可变区和SEQ IDNO:626的轻链可变区。
在另一实施例中,本披露是针对经分离的抗体或其抗原结合片段,其特异性地结合至IL-33、包含VH和VL,其中VH具有与如上文例如SEQ ID NO:182或SEQ ID NO616所披露的VH至少90%,例如91%、92%、93%、94%、95%、96%、97%、98%、99%或100%一致的氨基酸序列。
在另一实施例中,本披露是针对经分离的抗体或其抗原结合片段,其特异性地结合至IL-33、包含VH和VL,其中如上文例如在SEQ ID NO:182或SEQ ID NO616中所披露的VH具有框架中的1、2、3或4个氨基酸独立地经不同氨基酸置换或缺失的序列。
在另一实施例中,本披露是针对经分离的抗体或其抗原结合片段,其特异性地结合至IL-33、包含VH和VL,其中VL具有与如上文例如SEQ ID NO:187或SEQ ID NO618所披露的VL至少90%,例如91%、92%、93%、94%、95%、96%、97%、98%、99%或100%一致的氨基酸序列。
在另一实施例中,本披露是针对经分离的抗体或其抗原结合片段,其特异性地结合至IL-33、包含VH和VL,其中上文例如在SEQ ID NO:187或SEQ ID NO618中所披露的VL具有框架中的1、2、3或4个氨基酸独立地经不同氨基酸置换或缺失的序列。
在另一实施例中,本披露是针对经分离的抗体或其抗原结合片段,其特异性地结合至IL-33、包含VH和VL,其中VH具有与如上文例如SEQ ID NO:182或SEQ ID NO.616所披露的VH至少90%,例如91%、92%、93%、94%、95%、96%、97%、98%、99%或100%一致的氨基酸序列,并且VL具有与如上文例如SEQ ID NO:187或SEQ ID NO618所披露的VL至少90%,例如91%、92%、93%、94%、95%、96%、97%、98%、99%或100%一致的氨基酸序列。
在另一实施例中,本披露是针对经分离的抗体或其抗原结合片段,其特异性地结合至IL-33、包含VH和VL,其中如上文例如SEQ ID NO:182或SEQ ID NO616所披露的VH具有框架中的1、2、3或4个氨基酸独立地经不同氨基酸置换或缺失的序列,上文例如在SEQ IDNO:187或SEQ ID NO618中所披露的VL具有框架中的1、2、3或4个氨基酸独立地经不同氨基酸置换或缺失的序列。
在一个实施例中,提供了交叉阻断结合分子的抗体或结合片段,例如根据本披露的抗体或结合片段,尤其是其中所述抗体或结合片段结合与本文所披露的分子相同的表位。
在一些实施例中,结合分子或抗体或其抗原结合片段是人类抗体、嵌合抗体或人源化抗体。在一些实施例中,结合分子或抗体或其抗原结合片段是天然存在的抗体、scFv片段、Fab片段、F(ab')2片段、微型抗体、双体抗体、三体抗体、四体抗体或单链抗体。在一些实施例中,结合分子或抗体或其抗原结合片段是单克隆抗体。
在另一实施例中,本披露是针对多核苷酸,其编码本披露的,尤其是如本文所述的结合分子或抗体或其抗原结合片段。在某些实施例中,多核苷酸编码本披露的抗体或其抗原结合片段的VH。在某些实施例中,多核苷酸编码本披露的抗体或其抗原结合片段的VL。
在一些实施例中,本披露是针对载体,其包含本披露的多核苷酸。
在一些实施例中,本披露是针对组合物,其包含本披露的多核苷酸或载体。
在另一实施例中,提供了宿主细胞,其包含本披露的多核苷酸或载体。
在另一实施例中,本文的披露是针对产生抗IL-33抗体或其抗原结合片段的方法,其包括培养本披露的宿主细胞并且回收所述抗体或其抗原结合片段。在一些实施例中,本披露是针对抗IL-33抗体或其抗原结合片段,其通过本披露的方法产生。
在另一实施例中,本披露是针对药物组合物,其包含本披露的结合分子或抗体或其抗原结合片段和载剂。
在另一实施例中,本披露是针对用于治疗患有炎性病症的受试者的方法,其包括向所述受试者给予有效量的抑制IL-33驱动的细胞因子产生的根据本披露的抗体或抗原结合片段。
在另一实施例中,提供了治疗患有炎性病症的受试者的方法,其包括给予本披露的结合分子或包含其的组合物。
在一个方面中,提供了本披露的结合分子或包含其的组合物,以供治疗例如尤其是如本文所述的炎性病症之用。
在一个实施例中,提供了本披露的结合分子或包含其的组合物在制造用以治疗或预防炎性病症的药物中的用途。
在一个实施例中,炎性病症选自哮喘、慢性阻塞性肺病(COPD)、慢性鼻窦炎、纤维增殖性疾病(例如肺纤维化)、肺嗜酸性粒细胞增多、胸膜恶性肿瘤、类风湿性关节炎、胶原血管疾病、动脉粥样硬化血管疾病、荨麻疹、炎性肠病(例如克罗恩病(Crohn's disease)或乳糜泻)、系统性红斑狼疮、进行性系统性硬化症、韦格纳肉芽肿(Wegner'sgranulomatosis)、败血性休克和白塞氏病(Bechet's disease)。
在一些实施例中,炎性病症是过敏性障碍,例如哮喘、慢性鼻窦炎、食物过敏、湿疹或皮炎,尤其是哮喘,诸如难治性哮喘(也称为重度哮喘)。
在一些实施例中,炎性反应或病症是在所述受试者的气道中。
在一个实施例中,炎性反应或病症是在平滑肌中。
在另一实施例中,本披露是针对用于预防受试者的炎性反应的方法,其包括向所述受试者给予有效量的结合IL-33且不阻断IL-33与ST2结合(其中ST2信号传导减少)的抗体或其抗原结合片段。
在另一实施例中,本披露是针对用于预防受试者的炎性反应的方法,其包括向所述受试者给予有效量的抑制IL-33驱动的细胞因子产生的根据本披露的抗体或抗原结合片段。
在另一实施例中,本披露是针对用于预防受试者的炎性反应的方法,其包括向所述受试者给予有效量的本披露的结合分子或抗体或其抗原结合片段。
在另一实施例中,本披露是针对鉴定治疗性抗体或其抗原结合片段的方法,其包括选择与IL-33结合的抗体或其抗原结合片段,其中所述抗体或其抗原结合片段不阻断IL-33与ST2结合且抑制IL-33驱动的细胞因子产生。
在一个实施例中,提供了用形成二硫键的能力降低,尤其是在独立地选自Cys-208、Cys-227、Cys-232和Cys-259的一个或多个位置处形成二硫键的能力降低的redIL-33(例如以还原形式稳定)或其突变体使宿主免疫。在一个实施例中,该方法进一步包括以下步骤:自宿主筛选抗体,例如使用功能测定;并且自所述抗体中的至少一个分离和/或复制至少可变区。
在实施例中,提供了形成二硫键的能力降低,尤其是在独立地选自Cys-208、Cys-227、Cys-232和Cys-259的一个或多个位置处形成二硫键的能力降低的redIL-33(例如以还原形式稳定)或其突变体用于鉴定ST2信号传导抑制剂,尤其是对redIL-33具有特异性的抗体或其结合片段的用途。在一个实施例中,该用途使用用所述蛋白质或其活性片段询问文库,例如噬菌体展示抗体文库。
在一些实施例中,本披露的抗体或其抗原结合片段不抑制NFκB信号传导。
在一个实施例中,提供了使用本披露的redIL-33或突变体(在本文中统称为本披露的蛋白质)来鉴定或产生本披露的结合分子的方法。在一个实施例中,该方法包括用本披露的蛋白质询问文库以鉴定结合分子的步骤。在一个实施例中,该方法包括用本披露的蛋白质使宿主免疫。
在一个实施例中,提供了来自IL-33的表位,其被如本文所披露的结合分子(诸如抗体或其结合片段)结合,尤其是催化性表位,即其结合使IL-33还原形式向氧化形式的转化率增强的表位。
在另一实施例中,本披露是针对用于检测样品中的redIL-33表达的方法。
具体实施方式
I.定义
如本文所用的“经分离”是指尤其是自自然界分离的处于非天然环境中的蛋白质,例如该术语不包括体内蛋白质,也不包括取自人体或动物体的样品中的蛋白质。通常,蛋白质将处于载剂(诸如液体或介质)中,或可配制、冷冻或冷冻干燥,并且在适当时所有这些形式可由“经分离”涵盖。在一个实施例中,经分离不指呈凝胶状的蛋白质,例如在蛋白质印迹分析中使用的凝胶或相似物。
如本文所用的IL-33蛋白是指白介素33,尤其是哺乳动物白介素33蛋白,例如以UniProt编号O95760保藏的人类蛋白。然而,鉴于诸位发明人的发现,显然此实体不为单一种类而是以还原和氧化形式存在。鉴于还原形式在体内例如在5分钟至40分钟时段内和在体外快速氧化,通常现有技术对IL-33的提及实际上为对氧化形式的提及。此外,商业测定似乎定量此氧化形式。
氧化型IL-33、IL-33-DSB(二硫键键合的)和DSBIL-33在本文中可互换使用。
如本文所用的氧化型IL-33是指作为独特带可见的蛋白质,例如通过在非还原条件下的蛋白质印迹分析,尤其是质量比相应还原形式小4Da。具体而言,其是指在独立地选自半胱氨酸208、227、232和259的半胱氨酸之间具有一个或两个二硫键的蛋白质。在一个实施例中,氧化型IL-33显示不与ST2结合。
还原型IL-33和redIL-33在本文中可互换使用。
如本文所用的还原型IL-33是指与ST2结合且触发ST2依赖性信号传导的IL-33形式。具体而言,还原形式的半胱氨酸208、227、232和259并非二硫键键合。如本文所用的redIL-33活性片段是指具有与redIL-33可比的活性,例如相似程度的ST2依赖性信号传导的片段。在一个实施例中,活性片段是全长redIL-33的活性的20%、30%、40%、50%、60%、70%、75%、80%、85%、90%、95%、96%、97%、98%或99%。
如本文所用的ST-2依赖性信号传导是指IL-33/ST2系统,其中由ST2识别IL-33促进在细胞表面上与IL1-RAcP二聚和在细胞内为胞内TIR结构域补充受体复合物组分MyD88、TRAF6和IRAK1-4。因此,ST-2依赖性信号传导可通过扰动IL-33与ST2相互作用或者可替代地通过中断与IL-1RAcP的相互作用来中断。
如本文所用的“以还原形式稳定”是指促进蛋白质采用或保持还原形式或防止氧化型IL-33形成的修饰。
在一个实施例中,通过与化学实体轭合,例如生物素化来稳定。redIL-33在中性pH下暴露于-SH反应试剂生物素BMCC(可购自赛墨科技公司(Thermo scientific))时倾向于单生物素化。由诸位发明人进行的分析表明生物素化发生在Cys208。在此位置处的生物素化似乎阻断和/或减少蛋白质氧化。虽然不希望受理论束缚,由诸位发明人进行的计算机仿真分析表明Cys208是构象变化和蛋白质氧化所需的活性的潜在引发剂。
在一个实施例中,稳定是在Cys208处的生物素化。
在一个实施例中,Cys208经诸如丝氨酸的氨基酸置换。在一个实施例中,Cys227经诸如丝氨酸的氨基酸置换。在一个实施例中,Cys232经诸如丝氨酸的氨基酸置换。在一个实施例中,Cys259经诸如丝氨酸的氨基酸置换。在一个实施例中,Cys208和227独立地经诸如丝氨酸的氨基酸置换。在一个实施例中,Cys208和232独立地经诸如丝氨酸的氨基酸置换。在一个实施例中,Cys208和259独立地经诸如丝氨酸的氨基酸置换。在一个实施例中,Cys208、227和232独立地经诸如丝氨酸的氨基酸置换。在一个实施例中,Cys208、227和259独立地经诸如丝氨酸的氨基酸置换。在一个实施例中,Cys208、232和259独立地经诸如丝氨酸的氨基酸置换。在一个实施例中,Cys227、232和259独立地经诸如丝氨酸的氨基酸置换。在一个实施例中,Cys208、227、232和259独立地经诸如丝氨酸的氨基酸置换。
如本文所用的突变是指氨基酸序列的变化或多核苷酸序列的变化,使得由多核苷酸编码的氨基酸不同或达成一些其他有形的例如功能差异。具体而言,该变化可包含氨基酸残基的缺失或取代。遗传密码中的密码子优化或冗余在本申请的上下文中不是突变。
在本文中通常将在天然或野生型蛋白质存在氨基酸或多核苷酸序列变化时使用突变,而在论述新颖序列变化时使用变体。
如本文所用的天然是指在野生型序列中发现或以其他方式天然存在的实体,诸如氨基酸。
如本文所用的轭合是指接合两个实体或片段的连接,例如键,诸如共价键。
如本文所用的实体是指“元素”、分子、片段、原子、组分等。
化学实体是通过合成化学方法制备的类型的分子或片段。
在一个实施例中,通过IL-33蛋白的突变,例如点突变,尤其是用替代氨基酸(例如丝氨酸)置换一个或多个半胱氨酸氨基酸来稳定。如在此上下文中所用的替代氨基酸是指非半胱氨酸氨基酸。在一个实施例中,氨基酸是非天然存在的氨基酸。在一个实施例中,氨基酸是天然存在的氨基酸。在一个实施例中,氨基酸是蛋白质性质的。在一个实施例中,氨基酸是丝氨酸,这是有利的,因为其是保守取代且通常在此取代之后保留蛋白质活性。
redIL-33的稳定是重要的,因为其固定IL-33在活性构象中的形式,继而可用作工具来找到减弱蛋白质活性的结合分子。在一个实施例中,使用经稳定蛋白质来询问分子文库,诸如噬菌体抗体文库或合成抗体文库。在一个实施例中,使用经稳定蛋白质使宿主免疫,从而提供第一次机会来产生对还原形式具有特异性的抗体。
如本文所用的“减弱...的活性”是指减少相关活性或遏止相关活性。除非上下文另外指示,否则减弱和抑制通常在本文中可互换使用。
在一个实施例中,通过结合redIL-33来减弱。在一个实施例中,结合分子(诸如抗体或其结合片段)对redIL-33具有特异性,换言之,其对redIL-33的亲和力比对氧化形式大,例如1、2、3、4、5更大亲和力或以上。这在本文中称为redIL-33特异性抗体。
在一个实施例中,redIL-33特异性抗体结合,使得其在空间上阻断与受体ST2结合。
在一个实施例中,redIL-33特异性抗体结合,使得其在空间上阻断与受体IL-1RAcP结合。
在一个实施例中,redIL-33特异性抗体结合,使得其别构地阻断与受体ST2结合。
在一个实施例中,redIL-33特异性抗体结合,使得其别构地阻断与受体IL-1RAcP结合。
在一个实施例中,redIL-33特异性抗体结合,使得其别构地阻断经由受体ST2的信号传导,但可结合ST2和/或IL-1RAcP。
在一个实施例中,抗体结合IL-33的氧化形式且催化还原形式向氧化形式转化。虽然不希望受理论束缚,该过程的平衡可通过结合氧化形式改变而
促进向氧化形式转化。
应注意的是,术语“一个/种(a或an)”实体是指一个/种或多个/种该实体;例如,“一种抗IL-33抗体”应理解为代表一种或多种抗IL-33抗体。因此,术语“一个/种(a或an)”、“一个/种或多个/种”和“至少一个/种”在本文中可互换地使用。
如本文所用,术语“多肽”旨在涵盖单数“多肽”以及复数“多肽”,并且是指由通过酰胺键(也称为肽键)线性连接的单体(氨基酸)组成的分子。术语“多肽”是指具有两个或更多个氨基酸的任何一条或多条链,并且不是指产物的具体长度。因此,肽、二肽、三肽、寡肽、“氨基酸链”或用于指具有两个或更多个氨基酸的一条或多条链的任何其他术语被包括在“多肽”的定义中,并且术语“多肽”可以代替这些术语中的任何一个或可与其互换使用。术语“多肽”还旨在指多肽在表达后修饰的产物,包括而不限于糖基化、乙酰化、磷酸化、酰胺化、通过已知保护/阻断基团来进行的衍生、蛋白水解裂解或通过非天然存在的氨基酸来进行的修饰。多肽可来自天然生物来源或通过重组技术来产生,但不是必然从指定的核酸序列翻译而来。它可以按任何方式(包括通过化学合成)来产生。
具有定义的三维结构的多肽被称为折叠的,并且不具有定义的三维结构而可采用很多不同构象的多肽被称为未折叠的。如本文所用,术语糖蛋白是指偶联至至少一个碳水化合物部分的蛋白质,该碳水化合物部分经由氨基酸残基(例如丝氨酸残基或天冬酰胺残基)的含氧或含氮侧链来附接至该蛋白质。
“经分离的”多肽或其片段、变体或衍生物旨在指不存在于其天然环境中的多肽。不需要特定的纯化水平。例如,经分离的多肽可以从其天然或自然环境中去除。如同已经通过任何合适的技术分离、分馏或部分纯化或基本上纯化的天然或重组多肽一样,出于本披露的目的,在宿主细胞中表达的重组产生的多肽和蛋白质也被视为经分离的。
如本文所用的蛋白质是指具有二级和三级结构的多肽。
本披露的多肽还包括前述多肽的片段、衍生物、类似物或变体,及其任何组合。
术语“片段”、“变体”、“衍生物”和“类似物”例如在提及本披露的蛋白质或多肽,诸如本披露的抗IL-33抗体或抗体多肽时包括保留本披露的相应的抗体或抗体多肽的至少一些抗原结合特性的任何多肽。除了本文其他处所论述的具体抗体片段以外,本披露的多肽片段包括蛋白水解片段以及缺失片段。本披露的抗IL-33抗体和抗体多肽的变体包括如上文所述的片段,以及具有由于氨基酸取代、缺失或插入而改变的氨基酸序列的多肽。变体可以天然存在或非天然存在。非天然存在的变体可以使用本领域已知的诱变技术来产生。
变体多肽可包含保守或非保守氨基酸取代、缺失或添加。变体多肽也可在本文中称为“多肽类似物”。如本文所用,例如抗IL-33抗体或抗体多肽的“衍生物”是指具有通过官能侧基反应而化学衍生的一个或多个残基的主题多肽。含有二十种标准氨基酸的一种或多种天然存在的氨基酸衍生物的那些肽也作为“衍生物”被包括在内。例如,4-羟基脯氨酸可取代脯氨酸;5-羟基赖氨酸可取代赖氨酸;3-甲基组氨酸可取代组氨酸;高丝氨酸可取代丝氨酸;并且鸟氨酸可取代赖氨酸。本披露的抗IL-33抗体和抗体多肽的衍生物可包括已改变从而展现在参考抗体或本披露的抗体多肽上未发现的另外的特征的多肽。
术语“多核苷酸”旨在涵盖单数核酸以及复数核酸,并且是指经分离的核酸分子或构建体,例如信使RNA(mRNA)或质粒DNA(pDNA)。多核苷酸可包含常规磷酸二酯键或非常规键(例如酰胺键,诸如在肽核酸(PNA)中所发现的)。术语“核酸”是指存在于多核苷酸中的任何一个或多个核酸区段,例如DNA或RNA片段。““经分离的”核酸或多核苷酸旨在指已经从其天然环境中去除的核酸分子DNA或RNA。例如,出于本披露的目的,含于载体中的编码抗IL-33结合分子(例如抗体或其抗原结合片段)的重组多核苷酸被视为经分离的。经分离的多核苷酸的另外实例包括维持在异源宿主细胞中的重组多核苷酸或溶液中的经纯化(部分地或基本上)多核苷酸。经分离的RNA分子包括本披露的多核苷酸的体内或体外RNA转录物。根据本披露的经分离的多核苷酸或核酸进一步包括合成产生的这类分子。另外,多核苷酸或核酸可以是或可以包括调控元件诸如启动子、核糖体结合位点或转录终止子。
如本文所用,“编码区”是由翻译成氨基酸的密码子组成的核酸的一部分。虽然“终止密码子”(TAG、TGA或TAA)未被翻译成氨基酸,它可被认为是编码区的一部分,但是任何侧翼序列(例如启动子、核糖体结合位点、转录终止子、内含子等)并非编码区的一部分。本披露的两个或更多个编码区可以存在于单一多核苷酸构建体中,例如在单一载体上,或在单独的多核苷酸构建体中,例如在单独(不同)载体上。此外,任何载体可以含有单一编码区,或可以包含两个或更多个编码区,例如单一载体可以单独地编码免疫球蛋白重链可变区和免疫球蛋白轻链可变区。另外,本披露的载体、多核苷酸或核酸可编码异源编码区,异源编码区与编码抗IL-33抗体或其片段、变体或衍生物的核酸融合或未融合。异源编码区包括但不限于特化的元件或基序,诸如分泌信号肽或异源功能结构域。
在一些实施例中,多核苷酸或核酸是DNA。在DNA的情况下,包含编码多肽的核酸的多核苷酸通常可以包括启动子和/或可操作地与一个或多个编码区相关联的其他转录或翻译控制元件。可操作相关联是针对基因产物(例如多肽)的编码区按以下这种方式与一个或多个调控序列相关联,该方式使得该基因产物的表达处于这种或这些调控序列的影响或控制之下。若启动子功能的诱导导致编码所希望的基因产物的mRNA的转录,并且若两个DNA片段之间的连接的性质不干扰表达调控序列引导基因产物的表达的能力或不干扰有待转录的DNA模板的能力,则两个DNA片段(诸如多肽编码区和与其相关联的启动子)“可操作地相关联”。因此,启动子区将可操作地与编码多肽的核酸相关联,只要启动子能够实现所述核酸的转录。启动子可以是只在预定细胞中引导DNA的实质性转录的细胞特异性启动子。除了启动子以外,其他转录控制元件例如增强子、操纵子、阻遏子和转录终止信号可以可操作地与多核苷酸相关联以便引导细胞特异性转录。本文披露了合适的启动子和其他转录控制区。
多种转录控制区是本领域技术人员已知的。这些转录控制区包括但不限于在脊椎动物细胞中起作用的转录控制区,诸如但不限于来自巨细胞病毒的启动子和增强子片段(立即早期启动子,它与内含子A相结合)、猿病毒40(早期启动子)和逆转录病毒(诸如劳斯(Rous)肉瘤病毒)。其他转录控制区包括来源于脊椎动物基因诸如肌动蛋白、热休克蛋白、牛生长激素和兔β球蛋白的那些转录控制区,以及能够控制真核细胞中的基因表达的其他序列。另外的合适转录控制区包括组织特异性启动子和增强子,以及淋巴因子可诱导的启动子(例如,可由干扰素或白介素诱导的启动子)。
类似地,多种翻译控制元件是本领域普通技术人员已知的。这些翻译控制元件包括但不限于核糖体结合位点、翻译起始和终止密码子,以及来源于小核糖核酸病毒的元件(尤其是内核糖体进入位点,或IRES,也称为CITE序列)。
在其他实施例中,本披露的多核苷酸是RNA,例如呈信使RNA(mRNA)形式。
本披露的多核苷酸和核酸编码区可与编码分泌肽或信号肽的另外的编码区相关联,从而指导由本披露的多核苷酸编码的多肽的分泌。根据信号假设,由哺乳动物细胞分泌的蛋白质具有信号肽或分泌前导序列,一旦已经开始将生长的蛋白质链输出横穿粗面内质网,该信号肽或分泌前导序列就从成熟蛋白质上裂解。本领域普通技术人员意识到由脊椎动物细胞分泌的多肽通常具有融合至多肽的N末端的信号肽,这种信号肽从完全或“全长”多肽上裂解以便产生分泌或“成熟”形式的多肽。在一些实施例中,使用天然信号肽,例如免疫球蛋白重链或轻链信号肽,或保留引导与其可操作关联的多肽的分泌的能力的所述序列的功能衍生物。可替代地,可以使用异源哺乳动物信号肽或其功能衍生物。例如,野生型前导序列可经人类组织纤溶酶原激活剂(TPA)或小鼠β-葡糖醛酸酶的前导序列取代。
本披露的“结合分子”或“抗原结合分子”在其最广泛意义上是指特异性结合抗原决定簇的分子。在一个实施例中,结合分子特异性地结合至IL-33,尤其是redIL-33或IL-33-DSB。在另一实施例中,本披露的结合分子是抗体或其抗原结合片段。
在另一实施例中,本披露的结合分子包含参考抗体分子的至少一个重链或轻链CDR。在另一实施例中,本披露的结合分子包含一种或多种参考抗体分子的至少六个CDR。
本披露是针对某些抗IL-33抗体,或其抗原结合片段、变体或衍生物。
如本文所用的抗体是指如下文更详细论述的免疫球蛋白分子,尤其是全长抗体或包含全长抗体的分子,例如DVD-Ig分子等。
结合片段是抗体片段的表位/抗原结合片段,例如包含结合,尤其是包含6个CDR,诸如重链可变区中的3个CDR和轻链可变区中的3个CDR。
除非确切地提及全尺寸的抗体诸如天然存在的抗体,否则术语“抗IL-33”涵盖全尺寸抗体以及这类抗体的抗原结合片段、变体、类似物或衍生物,例如天然存在的抗体或免疫球蛋白分子或工程化的抗体分子或以与抗体分子类似的方式结合抗原的片段。
如本文所用,“人类”或“完全人类”抗体包括具有人类免疫球蛋白的氨基酸序列的抗体,并且包括自人类免疫球蛋白文库或自针对一种或多种人类免疫球蛋白转基因且不表达内源性免疫球蛋白的动物分离的抗体。完全人类抗体对于人类患者的治疗性治疗是尤其令人希望的。人类抗体可以通过本领域已知的多种方法来制造,包括使用来源于人类免疫球蛋白序列的抗体文库的噬菌体展示方法,如Vaughan等人,Nat.Biotech.[自然生物技术]14:309-314(1996),Sheets等人,Proc.Nat’l.Acad.Sci.[美国国家科学院院刊]95:6157-6162(1998),Hoogenboom和Winter,J.Mol.Biol.[分子生物学杂志]227:381(1992),以及Marks等人,J.Mol.Biol.[分子生物学杂志]222:581(1991))中所述的。用于产生和使用抗体噬菌体文库的技术还描述于例如美国专利号5,969,108、6,172,197、5,885,793、6,521,404;6,544,731;6,555,313;6,582,915;6,593,081;6,300,064;6,653,068;6,706,484;和7,264,963;以及Rothe等人,J.Mol.Biol.[分子生物学杂志],376:1382(2008)(其中的每一个通过引用以其全文而并入)。另外,如本领域已知的,人类抗体可以使用不能表达功能性内源性免疫球蛋白但可表达人类免疫球蛋白基因的转基因小鼠产生。关于此技术的综述,参见Lonberg和Huszar,Int.Rev.Immunol.[免疫学国际综述]13:65-93(1995)。“人类”或“完全人类”抗体还包括包含至少重链的可变结构域或至少重链和轻链的可变结构域的抗体,其中一个或多个可变结构域具有一个或多个人类免疫球蛋白可变结构域的氨基酸序列。
“人类”或“完全人类”抗体还包括如上文所述的包含本文所述的抗体分子(例如,VH区和/或VL区)的变体(包括衍生物)、基本上由这些变体(包括衍生物)组成或由这些变体(包括衍生物)组成的“人类”或“完全人类”抗体,这些抗体或其片段免疫特异性地结合至根据本披露的IL-33多肽或其片段或变体。
可以使用本领域技术人员已知的标准技术来将突变引入编码人类抗IL-33抗体的核苷酸序列中,这些标准技术包括但不限于导致氨基酸取代的定点诱变和PCR介导的诱变。在一个实施例中,相对于参考VH区、CDRH1、CDRH2、CDRH3、VL区、CDRL1、CDRL2或CDRL3,变体(包括衍生物)编码少于50个氨基酸取代、少于40个氨基酸取代、少于30个氨基酸取代、少于25个氨基酸取代、少于20个氨基酸取代、少于15个氨基酸取代、少于10个氨基酸取代、少于5个氨基酸取代、少于4个氨基酸取代、少于3个氨基酸取代或少于2个氨基酸取代。
在某些实施例中,氨基酸取代是保守氨基酸取代,进一步论述于下文中。可替代地,突变可以沿全部或部分编码序列随机引入,诸如通过饱和诱变,并且可以针对生物活性筛选所得突变体来鉴定保留活性(例如,结合IL-33多肽,例如人类、灵长类动物、鼠类IL-33或人类、灵长类动物和鼠类IL-33的任何组合的能力)的突变体。“人类”或“完全人类”抗体的这类变体(或其衍生物)也可以称为“经优化”或“针对抗原结合经优化”的人类或完全人类抗体,并且包括但不限于对抗原具有改进的亲和力的抗体、抗原特异性改变的抗体或潜在结构倾向性减少的抗体。
脊椎动物系统的基本免疫球蛋白结构已得到相对充分地理解。参见例如,Harlow等人(1988)Antibodies:A Laboratory Manual(2 nd ed.;Cold Spring HarborLaboratory Press)[抗体:实验室手册(第2版;冷泉港实验室出版社)]。
如下文更详细地论述,术语“免疫球蛋白”包含可在生物化学上区分的不同广泛类别的多肽。本领域技术人员应理解的是,重链被分类为γ、μ、α、δ或ε(γ、μ、α、δ、ε),它们之中有一些子类(例如,γ1-γ4)。此链的性质决定了抗体的“类别”分别是IgG、IgM、IgAIgG或IgE。免疫球蛋白子类(同种型)例如IgG1、IgG2、IgG3、IgG4、IgA1等被充分表征并且已知可赋予功能特化。这些类别和同种型中的每一个的修饰形式在考虑本披露的情况下对于本领域技术人员来说是可容易地辨别的,并且因此在本披露的范围内。虽然以下论述通常将针对免疫球蛋白分子的IgG类别,所有免疫球蛋白类别显然在本披露的范围内。关于IgG,标准免疫球蛋白分子包含分子量为大约23,000道尔顿的两个相同轻链多肽,以及分子量为53,000至70,000的两个相同重链多肽。四条链典型地通过二硫键以“Y”构型接合,其中轻链自“Y”的口开始且继续在整个可变区中包围重链。
轻链被分类为κ或λ(κ、λ)。每个重链类别可以与κ或λ轻链结合。通常,轻链和重链彼此共价键合,并且当免疫球蛋白由杂交瘤、B细胞或遗传工程化的宿主细胞来产生时,两个重链的“尾”部分通过共价二硫键或非共价键来彼此键合。在重链中,氨基酸序列从Y构型的分叉端的N末端延伸至每条链底部的C末端。
抗体“Y”的基体称为Fc(片段,可结晶)区,并且取决于抗体类别由促成两个或三个恒定结构域的两条重链组成。因此,Fc区与特定类别的Fc受体以及其他免疫分子(诸如补体蛋白)结合。轻链与重链两者均划分到具有结构和功能同源性的区域之中。术语“恒定”和“可变”是在功能上使用。在这方面,应理解的是轻(Vλ或Vκ)与重(VH)链部分的可变结构域决定了抗原识别和特异性。相反地,轻链(CL)和重链(CH1、CH2或CH3)的恒定结构域赋予重要生物特性诸如分泌、经胎盘移动性(transplacental mobility)、Fc受体结合、补体结合等。按照惯例,恒定区结构域的编号随着它们变得更远离抗体的抗原结合位点或氨基末端而增加。N末端部分是可变区且在C末端部分是恒定区;CH3和CL结构域实际上分别包含重链和轻链的羧基末端。
如上所指示,可变区允许抗体选择性地识别并且特异性地结合抗原上的表位。即,抗体的VL结构域和VH结构域或这些可变结构域内的互补决定区(CDR)的子集组合形成定义三维抗原结合位点的可变区。此四级抗体结构形成存在于Y的各臂末端的抗原结合位点。更确切地说,抗原结合位点由VH和VL链中的每一者上的三个CDR定义。在例如来源于骆驼物种或基于骆驼免疫球蛋白经工程化的某些免疫球蛋白分子的一些情况下,完整免疫球蛋白分子可仅由重链组成,无轻链。参见例如,Hamers-Casterman等人,Nature[自然]363:446-448(1993)。
在天然存在的抗体中,存在于每个抗原结合结构域中的六个“互补决定区”或“CDR”是短的、非连续氨基酸序列,这些氨基酸被特别地定位以便当抗体在水性环境中呈现其三维构型时形成抗原结合结构域。被称为“框架”区的抗原结合结构域中的其余氨基酸显示较小分子间变化性。框架区大部分采用β-片层构象,并且CDR形成多个环,这些环连接并且在一些情况下形成β-片层结构的一部分。因此,框架区起作用以便形成支架,该支架提供通过链间、非共价相互作用将CDR以正确取向来进行定位。由所定位的CDR形成的抗原结合结构域定义了与免疫反应性抗原上的表位互补的表面。这种互补表面促进抗体与其同源表位的非共价结合。本领域普通技术人员可以针对任何给定的重链或轻链可变结构域容易地鉴定分别构成CDR和框架区的氨基酸,因为其已被精确定义(参见下文)。
在本领域内使用和/或接受的术语存在两个或更多个定义的情况下,如本文所用的术语的定义旨在包括所有这类含义,除非明确地说明相反情形。具体实例是使用术语“互补决定区”(“CDR”)来描述在重链与轻链多肽两者的可变区中所发现的非连续抗原组合位点。这一特定区已经由Kabat等人(1983)U.S.Dept.of Health and Human Services[美国卫生和公众服务部],“Sequences of Proteins of Immunological Interest[免疫学上感兴趣的蛋白质序列]”以及Chothia和Lesk,J.Mol.Biol.[分子生物学杂志]196:901-917(1987)来描述,将这些文献通过引用并入本文中,其中这些定义包括在彼此相比较时的重叠氨基酸残基或氨基酸残基的子集。然而,应用任一定义来指抗体或其变体的CDR旨在处于如本文所定义并且使用的术语的范围内。涵盖由以上所引用的每一参考文献所定义的CDR的适当氨基酸残基在下表1中予以阐明以便进行比较。涵盖特定CDR的精确残基编号将取决于CDR的序列和大小而变化。在给定抗体的可变区氨基酸序列的情况下,本领域技术人员可以常规地确定哪些残基构成了特定CDR。
表1.CDR定义1
Kabat Chothia
VHCDR1 31-35 26-32
VHCDR2 50-65 52-58
VHCDR3 95-102 95-102
VLCDR1 24-34 26-32
VLCDR2 50-56 50-52
VLCDR3 89-97 91-96
1表1中所有CDR定义的编号均根据
Kabat等人提出的编号规定(参见下文)。
Kabat等人还定义了可变结构域序列的可适用于任何抗体的编号系统。本领域普通技术人员可以明确地将此“Kabat编号”系统指派给任何可变结构域序列,而不需依赖超出序列本身的任何实验数据。如本文所用,“Kabat编号”是指由Kabat等人(1983)U.S.Dept.of Health and Human Services[美国卫生和公众服务部],“Sequences ofProteins of Immunological Interest[免疫学上感兴趣的蛋白质序列]”所阐明的编号系统。除非另外规定,否则提及本披露的抗IL-33抗体或其抗原结合片段、变体或衍生物中的具体氨基酸残基位置的编号是根据Kabat编号系统。
本披露的抗体或其抗原结合片段、变体或衍生物包括但不限于多克隆、单克隆、多特异性小鼠、人类、人源化、灵长类化或嵌合抗体;单链抗体;表位结合片段,例如Fab、Fab'和F(ab')2、Fd、Fv、单链Fv(scFv)、二硫键连接的Fv(sdFv)、包含VL或VH结构域的片段、由Fab表达文库产生的片段;以及抗独特型(抗Id)抗体(包括例如本文所披露的抗IL-33抗体的抗Id抗体)。scFv分子在本领域是已知的并且描述于例如美国专利号5,892,019之中。本披露的免疫球蛋白或抗体分子可以是任何类型(例如,IgG、IgE、IgM、IgD、IgA和IgY)、类别(例如,IgG1、IgG2、IgG3、IgG4、IgA1和IgA2等)或子类别的免疫球蛋白分子。
如本文所用,术语“重链部分”包括来源于免疫球蛋白重链的氨基酸序列。包含重链部分的多肽包含以下项中的至少一者:CH1结构域、铰链(例如,上、中和/或下铰链区)结构域、CH2结构域、CH3结构域或其变体或片段。例如,用于本披露的结合多肽可包含有包含CH1结构域的多肽链;包含CH1结构域、至少一部分铰链结构域和CH2结构域的多肽链;包含CH1结构域和CH3结构域的多肽链;包含CH1结构域、至少一部分铰链结构域和CH3结构域的多肽链;或包含CH1结构域、至少一部分铰链结构域、CH2结构域和CH3结构域的多肽链。在另一实施例中,本披露的多肽包含有包含CH3结构域的多肽链。此外,用于本披露的结合多肽可能缺乏至少一部分CH2结构域(例如,全部或部分CH2结构域)。如上文所阐明,本领域普通技术人员应了解这些结构域(例如,重链部分)可被修饰成使得它们在氨基酸序列上不同于天然存在的免疫球蛋白分子。
在本文所披露的某些抗IL-33抗体或其抗原结合片段、变体或衍生物中,多聚体的一条多肽链的重链部分与多聚体的第二多肽链上的那些重链部分相同。可替代地,本披露的含重链部分单体不相同。例如,各单体可包含不同靶结合位点,形成例如双特异性抗体。
本文所披露的用于诊断和治疗方法的结合分子的重链部分可来源于不同免疫球蛋白分子。例如,多肽的重链部分可包含来源于IgG1分子的CH1结构域和来源于IgG3分子的铰链区。在另一实例中,重链部分可以包含部分地来源于IgG1分子并且部分地来源于IgG3分子的铰链区。在另一实例中,重链部分可以包含部分地来源于IgG1分子并且部分地来源于IgG4分子的嵌合铰链。
如本文所用,术语“轻链部分”包括来源于免疫球蛋白轻链,例如κ或λ轻链的氨基酸序列。优选地,轻链部分包含VL或CL结构域中的至少一者。
本文所披露的抗IL-33抗体或其抗原结合片段、变体或衍生物可就抗原的一个或多个表位或一个或多个部分,例如其识别或特异性结合的本文所披露的靶多肽(例如,全长或成熟IL-33)而言进行描述或规定。特异性地与抗体的抗原结合结构域相互作用的靶多肽的部分是“表位”或“抗原决定簇”。取决于抗原的尺寸、构型和类型,靶多肽可包含单一表位,但典型地包含至少两个表位,并且可以包括任何数目的表位。此外,应注意的是,靶多肽上的“表位”可以是或可包括非多肽元素,例如表位可包括碳水化合物侧链。
抗体的肽或多肽表位的最小尺寸被认为是约四至五个氨基酸。肽或多肽表位优选地含有至少七个,更优选地至少九个且最优选地至少约15至约30个氨基酸。由于CDR可以识别三级形式的抗原肽或多肽,包含表位的氨基酸不必连续,并且在一些情况下甚至可不在同一肽链上。由本披露的抗IL-33抗体识别的肽或多肽表位可含有IL-33的至少4、至少5、至少6、至少7,更优选地至少8、至少9、至少10、至少15、至少20、至少25或约15至约30个之间的连续或非连续氨基酸的序列。
“特异性结合”通常意指抗体经由其抗原结合结构域来结合至表位,并且这种结合需要抗原结合结构域与表位之间有某种互补性。根据此定义,当与抗体将结合至随机、不相关的表位相比,该抗体更容易地经由其抗原结合结构域来结合至表位时,该抗体被认为是“特异性地结合”至该表位。术语“特异性”在本文用于对某种抗体结合至某种表位的相对亲和力进行限定。例如,抗体“A”可被认为比抗体“B”对给定表位具有更高的特异性,或者抗体“A”可据称以比它对其相关表位“D”高的特异性结合至表位“C”。
在一个实施例中,抗体或其结合片段优先结合IL-33。“优先结合”意指抗体比结合相关的、相似的、同源的或类似的表位更容易地特异性地结合至表位。因此,“优先结合”至给定表位的抗体更可能地结合至所述表位而不是结合至相关的表位,即使这样的抗体可能与相关的表位交叉反应。
通过非限制性实例,若抗体以小于第二表位的抗体的解离常数(KD)的KD结合第一表位,则抗体可被视为优先结合所述第一表位。在另一非限制性实例中,若抗体以比第二表位的抗体的KD小至少一个数量级的亲和力结合第一表位,则抗体可被视为优先结合第一抗原。在另一非限制性实例中,若抗体以比第二表位的抗体的KD小至少两个数量级的亲和力结合第一表位,则抗体可被视为优先结合第一表位。
在另一非限制性实例中,若抗体以小于第二表位的抗体的解离速率(k(off))的k(off)结合第一表位,则抗体可被视为优先结合第一表位。在另一非限制性实例中,若抗体以比第二表位的抗体的k(off)小至少一个数量级的亲和力结合第一表位,则抗体可被视为优先结合第一表位。在另一非限制性实例中,若抗体以比第二表位的抗体的k(off)小至少两个数量级的亲和力结合第一表位,则抗体可被视为优先结合第一表位。
在一个实施例中,根据本披露的抗体或其抗原结合片段、变体或衍生物可据称以小于或等于5X10-1sec-1、10-1sec-1、5X10-2sec-1、10-2sec-1、5Xl0-3sec-1或l0-3sec-1的解离速率(k(off))结合本文所披露的靶多肽(例如IL-33,例如人类、灵长类动物、鼠类IL-33或人类、灵长类动物和鼠类IL-33的任何组合)或其片段或变体。例如,本披露的抗体可据称以小于或等于5X10-4sec-1、10-4sec-1、5X10-5sec-1、或10-5sec-1、5X10-6sec-1、10-6sec-1、5X10-7sec-1或10-7sec-1的解离速率(k(off))结合本文所披露的靶多肽(例如IL-33,例如人类、灵长类动物、鼠类IL-33或人类、灵长类动物和鼠类IL-33的任何组合)或其片段或变体。
在一个实施例中,本文所披露的抗体或其抗原结合片段、变体或衍生物可据称以大于或等于103M-1sec-1、5X103M-1sec-1、104M-1sec-1或5X104M-1sec-1的缔合速率(k(on))结合本文所披露的靶多肽(例如IL-33,例如人类、灵长类动物、鼠类IL-33或人类、灵长类动物和鼠类IL-33的任何组合)或其片段或变体。例如,本披露的抗体可据称以大于或等于105M- 1sec-1、5X105M-1sec-1、106M-1sec-1或5X106M-1sec-1或107M-1sec-1的缔合速率(k(on))结合本文所披露的靶多肽(例如IL-33,例如人类、灵长类动物、鼠类IL-33或人类、灵长类动物和鼠类IL-33的任何组合)或其片段或变体。
如本文所用的交叉反应性旨在指结合分子(例如抗体或其结合片段)结合同一表位或重叠表位。如本文所用的竞争性抑制结合为交叉反应性的一种形式。
若抗体优先结合至所述表位,其程度为在某种程度上阻断参考抗体与表位的结合,则抗体被称为竞争性抑制参考抗体与给定表位的结合。竞争性抑制可通过本领域已知的任何方法确定,例如固相测定(诸如竞争ELISA测定)、解离增强镧系荧光免疫测定(珀金埃尔默公司(Perkin Elmer))和放射性配体结合测定。抗体可据称竞争性抑制参考抗体与给定表位结合至少90%、至少80%、至少70%、至少60%或至少50%。
如本文所用,术语“亲和力”是指单独表位与免疫球蛋白分子的CDR的结合强度的度量。参见例如,Harlow等人(1988)Antibodies:A Laboratory Manual(Cold SpringHarbor Laboratory Press,2 nd ed)[抗体:实验室手册(冷泉港实验室出版社),第2版]第27-28页。如本文所用,术语“亲合力”是指免疫球蛋白群体与抗原之间的复合物的总体稳定性,即免疫球蛋白混合物与抗原的功能组合强度。参见例如,Harlow等人第29-34页。亲合力与群体中的单独免疫球蛋白分子与特定表位的亲和力相关,并且还与免疫球蛋白和抗原的效价相关。例如,二价单克隆抗体与具有高度重复表位结构诸如聚合物的抗原之间的相互作用将是高亲合力的相互作用。
本披露的抗IL-33抗体或其抗原结合片段、变体或衍生物也可就其交叉反应性而言进行描述或规定。如本文所用,术语“交叉反应性”是指对一种抗原具有特异性的抗体与第二抗原反应的能力;两种不同抗原性物质之间的相关性的度量。因此,若抗体与除诱导其形成的表位以外的表位结合,则抗体是交叉反应性的。交叉反应性表位通常含有许多与诱导表位相同的互补结构特征,并且在一些情况下,可实际上比原始表位更合宜。
例如,某些抗体具有一定程度的交叉反应性,因为其结合相关但不相同的表位,例如与参考表位具有至少95%、至少90%、至少85%、至少80%、至少75%、至少70%、至少65%、至少60%、至少55%和至少50%一致性(如使用本领域已知和本文所述的方法计算的)的表位。若抗体不结合与参考表位具有小于95%、小于90%、小于85%、小于80%、小于75%、小于70%、小于65%、小于60%、小于55%和小于50%一致性(如使用本领域已知和本文所述的方法计算的)的表位,则抗体可据称几乎不具有或无交叉反应性。若抗体不结合某一表位的任何其他类似物、直系同源物或同系物,则抗体可被认为对那个表位具有“高度特异性”。
本披露的抗IL-33结合分子(例如抗体或其抗原结合片段、变体或衍生物)也可就其对本披露的多肽(例如IL-33,例如人类、灵长类动物、鼠类IL-33或人类、灵长类动物和鼠类IL-33的任何组合)的结合亲和力而言进行描述或规定。优选的结合亲和力包括解离常数或Kd小于5x10-2M、10-2M、5x10-3M、10-3M、5x10-4M、10-4M、5x10-5M、10-5M、5x10-6M、10-6M、5x10- 7M、10-7M、5x10-8M、10-8M、5x10-9M、10-9M、5x10-10M、10-10M、5x10-11M、、5x10-12M、10-12M、5x10- 13M、10-13M、5x10-14M、10-14M、5x10-15M或10-15M的那些结合亲和力。
本披露的抗IL-33抗体或其抗原结合片段、变体或衍生物可以是“多特异性的”,例如双特异性的、三特异性的或具有更大多特异性,意指其识别且同时结合至存在于一种或多种不同抗原(例如,蛋白质)上的两个或更多个不同表位。因此,抗IL-33抗体是“单特异性的”还是“多特异性的”(例如,“双特异性的”)是指与结合多肽反应的不同表位的数目。多特异性抗体可对本文所述的靶多肽的不同表位具有特异性,或可对靶多肽以及异源表位(诸如异源多肽或固体支撑材料)具有特异性。
如本文所用,术语“效价”是指潜在结合结构域,例如存在于结合多肽或IL-33结合分子(例如,抗体或其抗原结合片段)中的抗原结合结构域的数目。各结合结构域特异性结合一个表位。当结合多肽或IL-33结合分子包含多于一个结合结构域时,各结合结构域可特异性结合相同表位(对于具有两个结合结构域的抗体),称为“二价单特异性的”,或特异性结合不同表位(对于具有两个结合结构域的抗体),称为“二价双特异性的”。抗体或其抗原结合片段的各特异性也可以是双特异性的和二价的(称为“双特异性四价抗体”)。在另一实施例中,可制得四价微型抗体或结构域缺失抗体。
双特异性二价抗体及其制造方法描述于例如美国专利号5,731,168、5,807,706、5,821,333;以及美国专利申请公开号2003/020734和2002/0155537中,将以上所有的披露均通过引用并入本文中。双特异性四价抗体及其制造方法描述于例如WO 02/096948和WO00/44788中,将两者的披露通过引用并入本文中。通常参见PCT公开WO 93/17715;WO 92/08802;WO 91/00360;WO 92/05793;Tutt等人,J.Immunol.[免疫学杂志]147:60-69(1991);美国专利号4,474,893;4,714,681;4,925,648;5,573,920;5,601,819;Kostelny等人,J.Immunol.[免疫学杂志]148:1547-1553(1992)。
如先前所指示,不同免疫球蛋白类别的恒定区的亚单位结构和三维构型是熟知的。如本文所用,术语“VH结构域”包括免疫球蛋白重链的氨基末端可变结构域并且术语“CH1结构域”包括免疫球蛋白重链的第一(最氨基末端的)恒定区结构域。CH1结构域与VH结构域相邻并且在免疫球蛋白重链分子的铰链区的氨基末端。
如本文所用,术语“CH2结构域”包括重链分子的、例如使用常规编号方案从抗体的约残基244延伸至残基360的那部分(残基244至360,Kabat编号系统;并且残基231-340,EU编号系统;参见Kabat EA等人)。CH2结构域的独特性在于它不与另一个结构域紧密地配对。而是,两个N连接的分支碳水化合物链插入完整的天然IgG分子的两个CH2结构域之间。还被文献充分证明的是CH3结构域从CH2结构域延伸至IgG分子的C末端并且包含大约108个残基。
如本文所用,术语“铰链区”包括重链分子的将CH1结构域接合至CH2结构域的那部分。这个铰链区包含大约25个残基并且是柔性的,由此允许两个N末端抗原结合区独立地移动。铰链区可细分成三个相异的结构域:上、中和下铰链结构域(Roux等人,J.Immunol.[免疫学杂志]161:4083(1998))。
如本文所用,术语“二硫键”包括在两个硫原子之间形成的共价键。氨基酸半胱氨酸包含可以与第二硫醇基形成二硫键或二硫桥的硫醇基。在大多数天然存在的IgG分子中,CH1和CL区通过二硫键来连接并且两个重链通过使用Kabat编号系统在对应于239和242的位置(EU编号系统的位置226或229)处的两个二硫键来连接。
如本文所用,术语“嵌合抗体”将被认为意指免疫反应区域或位点获得或来源于第一物种且恒定区(根据本披露,其可以是完整的、部分的或经修饰的)获自第二物种的任何抗体。在某些实施例中,靶结合区或位点将来自非人类来源(例如,小鼠或灵长类动物),并且恒定区来自人。
如本文所用,术语“经工程化的抗体”应指重链或轻链或两者中的可变结构域通过至少一个氨基酸置换改变的人类抗体。在一个实施例中,框架残基的氨基酸置换将通过使框架残基变为种系来降低潜在免疫原性。在另一实施例中,框架或CDR残基的氨基酸置换可移除可能导致产物不稳定、聚集或异质性的潜在结构倾向。不希望的倾向的实例包括不成对的半胱氨酸(可导致二硫键混乱或可变的巯基加合物形成)、N连接的糖基化位点(导致结构和活性的异质性)以及脱酰胺作用(例如NG、NS)、异构化(DG)、氧化(暴露的甲硫氨酸)和水解(DP)位点。在另一实施例中,CDR和框架残基通过靶向或随机诱变方法的氨基酸置换可产生具有增强的结合、效力或特异性特征的抗体。在另一实施例中,“经工程化的抗体”是指重链或轻链或两者中的可变结构域通过至少部分置换具有已知特异性的抗体的一个或多个CDR且在必要时通过部分框架区置换和序列变化而改变的抗体。虽然CDR可来源于与框架区所来源于的抗体相同的类别或甚至子类别的抗体,但是设想CDR将来源于不同类别的抗体并且优选地来源于不同种类的抗体。
如本文所用,术语“人源化抗体”应指来源于非人类物种抗体(在本文中也称为供体抗体)的抗体分子,其结合具有来自非人类物种的一个或多个互补决定区(CDR)和来自人类免疫球蛋白分子(在本文中也称为受体抗体)的框架区的所希望抗原。可能无需用来自供体可变结构域的完整CDR置换所有CDR以将一个可变结构域的抗原结合能力转移至另一者。而是,可能只需要转移维持靶标结合位点的活性所必需的那些残基。
应进一步认识到,人源化抗体的重链或轻链或两者中的可变结构域内的框架区可仅包含人源残基,在该情况下人源化抗体的这些框架区称为“完全人类框架区”。可替代地,在必要时供体可变结构域的一个或多个框架区的一个或多个残基可在人源化抗体的重链或轻链或两者中的可变结构域的一个或多个人类框架区的相应位置内经工程化以维持适当结合或增强结合至IL-33抗原。已以此方式经工程化的人类框架区将因此包含人类和供体框架残基的混合物,并且在本文中称为“部分人类框架区”。
例如,抗IL-33抗体的人源化可以基本上按照本领域已知的方法(例如,Winter和同事的方法(Jones等人,Nature[自然]321:522-525(1986);Riechmann等人,Nature[自然]332:323-327(1988);Verhoeyen等人,Science[科学]239:1534-1536(1988))),通过用啮齿动物或突变型啮齿动物CDR或CDR序列替代人类抗IL-33抗体的相应序列来进行。还参见美国专利号5,225,539;5,585,089;5,693,761;5,693,762;5,859,205;将其通过引用并入本文中。所得人源化抗IL-33抗体将在人源化抗体的重链和/或轻链可变结构域的完全人类框架区内包含至少一个啮齿动物或突变型啮齿动物CDR。在一些情况下,人源化抗IL-33抗体的一个或多个可变结构域的框架区内的残基经相应的非人类(例如,啮齿动物)残基置换(参见例如,美国专利号5,585,089、5,693,761、5,693,762和6,180,370),在该情况下,所得人源化抗IL-33抗体将在重链和/或轻链可变结构域内包含部分人类框架区。
此外,人源化抗体可包含在该受体抗体或供体抗体中未发现的残基。进行这些修饰以进一步改进抗体性能(例如,获得所希望的亲和力)。通常,人源化抗体将包含基本上所有的至少一个且典型地两个可变结构域,其中所有或基本上所有CDR对应于非人类免疫球蛋白的那些CDR,并且所有或基本上所有框架区是人类免疫球蛋白序列的那些框架区。人源化抗体任选地还将包含免疫球蛋白恒定区(Fc)的至少一部分,典型地是人类免疫球蛋白的恒定区的至少一部分。更多细节参见Jones等人,Nature[自然]327:522-525(1986);Riechmann等人,Nature[自然]332:323-329(1988);以及Presta,Curr.Op.Struct.Biol.[现代结构生物学评论]2:593-596(1992);将其通过引用并入本文中。因此,这类“人源化”抗体可包括实质上少于完整人类可变结构域已经非人类物种的相应序列取代的抗体。实际上,人源化抗体典型地是一些CDR残基和可能一些框架残基经来自啮齿动物抗体中的类似位点的残基取代的人类抗体。参见例如,美国专利号5,225,539;5,585,089;5,693,761;5,693,762;5,859,205。还参见美国专利号6,180,370和国际公开号WO 01/27160,其中披露了人源化抗体和用于产生对预定抗原具有改进的亲和力的人源化抗体的技术。
如本文所用,术语“连接”、“融合(fused或fusion)”可互换使用。这些术语是指通过包括化学轭合或重组手段的任何手段将两个更多个元件或组分接合在一起。“框内融合”是指接合两个或更多个多核苷酸开放阅读框(ORF)以便以维持原始ORF的正确翻译阅读框的方式来形成连续更长的ORF。因此,重组融合蛋白是含有对应于由原始ORF编码的多肽的两个或更多个区段的单一蛋白质(这些区段通常在自然情况下并非如此接合)。虽然在整个融合区段中如此连续制得阅读框,这些区段可通过例如框内接头序列在物理或空间上分离。例如,编码免疫球蛋白可变区的CDR的多核苷酸可在框内融合,但通过编码至少一个免疫球蛋白框架区或另外的CDR区的多核苷酸分离,只要“融合”CDR共翻译为连续多肽的一部分即可。
在多肽的情况下,“线性序列”或“序列”是多肽中的在氨基至羧基末端方向上的氨基酸顺序,其中在多肽的一级结构中,在序列上彼此邻接的残基是连续的。
如本文所用的术语“表达”是指基因产生生物化学物质(例如,多肽)的过程。该过程包括基因在细胞内的功能性存在的任何表现,包括但不限于基因敲除以及瞬时表达与稳定表达两者。它包括而不限于将基因转录成信使RNA(mRNA),和将这种mRNA翻译成一种或多种多肽。若最终所希望的产物是生物化学物质,则表达包括该生物化学物质和任何前体的形成。基因的表达产生“基因产物”。如本文所用,基因产物可以是核酸,例如通过基因转录产生的信使RNA,或为自转录物翻译的多肽。本文所述的基因产物进一步包括具有转录后修饰(例如,聚腺苷酸化)的核酸,或具有翻译后修饰(例如,甲基化、糖基化、脂质添加、与其他蛋白质亚单位相关联、蛋白水解裂解等)的多肽。
如本文所用,术语“治疗(treat或treatment)”是指治疗性治疗和防治性或预防性措施,其中目标是预防或减慢(减轻)不希望的生理变化或障碍,诸如炎性病症的进展。有益或所希望的临床结果包括但不限于症状缓解、疾病程度减轻、疾病状态稳定化(即未恶化)、疾病进展延迟或减缓、疾病状态改善或缓和以及减轻(无论是部分减轻还是全部减轻),无论是可检测的还是不可检测的。“治疗”还可以意指如与未接受治疗时的预期存活相比,延长存活。需要治疗的那些包括已患有病症或障碍的那些以及易于患上病症或障碍的那些或打算预防病症或障碍的那些。
“受试者”或“个体”或“动物”或“患者”或“哺乳动物”意指希望诊断、预后或治疗的任何受试者,尤其是哺乳动物受试者。哺乳动物受试者包括人、家畜、农畜、以及动物园动物、体育动物、或宠物动物诸如狗、猫、豚鼠、兔、大鼠、小鼠、马、牛、奶牛等。
如本文所用,诸如“将受益于抗IL-33抗体的给予的受试者”和“需要治疗的动物”的词组包括将受益于所用抗IL-33抗体的给予,例如用于检测抗IL-33多肽(例如,用于诊断程序),和/或受益于用抗IL-33抗体治疗(即,缓和或预防疾病)的受试者,诸如哺乳动物受试者。
II.靶多肽描述
如本文所用,术语“IL-33”和“IL-33多肽”可互换使用。在某些实施例中,IL-33是全长。在另一实施例中,IL-33是成熟的截短IL-33(氨基酸112-270)。最近研究表明全长IL-33是有活性的(Cayrol和Girard,Proc Natl Acad Sci U S A[美国国家科学院院刊]106(22):9021-6(2009);Hayakawa等人,Biochem Biophys Res Commun[生物化学和生物物理学研究通讯]387(1):218-22(2009);Talabot-Ayer等人,J Biol Chem.[生物化学杂志]284(29):19420-6(2009))。然而,N末端处理的或截短的IL-33(包括但不限于aa 72-270、79-270、95-270、99-270、107-270、109-270、111-270、112-270)可具有增强的活性(Lefrancais2012、2014)。在另一实施例中,IL-33可包括全长IL-33、其片段或IL-33突变体或变体多肽,其中IL-33片段或IL-33变体多肽保留活性IL-33的一些或所有功能特性。
人类IL-33是270个氨基酸的蛋白质(登录号O95760),由两个结构域组成:同源结构域和细胞因子(IL-1样)结构域。同源结构域含有核定位信号(NLS)。IL-33最初被鉴定为“DVS27”基因,其在蛛网膜下腔出血之后在动脉痉挛性脑动脉中上调(Onda等人,J.Cereb.Blood Flow Metab.[脑血流与代谢杂志]19:1279-88(1999)),并且被被鉴定为“来自高内皮小静脉的核因子(NF-HEV)”,其在内皮细胞核中表达(Baekkevold等人,Am.J.Pathol[美国病理学杂志]163:69-79(2003))。IL-33(也称为IL-1F11)现被视为细胞因子IL-1家族的第11个成员,该家族还包括IL-α、IL1β和IL-18。参见Oboki等人,Allergology International[变态反应学国际杂志]59:143-160(2010)。
Schmitz等人首次将IL-33鉴定为孤儿受体ST2的配体(也称为IL-1R4)(Schmitz等人,Immunity[免疫力]23(5)479-90(2005))。ST2受体的唯一已知配体是IL-33(Schmitz等人(2005))。IL-33受体由异源二聚体分子形成,异源二聚体分子由ST2和IL-1R辅助蛋白(IL-1RAcP)组成。IL-1RAcP是IL-1α、IL-1β、IL-1F6、IL1F8和IL1F9的受体的共享组分。IL-33结合至IL-33受体,该受体是ST2与IL-1RAcP的二聚体。IL-1RAcP不为结合所需,但对于信号传导至关重要。IL-33受体的TIR结构域补充MyD88和TRAF6,并且受体信号导致NFκB和MAP激酶途径的激活(Oboki等人(2010))。IL-33受体可能潜在地与其他受体相关联,并且据报道在人类和小鼠肥大细胞中使受体酪氨酸激酶c-Kit交叉激活(Drube等人,Blood[血液]115:3899-906(2010))。此交叉激活的结构基础是c-Kit、ST2和IL-1RAcP之间的复合物形成。c-Kit与IL-1RAcP组成性地相互作用,并且在配体结合之后ST2接合此复合物。
最近,已显示IL-33结合第二IL-33受体异源二聚体复合物。ST2与另一IL1R家族分子“单一Ig IL-1R相关分子”(SIGIRR)(也称为Toll IL-1R8(TIR8))形成复合物。SIGIRR/TIR8被视为充当IL-1R和Toll样受体(TLR)介导的免疫应答的负调节剂(Garlanda等人,Trends Immunol.[免疫学趋势]30:439-46(2009))。与ST2:IL-1RAcP相比之下,ST2:SIGIRR似乎充当IL-33的负调节剂。
ST2在基线由Th2细胞和肥大细胞表达,两种细胞类型已知是过敏性哮喘的重要介质。IL-33能够刺激这些(和各种其他细胞)产生一系列功能反应,包括细胞因子和趋化因子。
抗IL-33抗体
在某些实施例中,本披露的结合分子(例如抗体或其抗原结合片段、变体或衍生物),例如抗体IL330065、IL330099、IL330101、IL330107、IL33149和IL330180和33_640076-4B、33_640081-AB、33_640082-6B、33_640082-7B、33_640084-2B、33_640086-6B、33_640087-7B、33_640201-2B和33_640237-2B,结合至IL-33且抑制IL-33驱动的自肥大细胞、内皮细胞释放细胞因子和TF-1细胞增殖。
在某些实施例中,本披露的抗体包含结合至IL-33的抗IL-33抗体或其抗原结合片段、变体或衍生物,例如抗体IL330065、IL330099、IL330101、IL330107、IL33149和IL330180和33_640076-4B、33_640081-AB、33_640082-6B、33_640082-7B、33_640084-2B、33_640086-6B、33_640087-7B、33_640201-2B和33_640237-2B。在某些实施例中,抗IL-33抗体结合人类、灵长类动物、鼠类IL-33,或人类、灵长类动物和鼠类IL-33的任何组合。在某些实施例中,抗IL-33抗体抑制IL-33驱动的细胞因子产生。
在一个实施例中,本披露提供了经分离的结合分子(例如抗体或其抗原结合片段),其特异性地结合至与抗体IL330065、IL330099、IL330101、IL330107、IL33149或IL330180和33_640076-4B、33_640081-AB、33_640082-6B、33_640082-7B、33_640084-2B、33_640086-6B、33_640087-7B、33_640201-2B和33_640237-2B相同的IL-33表位。在另一实施例中,本披露提供了经分离的结合分子(例如抗体或其抗原结合片段),其特异性地结合至IL-33,并且竞争性地抑制抗体IL330065、IL330099、IL330101、IL330107、IL33149或IL330180和33_640076-4B、33_640081-AB、33_640082-6B、33_640082-7B、33_640084-2B、33_640086-6B、33_640087-7B、33_640201-2B和33_640237-2B特异性地结合至IL-33,例如人类、灵长类动物、鼠类IL-33,或人类、灵长类动物和鼠类IL-33的任何组合。
在某些实施例中,本披露的结合分子具有与参考抗IL-33抗体分子的氨基酸序列具有至少75%、80%、85%、88%、89%、90%、91%、92%、93%、94%或95%序列一致性的氨基酸序列。在另一实施例中,结合分子与参考抗体共享至少96%、97%、98%、99%或100%序列一致性。在某些实施例中,参考抗体是IL330065、IL330099、IL330101、IL330107、IL33149或IL330180和33_640076-4B、33_640081-AB、33_640082-6B、33_640082-7B、33_640084-2B、33_640086-6B、33_640087-7B、33_640201-2B和33_640237-2B。
在另一实施例中,本披露提供了经分离的抗体或其抗原结合片段,其包含免疫球蛋白重链可变结构域(VH结构域)、基本上由免疫球蛋白重链可变结构域(VH结构域)组成或由免疫球蛋白重链可变结构域(VH结构域)组成,其中VH结构域的至少一个CDR具有与上文所披露的VHCDR的CDR1、CDR2或CDR3区至少75%、80%、85%、90%、95%、96%、97%、98%、99%或一致的氨基酸序列,其中包含经编码的VH结构域的抗体或其抗原结合片段特异性地或优先结合至IL-33。在某些实施例中,抗体或其抗原结合片段抑制IL-33驱动的细胞因子产生。
在另一实施例中,本披露提供了经分离的抗体或其抗原结合片段,其包含免疫球蛋白重链可变结构域(VH结构域)、基本上由免疫球蛋白重链可变结构域(VH结构域)组成或由免疫球蛋白重链可变结构域(VH结构域)组成,其中VH结构域的至少一个CDR具有与上文所披露的VHCDR至少75%、80%、85%、90%、95%、96%、97%、98%、99%或一致的氨基酸序列,其中包含经编码的VH结构域的抗体或其抗原结合片段特异性地或优先结合至IL-33。在某些实施例中,经分离的抗体进一步包含免疫球蛋白轻链可变结构域(VL结构域)。在某些实施例中,抗体或其抗原结合片段抑制IL-33驱动的细胞因子产生。
在另一实施例中,本披露提供了经分离的抗体或其抗原结合片段,其包含免疫球蛋白重链可变结构域(VH结构域)、基本上由免疫球蛋白重链可变结构域(VH结构域)组成或由免疫球蛋白重链可变结构域(VH结构域)组成,其中VH结构域的至少一个CDR具有与上文所披露的VHCDR一致(1、2、3、4或5个保守氨基酸取代除外)的氨基酸序列,其中包含经编码的VH结构域的抗体或其抗原结合片段特异性地或优先结合至IL-33。在某些实施例中,经分离的抗体进一步包含VL结构域。在某些实施例中,抗体或其抗原结合片段抑制IL-33驱动的细胞因子产生。
在另一实施例中,本披露提供了经分离的抗体或其抗原结合片段,其包含VH结构域、基本上由VH结构域组成或由VH结构域组成,该VH结构域具有与SEQ ID NO:2、12、22、32、42或52的VH氨基酸序列至少75%、80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或100%一致的氨基酸序列,其中包含经编码的VH结构域的抗体或其抗原结合片段特异性地或优先结合至IL-33。在某些实施例中,经分离的抗体进一步包含VL结构域。在某些实施例中,抗体或其抗原结合片段抑制IL-33驱动的细胞因子产生。
在另一实施例中,本披露提供了经分离的抗体或其抗原结合片段,其包含免疫球蛋白轻链可变结构域(VL结构域)、基本上由免疫球蛋白轻链可变结构域(VL结构域)组成或由免疫球蛋白轻链可变结构域(VL结构域)组成,其中VL结构域的至少一个CDR具有与上文所披露的VH氨基酸序列SEQ的CDR1、CDR2或CDR3区至少75%、80%、85%、90%、95%、96%、97%、98%、99%或一致的氨基酸序列,其中包含经编码的VL结构域的抗体或其抗原结合片段特异性地或优先结合至IL-33。在某些实施例中,经分离的抗体进一步包含VH结构域。在某些实施例中,抗体或其抗原结合片段抑制IL-33驱动的细胞因子产生。
在另一实施例中,本披露提供了经分离的抗体或其抗原结合片段,其包含免疫球蛋白轻链可变结构域(VL结构域)、基本上由免疫球蛋白轻链可变结构域(VL结构域)组成或由免疫球蛋白轻链可变结构域(VL结构域)组成,其中VL结构域的至少一个CDR具有与上文所披露的VLCDR至少75%、80%、85%、90%、95%、96%、97%、98%、99%或一致的氨基酸序列,其中包含经编码的VL结构域的抗体或其抗原结合片段特异性地或优先结合至IL-33。在某些实施例中,经分离的抗体进一步包含VH结构域。在某些实施例中,抗体或其抗原结合片段抑制IL-33驱动的细胞因子产生。
在另一实施例中,本披露提供了经分离的抗体或其抗原结合片段,其包含免疫球蛋白轻链可变结构域(VL结构域)、基本上由免疫球蛋白轻链可变结构域(VL结构域)组成或由免疫球蛋白轻链可变结构域(VL结构域)组成,其中VL结构域的至少一个CDR具有与上文所披露的VL CDR一致(1、2、3、4或5个保守氨基酸取代除外)的氨基酸序列,其中包含经编码的VL结构域的抗体或其抗原结合片段特异性地或优先结合至IL-33。在某些实施例中,经分离的抗体进一步包含VH结构域。在某些实施例中,抗体或其抗原结合片段抑制IL-33驱动的细胞因子产生。
在另一实施例中,本披露包括经分离的抗体或其抗原结合片段,其包含VL结构域、基本上由VL结构域组成或由VL结构域组成,该VL结构域具有与上文所披露的VL氨基酸序列至少75%、80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或100%一致的氨基酸序列,其中包含经编码的VL结构域的抗体或其抗原结合片段特异性地或优先结合至IL-33。在某些实施例中,经分离的抗体进一步包含VH结构域。在某些实施例中,抗体或其抗原结合片段抑制IL-33驱动的细胞因子产生。
可以在本披露的方法中使用本披露的抗IL-33抗体的适合生物活性变体。这类变体将保留亲本抗IL-33抗体的所希望的结合特性。制造抗体变体的方法通常可在本领域获得。
诱变和核苷酸序列改变的方法在本领域是熟知的。参见例如,Walker和Gaastra编辑(1983)Techniques in Molecular Biology(MacMillan Publishing Company,NewYork)[分子生物学技术(麦克米兰出版公司,纽约)];Kunkel,Proc.Natl.Acad.Sci.USA[美国国家科学院院刊]82:488-492(1985);Kunkel等人,Methods Enzymol.[酶学方法]154:367-382(1987);Sambrook等人(1989)Molecular Cloning:A Laboratory Manual(ColdSpring Harbor,N.Y.)[分子克隆:实验室手册(冷泉港,纽约)];美国专利号4,873,192;以及其中所引用的参考文献;将其通过引用并入本文中。关于不影响感兴趣的多肽的生物活性的适当氨基酸取代的指导可见于Dayhoff等人(1978)Atlas of Protein Sequence andStructure(Natl.Biomed.Res.Found.,Washington,D.C.)[蛋白质序列和结构图谱(国家生物医学研究发现,华盛顿特区)],第345-352页的模型,将其通过引用以其全文并入本文中。Dayhoff等人的模型使用点接受突变(PAM)氨基酸相似性矩阵(PAM250矩阵)确定适合的保守氨基酸取代。保守取代(诸如一个氨基酸经具有相似特性的另一氨基酸交换)可以是优选的。如由Dayhoff等人模型的PAM 250矩阵教导的保守氨基酸取代的实例包括但不限于以及
在构建抗IL-33结合分子(例如抗体或其抗原结合片段)、感兴趣的多肽的变体中,进行修饰使得变体继续具有所希望的特性,例如能够特异性地结合至IL-33且在某些实施例中不阻断IL-33与ST2结合。显然,在编码变体多肽的DNA中进行的任何突变必须不能将序列置于阅读框外且优选地将不形成可产生二级mRNA结构的互补区。
测量抗IL-33结合分子(例如抗体或其抗原结合片段)的结合特异性的方法包括但不限于标准竞争性结合测定、ELISA测定、BIACORE测定、功能性测定(诸如增殖或因子释放)等。参见例如,披露于如下项中的测定:WO 93/14125;Shi等人,Immunity[免疫力]13:633-642(2000);Kumanogoh等人,J Immunol[免疫学杂志]169:1375-1381(2002);Watanabe等人,J Immunol[免疫学杂志]167:4321-4328(2001);Wang等人,Blood[血液]97:3498-3504(2001);以及Giraudon等人,JImmunol[免疫学杂志]172(2):1246-1255(2004),将以上所有均通过引用并入本文中。
如本文所论述,在任何特定多肽(包括本文所披露的恒定区、CDR、VH结构域或VL结构域)与另一多肽至少65%、70%、75%、80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或甚至100%一致的情况下,一致性%可使用本领域已知的方法和计算机程序/软件测定,诸如但不限于BESTFIT程序(Wisconsin Sequence AnalysisPackage,Version 8 for Unix,Genetics Computer Group,University Research Park,575 Science Drive,Madison,Wis.53713[威斯康星序列分析程序包,针对Unix的第8版,遗传学计算机组,大学科技园区,575科学路,麦迪逊,威斯康星州53713])。BESTFIT使用Smith和Waterman(1981)Adv.Appl.Math.[应用数学进展]2:482-489的局部同源性算法找到两个序列之间的最佳同源性区段。当使用BESTFIT或任何其他序列比对程序确定特定序列是否与根据本披露的参考序列例如95%一致时,参数的设置当然使得一致性百分比是在参考多肽序列的全长内计算且允许参考序列中高达5%的氨基酸总数的同源性空隙。
出于本披露的目的,序列一致性%可使用Smith-Waterman同源性搜索算法使用空隙开放罚分为12且空隙扩展罚分为2的仿射空隙搜索(BLOSUM62矩阵)确定。Smith-Waterman同源性搜索算法教导于Smith和Waterman(1981)Adv.Appl.Math.[应用数学进展]2:482-489中。变体与参考抗IL-33抗体(例如,IL330065、IL330099、IL330101、IL330107、IL33149或IL330180)的不同之处可例如在于少至1至30个氨基酸残基,少至1至15个氨基酸残基,少至1至10个氨基酸残基,诸如6-10个、少至5个、少至4个、3个、2个或甚至1个氨基酸残基。
能够特异性结合IL-33且保留所希望的活性的多肽的精确化学结构取决于多种因素。由于可电离氨基和羧基基团存在于分子中,可获得呈酸性或碱性盐或中性形式的特定多肽。在置于适合环境条件中时保留其生物活性的所有这类制剂都被包括于如本文所用的抗IL-33抗体的定义中。此外,多肽的一级氨基酸序列可通过衍生作用使用糖部分(糖基化)或通过其他补充分子(诸如脂质、磷酸盐、乙酰基基团等)增强。其也可通过与醣轭合来增强。该增强的某些方面是经由生产宿主的翻译后处理系统实现;其他这类修饰可在体外引入。在任何情况下,这类修饰都被包括于本文所用的抗IL-33抗体的定义中,只要不破坏抗IL-33抗体的所希望的特性即可。预期在各种测定中这类修饰可通过增强或降低多肽活性来定量或定性影响活性。此外,链中的个别氨基酸残基可通过氧化、还原或其他衍生作用修饰,并且多肽可裂解获得保留活性的片段。不破坏所希望的特性(例如,对IL-33的结合特异性、结合亲和力和关联活性,例如抑制IL-33驱动的自肥大细胞、内皮细胞释放细胞因子和TF-1细胞增殖的能力)的这类变化不从如本文所用的感兴趣的抗IL-33抗体的定义移除多肽序列。
本领域提供了关于制备和使用多肽变体的实质性指导。在制备抗IL-33结合分子(例如抗体或其抗原结合片段、变体)中,本领域技术人员可以容易地确定对天然蛋白的核苷酸或氨基酸序列的何种修饰将产生适合于用作在本披露的方法中使用的药物组合物的治疗活性组分的变体。
已知Fc区的变体(例如,氨基酸取代和/或添加和/或缺失)可以增强或削弱抗体的效应子功能,并且可改变抗体的药代动力学特性(例如,半衰期)。例如,参见美国专利号6,737,056B1和美国专利申请公开号2004/0132101A1,其披露优化与Fc受体结合的抗体的Fc突变。
在某些抗IL-33抗体中,可使用本领域已知的技术使Fc部分突变以降低效应子功能。例如,例如通过点突变或氨基酸取代来改变恒定区结构域可减少循环中的经修饰抗体的Fc受体结合,从而使效应细胞或补体介导的对表达或呈现靶标的细胞的清除或损害减至最小。例如,一个特定取代组,三重突变L234F/L235E/P331S(‘TM’)使人类IgG1分子与人类C1q、CD64、CD32A和CD16的结合活性大幅降低。参见例如,Oganesyan等人,ActaCrystallogr D Biol Crystallogr.[晶体学报D卷生物晶体学]64:700-704(2008)。
在其他情况下,与本披露一致的恒定区修饰可增加血清半衰期。可通过增加Fc区对FcRn的结合亲和力来增加包含Fc区的蛋白质的血清半衰期。如本文所用的术语“抗体半衰期”意指抗体的药代动力学特性,它是抗体分子在它们的给予之后的平均存活时间的度量。抗体半衰期可以表示为从患者(或其他哺乳动物)的身体或其特定区室(例如,如在血清中测量的,即循环半衰期),或在其他组织中消除50%已知量的免疫球蛋白所需要的时间。从一种免疫球蛋白或免疫球蛋白类别到另一种免疫球蛋白或免疫球蛋白类别,半衰期可能不同。通常,抗体半衰期的增加导致循环中所给予抗体的平均停留时间的增加。
半衰期的增加允许给至患者的药物的量的减少以及给药频率的减少。为了增加抗体的血清半衰期,如在本领域已知的,可以将补救受体结合表位结合到抗体(尤其是抗体片段)中。如本文所用,术语“补救受体结合表位”是指引起IgG分子的体内血清半衰期的增加的IgG分子(例如,IgG1、IgG2、IgG3或IgG4)的Fc区的表位。具有增加的半衰期的抗体还可通过修饰被鉴定为涉及Fc与FcRn受体之间的相互作用的氨基酸残基而产生。例如,将三重突变M252Y/S254T/T256E(‘YTE’)引入人类免疫球蛋白G(IgG)分子的CH2结构域中,使其与人类新生儿Fc受体(FcRn)的结合增加。参见美国专利号7,083,784,将其内容通过引用以其全文并入本文中。
另外,在一些实施例中,Fc区在选自由以下各项组成的组的一个或多个位置(如利用如Kabat中所阐述的EU索引编号)处包含修饰(例如,氨基酸取代、氨基酸插入、氨基酸缺失):234、235、236、237、238、239、240、241、243、244、245、247、251、252、254、255、256、262、263、264、265、266、267、268、269、279、280、284、292、296、297、298、299、305、313、316、325、326、327、328、329、330、331、332、333、334、339、341、343、370、373、378、392、416、419、421、440和443。任选地,Fc区可在本领域已知的另外的和/或替代的位置处包含非天然存在的氨基酸残基。
在其他实施例中,Fc区包含选自由以下各项组成的组的至少一个取代(如利用如Kabat中所阐述的EU索引编号):234D、234E、234N、234Q、234T、234H、234Y、234I、234V、234F、235A、235D、235R、235W、235P、235S、235N、235Q、235T、235H、235Y、235I、235V、235F、236E、239D、239E、239N、239Q、239F、239T、239H、239Y、240I、240A、240T、240M、241W、241L、241Y、241E、241R、243W、243L、243Y、243R、243Q、244H、245A、247L、247V、247G、251F、252Y、254T、255L、256E、256M、262I、262A、262T、262E、263I、263A、263T、263M、264L、264I、264W、264T、264R、264F、264M、264Y、264E、265G、265N、265Q、265Y、265F、265V、265I、265L、265H、265T、266I、266A、266T、266M、267Q、267L、268E、269H、269Y、269F、269R、270E、280A、284M、292P、292L、296E、296Q、296D、296N、296S、296T、296L、296I、296H、269G、297S、297D、297E、298H、298I、298T、298F、299I、299L、299A、299S、299V、299H、299F、299E、305I、313F、316D、325Q、325L、325I、325D、325E、325A、325T、325V、325H、327G、327W、327N、327L、328S、328M、328D、328E、328N、328Q、328F、328I、328V、328T、328H、328A、329F、329H、329Q、330K、330G、330T、330C、330L、330Y、330V、330I、330F、330R、330H、331G、331A、331L、331M、331F、331W、331K、331Q、331E、331S、331V、331I、331C、331Y、331H、331R、331N、331D、331T、332D、332S、332W、332F、332E、332N、332Q、332T、332H、332Y、332A、339T、370E、370N、378D、392T、396L、416G、419H、421K、440Y和434W。任选地,Fc区可包含本领域已知的另外的和/或替代的非天然存在的氨基酸残基。
在另外的实施例中,Fc区在选自由234、235和331组成的组的一个或多个位置处包含至少一个修饰(例如,氨基酸取代、氨基酸插入、氨基酸缺失)。在一些实施例中,非天然存在的氨基酸选自由234F、235F、235Y和331S组成的组。本文提供的是Fc变体,其中Fc区在选自由239、330和332组成的组的一个或多个位置处包含至少一种非天然存在的氨基酸。在一些实施例中,非天然存在的氨基酸选自由以下各项组成的组:239D、330L和332E。
在其他实施例中,Fc区在选自由252、254和256组成的组的一个或多个位置处包含至少一种非天然存在的氨基酸。在某些实施例中,非天然存在的氨基酸选自由252Y、254T和256E组成的组,如在美国专利号7,083,784中所述,将其内容通过引用以其全文并入本文中。
恒定区的又其他修饰可用于修饰二硫键或寡糖部分,从而允许由于抗原特异性或抗体柔性增加而增强定位。修饰的所得生理特征、生物利用度以及其他生物化学效果(诸如生物分布和血清半衰期)可容易地使用熟知免疫技术而无需过多实验来测量和定量。
本披露的抗IL-33抗体还包括例如通过使任何类型的分子与抗体共价附接使得共价附接不阻止抗体特异性地结合至其同源表位而经修饰的衍生物。例如,但非作为限制,抗体衍生物包括已被修饰的抗体,例如通过糖基化、乙酰化、聚乙二醇化、磷酸化、酰胺化、由已知的保护/封闭基团进行的衍生化、蛋白水解裂解、与细胞配体或其他蛋白质连接等进行修饰。可通过已知技术(包括但不限于特异性化学裂解、乙酰化、甲酰化等)来进行任何多种化学修饰。另外,衍生物可含有一种或多种非经典的氨基酸。
“保守氨基酸取代”是氨基酸残基被具有带有类似电荷的侧链的氨基酸残基置换的取代。具有带有类似电荷的侧链的氨基酸残基的家族已经在本领域予以定义。这些家族包括具有以下项的氨基酸:碱性侧链(例如,赖氨酸、精氨酸、组氨酸)、酸性侧链(例如,天冬氨酸、谷氨酸)、不带电荷的极性侧链(例如,甘氨酸、天冬酰胺、谷氨酰胺、丝氨酸、苏氨酸、酪氨酸、半胱氨酸)、非极性侧链(例如,丙氨酸、缬氨酸、亮氨酸、异亮氨酸、脯氨酸、苯丙氨酸、甲硫氨酸、色氨酸)、β-分支侧链(例如,苏氨酸、缬氨酸、异亮氨酸)以及芳香族侧链(例如,酪氨酸、苯丙氨酸、色氨酸、组氨酸)。可替代地,可以沿全部或部分编码序列,诸如通过饱和诱变随机引入突变,并且可针对生物活性筛选所得突变体以鉴定保留活性(例如,结合抗IL-33多肽的能力)的突变体。
例如,有可能只在抗体分子的框架区或只在CDR区引入突变。所引入的突变可以是沉默或中性错义突变,即对抗体结合抗原的能力不具有影响或几乎无影响。这些类型的突变可用于优化密码子使用,或改进杂交瘤的抗体产生。可替代地,非中性错义突变可改变抗体结合抗原的能力。大多数沉默和中性错义突变的位置可能是在框架区中,而大多数非中性错义突变的位置可能是在CDR中,但这并非绝对要求。本领域技术人员应能够设计和测试具有所希望的特性的突变型分子,诸如抗原结合活性未改变或结合活性未改变(例如,抗原结合活性改进或抗体特异性变化或最终分子的稳定性/均质性增强)。在诱变之后,经编码的蛋白质可常规地表达,并且经编码的蛋白质的功能和/或生物活性(例如,免疫特异性结合IL-33多肽的至少一个表位的能力)可以使用本文所述的技术或通过本领域已知的常规修饰技术确定。
在某些实施例中,本披露的抗体可以通过修饰定位于维尼尔区(vernier region/zone)中的框架残基或所提出的支撑CDR区结构的残基来优化(参见例如,Foote,J.和G.Winter,J Mol.Biol.[分子生物学杂志]224.2:487-99(1992);Padlan,E.A.,Mol.Immunol[分子免疫学]31.3:169-217(1994))。在一些实施例中,这些修饰可通过使用标准分子生物学方法使用PCR介导的定点诱变来构建。可如本文所披露测试经修饰的抗体的结合亲和力。在另一实施例中,也可以通过在CDR区中引入氨基酸取代或通过定点诱变进行进一步优化,例如回复突变或亲和力成熟。
在某些实施例中,本披露的抗IL-33抗体包含至少一个经优化的互补决定区(CDR)。“经优化的CDR”旨在指序列是基于持久或改进的结合亲和力和/或赋予给包含经优化的CDR的抗IL-33抗体的抗IL-33活性所选的已经修饰和优化的CDR。“抗IL-33活性”可以包括例如调节以下与如下各项相关联的活性中的一种或多种的活性:IL-33,例如IL-33驱动的自肥大细胞、内皮细胞释放细胞因子和TF-1细胞增殖;自嗜碱性粒细胞、嗜酸性粒细胞、Th2细胞、NK、NKT细胞、巨噬细胞或树突状细胞释放介质(例如,细胞因子或趋化因子);调节细胞表面受体;调节抗原呈递;或与IL-33相关联的任何其他活性。抗IL-33活性也可以归因于与IL-33表达和/或释放相关联的疾病发病率或严重程度降低,包括但不限于某些类型的炎性病症,例如过敏性障碍,诸如在受试者气道中的哮喘或其他炎性反应。修饰可涉及在CDR内的氨基酸残基置换,使得抗IL-33抗体对IL-33抗原保留特异性且具有改进的结合亲和力和/或改进的抗IL-33活性。
IV.编码抗IL-33抗体的多核苷酸
本披露还提供了编码本披露的抗IL-33抗体或其抗原结合片段、变体或衍生物的核酸分子。
在一个实施例中,本披露提供了经分离的多核苷酸,其包含编码免疫球蛋白重链可变结构域(VH结构域)的核酸、基本上由编码免疫球蛋白重链可变结构域(VH结构域)的核酸组成或由编码免疫球蛋白重链可变结构域(VH结构域)的核酸组成,其中VH结构域的至少一个CDR由与选自由以下各项组成的组的VH编码序列的CDRH1、2或3多核苷酸序列至少75%、80%、85%、90%、95%、96%、97%、98%、99%或一致的核酸序列编码:SEQ ID NO:1、11、21、31、41、51、61、71、81、91、101、111、121、131、141、151、161、171、181、191、201、211、221、231、241、251、261、271、281、291、301、311、321、331、341、351、361、371、381、391、401、411、421、431、441、451、461、471、481、491、501、511、5421、531、541、551、561、571和581。在某些实施例中,抗体或其抗原结合片段抑制IL-33驱动的细胞因子产生。
在其他实施例中,本披露提供了经分离的多核苷酸,其包含编码免疫球蛋白VH结构域的核酸、基本上由编码免疫球蛋白VH结构域的核酸组成或由编码免疫球蛋白VH结构域的核酸组成,其中VH结构域的至少一个CDR的序列选自由以下各项组成的组:(a)CDRH1序列,其包含以下各项中所阐述的氨基酸序列:SEQ ID NO:3、13、23、33、43、53、63、73、83、93、103、113、123、133、143、153、163、173、183、193、203、213、223、233、243、253、263、273、283、293、303、313、323、333、343、353、363、373、383、393、403、413、423、433、443、453、463、473、483、493、503、513、5423、533、543、553、563、573和583;(b)CDRH2序列,其包含以下各项中所阐述的氨基酸序列:SEQ ID NO:4、14、24、34、44、54、64、74、84、94、104、114、124、134、144、154、164、174、184、194、204、214、224、234、244、254、264、274、284、294、304、314、324、334、344、354、364、374、384、394、404、414、424、434、444、454、464、474、484、494、504、514、5424、534、544、554、564、574和584;以及(c)CDRH3序列,其包含以下各项中所阐述的氨基酸序列:SEQ ID NO:5、15、25、35、45、55、65、75、85、95、105、115、125、135、145、155、165、175、185、195、205、215、225、235、245、255、265、275、285、295、305、315、325、335、345、355、365、375、385、395、405、415、425、435、445、455、465、475、485、495、505、515、5425、535、545、555、565、575和585。在某些实施例中,抗体或其抗原结合片段抑制IL-33驱动的细胞因子产生。
在另一实施例中,本披露包括经分离的多核苷酸,其包含编码VH结构域的核酸、基本上由编码VH结构域的核酸组成或由编码VH结构域的核酸组成,该VH结构域具有与包含以下各项的参考VH结构域多肽序列至少75%、80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或100%一致的氨基酸序列:SEQ ID NO:2、12、22、32、42、52、62、72、82、92、102、112、122、132、142、152、162、172、182、192、202、212、222、232、242、252、262、272、282、292、302、312、322、332、342、352、362、372、382、392、402、412、422、432、442、452、462、472、482、492、502、512、5422、532、542、552、562、572和582,其中包含经编码的VH结构域的抗IL-33抗体特异性地或优先结合至IL-33。在某些实施例中,抗体或其抗原结合片段抑制IL-33驱动的细胞因子产生。
在一个实施例中,本披露提供了经分离的多核苷酸,其包含编码免疫球蛋白轻链可变结构域(VL结构域)的核酸、基本上由编码免疫球蛋白轻链可变结构域(VL结构域)的核酸组成或由编码免疫球蛋白轻链可变结构域(VL结构域)的核酸组成,其中VL结构域的至少一个CDR由与选自由以下各项组成的组的VL编码序列的CDRL1、2或3多核苷酸序列至少75%、80%、85%、90%、95%、96%、97%、98%、99%或一致的核酸序列编码:SEQ ID NO:6、16、26、36、46、56、66、76、86、96、106、116、126、136、146、156、166、176、186、196、206、216、226、236、246、256、266、276、286、296、306、316、326、336、346、356、366、376、386、396、406、416、426、436、446、456、466、476、486、496、506、516、5426、536、546、556、566、576和586。在某些实施例中,抗体或其抗原结合片段抑制IL-33驱动的细胞因子产生。
在其他实施例中,本披露提供了经分离的多核苷酸,其包含编码免疫球蛋白VL结构域的核酸、基本上由编码免疫球蛋白VL结构域的核酸组成或由编码免疫球蛋白VL结构域的核酸组成,其中VL结构域的至少一个CDR的序列选自由以下各项组成的组:(a)CDRL1序列,其包含以下各项中所阐述的氨基酸序列:SEQ ID NO:8、18、28、38、48、58、68、78、88、98、108、118、128、138、148、158、168、178、188、198、208、218、228、238、248、258、268、278、288、298、308、318、328、338、348、358、368、378、388、398、408、418、428、438、448、458、468、478、488、498、508、518、5428、538、548、558、568、578和588;(b)CDRL2序列,其包含以下各项中所阐述的氨基酸序列:SEQ ID NO:9、19、29、39、49、59、69、79、89、99、109、119、129、139、149、159、169、179、189、199、209、219、229、239、249、259、269、279、289、299、309、319、329、339、349、359、369、379、389、399、409、419、429、439、449、459、469、479、489、499、509、519、5429、539、549、559、569、579和589;以及(c)CDRL3序列,其包含以下各项中所阐述的氨基酸序列:SEQ ID NO:10、20、30、40、50、60、70、80、90、100、110、120、130、140、150、160、170、180、190、200、210、220、230、240、250、260、270、280、290、300、310、320、330、340、350、360、370、380、390、400、410、420、430、440、450、460、470、480、490、500、510、5420、530、540、550、560、570、580和590。在某些实施例中,抗体或其抗原结合片段抑制IL-33驱动的细胞因子产生。
在另一实施例中,本披露包括经分离的多核苷酸,其包含编码VL结构域的核酸、基本上由编码VL结构域的核酸组成或由编码VL结构域的核酸组成,该VL结构域具有与包含以下各项的参考VL结构域多肽序列至少75%、80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或100%一致的氨基酸序列:SEQ ID NO:7、17、27、37、47、57、67、77、87、97、107、117、127、137、147、157、167、177、187、197、207、217、227、237、247、257、267、277、287、297、307、317、327、337、347、357、367、377、387、397、407、417、427、437、447、457、467、477、487、497、507、517、5427、537、547、557、567、577和587,其中包含经编码的VL结构域的抗IL-33抗体特异性地或优先结合至IL-33。在某些实施例中,抗体或其抗原结合片段抑制IL-33驱动的细胞因子产生。
上文所述的多核苷酸中任一种可进一步包括编码例如信号肽(以指导经编码的多肽分泌)、如本文所述的抗体恒定区或如本文所述的其他异源多肽的另外的核酸。此外,如在本文其他处更详细描述的,本披露包括包含上文所述的多核苷酸中的一种或多种的组合物。
在一个实施例中,本披露包括包含第一多核苷酸和第二多核苷酸的组合物,其中所述第一多核苷酸编码如本文所述的VH结构域且其中所述第二多核苷酸编码如本文所述的VL结构域。确切地说,一种组合物,其包含以下两者、基本上由以下两者组成或由以下两者组成:编码VH结构域的多核苷酸,如以下项中所阐述:SEQ ID NO:1、11、21、31、41、51、61、71、81、91、101、111、121、131、141、151、161、171、181、191、201、211、221、231、241、251、261、271、281、291、301、311、321、331、341、351、361、371、381、391、401、411、421、431、441、451、461、471、481、491、501、511、5421、531、541、551、561、571或581;以及编码VL结构域的多核苷酸,例如如以下项中所阐述的编码VL结构域的多核苷酸:SEQ ID NO:66、16、26、36、46、56、66、76、86、96、106、116、126、136、146、156、166、176、186、196、206、216、226、236、246、256、266、276、286、296、306、316、326、336、346、356、366、376、386、396、406、416、426、436、446、456、466、476、486、496、506、516、5426、536、546、556、566、576或586。
本披露还包括本披露多核苷酸的片段,如在其他处描述。另外,本披露还考虑了如本文所述的编码融合多肽、Fab片段以及其他衍生物的多核苷酸。
多核苷酸可通过本领域已知的任何方法产生或制造。例如,若抗体的核苷酸序列是已知的,则编码该抗体的多核苷酸可从化学合成的寡核苷酸来组装(例如,如Kutmeier等人,Bio Techniques[生物技术]17:242(1994)中所述),简单地说,这涉及合成含有编码该抗体的序列的部分的重叠寡核苷酸,退火并且连接那些寡核苷酸,并且然后通过PCR来扩增所连接的寡核苷酸。
可替代地,编码本披露的抗IL-33抗体或其抗原结合片段、变体或衍生物的多核苷酸可自适合来源的核酸产生。若含有编码特定抗体的核酸的克隆不可获得,但抗体分子的序列已知,则编码抗体的核酸可以化学方式合成,或自适合来源(例如,抗体cDNA文库,或自表达该抗体或其他抗IL-33抗体的任何组织或细胞(诸如经选择以表达抗体的杂交瘤细胞)产生的cDNA文库,或自该组织或细胞分离的核酸(优选聚A+RNA)),通过使用可与序列的3'和5'端杂交的合成引物的PCR扩增或通过使用对特定基因序列具有特异性的寡核苷酸探针来鉴定例如来自编码该抗体或其他抗IL-33抗体的cDNA文库的cDNA克隆而获得。然后可使用本领域熟知的任何方法将通过PCR产生的扩增核酸克隆进可复制的克隆载体中。
一旦确定抗IL-33抗体或其抗原结合片段、变体或衍生物的核苷酸序列和相应氨基酸序列,可使用本领域熟知的核苷酸序列操纵方法操纵其核苷酸序列,例如重组DNA技术、定点诱变、PCR等(参见例如,Sambrook等人,Molecular Cloning,A Laboratory Manual(2nd ed.;Cold Spring Harbor Laboratory,Cold Spring Harbor,N.Y.)[分子克隆:实验室手册(第2版;冷泉港实验室,冷泉港,纽约)](1990)和Ausubel等人编辑(1998)CurrentProtocols in Molecular Biology(John Wiley&Sons,NY)[当前分子生物学方案,约翰威利父子公司,纽约]中所述的技术,将两者均通过引用以其全文并入本文中),以产生具有不同氨基酸序列的抗体,例如形成氨基酸取代、缺失和/或插入。
编码抗IL-33结合分子(例如抗体或其抗原结合片段、变体或衍生物)的多核苷酸可由可以是未经修饰的RNA或DNA或经修饰的RNA或DNA的任何多核糖核苷酸或多脱氧核糖核苷酸组成。例如,编码抗IL-33抗体或其抗原结合片段、变体或衍生物的多核苷酸可由单链和双链DNA、作为单链和双链区的混合物的DNA、单链和双链RNA和作为单链和双链区的混合物的RNA、包含DNA和RNA的杂交分子(DNA和RNA可以是单链的或更典型地双链的或单链和双链区的混合物)组成。另外,编码抗IL-33结合分子(例如抗体或其抗原结合片段、变体或衍生物)的多核苷酸可由包含RNA或DNA或RNA和DNA两者的三链区组成。编码抗IL-33结合分子(例如抗体或其抗原结合片段、变体或衍生物)的多核苷酸也可含有一个或多个经修饰的碱基或出于稳定性或其他原因经修饰的DNA或RNA骨架。“经修饰”的碱基包括例如三苯甲基化碱基和不常见碱基诸如肌苷。可对DNA和RNA进行多种修饰;因而,“多核苷酸”涵盖化学、酶促或代谢修饰形式。
经分离的编码来源于免疫球蛋白(例如,免疫球蛋白重链部分或轻链部分)的多肽的非天然变体的多核苷酸可通过将一个或多个核苷酸取代、添加或缺失引入免疫球蛋白的核苷酸序列中使得将一个或多个氨基酸取代、添加或缺失引入经编码的蛋白质中来形成。突变可通过标准技术引入,诸如定点诱变和PCR介导的诱变。优选地,在一个或多个非必需氨基酸残基处进行保守氨基酸取代。
V.融合蛋白和抗体轭合物
如在本文其他处更详细论述,抗IL-33结合分子(例如,本披露的抗体或其抗原结合片段、变体或衍生物)可进一步与异源多肽在N末端或C末端重组融合或以化学方式轭合(包括共价和非共价轭合)多肽或其他组合物。例如,抗IL-33抗体可重组融合或轭合至在检测测定中用作标记的分子和诸如异源多肽、药物、放射性核素或毒素的效应分子。参见例如,PCT公开WO 92/08495;WO 91/14438;WO 89/12624;美国专利号5,314,995;和EP 396,387。
本披露的抗IL-33抗体或其抗原结合片段、变体或衍生物可包括经修饰的衍生物,即通过使任何类型的分子与抗体共价附接使得共价附接不阻止抗体与IL-33结合。例如,但非作为限制,抗体衍生物包括已被修饰的抗体,例如通过糖基化、乙酰化、聚乙二醇化、磷酸化、酰胺化、由已知的保护/封闭基团进行的衍生化、蛋白水解裂解、与细胞配体或其他蛋白质连接等进行修饰。可通过已知技术(包括但不限于特异性化学裂解、乙酰化、甲酰化等)来进行任何多种化学修饰。另外,衍生物可含有一种或多种非经典的氨基酸。
抗IL-33结合分子(例如,本披露的抗体或其抗原结合片段、变体或衍生物)可由彼此通过肽键或经修饰的肽键(即,肽电子等排体)接合的氨基酸组成,并且可含有除经20种基因编码的氨基酸以外的氨基酸。例如,抗IL-33抗体可通过天然过程(诸如翻译后处理)或本领域熟知的化学修饰技术来修饰。此类修饰在基础教科书和更详细的专著以及大量研究文献中进行了充分描述。修饰可发生在抗IL-33结合分子中的任何处,包括肽骨架、氨基酸侧链和氨基或羧基末端,或在诸如碳水化合物的部分上。应理解的是,相同类型的修饰可以相同或不同程度呈现于给定抗IL-33结合分子中的几个位点处。此外,给定抗IL-33结合分子可含有多种类型的修饰。抗IL-33结合分子可例如由于泛素化而是分支的,并且其在具有或不具有分支的情况下可以是环状的。环状、分支和分支环状抗IL-33结合分子可由翻译后天然过程产生或可通过合成方法制得。修饰包括乙酰化、酰化、ADP-核糖基化、酰胺化、共价附接黄素、共价附接血红素部分、共价附接核苷酸或核苷酸衍生物、共价附接脂质或脂质衍生物、共价附接磷脂酰肌醇、交联、环化、二硫键形成、脱甲基、形成共价交联、形成半胱氨酸、形成焦谷氨酸、甲酰化、γ-羧化、糖基化、GPI锚形成、羟基化、碘化、甲基化、豆蔻酰化、氧化、聚乙二醇化、蛋白水解加工、磷酸化、异戊烯化、外消旋化、硒化、硫酸化、转移RNA介导的向蛋白质添加氨基酸(诸如精氨酰化)以及泛素化。(参见例如,Proteins--Structureand Molecular Properties[蛋白质--结构和分子特性],T.E.Creighton,W.H.Freemanand Company,NY;2nd ed.[W.H.弗里曼公司,纽约;第2版](1993);Johnson编辑(1983)Posttranslational Covalent Modification of Proteins(Academic Press,NY),pgs.1-12[蛋白质的翻译后共价修饰(学术出版社,纽约),第1-12页];Seifter等人,MethodsEnzymol.[酶学方法]182:626-646(1990);Rattan等人,Ann.NY Acad.Sci.[纽约科学院年报]663:48-62(1992))。
本披露还提供了融合蛋白,其包含抗IL-33抗体或其抗原结合片段、变体或衍生物和异源多肽。与抗体融合的异源多肽可用于起作用或用于靶向表达抗IL-33多肽的细胞。
在一个实施例中,本披露的融合蛋白包含具有本披露抗体的VH结构域中的任何一个或多个的氨基酸序列或本披露抗体或其片段或变体的VL结构域中的任何一个或多个的氨基酸序列和异源多肽序列的多肽,基本上由该多肽组成或由该多肽组成。
在另一实施例中,用于本文所披露的诊断和治疗方法的融合蛋白包含具有抗IL-33抗体或其片段、变体或衍生物的VH结构域的任何一个、两个、三个CDR的氨基酸序列或抗IL-33抗体或其片段、变体或衍生物的VL结构域的任何一个、两个、三个CDR的氨基酸序列和异源多肽序列的多肽,基本上由该多肽组成或由该多肽组成。
在一个实施例中,融合蛋白包含具有本披露抗IL-33抗体的至少一个VH结构域的氨基酸序列和本披露抗IL-33抗体或其片段、衍生物或变体的至少一个VL结构域的氨基酸序列和异源多肽序列的多肽。优选地,融合蛋白的VH和VL结构域对应于特异性结合至少一个IL-33表位的单源抗体(或scFv或Fab片段)。
在又一实施例中,用于本文所披露的诊断和治疗方法的融合蛋白包含具有抗IL-33抗体的VH结构域的任何一个、两个、三个或更多个CDR的氨基酸序列和抗IL-33抗体或其片段或变体的VL结构域的任何一个、两个、三个或更多个CDR的氨基酸序列和异源多肽序列的多肽。优选地,VH结构域或VL结构域的两个、三个、四个、五个、六个或更多个CDR对应于本披露的单源抗体(或scFv或Fab片段)。本披露还涵盖编码这些融合蛋白的核酸分子。
文献中所报道的示例性融合蛋白包括以下各项的融合物:T细胞受体(Gascoigne等人,Proc.Natl.Acad.Sci.USA[美国国家科学院院刊]84:2936-2940(1987));CD4(Capon等人,Nature[自然]337:525-531(1989);Traunecker等人,Nature[自然]339:68-70(1989);Zettmeissl等人,DNA Cell Biol.USA[美国DNA细胞生物学]9:347-353(1990);和Byrn等人,Nature[自然]344:667-670(1990));L-选择素(归巢受体)(Watson等人,J.Cell.Biol.[细胞生物学杂志]130:2221-2229(1990);和Watson等人,Nature[自然]349:164-167(1991));CD44(Aruffo等人,Cell[细胞]61:1303-1313(1990));CD28和B7(Linsley等人,J.Exp.Med.[实验医学杂志]173:721-730(1991));CTLA-4(Lisley等人,J.Exp.Med.[实验医学杂志]174:561-569(1991));CD22(Stamenkovic等人,Cell[细胞]66:1333-1344(1991));TNF受体(Ashkenazi等人,Proc.Natl.Acad.Sci.USA[美国国家科学院院刊]88:10535-10539(1991);Lesslauer等人,Eur.J.Immunol.[欧洲免疫学杂志]27:2883-2886(1991);和Peppel等人,J.Exp.Med.[实验医学杂志]174:1483-1489(1991));和IgE受体a(Ridgway和Gorman,J.Cell.Biol.[细胞生物学杂志]第135卷,摘要号1448(1991))。
如在本文其他处论述,抗IL-33结合分子(例如,本披露的抗体或其抗原结合片段、变体或衍生物)可与异源多肽融合以增加多肽的体内半衰期或用于使用本领域已知的方法的免疫测定。例如,在一个实施例中,PEG可以轭合至本披露的抗IL-33抗体以增加其体内半衰期。参见Leong等人,Cytokine[细胞因子]16:106(2001);Adv.in Drug Deliv.Rev[先进药物递送评论]54:531(2002);或Weir等人,Biochem.Soc.Transactions[生化学会会刊]30:512(2002)。
此外,抗IL-33结合分子(例如,本披露的抗体或其抗原结合片段、变体或衍生物)可与标记序列(诸如肽)融合以促进其纯化或检测。在一些实施例中,标记氨基酸序列是六组氨酸肽,诸如pQE载体(凯杰公司(QIAGEN,Inc.),伊顿大街9259号,查茨沃思,加利福尼亚州,91313)中提供的标签等,其中的许多是可商购的。如Gentz等人,Proc.Natl.Acad.Sci.USA[美国国家科学院院刊]86:821-824(1989)中所述,例如,六组氨酸提供了融合蛋白的方便纯化。有用于纯化的其他肽标签包括但不限于“HA”标签,其对应于来源于流感红血球凝集素蛋白的表位(Wilson等人,Cell[细胞]37:767(1984));以及“flag”标签。
融合蛋白可以使用本领域熟知的方法制备(参见例如,美国专利号5,136,964和5,225,538)。可凭经验选择进行融合的精确位点以优化融合蛋白的分泌或结合特征。然后使编码融合蛋白的DNA转染至宿主细胞中用于表达。
抗IL-33结合分子(例如,本披露的抗体或其抗原结合片段、变体或衍生物)可以非轭合形式使用或可轭合至多种分子中的至少一种,例如改进分子的治疗特性、促进靶标检测或使患者成像或治疗患者。抗IL-33结合分子(例如,本披露的抗体或其抗原结合片段、变体或衍生物)可以在纯化之前或之后或在进行纯化时标记或轭合。
具体而言,本披露的抗IL-33抗体或其抗原结合片段、变体或衍生物可轭合至治疗剂、前药、肽、蛋白质、酶、病毒、脂质、生物反应修饰剂、药剂或PEG。
本领域技术人员应理解,取决于所选择的待轭合试剂,轭合物也可使用多种技术组装。例如,例如通过使结合多肽与活化的生物素酯(诸如生物素N-羟基琥珀酰亚胺酯)反应来制备与生物素的轭合物。相似地,可在例如本文所列的那些的偶联剂存在下或通过与异硫氰酸酯(优选地,荧光素-异硫氰酸酯)反应来制备与荧光标记物的轭合物。以类似方式制备本披露的抗IL-33抗体或其抗原结合片段、变体或衍生物的轭合物。
本披露进一步涵盖与诊断剂或治疗剂轭合的抗IL-33结合分子(例如,本披露的抗体或其抗原结合片段、变体或衍生物)。抗IL-33抗体(包括其抗原结合片段、变体和衍生物)可诊断地用于例如监测疾病的发展或进展作为临床测试程序的一部分,例如确定给定治疗和/或预防方案的功效。例如,可以通过使抗IL-33抗体或其抗原结合片段、变体或衍生物与可检测物质偶联来促进检测。可检测物质的实例包括各种酶、辅基、荧光材料、发光材料、生物发光材料、放射性材料、使用各种正电子发射断层摄影的正电子发射金属和非放射性顺磁性金属离子。关于可以轭合至根据本披露用作诊断剂的抗体的金属离子,参见例如美国专利号4,741,900。合适酶的实例包括辣根过氧化物酶、碱性磷酸酶、β-半乳糖苷酶或乙酰胆碱酯酶;合适辅基复合物的实例包括链霉亲和素/生物素和抗生物素蛋白/生物素;合适荧光材料的实例包括伞形酮、荧光素、异硫氰酸荧光素、罗丹明、二氯三嗪基胺荧光素、丹磺酰氯或藻红蛋白;发光材料的实例包括鲁米诺;生物发光材料的实例包括荧光素酶、萤光素和水母素;并且合适放射性材料的实例包括125I、131I、131In、90Y或99Tc。
抗IL-33结合分子(例如,抗体或其抗原结合片段、变体或衍生物)也可以通过使其与化学发光化合物偶联来可检测地标记。然后通过检测在化学反应过程期间产生的荧光的存在来确定化学发光标签化的抗IL-33结合分子的存在。尤其有用的化学发光标记化合物的实例是鲁米诺、异鲁米诺、热吖锭酯(theromatic acridinium ester)、咪唑、吖锭盐和草酸酯。
抗IL-33抗体或其抗原结合片段、变体或衍生物可以被可检测地标记的方式之一是通过连接其与酶且在酶免疫测定(EIA)中使用连接产物(Voller,A.,“The EnzymeLinked Immunosorbent Assay(ELISA)”Microbiological Associates QuarterlyPublication,Walkersville,Md.[“酶联免疫吸附测定(ELISA)”,微生物协会季度出版物,沃克斯维尔,马里兰州];Diagnostic Horizons[诊断层]2:1-7(1978);Voller等人,J.Clin.Pathol.[临床病理学杂志]31:507-520(1978);Butler,Meth.Enzymol[酶学方法]73:482-523(1981);Maggio编辑(1980)Enzyme Immunoassay[酶免疫测定],CRC Press,Boca Raton,Fla.[CRC出版社,博卡拉顿,佛罗里达州];Ishikawa等人编辑(1981)EnzymeImmunoassay(Kgaku Shoin,Tokyo)[酶免疫测定(Kgaku Shoin,东京)]。与抗IL-33抗体结合的酶将与适当底物(优选显色底物)反应,以此方式产生可以例如通过分光光度法、荧光法或视觉手段检测到的化学部分。可用于可检测地标记抗体的酶包括但不限于苹果酸脱氢酶、葡萄球菌核酸酶、δ-5-类固醇异构酶、酵母醇脱氢酶、α-甘油磷酸脱氢酶、丙糖磷酸异构酶、辣根过氧化物酶、碱磷酸酶、天冬酰胺酶、葡萄糖氧化酶、β-半乳糖苷酶、核糖核酸酶、脲酶、过氧化氢酶、葡萄糖-6-磷酸脱氢酶、葡糖淀粉酶和乙酰胆碱酯酶。另外,检测可以通过使用酶显色底物的比色法实现。另外,检测可以通过荧光方法实现,从而荧光发射金属(诸如152Eu)或其他镧系元素直接或间接结合至抗IL-33抗体。检测也可通过与相似地制备的标准品相比,视觉比较底物的酶促反应程度来实现。
检测也可使用多种其他免疫测定中任一种实现。例如,通过放射性标记抗IL-33结合分子(例如,抗体或其抗原结合片段、变体或衍生物),有可能经由使用放射免疫测定(RIA)检测结合分子(参见例如,Weintraub(1986年3月)Principles ofRadioimmunoassays,Seventh Training Course on Radioligand Assay Techniques(TheEndocrine Society)[放射免疫测定原则,放射性配体测定技术第七个培训课程(内分泌学会)],将其通过引用并入本文中)。放射性同位素可以通过如下手段检测,包括但不限于γ计数器、闪烁计数器或放射自显影。
抗IL-33结合分子(例如,抗体或其抗原结合片段、变体或衍生物)也可以使用荧光发射金属(诸如152Eu)或其他镧系元素可检测地标记。可使用诸如二亚乙基三胺五乙酸(DTPA)或乙二胺四乙酸(EDTA)的金属螯合基团将这些金属连接至结合分子。
使不同部分与抗体(例如,抗IL-33抗体)或其抗原结合片段、变体或衍生物轭合的技术是熟知的,参见例如,Amon等人(1985)“Monoclonal Antibodies forImmunotargeting of Drugs in Cancer Therapy[癌症治疗中用于免疫靶向的单克隆抗体的药物]”,Monoclonal Antibodies and Cancer Therapy,ed.Reisfeld et al.(AlanR.Liss,Inc.),pp.243-56[单克隆抗体和癌症治疗,编辑Reisfeld等人(艾伦R.利斯有限公司),第243-56页];Hellstrom等人(1987)“Antibodies for Drug Delivery[用于药物递送的药物]”,Controlled Drug Delivery,ed.Robinson et al.(2nd ed.;Marcel Dekker,Inc.),pp.623-53[控制药物递送,编辑Robinson等人(第2版;马塞尔·德克尔公司),第623-53页];Thorpe(1985)“Antibody Carriers of Cytotoxic Agents in CancerTherapy:A Review[癌症治疗中细胞毒性药物的抗体载剂:综述]”,MonoclonalAntibodies'84:Biological and Clinical Applications,ed.Pinchera et al.,pp.475-506[单克隆抗体'84:生物和临床应用,编辑Pinchera等人,第475-506];“Analysis,Results,and Future Prospective of the Therapeutic Use of RadiolabeledAntibody in Cancer Therapy[放射标记抗体在癌症治疗中的治疗用途的分析、结果和未来展望]”,Monoclonal Antibodies for Cancer Detection and Therapy,ed.Baldwin etal.,Academic Press,pp.303-16[单克隆抗体用于癌症检测和治疗,编辑Baldwin等人,学术出版社,第303-16页](1985);和Thorpe等人(1982)“The Preparation and CytotoxicProperties of Antibody-Toxin Conjugates[抗体-毒素轭合物的制备和细胞毒性]”,Immunol.Rev.[免疫学综述]62:139-58。
VI.抗体多肽的表达
编码抗体的轻链和重链的DNA序列可根据熟知方法同时或分别使用逆转录酶和DNA聚合酶制得。PCR可以通过共有恒定区引物或通过更具有特异性的引物基于公开的重链和轻链DNA和氨基酸序列来起始。如以上所论述,PCR还可用于分离编码抗体轻链和重链的DNA克隆。在这种情况下,文库可通过共有引物或较大同源性探针(诸如小鼠恒定区探针)来筛选。
DNA(典型地质粒DNA)可使用在本领域已知的技术从细胞中分离,根据例如在涉及重组DNA技术的前述参考文献中详细阐明的标准、熟知技术来限制性作图并且测序。当然,DNA可根据本披露在分离过程或后续分析过程中的任何时点合成。
在操纵经分离的遗传材料以提供本披露的抗IL-33抗体或其抗原结合片段、变体或衍生物之后,编码抗IL-33抗体的多核苷酸典型地插入表达载体中使得引入可用于产生所希望数量的抗IL-33抗体的宿主细胞中。
抗体或其片段、衍生物或类似物(例如结合至本文所述的靶分子(例如,IL-33)的抗体的重链或轻链)的重组表达需要构建含有编码抗体的多核苷酸的表达载体。一旦已经获得编码本披露的抗体分子、或抗体的重链或轻链、或其一部分(含有重链或轻链可变结构域)的多核苷酸,用于产生抗体分子的载体可通过重组DNA技术使用本领域熟知的技术来产生。因此,本文描述了通过表达含有抗体编码核苷酸序列的多核苷酸来制备蛋白质的方法。可以使用本领域技术人员熟知的方法来构建含有抗体编码序列和适当转录和翻译控制信号的表达载体。这些方法包括例如体外重组DNA技术、合成技术以及体内基因重组。因此,本披露提供了可复制载体,其包含编码本披露的抗体分子、或其重链或轻链、或重链或轻链可变结构域的核苷酸序列,该核苷酸序列可操作地连接至启动子。这类载体可以包括编码抗体分子的恒定区的核苷酸序列(参见例如,PCT公开WO 86/05807;PCT公开WO 89/01036;和美国专利号5,122,464)并且抗体的可变结构域可以克隆至这种载体中以便表达整个重链或轻链。
术语“载体”或“表达载体”在本文用于指根据本披露用作媒剂以便将所希望的基因引入并且表达在宿主细胞中的载体。如本领域技术人员已知的,这类载体可以容易地选自下组,该组由以下各项组成:质粒、噬菌体、病毒和逆转录病毒。通常,与本披露兼容的载体将包含选择标记物、促进所希望的基因的克隆和进入和/或在真核或原核细胞中复制的能力的适当限制位点。
出于本披露的目的,可使用许多表达载体系统。例如,一种类别的载体利用来源于动物病毒的DNA元件,这些动物病毒是诸如牛乳头瘤病毒、多瘤病毒、腺病毒、痘苗病毒、杆状病毒、逆转录病毒(RSV、MMTV或MOMLV)或SV40病毒。其他病毒涉及使用具有内部核糖体结合位点的多顺反子系统。另外,已经将DNA整合到染色体中的细胞可通过引入一个或多个标记物来选择,这些标记物允许选择所转染的宿主细胞。标记物可以提供针对营养缺陷型宿主的原营养、杀生物剂抗性(例如,抗生素)或对于重金属(诸如铜)的抗性。可选择标记基因可以直接连接至有待表达的DNA序列,或通过共转化来引入同一细胞中。mRNA的最佳合成还可能需要另外的元件。这些元件可以包括信号序列、剪接信号以及转录启动子、增强子和终止信号。
在特别优选的实施例中,将所克隆的可变区基因与如以上所论述合成的重链和轻链恒定区基因(优选人类)一起插入到表达载体之中。当然,能够在真核细胞中引出表达的任何表达载体可以用于本披露之中。合适载体的实例包括但不限于质粒pcDNA3、pHCMV/Zeo、pCR3.1、pEF1/His、pIND/GS、pRc/HCMV2、pSV40/Zeo2、pTRACER-HCMV、pUB6/V5-His、pVAX1和pZeoSV2(可从加利福尼亚州圣迭戈市的英杰公司(Invitrogen)获得),以及质粒PCI(可从威斯康星州麦迪逊市的普洛麦格公司(Promega)获得)。通常,针对表达适当较高水平的免疫球蛋白重链和轻链的那些细胞对大量的转化细胞进行筛选是可以例如通过机器人系统来执行的常规实验。
更一般而言,一旦已制备编码抗IL-33抗体的单体亚单位的载体或DNA序列,表达载体可引入适当宿主细胞中。将质粒引入到宿主细胞之中可以通过本领域技术人员熟知的不同技术来完成。这些技术包括但不限于转染(包括电泳和电穿孔)、原生质体融合、磷酸钙沉淀、与包膜的DNA的细胞融合、显微注射以及以完整病毒来感染。参见Ridgway(1988)“Mammalian Expression Vectors”inVectors,ed.Rodriguez and Denhardt(Butterworths,Boston,Mass.),Chapter 24.2,pp.470-472[“哺乳动物表达载体”,载体,Rodriguez和Denhardt编辑(巴特沃斯出版社,波士顿,马萨诸塞州),第24.2章,第470-472页]。典型地,质粒引入宿主中是经由电穿孔。使具有表达构建体的宿主细胞在适合于产生轻链和重链的条件下生长,并且测定重链和/或轻链蛋白质合成。示例性测定技术包括酶联免疫吸附测定(ELISA)、放射免疫测定(RIA)或荧光活化细胞分选仪分析(FACS)、免疫组织化学等。
通过常规技术将表达载体转移至宿主细胞中,并且然后通过常规技术来培养所转染的细胞以便产生用于在本文所述的方法中使用的抗体。因此,本披露包括含有编码本披露抗体或其重链或轻链的可操作地连接至异源启动子的多核苷酸的宿主细胞。在用于表达双链抗体的优选实施例中,可以将编码重链和轻链的载体在宿主细胞中共表达,以用于表达整个免疫球蛋白分子,如下所详述。
如本文所用,“宿主细胞”是指具有使用重组DNA技术构建的并且编码至少一个异源基因的载体的细胞。在从重组宿主分离抗体的过程的描述中,术语“细胞”和“细胞培养物”可互换使用以便表示抗体来源,除非另外明确规定。换言之,从“细胞”回收多肽可意指从旋转沉降的全细胞、或从含有培养基和悬浮细胞的细胞培养物回收。
多种宿主表达载体系统可用于表达用于在本文所述的方法中使用的抗体分子。此类宿主表达系统代表着可以产生并随后纯化感兴趣的编码序列的媒剂,而且还代表当用适当的核苷酸编码序列转化或转染时,原位表达本披露的抗体分子的细胞。这些宿主表达系统包括但不限于经含有抗体编码序列的重组噬菌体DNA、质粒DNA或粘粒DNA表达载体转化的微生物,诸如细菌(例如,大肠杆菌(E.coli)、枯草芽孢杆菌(B.subtilis));经含有抗体编码序列的重组酵母表达载体转化的酵母(例如,酵母属(Saccharomyces)、毕赤酵母属(Pichia));感染有含有抗体编码序列的重组病毒表达载体(例如,杆状病毒)的昆虫细胞系统;感染有重组病毒表达载体(例如,花椰菜花叶病毒(cauliflower mosaic virus,CaMV)、烟草花叶病毒(tobacco mosaic virus,TMV))或经含有抗体编码序列的重组质粒表达载体(例如,Ti质粒)转化的植物细胞系统;或具有含有来源于哺乳动物细胞基因组的启动子(例如,金属硫蛋白启动子)或来源于哺乳动物病毒的启动子(例如,腺病毒晚期启动子;牛痘病毒7.5K启动子)的重组表达构建体的哺乳动物细胞系统(例如,COS、CHO、BLK、293、3T3细胞)。优选地,细菌细胞(诸如大肠杆菌)且更优选地尤其用于表达整个重组抗体分子的真核细胞用于表达重组抗体分子。例如,哺乳动物细胞诸如中国仓鼠卵巢细胞(CHO),与载体诸如来自人巨细胞病毒的主要立即早期基因启动子元件相结合是抗体的有效表达系统(Foecking等人,Gene[基因]45:101(1986);Cockett等人,Bio/Technology[生物技术]8:2(1990))。
用于蛋白质表达的宿主细胞系经常具有哺乳动物来源;本领域技术人员被认为能够优先确定最适合于有待在其中表达的所希望的基因产物的特定宿主细胞系。示例性宿主细胞系包括但不限于CHO(中国仓鼠卵巢)、DG44和DUXB13(中国仓鼠卵巢细胞系,DHFR减)、HELA(人宫颈癌)、CVI(猴肾细胞系)、COS(具有SV40T抗原的CVI的衍生物)、VERY、BHK(幼仓鼠肾)、MDCK、293、WI38、R1610(中国仓鼠成纤维细胞)BALBC/3T3(小鼠成纤维细胞)、HAK(仓鼠肾细胞系)、SP2/O(小鼠骨髓瘤)、P3x63-Ag3.653(小鼠骨髓瘤)、BFA-1c1BPT(牛内皮细胞)、RAJI(人淋巴细胞)以及293(人肾)。宿主细胞系典型地可从商业服务机构(美国组织培养物保藏中心)或从公开的文献获得。
另外,可选择调节所插入序列的表达、或以所希望的特定方式来修饰并且加工基因产物的宿主细胞株。蛋白质产物的这类修饰(例如,糖基化)和加工(例如,裂解)对于蛋白质的功能来说可能是重要的。不同的宿主细胞具有针对蛋白质和基因产物的翻译后加工和修饰的特征性和特异性机制。可选择适当细胞系或宿主系统以确保所表达的外源蛋白的正确修饰和加工。为此,可以使用具有用于初级转录物的适当加工、基因产物的糖基化和磷酸化的细胞机器(cellular machinery)的真核宿主细胞。
为了长期、高产率的产生重组蛋白,稳定表达是优选的。例如,可以工程化稳定表达抗体分子的细胞系。代替使用含有病毒复制起点的表达载体,宿主细胞可以使用由适当表达控制元件(例如,启动子、增强子、序列、转录终止子、聚腺苷酸化位点等)和可选择标记物来控制的DNA来转化。在引入外源DNA后,可以允许工程化的细胞在富集的培养基中生长1-2天,并且然后切换至选择性培养基。在重组质粒中的可选择标记物赋予对选择的抗性,并且允许细胞将质粒稳定地整合进它们的染色体中并且生长以形成转化灶(foci),进而可以将该转化灶克隆并且扩充成细胞系。这种方法可有利地用于将稳定表达抗体分子的细胞系工程化。
可使用多种选择系统,包括但不限于分别可以在tk-、hgprt-或aprt-细胞中使用的单纯性疱疹病毒胸苷激酶(Wigler等人,Cell[细胞]13:223(1977))、次黄嘌呤-鸟嘌呤磷酸核糖转移酶(Szybalska和Szybalski,Proc.Natl.Acad.Sci.USA[美国国家科学院院刊]48:202(1992))和腺嘌呤磷酸核糖转移酶(Lowy等人,Cell[细胞]22:817(1980))基因。另外,抗代谢物抗性可以用作选择以下基因的基础:dhfr,它赋予对甲氨喋呤的抗性(Wigler等人,Natl.Acad.Sci.USA[美国国家科学院院刊]77:357(1980);O'Hare等人,Proc.Natl.Acad.Sci.USA[美国国家科学院院刊]78:1527(1981));gpt,它赋予对霉酚酸的抗性(Mulligan和Berg,Proc.Natl.Acad.Sci.USA[美国国家科学院院刊]78:2072(1981));neo,它赋予对氨基糖苷G-418的抗性(Clinical Pharmacy[临床药学]12:488-505;Wu和Wu,Biotherapy[生物疗法]3:87-95(1991);Tolstoshev,Ann.Rev.Pharmacol.Toxicol.[药理学与毒理学年鉴]32:573-596(1993);Mulligan,Science[科学]260:926-932(1993);和Morgan和Anderson,Ann.Rev.Biochem.[生物化学年鉴]62:191-217(1993);TIB TECH13(5):155-215(1993年5月));以及hygro,它赋予对潮霉素的抗性(Santerre等人,Gene[基因]30:147(1984))。重组DNA技术领域中通常已知的可以使用的方法描述于Ausubel等人(1993)Current Protocols in Molecular Biology(John Wiley&Sons,NY)[当前分子生物学方案(约翰威利父子公司,纽约)];Kriegler(1990)“Gene Transfer and Expression”inA Laboratory Manual(Stockton Press,NY)[“基因转移和表达”:实验室手册(斯托克顿出版社,纽约)];Dracopoli等人(编辑)(1994)Current Protocols in Human Genetics(JohnWiley&Sons,NY)Chapters 12 and 13[当前人类遗传学方案(约翰威利父子公司,纽约)第12和13章];Colberre-Garapin等人(1981)J.Mol.Biol.[分子生物学杂志]150:1,将这些通过引用以其全文并入本文中。
抗体分子的表达水平可以通过载体扩增来增加(关于综述,参见Bebbington和Hentschel(1987)“The Use of Vectors Based on Gene Amplification for theExpression of Cloned Genes in Mammalian Cells in DNA Cloning”(Academic Press,NY)Vol.3[“使用基于基因扩增的载体来在DNA克隆中在哺乳动物细胞中表达克隆的基因”(学术出版社,纽约)第3卷])。当表达抗体的载体系统中的标记物可扩增时,存在于宿主细胞培养物中的抑制剂的水平的增加将使标记基因的拷贝数量增加。由于扩增的区与抗体基因相关联,因此抗体的产生将也增加(Crouse等人,Mol.Cell.Biol.[分子细胞生物学杂志]3:257(1983))。
体外产生允许按比例扩大以便给出大量所希望的多肽。在组织培养条件下的哺乳动物细胞培养技术在本领域是已知的,并且包括均质悬浮培养,例如在气升式反应器中或在连续搅拌反应器中,或固定或截留细胞培养,例如在中空纤维、微胶囊中、在琼脂糖微珠粒或陶瓷筒上。在必要和/或希望时,多肽溶液可以通过常规层析方法来纯化,例如凝胶过滤、离子交换层析、DEAE-纤维素层析或(免疫)亲和层析,例如在合成铰链区多肽的优先生物合成之后或在本文中描述的HIC层析步骤之前或之后。
编码本披露的抗IL-33抗体或其抗原结合片段、变体或衍生物的基因也可以在诸如昆虫、细菌或酵母或植物细胞的非哺乳动物细胞中表达。容易吸收核酸的细菌包括以下项的成员:肠杆菌科(enterobacteriaceae),诸如大肠杆菌(Escherichia coli)或沙门氏菌属(Salmonella)的菌株;芽孢杆菌科(Bacillaceae),如枯草芽孢杆菌(Bacillussubtilis);肺炎球菌属(Pneumococcus);链球菌属(Streptococcus),以及流感嗜血杆菌(Haemophilus influenzae)。应进一步理解的是在表达于细菌中时,异源多肽典型地成为包涵体的一部分。异源多肽必须经分离、纯化且然后组装成功能性分子。当希望四价形式的抗体时,则将亚单位自组装成四价抗体(WO 02/096948A2)。
在细菌系统中,取决于所表达的抗体分子的预期用途,可有利地选择许多表达载体。例如,在有待产生大量的这种蛋白质以便产生抗体分子的药物组合物时,引导容易纯化的高水平的融合蛋白产物的表达的载体可以是令人希望的。这类载体包括但不限于大肠杆菌表达载体pUR278(Ruther等人,EMBOJ.[欧洲分子生物学学会杂志]2:1791(1983)),其中抗体编码序列可单独地与lacZ编码区同框连接至载体中以使得产生融合蛋白;pIN载体(Inouye和Inouye,Nucleic Acids Res.[核酸研究]13:3101-3109(1985);Van Heeke和Schuster,J.Biol.Chem.[生物化学杂志]24:5503-5509(1989))等。pGEX载体也可用于表达作为与谷胱甘肽-S-转移酶(GST)的融合蛋白的外源多肽。通常,这类融合蛋白可溶并且可以通过吸附并且结合至基质谷胱甘肽-琼脂糖珠粒,随后在游离谷胱甘肽的存在下洗脱来容易地从溶解的细胞中纯化。pGEX载体被设计成包括凝血酶或因子Xa蛋白酶裂解位点以使得克隆的靶基因产物可以从GST部分上释放。
除了原核生物以外,也可使用真核微生物。酿酒酵母或常见面包酵母在真核微生物中是最常使用的,但是许多其他菌株通常可利用,例如毕赤酵母。
为了在酵母中表达,通常使用例如质粒YRp7(Stinchcomb等人,Nature[自然]282:39(1979);Kingsman等人,Gene[基因]7:141(1979);Tschemper等人,Gene[基因]10:157(1980))。此质粒已经含有TRP1基因,该基因提供缺乏在色氨酸中生长的能力的突变酵母菌株的选择标记物,该菌株是例如ATCC编号44076或PEP4-1(Jones,Genetics[遗传学]85:12(1977))。然后,作为酵母宿主细胞基因组的特征的trp1缺陷区(lesion)的存在提供用于检测通过在不存在色氨酸的情况下的生长而进行的转化的有效环境。
在昆虫系统中,苜蓿银纹夜蛾核型多角体病毒(Autographa californicanuclear polyhedrosis virus;AcNPV)典型地用作表达外源基因的载体。该病毒在草地贪夜蛾细胞中生长。抗体编码序列可单独地克隆进病毒的非必需区(例如,多角体蛋白基因)中并且置于AcNPV启动子(例如,多角体蛋白启动子)的控制下。
一旦本披露的结合分子已经重组表达,就可以通过本领域已知的用于免疫球蛋白分子的纯化的任何方法将其纯化,例如通过层析(例如,离子交换层析、亲和层析(尤其是通过对于蛋白质A后的特异性抗原的亲和力)以及尺寸分级柱层析)、离心、差别溶解度,或者通过用于蛋白质的纯化的任何其他标准技术。可替代地,用于增加本披露抗体的亲和力的优选方法披露于美国专利申请公开号2002 0123057 A1中。
VII.使用治疗性抗IL-33抗体的治疗方法
本披露的方法是针对使用抗IL-33结合分子,例如抗体(包括其抗原结合片段、变体和衍生物),来治疗患有与IL-33表达或表达IL-33的细胞相关的疾病的患者。“表达IL-33的细胞”旨在指表达IL-33抗原的细胞。用于检测细胞中IL-33表达的方法是本领域熟知的,并且包括但不限于PCR技术、免疫组织化学、流式细胞术、蛋白质印迹、ELISA等。
虽然以下论述涉及诊断方法和用本披露的抗IL-33抗体治疗各种疾病和障碍,本文所述的方法也适用于这些抗IL-33抗体的抗原结合片段、变体和衍生物,其保留本披露抗IL-33抗体的所希望的特性,例如能够特异性结合IL-33和中和IL-33致病活性。
在一个实施例中,治疗包括在受试者或患者患有疾病、具有疾病症状或疾病的易患病体质时向受试者或患者施用或给予本披露的抗IL-33结合分子(例如,抗体或其抗原结合片段),或向受试者或患者的分离组织或细胞系施用或给予抗IL-33结合分子。在另一实施例中,治疗也旨在包括向受试者或患者施用或给予包含本披露的抗IL-33结合分子(例如,抗体或其抗原结合片段)的药物组合物,或向从受试者或患者分离的组织或细胞系施用或给予包含该抗IL-33结合分子的药物组合物,该受试者或患者患有疾病、具有疾病症状或疾病的易患病体质。
本披露的抗IL-33结合分子(例如,抗体或其结合片段)有用于治疗各种炎性病症。“抗炎活性”旨在指在表达IL-33的细胞中炎性反应率降低,并且因此在治疗期间产生的组织炎症减轻。例如,用至少一种抗IL-33抗体治疗引起生理反应,例如炎性反应减少,其相对于与人类中表达IL-33的细胞相关的疾病病况的治疗是有益的。
在一个实施例中,本披露涉及根据本披露的抗IL-33结合分子(例如,抗体或其结合片段)作为药物的用途,尤其是用于治疗或预防炎性反应或用于治疗炎性病症(例如,哮喘或COPD)。在某些实施例中,本披露的抗IL-33结合分子(例如,抗体或其结合片段)用于治疗过敏性障碍。在某些实施例中,本披露的抗IL-33结合分子(例如,抗体或其结合片段)用于治疗受试者或患者的气道中的炎性反应。
根据本披露的方法,如本文其他处所定义的至少一种抗IL-33结合分子(例如,抗体或其抗原结合片段)用于促进相对于炎性反应的阳性治疗反应。相对于炎症治疗的“阳性治疗反应”旨在指与这些结合分子(例如,抗体或其片段)的抗炎活性相关的疾病改善和/或与该疾病相关的症状改善。即可以观察到抗炎作用,进一步炎症预防和/或现有炎症减轻,和/或与疾病相关的一种或多种症状减少。因此,例如,疾病的改善可被表征为完全应答。术语“完全应答”旨在通过任何先前测试结果的归一化,不存在临床上可检测的疾病。这样一种应答必须持续在根据本披露的方法治疗之后至少一个月。可替代地,疾病的改善可被归类为部分应答。
本文所述的抗IL-33结合分子(例如,抗体或其抗原结合片段)也可用于治疗与表达IL-33的细胞相关的免疫系统炎性疾病和缺陷或障碍。炎性疾病由炎症和组织破坏或其组合表征。“抗炎活性”旨在指炎症减轻或预防。“炎性疾病”包括任何炎性免疫介导的过程,其中免疫反应的引发事件或靶标涉及一种或多种非自身抗原,包括例如同种抗原、异种抗原、病毒抗原、细菌抗原、未知抗原或过敏原。在一个实施例中,炎性疾病是气道炎性障碍,例如哮喘或COPD。
哮喘被视为常见气道炎性疾病,其例如通过可变和复发性症状、可逆气流堵塞和支气管痉挛表征。哮喘症状可以包括喘息、咳嗽、胸闷和呼吸短促。症状可以通过暴露于过敏原或刺激物触发。哮喘可基于症状是通过过敏原(特应性)还是不通过过敏原(非特应性)沉淀而分类为特应性(外源性)或非特应性(内源性)。急性哮喘恶化通常称为“哮喘发作”。可以在哮喘发作期间发生的其他迹象包括使用呼吸辅助肌(颈部胸锁乳突肌和斜角肌)、可能存在奇脉(在吸入期间较弱且在呼出期间较强的脉搏)和胸部过度膨胀。蓝色皮肤和指甲可能因缺氧而发生。
根据本披露的方法,如本文其他处所定义的至少一种抗IL-33结合分子(例如,抗体或其抗原结合片段)用于促进相对于治疗或预防炎性疾病的阳性治疗反应。相对于炎性疾病的“阳性治疗反应”旨在指与这些抗体的抗炎活性等相关的疾病改善,和/或与该疾病相关的症状改善。即可以观察到炎性反应减少,包括但不限于炎性细胞因子、黏附分子、蛋白酶、免疫球蛋白、其组合等的分泌减少;抗炎蛋白的产生增加;自体反应细胞的数目减少;免疫耐受性增加;自体反应细胞存活抑制;细胞凋亡减少;内皮细胞迁移减少;自发单核细胞迁移增加;通过刺激表达IL-33的细胞所介导的一种或多种症状减轻和/或减少。这类阳性治疗反应不受限于给予途径。
临床反应可以使用筛选技术评估,诸如磁共振成像(MRI)扫描、x射线照相成像、计算机断层成像(CT)扫描、流式细胞术或荧光活化细胞分选仪(FACS)分析、组织学、宏观病理学以及血液化学,包括但不限于可通过ELISA、RIA、层析等检测的变化。除了这些阳性治疗反应之外,正经受用抗IL-33结合分子(例如,抗体或其抗原结合片段)进行的治疗的受试者可经历与该疾病相关的症状改善的有益效果。
本披露的抗IL-33结合分子(例如,抗体或其结合片段)可以结合用于炎性疾病的任何已知治疗使用,包括已知有用于治疗炎性疾病(例如,哮喘或COPD)的任何试剂或试剂的组合,或已用于或目前正在用于治疗炎性疾病(例如,哮喘或COPD)的试剂。用于治疗哮喘的试剂分为两个通用类别:用于治疗急性症状的快速缓解药物;以及用于防止进一步恶化的长期控制药物。快速起效治疗包括例如短效β-2肾上腺素受体激动剂(SABA)(例如,沙丁胺醇);抗胆碱能药(例如,异丙托溴铵)、肾上腺素能激动剂(例如,肾上腺素)。长期控制治疗包括例如糖皮质激素(例如,丙酸氟替卡松);长效β-2肾上腺素受体激动剂(LABA);白三烯拮抗剂(例如,扎鲁司特);以及肥大细胞稳定剂(例如,色甘酸钠)。快速起效和长期控制治疗通常通过吸入给予。
因此,在组合疗法包含给予抗IL-33结合分子以及给予另一治疗剂时,本披露的方法涵盖使用单独配制品或单一药物配制品共给予和以任一顺序连续给予。在本披露的一些实施例中,本文所述的抗IL-33抗体与消炎药组合给予,其中抗体或其抗原结合片段和一种或多种治疗剂可以任一顺序依次或同时(即,同时或在同一时间范围内)给予。
本披露的另一实施例是抗IL-33结合分子(例如,抗体或其抗原结合片段)的用途,其用于诊断监测组织中的蛋白质水平作为临床测试程序的一部分,例如确定给定治疗方案的功效。例如,通过使抗体偶联到可检测物质上可以促进检测。可检测物质的实例包括各种酶、辅基、荧光材料、发光材料、生物发光材料和放射性材料。合适酶的实例包括辣根过氧化物酶、碱性磷酸酶、β-半乳糖苷酶或乙酰胆碱酯酶;合适辅基复合物的实例包括链霉亲和素/生物素和抗生物素蛋白/生物素;合适荧光材料的实例包括伞形酮、荧光素、异硫氰酸荧光素、罗丹明、二氯三嗪基胺荧光素、丹磺酰氯或藻红蛋白;发光材料的实例包括鲁米诺;生物发光材料的实例包括荧光素酶、萤光素和水母素;合适放射性材料的实例包括125I、131I、35S或3H。
VIII.药物组合物和给药方法
制备和向对其有需要的受试者给予本披露的抗IL-33结合分子(例如,抗体或其抗原结合片段、变体或衍生物)的方法为本领域技术人员所熟知或容易由本领域技术人员确定。抗IL-33结合分子(例如,抗体或其抗原结合片段、变体或衍生物)的给予途径可以是例如经口、胃肠外、通过吸入或局部。如本文使用的术语胃肠外包括例如静脉内、动脉内、腹膜内、肌内、皮下、直肠或阴道给予。虽然所有这些给药形式可清楚地考虑为是在本披露的范围之内,但给予形式的另一实例是用于注射,尤其是用于静脉或动脉注射或滴注的溶液。通常,本披露的适合药物组合物可包含缓冲剂(例如,乙酸盐、磷酸盐或柠檬酸盐缓冲液)、表面活性剂(例如,聚山梨醇酯)、任选地稳定剂(例如,人类白蛋白)等。然而,在与本文中的教导兼容的其他方法中,本披露的抗IL-33结合分子(例如,抗体或其抗原结合片段、变体或衍生物)可以直接递送至不良细胞群体的位点,从而增加患病组织对治疗剂的暴露。在一个实施例中,例如通过吸入或鼻内给予直接给予至气道。
如本文所论述,本披露的抗IL-33结合分子(例如,抗体或其抗原结合片段、变体或衍生物)可以药学有效量给予,用于体内治疗表达IL-33的细胞介导的疾病,诸如某些类型的炎性疾病。在这方面,应理解的是本披露所披露的结合分子将被配制成有助于给予并且促进活性剂的稳定性。优选地,根据本披露的药物组合物包含药学上可接受的、无毒性的、无菌的载剂,诸如生理盐水、无毒性的缓冲剂、防腐剂等。出于本申请的目的,抗IL-33结合分子(例如,抗体或其抗原结合片段、变体或衍生物)(轭合或非轭合)的药学有效量应被认为意指足以实现与靶标有效结合和实现例如改善疾病或病症的症状或检测物质或细胞的益处的量。
用于本披露的药物组合物可包含药学上可接受的载剂,包括例如水;离子交换剂;氧化铝;硬脂酸铝;卵磷脂;血清蛋白,诸如人血清白蛋白;缓冲物质,诸如磷酸盐;甘氨酸;山梨酸;山梨酸钾;饱和植物脂肪酸的偏甘油酯混合物;水、盐或电解质,诸如硫酸鱼精蛋白、磷酸氢二钠、磷酸氢钾、氯化钠、锌盐;胶态二氧化硅;三硅酸镁;聚乙烯吡咯烷酮;纤维素基物质;聚乙二醇;羧甲基纤维素钠;聚丙烯酸酯;蜡;聚乙烯-聚氧丙烯嵌段聚合物;聚乙二醇和羊毛脂。
用于给予的制剂包括无菌水性或非水性溶液、悬浮液以及乳液。非水性溶剂的实例是丙二醇、聚乙二醇、诸如橄榄油的植物油和诸如油酸乙酯的可注射有机酯。水性载剂包括例如水、酒精性/水性溶液、乳液或悬浮液,包括盐水和缓冲介质。在本披露中,药学上可接受的载剂包括但不限于0.01-0.1M且优选0.05M磷酸盐缓冲液或0.8%盐水。其他常见胃肠外媒剂包括磷酸钠溶液、林格氏右旋糖(Ringer's dextrose)、右旋糖和氯化钠、乳酸林格氏液(lactated Ringer's)或不挥发性油。静脉内媒剂包括流体和营养补充剂、电解质补充剂,诸如基于林格氏右旋糖的那些等。还可以存在防腐剂以及其他添加剂,例如像抗微生物剂、抗氧化剂、螯合剂和惰性气体等。
更具体而言,适合于可注射使用的药物组合物包括无菌水溶液(在可溶于水时)或分散液和用于临时制备无菌可注射溶液或分散液的无菌粉末。在这样的情况下,该组合物必须是无菌的并且必须具有达到容易注射的程度的流动性。在制造和存储条件下它应当是稳定的,并且将优选地被保存以防止微生物(诸如细菌和真菌)的污染作用。载剂可以是含有以下物质的溶剂或分散介质:例如,水、乙醇、多元醇(例如,甘油、丙二醇和液体聚乙二醇等)及其适合的混合物。可以例如通过使用涂层(诸如卵磷脂)、通过在分散液的情况下维持所需颗粒大小以及通过使用表面活性剂来维持适当的流动性。用于本文披露的治疗方法的合适配制品描述于Remington's Pharmaceutical Sciences(Mack Publishing Co.)16thed.(1980)[雷明顿氏药物科学(麦克出版公司)第16版(1980)]。
防止微生物的作用可以通过不同的抗细菌剂和抗真菌剂,例如对羟苯甲酸酯、三氯叔丁醇、苯酚、抗坏血酸、硫柳汞等来实现。在许多情况下,优选的是在组合物中包括等渗剂(例如,糖)、多元醇(诸如甘露醇、山梨醇)或氯化钠。可以通过在组合物中包括延迟吸收的试剂(例如,单硬脂酸铝和明胶)来实现可注射组合物的延长吸收。
在任何情况下,无菌可注射溶液可以通过在具有本文所列举的成分之一或组合的适当溶剂中并入所需量的活性化合物(例如,抗IL-33抗体或其抗原结合片段、变体或衍生物,单独地或与其他活性剂组合),视需要随后过滤灭菌来制备。通常,通过将活性化合物并入无菌媒剂来制备分散液,该无菌媒剂含有基础分散介质以及来自以上列举的所需其他成分。就用于制备无菌可注射溶液的无菌粉末而言,优选制备方法是真空干燥和冷冻干燥,这些方法产生活性成分的粉末以及来自其以前的无菌过滤溶液的任何另外的所希望的成分。将注射用制剂处理,填充至诸如安瓿、袋子、瓶子、注射器或小瓶的容器中,并且根据本领域已知的方法密封在无菌条件下。此外,这些制剂可以按试剂盒的形式包装和出售。这样的制品将优选地具有标记或包装说明书,表明相关组合物可用于治疗患有或倾向于患有疾病或障碍的受试者。
胃肠外配制品可以是单次推注剂量,输注或加载推注剂量,随后是维持剂量。这些组合物可以按特定的固定的或可变的间隔给予,例如每天一次,或在“根据需要”的基础上给予。
用于本披露的某些药物组合物可以按可接受的剂型(包括例如胶囊剂、片剂、水性悬浮液或溶液)来口服给予。某些药物组合物也可以通过鼻气雾剂或吸入来给予。使用苄醇或其他合适的防腐剂、提高生物利用度的吸收促进剂和/或其他常规增溶剂或分散剂,这样的组合物可以作为盐水中的溶液来制备。
可与载剂材料相组合以便产生单一剂型的抗IL-33结合分子(例如,抗体或其片段、变体或衍生物)的量将取决于所治疗的受试者和特定给予模式而变化。组合物可以作为单剂量,多剂量或经在输注中的确定时间段给予。还可以调整给药方案以提供最佳的所希望的反应(例如,治疗或预防反应)。
与本披露的范围一致,本披露的抗IL-33抗体或其抗原结合片段、变体或衍生物可根据前述治疗方法以足以产生治疗效果的量给予人或其他动物。本披露的抗IL-33抗体或其抗原结合片段、变体或衍生物可以通过根据已知技术使本披露的抗体或其抗原结合片段与常规药学上可接受的载剂或稀释剂组合而制备的常规剂型给予该人或其他动物。本领域技术人员应认识到,药学上可接受的载剂或稀释剂的形式和特征是通过与其组合的活性成分的量、给予途径以及其他熟知变量来确定。本领域技术人员应进一步理解,包含本披露的抗IL-33结合分子(例如,抗体或其抗原结合片段、变体或衍生物)的一种或多种物质的混合物可被证明为尤其有效。
“治疗有效剂量或量”或“有效量”旨在指在给予时引起相对于治疗患有待治疗的疾病或病症的患者的阳性治疗反应的抗IL-33结合分子(例如,抗体或其抗原结合片段)的量。
本披露还提供了抗IL-33结合分子(例如,抗体或其抗原结合片段、变体或衍生物)在制造用以治疗炎性疾病(包括例如哮喘或COPD)的药物中的用途。
本披露还提供了本披露的抗IL-33结合分子(例如,抗体或其抗原结合片段、变体或衍生物)在制造用以治疗受试者、治疗炎性疾病的药物中的用途,其中该药物在已用至少一种其他疗法预治疗的受试者中使用。“预治疗(pretreated或pretreatment)”旨在指受试者在接受包含抗IL-33结合分子(例如,抗体或其抗原结合片段、变体或衍生物)的药物之前已接受一种或多种其他疗法(例如,已用至少一种其他抗炎疗法治疗)。“预治疗(pretreated或pretreatment)”包括在开始用包含抗IL-33结合分子(例如,抗体其或抗原结合片段、变体或衍生物)的药物治疗之前的2年内、18个月内、1年内、6个月内、2个月内、6周内、1个月内、4周内、3周内、2周内、1周内、6天内、5天内、4天内、3天内、2天内或甚至1天内已用至少一种其他疗法治疗的受试者。受试者不必是对用在先的一种或多种疗法的预治疗的反应者。因此,接受包含抗IL-33结合分子(例如,抗体或其抗原结合片段、变体或衍生物)的药物的受试者可能已经响应或可能未响应用在先治疗剂的预治疗,或在预治疗包含多种治疗的情况下可能已经响应或可能未响应这些在先治疗中的一或多种。
IX.诊断学
本披露进一步提供了在诊断表达IL-33的细胞所介导的疾病(诸如某些类型的炎性疾病,包括例如哮喘)期间有用的诊断方法,其涉及测量来自个体的组织或其他细胞或体液中IL-33蛋白或转录物的表达水平和将所测量的表达水平与正常组织或体液中的标准IL-33表达水平进行比较,藉此与标准相比的表达水平增加指示障碍。
本披露的抗IL-33抗体及其抗原结合片段、变体和衍生物可用于使用本领域技术人员已知的经典的免疫组织化学方法测定生物样品中的IL-33蛋白水平(例如,参见Jalkanen等人,J.Cell.Biol.[细胞生物学杂志]101:976-985(1985);Jalkanen等人,J.Cell.Biol.[细胞生物学杂志]105:3087-3096(1987))。可用于检测IL-33蛋白表达的其他基于抗体的方法包括免疫测定,诸如酶联免疫吸附测定(ELISA)、免疫沉淀法或蛋白质印迹法。本文在其他处更详细地描述了适合的测定。
“测定IL-33多肽的表达水平”旨在直接地(例如,通过测定或估算绝对蛋白水平)或相对地(例如,通过与第二生物样品中的疾病相关多肽水平比较)定性或定量测量或估算第一生物样品中的IL-33多肽水平。优选地,测量或估算并且将第一生物试样中的IL-33多肽表达水平与标准IL-33多肽水平进行比较,该标准取自从不患有障碍的个体获得的第二生物样品或通过求取不患有障碍的个体群体的平均水平确定。正如本领域将理解的,一旦已知“标准”IL-33多肽水平,其可重复用作为比较的标准品。
“生物样品”旨在指从潜在地表达IL-33的个体、细胞系、组织培养物或其他细胞来源获得的任何生物样品。本领域熟知用于从哺乳动物获得组织活检和体液的方法。
X.免疫测定
本披露的抗IL-33结合分子(例如,抗体或其抗原结合片段、变体或衍生物)可通过本领域已知的任何方法测定免疫特异性结合。结合测定可作为直接结合测定或竞争结合测定进行。仅举几例,可以使用的免疫测定包括但不限于ELISA(酶联免疫吸附测定)、蛋白质印迹法、免疫细胞化学、免疫沉淀、亲和层析、生物层干涉法(Octet,福特生物公司(ForteBio))和生物化学测定诸如解离增强镧系荧光免疫测定(珀金埃尔默公司)、福斯特共振能量转移(FRET)测定(例如,均相时间分辨荧光(Cis生物国际公司(Cis Biointernational))和放射性配体结合测定。也可以在细胞测定中例如通过流式细胞术和荧光微量测定技术(应用生物系统公司(Applied Biosystems))检测结合。在直接结合测定中,测试候选抗体的与IL-33抗原的结合。另一方面,竞争结合测定评估候选抗体与已知抗IL-33抗体或片段或其他化合物(诸如ST2)竞争结合至IL-33的能力。此类测定是常规的并且在本领域是熟知的(参见例如,Ausubel等人编辑(1994)CurrentProtocols in Molecular Biology(John Wiley&Sons,Inc.,NY)Vol.1[当前分子生物学方案(约翰威利父子公司,纽约)第1卷],将其通过引用以其全文并入本文中)。示例性免疫测定在下文简要地描述(但是不意图通过限制方式)。
免疫沉淀方案通常包括在诸如补充有蛋白质磷酸酶和/或蛋白酶抑制剂(例如,EDTA、PMSF、抑肽酶、钒酸钠)的RIPA缓冲液(1%NP-40或Triton X-100、1%脱氧胆酸钠、0.1%SDS、0.15M NaCl、pH 7.2下的0.01M磷酸钠、1%特斯乐(Trasylol))裂解缓冲液中裂解细胞群,将感兴趣的抗体添加到细胞裂解物,于4℃下孵育一段时间(例如,1-4小时),向细胞裂解物中添加蛋白质A和/或蛋白质G琼脂糖珠粒,于4℃下孵育约一小时或更长,在裂解缓冲液中洗涤珠粒并且将珠粒重悬于SDS/样品缓冲液中。感兴趣的抗体免疫沉淀特定抗原的能力可以通过例如蛋白质印迹分析来评估。本领域技术人员应知晓可以修改参数以增强抗体与抗原的结合并且降低背景(例如,用琼脂糖珠粒预先净化细胞裂解物)。对于关于免疫沉淀方案的进一步论述,参见例如Ausubel等人编辑(1994)Current Protocols inMolecular Biology(John Wiley&Sons,Inc.,NY)Vol.1[当前分子生物学方案(约翰威利父子公司,纽约)第1卷]10.16.1处。
蛋白质印迹分析通常包括制备蛋白质样品;使蛋白质样品在聚丙烯酰胺凝胶(例如,8%-20%SDS-PAGE,取决于抗原分子量)中进行电泳;将蛋白质样品从该聚丙烯酰胺凝胶中转移到膜诸如硝化纤维素、PVDF或尼龙;将该膜在封闭液(例如,具有3%BSA的PBS或脱脂乳)中进行封闭;将该膜在洗涤缓冲液(例如,PBS-吐温20)中洗涤;使用稀释于封闭缓冲液中的一级抗体(感兴趣的抗体)封闭膜;将该膜在洗涤缓冲液中洗涤;使用稀释于该封闭缓冲液中的轭合至酶底物(例如,辣根过氧化物酶或碱性磷酸酶)或放射性分子(例如,32P或125I)的二级抗体(其识别一级抗体,例如抗人类抗体)封闭该膜;将该膜在洗涤缓冲液中洗涤;并且检测抗原的存在。本领域技术人员应知晓可以修改参数以增加所检测的信号并且降低背景噪声。对于关于蛋白质印迹方案的进一步论述,参见例如Ausubel等人编辑(1994)Current Protocols in Molecular Biology(John Wiley&Sons,Inc.,NY)Vol.1[当前分子生物学方案(约翰威利父子公司,纽约)第1卷]10.8.1处。
ELISA包括制备抗原;用抗原涂覆96孔微量滴定板的孔;将轭合至可检测化合物诸如酶底物(例如,辣根过氧化物酶或碱性磷酸酶)的感兴趣的抗体添加到孔并且孵育一段时间,并且检测抗原的存在。在ELISA中,感兴趣的抗体不必须轭合至可检测化合物;取而代之,可将轭合至可检测化合物的第二抗体(其识别感兴趣的抗体)添加至孔中。此外,抗体可涂覆孔而不是用抗原来涂覆孔。在这种情况下,轭合至可检测化合物的第二抗体可在感兴趣的抗原添加至涂覆的孔之后而添加。本领域技术人员应知晓可以修改参数以增加所检测的信号以及本领域已知的ELISA的其他变化。对于关于ELISA的进一步论述,参见例如Ausubel等人编辑(1994)Current Protocols in Molecular Biology(John Wiley&Sons,Inc.,NY)Vol.1[当前分子生物学方案(约翰威利父子公司,纽约)第1卷]13.2.1处。
本披露的抗IL-33抗体或其抗原结合片段、变体或衍生物另外可以在组织学上使用,如用于免疫荧光、免疫电子显微术或非免疫测定中,用于原位检测IL-33蛋白或其保守变体或肽片段。原位检测可通过自患者移出组织学样品且对其施用经标记的抗IL-33抗体或其抗原结合片段、变体或衍生物,优选通过使标记抗体(或片段)覆盖至生物样品施用来实现。通过使用这一程序,不仅可测定IL-33或保守变体或肽片段的存在,还可测定其在检查的组织中的分布。利用本披露,普通技术人员应容易地知道,可修改多种多样的组织学方法(诸如染色程序)中的任一种来实现这种原位检测。
IL-33基因产物或其保守变体或肽片段的免疫测定和非免疫测定将典型地包括在能够结合至IL-33或其保守变体或肽片段的可检测地经标记的抗体存在下孵育样品,诸如生物流体、组织提取物、新鲜收获细胞或已在细胞培养物中孵育的细胞裂解物,并且通过本领域熟知的多种技术中的任一种检测所结合的抗体。
可以使生物样品接触和固定至固相支撑物或载体(诸如硝化纤维素)或能够固定细胞、细胞粒子或可溶性蛋白的其他固体支撑物上。支撑物然后可用适合缓冲液洗涤,随后用可检测地经标记的抗IL-33抗体或其抗原结合片段、变体或衍生物处理。固相支撑物然后可第二次用缓冲液洗涤以去除未结合抗体。任选地,抗体随后被标记。固体支撑物上所结合的标记的量然后可通过常规手段检测。
“固相支撑物或载体”旨在指能够结合抗原或抗体的任何支撑物。熟知支撑物或载体包括玻璃、聚苯乙烯、聚丙烯、聚乙烯、葡聚糖、尼龙、淀粉酶、天然的和经修饰的纤维素、聚丙烯酰胺、辉长岩和磁铁矿。载体的性质可以是在一定程度上可溶的或出于本披露的目的不溶的。支撑材料可具有几乎任何可能的结构构型,只要偶联分子能够结合至抗原或抗体即可。因此,支撑物构型可以是球形的,如同珠粒,或圆柱形的,如同试管内表面或杆外表面。可替代地,表面可以是平坦的,诸如片层、测试条等。优选的支撑物包括聚苯乙烯珠粒。本领域技术人员应知道许多其他适合于结合抗体或抗原的载体,或将能够通过使用常规实验确定适合于结合抗体或抗原的载体。
也可使用本领域已知的适合方法进行溶液相结合测定,例如但不限于福斯特共振能量转移(FRET)测定(例如,均相时间分辨荧光(Cis生物国际公司)。测定为在非常接近的供体与受体荧光团之间利用荧光共振能量转移的均相测定技术(Mathis,G.,ClinChem[临床化学]41(9):1391-7(1995))。该测定可以用于通过使感兴趣的分子之一与供体荧光团(例如铕(Eu3+)穴状化合物)直接或间接偶联和使另一感兴趣的分子与受体荧光团(例如XL665(稳定交联的别藻蓝蛋白))偶联来测量大分子相互作用。供体分子的激发导致荧光发射。在非常接近供体荧光团时来自此发射的能量可转移至受体荧光团,导致特定长寿命荧光发射。
给定批次的抗IL-33抗体或其抗原结合片段、变体或衍生物的结合活性可根据熟知方法确定。本领域技术人员应能够通过常规实验确定每个测定的操作和最佳测定条件。
有多种方法可供用于测量抗体-抗原相互作用的亲和力,但是用于确定速率常数的方法相对很少。大多数方法依赖于将抗体或抗原进行标记,这不可避免地使常规测量复杂化并且在所测量的数量中引入不确定性。
抗体与抗原的结合亲和力和抗体-抗原相互作用的解离速率可以通过竞争性结合测定来确定。竞争性结合测定的一个实例是放射免疫测定,其包括将标记抗原(例如,3H或125I)与感兴趣的抗体在渐增量的未标记抗原的存在下一起孵育,并且检测结合至标记抗原的抗体。感兴趣的抗体对特定抗原的亲和力和结合解离速率可由斯卡查德绘图分析(scatchard plot analysis)的数据确定。与第二抗体的竞争也可以使用放射免疫测定来确定。在这种情况下,抗原与轭合至标记化合物(例如,3H或125I)的感兴趣的抗体在渐增量的未标记第二抗体的存在下一起孵育。
如在上执行的表面等离子体共振(SPR)提供优于测量抗体-抗原相互作用的亲和力的常规方法的许多优势:(i)不需要对抗体或抗原进行标记;(ii)抗体不需要提前纯化,可直接使用细胞培养物上清液;(iii)能够进行实时测量,从而允许对不同单克隆抗体相互作用进行快速半定量比较,并且对于许多评估目的来说是足够的;(iv)可使生物特异性表面再生以使得一系列不同单克隆抗体可在相同条件下容易地比较;(v)分析程序完全自动化,并且可在没有使用者干预的情况下执行一系列广泛的测量。BIAapplications Handbook,version AB(reprinted 1998),code No.BR-1001-86[BIA应用手册,AB版(1998年再版),代号BR-1001-86];BIAtechnologyHandbook,version AB(reprinted1998),code No.BR-1001-84[BIA技术手册,AB版(1998年再版),代号BR-1001-84]。基于SPR的结合研究需要将结合对的一个成员固定于传感器表面上。固定的结合配偶体被称为配体。溶解的结合配偶体被称为分析物。在一些情况下,配体经由结合至被称为捕获分子的另一固定分子来间接地附着至表面。当分析物结合或解离时,SPR应答反映了检测器表面的质量浓度的变化。
基于SPR,实时测量直接在相互作用发生时对它们进行监测。该技术完全适合于确定动力学参数。比较性亲和力分级(ranking)可简单地执行,并且动力学与亲和力常数两者可以从传感图数据得到。
当分析物以离散脉冲来注射至配体表面上时,所得传感图可划分成三个基本相:(i)样品注射过程中分析物与配体的缔合;(ii)样品注射过程中的平衡或稳态,其中分析物结合速率通过从复合物解离来平衡;(iii)缓冲液流动期间分析物从表面上的解离。
缔合和解离相提供关于分析物-配体相互作用的动力学的信息(ka和kd,复合物形成和解离速率,kd/ka=KD)。平衡相提供关于分析物-配体相互作用的亲和力的信息(KD)。
BIA评价(BIAevaluation)软件提供了用于使用数值积分与全局拟合算法来进行曲线拟合的综合工具。通过对数据进行适当分析,相互作用的单独速率和亲和力常数可以从简单的研究来获得。可通过此技术来测量的亲和力的范围非常广泛,在从mM到pM的范围内。
此类方法的另一实例包括使用可例如使用KinExa仪器(萨比戴恩仪器公司(Sapidyne Instruments))进行的动力学排除测定(Kinetic Exclusion Assay)测量平衡解离常数“KD”。简言之,抗IL33抗体的溶液相平衡解离常数KD可以通过预混合不同浓度的抗体与IL-33直至达到平衡来确定。然后通过使用经IL-33涂覆的珠粒捕获游离抗体,洗掉未结合材料并且使用荧光标记物质特异性抗体检测结合抗体,使用KinExa测量游离抗体的量。将在各IL-33浓度下检测的游离抗体的量相对于IL-33浓度绘图,并且使用KinExa软件计算平衡解离常数(KD)。
适用于确定所呈现的经分离抗体或其抗原结合片段或其改变/突变型衍生物(以下论述)的结合特征的方法和试剂在本领域是已知的和/或是可商购的。设计用于此类动力学分析的设备和软件是可商购的(例如,BIAcore,BIA评价(BIAevaluation)软件,GE医疗集团(GEHealthcare);KinExa软件,萨比戴恩仪器公司)。
表位特异性是单克隆抗体的重要特征。与使用放射免疫测定、ELISA或其他表面吸附方法的常规技术相比,使用的表位作图不需要标记或纯化抗体,并且允许使用一系列多个单克隆抗体来进行多位点特异性测定。另外,大量分析可自动处理。
成对结合实验测试两个MAb同时结合至同一抗原的能力。针对单独表位的MAb将独立地结合,而针对相同或紧密相关表位的MAb干扰彼此的结合。使用进行的这些结合实验可简单地执行。
例如,可以使用捕获分子来结合第一Mab,随后依序添加抗原和第二MAb。传感图将揭示:(1)抗原结合至第一Mab的量,(2)第二MAb结合至表面附着抗原的程度,(3)若第二MAb未结合,逆转成对试验的顺序是否会改变结果。
肽抑制是用于表位作图的另一种技术。这种方法可以对成对抗体结合研究进行补充,并且可在抗原的一级序列已知时,将功能表位与结构特征相关联。肽或抗原片段针对抑制不同MAb与固定抗原的结合来进行测试。干扰给定MAb的结合的肽被认为在结构上与由所述MAb定义的表位相关。
除非另外指示,否则本披露的实践将使用细胞生物学、细胞培养、分子生物学、转基因生物学、微生物学、重组DNA以及免疫学的常规技术,这些技术在本领域的技能范围内。此类技术在文献中得到充分解释。
本文所引用的所有参考文献均通过引用以其全文并入本文中。
通过说明而不是通过限制的方式,提供以下实例。
附图说明
图1显示在未经纯化scFv周质制剂存在下对人类IL33-ST2结合的HTRF测定。突出显示含有抗体IL330004的孔。
图2显示在IL33-ST2 HTRF测定中人类和食蟹猴IL33通过经纯化scFv制剂中和。
图3显示在IL33-ST2 HTRF测定中人类和食蟹猴IL33通过经纯化IgG制剂中和。
图4显示在NFkB信号传导测定中人类IL33通过经纯化IgG制剂中和。
图5显示IL-33抗体IL330004(右图)相比于CAT-002阴性对照(左图),通过免疫荧光染色检测支气管平滑肌细胞中的内源性IL-33。
图6显示针对人类IL-33、食蟹猴IL-33和胰岛素筛选的单板的结合数据。一个特定人类/食蟹猴交叉反应IL-33结合子(binder)显示于孔C4中,并且孔A12和B12含有对照IL-33结合克隆。
图7A显示在TF-1增殖测定中抗体的中和活性。
图7B显示在HUVEC IL-6产生测定中抗体的中和活性。
图8显示在肥大细胞细胞因子产生测定中抗体的中和活性。
图9通过蛋白质印迹法显示IL-33抗体(IL330065、IL330101、IL330107和IL330149)与全长人类IL-33的结合。
图10显示抗IL-33抗体IL330065和IL330101对由全长IL-33细胞裂解物刺激的肥大细胞IL-6和IL-13产生的中和活性。
图11A显示在抗体IL330065、IL330099、IL330101、IL330107、IL33149和IL330180存在下的受体-配体竞争测定。
图11B显示在抗体IL330065、IL330099、IL330101、IL330107和IL330149存在下的HuvecNFkB(p65/RelA)易位测定。
图12A显示经纯化scFv制剂与mAb IL330101对于结合至生物素化人类IL-33的竞争性结合。
图12B显示经纯化scFv制剂与mAb IL330180对于结合至生物素化人类IL-33的竞争性结合。
图13显示IL330259 scFv与mAb IL330101对于结合至生物素化人类IL-33的竞争性结合。
图14A显示IL330259 IgG与mAb IL330101对于结合至生物素化人类IL-33的竞争性结合。
图14B显示抗体与mAb H338L293对于结合至生物素化人类IL-33的竞争性结合。
图15显示在HUVEC或肥大细胞IL-6产生测定中抗体的中和活性。
图16显示在肥大细胞IL-6产生测定中对IL330388和H338L293的Schild分析。
图17显示在HUVEC信号传导测定(30分钟)和IL-6产生测定(18-24小时)中所测量的人类IL-33、半胱氨酸生物素化IL-33或经细胞培养基预处理的IL-33的活性。
图18显示在用伊斯科夫改良型杜尔贝科氏培养基(Iscoves Modified DulbeccosMedium,IMDM)处理之前或之后,在还原或非还原条件下人类、生物素化的人类或小鼠IL-33的SDS-PAGE。
图19显示经细胞培养基处理的人类IL-33通过SEC的纯化。
图20显示经PBS与培养基处理的IL-33通过LC-MS确定的完整质量。经IMDM处理的IL-33与经PBS处理相比展示4Da损失,与两个二硫键的形成相容。
图21显示经培养基处理的人类IL-33的二硫键作图。数据与两个二硫桥键的形成一致。
图22A显示用于NMR分析的高浓度redIL-33和DSB IL-33的SDS-PAGE分析。
图22B显示redIL-33和DSB IL-33在经15N标记的人类IL-33的1H-15N HMQC光谱叠加的情况下的NMR异核多量子相干(HMQC)分析。
图22C近UV圆二色性(CD)光谱。
图22D显示在所解析的IL-33结构内指示的IL-33关键特征(Trp193、半胱氨酸和ST2结合位点)。
图22E显示远UV圆二色性(CD)光谱。
图23显示redIL-33和DSB IL-33的氢-氘交换分析。氘并入的差异映射至所公布的IL-33结构上。
图24显示redIL-33或DSB IL-33结合至ST2。
图25显示对三个商业IL-33 ELISA测定检测redIL-33和DSB IL-33形式的分析。
图26显示特异于redIL-33检测的ELISA测定。
图27显示人类IL-33在细胞培养基(IMDM)或人类血清中的孵育时间过程。redIL-33或DSB IL-33形式通过ELISA或蛋白质印迹法测量。
图28显示使用多个ELISA测定的组合对在交链孢属(Alternaria)鼻内攻击之后在不同时间点收集的人源化IL-33小鼠的BALF的分析。使用(A)密理博公司(Millipore)、(B)R&D系统公司(R&Dsystems)和(C)IL330425/sST2-生物素测定在sST2存在或不存在下测量IL-33(左边图)。将在sST2存在下的信号(来自所消除的还原型IL-33级分的信号)与二硫键键合的IL-33标准进行比较以定量二硫键键合的IL-33的水平。还原型IL-33信号被计算为相对于还原型IL-33标准所定量的在ST2存在和不存在下在IL-33测量之间的信号差值。还原型IL-33的估值显示于右边图上。
图29显示对在交链孢属鼻内攻击之后在不同时间点收集的野生型BALB/c小鼠的BALF的分析。在sST2存在或不存在下使用小鼠IL-33 ELISA(R&D系统公司)测量IL-33(经培养基处理的小鼠IL-33用作标准曲线)。将在sST2存在下的信号(来自所消除的还原型IL-33级分的信号)与经培养基处理的小鼠IL-33标准进行比较以定量氧化型IL-33的水平。还原型IL-33信号被计算为相对于还原型小鼠IL-33标准所定量的在ST2存在和不存在下在IL-33测量之间的信号差值。
图30A显示在8xSYPRO橙染料存在下在25℃下使5μM抗体与20μM IL33孵育之后100分钟的相对荧光单位。在IL-33 H338L293而非IL330004或对照mAb存在下,荧光信号增加指示蛋白质未折叠。
图30B显示在8xSYPRO橙染料存在下在25℃下使不同浓度的H338L293与20μM IL33孵育之后随时间推移的相对荧光单位。荧光信号随着抗体浓度增加而增加。
图30C显示IL-33的SDS-PAGE分析。预孵育IL-33与H338L293(而非对照mAb或无mAb),在非还原条件下增加较快迁移的二硫键键合IL-33形式的存在。
图31显示用mAb H338L293中和HUVEC中的IL-33刺激的NFkB信号传导的时间过程。
图32显示在直接竞争条件下或在与IL-33预孵育之后增加H338L293浓度的情况下对由人类IL-33结合至人类ST2所产生的FRET信号的抑制。
图33显示H338L293的表位作图。上图显示在H338L293用胰蛋白酶消化之前和之后的情况下对IL33:IgG复合物的SEC分析。下图显示由Lingel等人2009描述经确定强烈结合至IL-33结构内的颜色是黑色的H338L293的截短肽。
图34显示在用IMDM细胞培养基处理18小时之前和之后,野生型IL-33(IL33-01)和IL-33半胱氨酸至丝氨酸突变体的NFkB信号传导活性。
图35显示在体外和体内IL33-11比IL33-01(WT)具有更大效力。
图36显示分别以黑色和红色绘图的0.1mM经15N标记的IL33-01和IL33-11的1H-15NHMQC光谱叠加。指示相关残基的分配。数据显示峰正如预期在C208和C259周围移位。然而,从T185至A196存在比预期更多的峰移位,可能指示构型变化。
图37显示在IL33-ST2 HTRF结合测定中33v20064 scFv的IL-33中和活性的时间过程。
图38显示在IL33-ST2 HTRF结合测定中33v20064 IgG的IL-33中和活性的时间过程。
图39显示在HUVEC中由野生型或突变型IL-33刺激的IL-6产生的抗体中和。
图40显示在增加测试蛋白的浓度的情况下对由生物素化人类IL-33-01结合至DyLight标记的33v20064所产生的FRET信号的抑制。信号的抑制与33v20064与测试蛋白的相对结合亲和力一致。
图41显示与亲本33v20064 scFv相比种系变体33_640001的IL33-ST2HTRF结合测定中的IL-33中和活性的时间过程。
图42显示在HUVEC中由截短(112-270)或全长(1-270)IL-33刺激的IL-8产生的抗体中和。
图43显示IL-33结合蛋白对redIL-33向DSB IL-33转化的影响。
图44显示在增加测试蛋白的浓度的情况下对在不同时间点由生物素化人类或食蟹猴IL-33结合至33_640117 mAb所产生的FRET信号的抑制。信号的抑制与33v20064与测试蛋白的相对结合亲和力一致。
图45显示在HUVEC中由截短(112-270)或全长(1-270)IL-33刺激的IL-8产生的抗体中和。
图46显示H338L293以剂量依赖性方式抑制野生型BALB/c小鼠中交链孢属(ALT)诱导的BAL IL-5和嗜酸性粒细胞增多。在用25μg ALT攻击之前-2小时经鼻内给与测试物质(10、30或100mg/kg,如括号中所指示)。在ALT攻击之后24小时收获BALF且分析IL-5(图46A)和嗜酸性粒细胞(图46B)的存在。通过邦弗伦尼多重比较检验(Bonferroni's multiplecomparisons test)使用单因子ANOVA确定测试物质的显著影响。相比于对照mAb,***p<0.001,~~p<0.01(n=4-8)。使用小鼠IL-33捕获物作为阳性对照。
图47显示H338L293(30mg/kg)和小鼠IL-33捕获物(10mg/kg)而非IL330004(30mg/kg)抑制人源化IL-33小鼠中ALT诱导的BAL IL-5。在用25μg ALT攻击之前-2小时经鼻内给与测试物质。在ALT攻击之后24小时收获BALF且分析IL-5的存在。通过邦弗伦尼多重比较检验使用单因子ANOVA确定测试物质的显著影响。***p<0.001,**p<0.01(n=4)。
图48显示33_640050以剂量依赖性方式抑制人源化IL-33小鼠中交链孢属诱导的BAL IL-5。在用25μg交链孢属攻击之前-24小时经腹膜内给与测试物质(0.3、3或30mg/kg,如括号中所指示)。在ALT攻击之后24小时收获BALF且分析IL-5的存在。通过邦弗伦尼多重比较检验使用单因子ANOVA确定测试物质的显著影响。***p<0.001,**p<0.01(n=4-5)。
图49A显示在IL33-ST2 FRET结合测定中抗体的影响。
图49B显示抗体对IL-33刺激的自Huvec的IL-8释放的影响。
图50显示使用基于(A)IL33/33_640087-7B或(B)33_640237-2B的FRET测定的不同物种IL-33或其他IL-1家族成员的mAb特异性。
图51显示抗体对由人类肺裂解物刺激的自Huvec的IL-8释放的影响。
图52显示33_640087-7B以剂量依赖性方式抑制人源化IL-33小鼠中交链孢属诱导的BALIL-5。
图53A研究与ST2无关的IL-33潜在活性的初步体内研究的实验设计。
图53B在向BALB/c小鼠重复给予人类IL-33之后对BAL液中人类IL-33暴露的分析。
图53C在单次腹膜内给予人类IL-33(10μg)之后对血浆中IL-33暴露的分析。
图53D在向BALB/c小鼠重复给予人类IL-33之后对血浆中IL-33暴露的分析。
图54显示来自经鼻内给予(A)PBS或(B)IL-33持续6周的小鼠的肺组织的代表性H&E染色石蜡切片。
图55显示Huvec中响应于还原型IL-33或DSB IL-33的(A)p-p38 MAPK或(B)p-STAT5核易位活性。
图55C在Huvec中用还原型IL-33或DSB IL-33刺激15分钟的p-p38 MAPK、p-JAK2和p-STAT5蛋白质印迹分析。
图56A通过ELISA显示RAGE-Fc与还原型或DSB IL-33的结合。
图56B显示用RAGE-Fc或抗RAGE mAb抑制Huvec pSTAT5对DSB IL-33反应。
图56C显示用抗RAGE mAb抑制Huvec pSTAT5对DSB IL-33反应。
图57显示抗IL-33与抗ST2对Huvec pSTAT5反应的影响。
图58显示抗IL-33、抗ST2或抗RAGE mAb与(A)还原型IL-33、(B)DSB IL-33对IL-33诱导的A549细胞迁移抑制的影响。
序列概述
实例
实例1 IL-33抗体的分离
克隆、表达和纯化来自人类、小鼠和食蟹猴的成熟IL-33
自Swiss Prot获得IL-1RAcP和ST2的蛋白质序列。编码成熟IL-33组分的抗IL-33scFv抗体cDNA分子的分离和鉴定是通过引物延伸PCR合成,并且克隆至pJexpress404(DNA2.0)中。对应于人类和小鼠IL-33的数据库序列信息的登录号显示于表2中。因此,基于食蟹猴与恒河猴之间的高同源性,无食蟹猴序列可获得,恒河猴序列(登录号ENSMMUT00000030043)用于设计能够扩增食蟹猴中IL-33基因的编码序列的引物。将恒河猴基因序列与人类IL-33 cDNA序列(登录号NM_033439)比对,这表明恒河猴序列是错组装的且缺失外显子1。使用人类外显子1针对恒河猴基因组序列进行BLAST搜索,并且鉴定恒河猴序列匹配外显子1。另外的引物被设计成扩增外显子1。
成熟IL-33编码序列经修饰以在蛋白质的C末端含有10xhis表位标签(DYKDDDDKAAHHHHHHHHHH;SEQ ID NO.627)。对应于成熟His标签化的人类、食蟹猴和小鼠IL-33的SEQ ID NO显示于表2中。
表2.人、小鼠和食蟹猴成熟IL-33的序列
将载体转化为BL21(DE3)感受态细胞(默克生物科学公司(Merck Biosciences),69450)且用1mM IPTG诱导表达。所收获的细胞用Bugbuster(默克生物科学公司,70584)溶解,并且使用Ni-NTA亲和层析(Histrap HP柱:GE医疗集团,17-5248-02),随后使用尺寸排阻层析(Superdex 75柱:GE医疗集团,17-1068-01)纯化所表达的蛋白质。
蛋白质修饰
使用EZ连接磺基-NHS-LC-生物素(赛默公司(Thermo)/皮尔斯公司(Pierce),21335)经由游离胺对本文所用的IgG和经修饰的受体蛋白进行生物素化,将生物素试剂溶解于无水二甲基甲酰胺中且用1M NaHCO3/D-PBS(杜尔贝科氏磷酸盐缓冲盐水)将基于PBS的蛋白质溶液调节至pH为约8。使用EZ连接生物素-BMCC(普达生物公司(Perbio)/皮尔斯公司,产品编号21900)经由游离半胱氨酸对本文所用的IL-33蛋白进行生物素化。将生物素试剂溶解于无水二甲基甲酰胺和混合PBS蛋白质溶液中。在所有情况下通过MALDI-TOF质谱评估标记并入,并且使用PBS平衡的一次性Sephadex G25柱通过缓冲液交换清除未反应试剂。对于生物素标记,使用由氨基酸序列计算的消光系数通过280nm吸光度确定最终蛋白质浓度。
选择
使用基于从来自成年初试供体的人类B细胞分离并基于丝状噬菌体M13克隆到噬菌粒载体中的可变(V)基因的大单链Fv(scFv)人类抗体文库进行选择(Hutchings,C.,“Generation ofHuman Antibody Libraries”in Antibody Engineering,Dubel.Berlin,Springer Laboratory Manuals:p.93(2001)[“天然人类抗体文库”,抗体工程,Dubel.Berlin,施普林格实验室手册,第93页(2001)];Lloyd等人,ProteinEng.Des.Sel.[蛋白质工程,设计和选择]22(3):159-68(2009))。IL-33特异性scFv抗体是在重组人类和/或小鼠IL-33的一系列重复选择周期中自噬菌体展示文库分离,基本上如Vaughan等人(Nat.Biotechnol.[自然生物技术]14(3):309-14(1996))中所描述。本文所用的IL-33试剂的清单在表3中示出。
表3:ELISA结合测定试剂
简言之,scFv噬菌体粒子与生物素化重组IL-33在溶液中一起孵育(使用EZ连接生物素-BMCC(普达生物公司/皮尔斯公司,产品编号21900)经由游离半胱氨酸进行生物素化)。粒子与100nM生物素化重组IL-33一起孵育2小时。然后,遵循制造商建议将结合至抗原的scFv捕获于链霉亲和素涂覆的顺磁性珠粒(M-280)上。在一系列洗涤周期中使用PBS-吐温洗掉未结合噬菌体。洗脱留在抗原上的噬菌体粒子,感染进入细菌,并挽救以用于下一轮筛选。典型地,以此方式进行两轮或三轮选择。
通过噬菌体ELISA鉴定IL-33特异性结合子
使来自在上文所述的两轮或三轮选择之后的选择输出的代表性数目的个别克隆在96孔板中生长。单链Fv片段在噬菌体粒子上展示且在结合测定中测试以确定对一组重组人类、小鼠和食蟹猴IL-33抗原的交叉反应性和特异性。如下在96孔深孔板中产生噬菌体展示的scFv上清液样品。将来自96孔主板各孔的5μl培养物转移至含有500μl 2TYAG(2TY+100μg/ml氨比西林+2%葡萄糖)培养基的格雷内尔(Greiner)深孔培养板,并且在37℃、280rpm下孵育5小时。然后以100μl/孔添加K07 M13辅助噬菌体(在2TYAG中稀释至1.5x1011pfu/ml),并且在37℃、150rpm下孵育板以允许感染。将板在3200rpm下旋转沉降10分钟且移出上清液。使细菌丸粒再悬浮于500μl/孔2TYAK(2TY+100μg/ml氨比西林+50μg/ml卡那霉素)中,并且在25℃、280rpm下孵育板过夜。在早晨,将500μl含6%(w/v)脱脂奶粉的2倍PBS添加至各孔中,并且在室温下孵育板1小时。将板然后在3200rpm下离心10分钟,并且经阻断的噬菌体展示的scFv上清液直接用于ELISA实验。
对于EC50测定,典型地在含3%(w/v)奶粉的PBS(PBS-M)中3倍稀释经纯化的IgG,得到11个浓度点。使用96孔格雷内尔聚丙烯板(格雷内尔公司(Greiner),650201)用于稀释液制备。通常,各稀释液一式两份地制备。允许IgG稀释液在PBS-M中在室温下阻断1小时,随后直接用于ELISA实验。
IL-33结合测定是基本上如下进行的基于板的ELISA。上表3显示用于这些实验的抗原。并非所有抗原用于每一实验,但在所有情况下测试人类、小鼠和食蟹猴IL-33抗原。相关对照抗原(适当时,牛胰岛素加IL-4RαHis)也用于测试非特异性结合。除牛胰岛素之外,所有抗原均是生物素化的(参见上文子部分1.1)且所有均使用细菌表达产生。产生用作对照抗原的IL-4RαHis的方法描述于WO/2010/070346中。
用PBS中的0.5μg/ml生物素化抗原涂覆链霉亲和素板(赛墨科技公司,AB-1226),并且在4℃下孵育过夜。将板用PBS洗涤3次且用300μl/孔阻断缓冲液(PBS-M)阻断1小时。将板用PBS洗涤1次且在室温下以50μl/孔添加经阻断的样品持续1小时。将板用PBS-T(PBS+1%(v/v)吐温-20)洗涤3次,并且在室温下以50μl/孔添加呈1:5000稀释度(在PBS-M中)的检测试剂[分别用于检测IgG或噬菌体展示scFv的抗人类IgG HRP(西格玛公司,A0170)或抗M13-HRP抗体(阿默舍姆公司(Amersham),27-9421-01)]持续1小时。将板用PBS-T洗涤3次且用50μl/孔TMB(西格玛公司,T0440)显影。用50μL/孔0.1MH2SO4淬灭反应,随后在EnVisionTM读板仪或相似设备上在450nm读取。
使用Prism(Graphpad)曲线拟合软件绘制IgG滴定的剂量反应曲线。若吸光度450nm>0.5且对于同一样品在对照(胰岛素和IL-4RαHis)上<0.2,则认为噬菌体展示的scFv结合IL-33抗原。
克隆、表达和纯化来自人类和小鼠的ST2 ECD
编码人类和小鼠的ST2胞外结构域(ECD)的cDNA分子是通过引物延伸PCR克隆合成,并且克隆至pDONR221(英杰公司,12536-017)中。使用人类和小鼠ST2的数据库序列(参见表4)。根据制造商的说明书使用LR网关克隆酶II将pDONR221中的ST2 ECD cDNA克隆转移至哺乳动物表达载体pDEST12.2。pDEST12.2载体已经修饰以含有人类IgG1 Fc编码区、框内具有所插入感兴趣的基因的聚组氨酸(His6)标签,并且还通过插入pCEP4载体的oriP复制起点,在转染至表达EBNA-1基因产物的细胞系(诸如HEK293-EBNA细胞)中之后允许游离型质粒复制。
表4.人类和小鼠ST2胞外结构域的氨基酸和登录号
物种 氨基酸 登录号(Swiss-Prot) EDC-Fc-His6序列
人类 1-328 Q01638 SEQ ID NO:630
小鼠 1-332 P14719 SEQ ID NO:631
使用蛋白质A亲和层析(HiTrap蛋白质A柱(GE医疗集团,17-0402-01)),随后使用尺寸排阻层析(Superdex 200柱(GE医疗集团,17-1069-01))纯化HEK293-EBNA上清液中的所表达的ST2.Fc蛋白。
未经纯化scFv抑制IL-33与ST2结合
使来自在上文所述的两轮或三轮选择之后的选择输出的代表性数目的个别克隆在96孔板中生长。scFv在细菌周质中表达(Kipriyanov等人,J Immunol Methods[免疫学方法杂志]200(1-2):69-77(1997)),并且在基于均相FRET(荧光共振能量转移)(均相时间分辨荧光,Cis生物国际公司)的IL-33:ST2结合测定中针对其抑制活性进行筛选。在此测定中,样品与人类或小鼠ST2.Fc竞争结合至His标签化的人类、食蟹猴或小鼠IL-33。
测定为在非常接近的供体与受体荧光团之间利用荧光共振能量转移的均相测定技术(Mathis等人,Clin Chem[临床化学]41(9):1391-7(1995))。该测定用于通过使感兴趣的分子之一与供体荧光团铕(Eu3+)穴状化合物直接或间接偶联和使另一感兴趣的分子与受体荧光团XL665(稳定交联的别藻蓝蛋白)偶联来测量大分子相互作用。穴状化合物分子的激发(在337nm下)导致在620nm下的荧光发射。将来自此发射的能量转移至非常接近穴状化合物的XL665,导致特定长寿命荧光(在665nm下)自XL665发射。测量供体(在620nm下)和受体(在665nm下)的特定信号,允许计算665/620nm比率,在该测定中补偿有色化合物的存在。
通过添加10微升各抗体测试样品稀释液至384孔小体积测定板(柯仕达公司(Costar),3676)中来测试未经纯化抗IL-33 scFv样品对-His标签化的IL-33结合ST2-Fc的抑制。接着,制备含有2nM人类或小鼠ST2-Fc和3nM抗人类Fc穴状化合物检测剂(Cis生物国际公司,61HFCKLB)的溶液,并且添加5微升混合物至测定板中。此后添加含有1.2nM-His标签化的人类、食蟹猴或小鼠IL-33以及20nM抗XL665检测剂(Cis生物国际公司,61FG2XLB)的5微升溶液。在杜尔贝科氏PBS(英杰公司,14190185)中含有0.8M氟化钾(BDH 103444T)和0.1%牛血清白蛋白(BSA,西格玛公司A9576)的测定缓冲液中进行所有稀释。将测定板在室温下孵育1小时,随后在4℃下孵育16小时,随后使用EnVision读板仪(珀金埃尔默公司)读取在620nm和665nm发射波长下的时间分辨荧光。
通过计算665/620nm比率,随后计算各样品的ΔF%值分析数据。665/620nm比率用于使用方程式1校正样品干扰:
然后使用方程式2计算各样品的ΔF%:
阴性对照(非特异性结合)通过用在由含有0.1%牛血清白蛋白(BSA,西格玛公司A9576)的杜尔贝科氏PBS(英杰公司,14190185)组成的稀释缓冲液中制备的150nM未标签化人类或小鼠IL-33(埃克拉公司,人类ALX522-098、小鼠ALX-522-101)置换测试样品来定义。
ΔF%值随后用于计算特异性结合%,如方程式3所述:
IC50值使用GraphPad Prism软件通过使用四参数逻辑斯谛方程式(方程式4)的曲线拟合来确定。
方程式4:
Y=底部+(顶部-底部)/(1+10^((LogIC50-X)*坡度))
X是浓度的对数。
Y是特异性结合
Y在底部开始且以S形达到顶部。
图1显示通过单点筛选中的未经纯化scFv周质提取物抑制由人类IL-33结合至人类ST2所产生的FRET信号。周质提取物的最终浓度是50%v/v。孔B04(未经纯化IL330004scFv)显示示例性‘命中’且列12含有如所指示的对照孔。
经纯化scFv抑制IL-33与ST2结合
对显示作为未经纯化周质提取物对IL-33:ST2相互作用的抑制效果或通过上述噬菌体结合实验表明令人希望的物种交叉反应性和特异性特征的单链Fv克隆进行DNA测序(Osbourn等人,Immunotechnology[免疫技术]2(3):181-96(1996);Vaughan等人,Nat Biotechnol[自然技术]14(3):309-14(1996))。独特scFv再次在细菌中表达且通过亲和层析纯化(如WO 01/66754中所述)。这些样品的效力是通过经纯化制剂的稀释系列与人类或小鼠ST2.Fc竞争结合至如上文所述的His标签化的人类、食蟹猴或小鼠IL-33来确定。选择能够比阴性对照在更大程度上抑制IL-33:ST2相互作用的经纯化的scFv制剂用于转化为IgG格式(例如,scFv抗体IL330002、IL330004、IL330020和IL330071
图2A:显示在增加IL-33 scFv抗体IL330002、IL330004、IL330020和IL330071的浓度的情况下对由人类IL-33结合至人类ST2所产生的FRET信号的抑制,其中x轴是以摩尔浓度计的抗体浓度且y轴是特异性结合%。
图2B:显示在增加IL-33 scFv抗体IL330002、IL330004、IL330020和IL330071的浓度的情况下对由食蟹猴IL-33结合至人类ST2所产生的FRET信号的抑制,其中x轴是以摩尔浓度计的抗体浓度且y轴是特异性结合%。
鉴定IL330004的配偶体抗体
通过噬菌体ELISA表明阳性结合至人类IL-33的那些克隆的scFv周质提取物是通过Octet测定(Octet RED 384系统)筛选以鉴定结合IL-33同时IL330004的抗体。在NickelNTA生物传感器上捕获纯制备样品,并且进行IL-33(200nM)随后IL330004(200nM)的依序结合。使生物传感器再生以最小化使用。将传感器在甘氨酸(10mM,pH 1.7)中再生,在缓冲液(PBS+1mg/ml(0.1%)BSA+0.02%吐温20)中中和且用NiS04(10mM)重新装载以在生物传感器表面上补充镍。鉴定IL330425和IL330428且转化为全免疫球蛋白G1(IgG1)抗体格式。
将scFv重新格式化为IgG1
将根据IL-33:ST2结合测定具有令人希望的特性的单链Fv克隆加通过结合实验具有令人希望的特异性的一组噬菌体展示scFv转化为全免疫球蛋白G1(IgG1)抗体格式,基本上如Persic等人(Gene[基因]187(1):9-18(1997))所述,其中作了以下修改。在表达载体中包括了OriP片段,以便促进在CHO瞬态细胞中使用并且允许游离型复制。将可变重链(VH)结构域克隆至含有人重链恒定结构域和调控元件的载体(pEU1.3)中以便在哺乳动物细胞中表达完整IgG1重链。相似地,将可变轻链(VL)结构域克隆进用于表达人轻链(λ)恒定结构域和调控元件的载体(pEU4.4)中,以便在哺乳动物细胞中表达完整IgG轻链。为了获得IgG,将重链和轻链IgG表达载体转染到CHO瞬态哺乳动物细胞中(Daramola等人Biotechnol Prog[生物技术进展]30(1):132-41(2014))。IgG被表达并分泌到培养基中。纯化前过滤收获物,然后使用蛋白质A层析纯化IgG。将培养物上清液装载至陶瓷蛋白质A(Ceramic Protein A)(BioSepra公司)的适当大小的柱子上,并用50mM Tris-HCl pH 8.0、250mM NaCl洗涤。将结合的IgG使用0.1M柠檬酸钠(pH 3.0)从柱上洗脱并且通过添加Tris-HCl(pH 9.0)进行中和。洗脱材料使用Nap10柱(阿默舍姆公司,#17-0854-02)缓冲交换至PBS中,并使用基于IgG的氨基酸序列的消光系数通过分光光度法来确定IgG的浓度(Mach等人,Anal Biochem.[分析生物化学]200(1):74-80(1992))。使用SEC-HPLC和SDS-PAGE对经纯化IgG进行聚集和降解纯度的分析。对应于抗体IL330002、IL330004、IL330020、IL330071、IL330125和IL330126的不同区域的SEQ ID NO显示于表5中。
表5.抗IL-33抗体序列
经纯化IgG抑制IL-33与ST2结合
在生物化学(均相时间分辨荧光,Cis生物国际公司)竞争测定(其原理描述于上文中)中评估抗IL-33抗体抑制-His标签化的IL-33结合至ST2受体的能力。
通过经纯化IgG的稀释系列与生物素化人类或小鼠ST2.Fc竞争结合至His标签化的人类、食蟹猴或小鼠IL-33来确定经纯化IgG制剂的活性。
通过添加10微升各抗体测试样品稀释液至384孔小体积测定板(柯仕达公司3676)中来测试经纯化或未经纯化抗IL-33抗体样品对-His标签化的IL-33结合ST2-Fc的抑制。接着,制备含有4nM生物素化人类或小鼠ST2-Fc和20nM链霉亲和素XL665检测剂(Cis生物国际公司,611SAXLB)的溶液,并且添加5微升混合物至测定板中。此后添加含有1.2nM-His标签化的人类、食蟹猴或小鼠IL-33以及1.72nM抗穴状化合物检测剂(Cis生物国际公司,61FG2KLB)的5微升溶液。在由含有0.8M氟化钾(BDH 103444T)和0.1%BSA(西格玛公司A9576)的杜尔贝科氏PBS(英杰公司,14190185)组成的测定缓冲液中进行所有稀释。将测定板在室温下孵育2小时,随后在4℃下孵育16小时,随后使用EnVision读板仪(珀金埃尔默公司)读取在620nm和665nm发射波长下的时间分辨荧光。
使用方程式1至3如上文所述分析数据。
阴性对照(非特异性结合)通过用在由含有0.1%牛血清白蛋白(BSA,西格玛公司A9576)的杜尔贝科氏PBS(英杰公司,14190185)组成的稀释缓冲液中制备的100nM非生物素化ST2置换测试样品来定义。
经纯化IgG抗体IL330002、IL330004、IL330020、IL330071、IL330125和IL330126的代表性效力(IC50)显示于表6中。
表6:IL-33-His/ST2-Fc竞争测定中的IC50结果
显示所有经纯化IgG制剂(即,IL330002、IL330004、IL330020、IL330071、IL330125和IL330126)均抑制人类IL-33:人类ST2相互作用。图3A:显示在增加IL-33IgG1抗体IL330002、IL330004、IL330020、IL330071、IL330125和IL330126的浓度的情况下对由人类IL-33结合至人类ST2所产生的FRET信号的抑制,其中x轴是以摩尔浓度计的抗体浓度且y轴是特异性结合%。
还显示IL330002、IL330004和IL330071 IgG制剂抑制食蟹猴IL-33:人类ST2相互作用。图3B:显示在增加IL-33 IgG1抗体IL330002、IL330004、IL330020和IL330071、IL330125和IL330126的浓度的情况下对由食蟹猴IL-33结合至人类ST2所产生的FRET信号的抑制,其中x轴是以摩尔浓度计的抗体浓度且y轴是特异性结合%。在小鼠IL-33-His+小鼠ST2-Fc竞争测定中未检测到受上述测试抗体中任一种的抑制。
IgG在海拉(Hela)-ST2报告细胞中抑制NFκB信号传导
使用报告基因测定,使用与ST2和NFκB反应荧光素酶报告基因构建体共转染的海拉细胞评估抗IL-33抗体IL330002、IL330004、IL330020、IL330071、IL330125和IL330126对IL-33诱导的NFκB信号传导的抑制。在测试抗体存在或不存在下使细胞暴露于IL-33,并且通过测量随后产生的荧光素酶的活性来检测NFκB信号传导。含有荧光素酶报告基因构建体的海拉细胞来源于Panomics公司。将人类ST2序列克隆至来自系统生物科学公司(SystemBiosciences)的慢病毒载体中。慢病毒粒子是在Ad293细胞(斯特拉塔根公司(Stratagene))中产生且用于转导海拉-荧光素酶报告细胞。
在报告基因测定中,ST2受体经IL-33刺激导致NFκB信号传导途径的激活,并且经由NFκB启动子引发荧光素酶表达。在细胞裂解之后,添加荧光素酶底物,其在荧光素酶存在下经历化学反应,产生发光产物。自细胞裂解物检测的光的量是使用Envision读板仪(珀金埃尔默公司)定量且用作IL-33介导的NFκB信号传导的直接度量。
将经转染海拉细胞维持在含有潮霉素B的培养基中以维持稳定受体表达。在测试抗体存在或不存在下使细胞暴露于IL-33,并且通过测量随后产生的荧光素酶的活性来检测NFκB信号传导。
将经转染海拉细胞在含有10%v/v胎牛血清(热灭活)和100微克/mL潮霉素B(英杰公司10687-010)的DMEM培养基(英杰公司,41966)中以1x104个细胞/孔(50微升/孔)接种至384孔黑色壁的经聚-D-赖氨酸涂覆的板(格雷内尔公司,781946)中。将板在37摄氏度、5%CO2下孵育18-24小时,并且然后自各孔轻轻地抽吸细胞培养基,随后添加测试样品。
样品的连续稀释液是通过在含有10%v/vFBS(热灭活)和100微克/mL潮霉素B(英杰公司,10687-010)的DMEM培养基(英杰公司41966)中稀释来制备。一式两份地添加十五微升测试样品至细胞中。在含有10%v/vFBS(热灭活)和100微克/mL潮霉素B(英杰公司10687-010)的DMEM培养基(英杰公司,41966)中将IL-33-His稀释至0.6nM,并且添加15微升至细胞和测试样品中。此浓度表示报告细胞响应于IL-33-His的EC50值(几何平均值0.32nM,95%置信区间0.25-0.40nM,n=5)。通过添加含有10%v/vFBS(热灭活)和100微克/mL潮霉素B(英杰公司,10687-010)的30微升DMEM培养基(英杰公司,41966)来定义背景反应。将板在37摄氏度、5%CO2下孵育4小时且在室温下孵育1小时。
为测量响应于NFκB信号传导的荧光素酶产生,添加30微升Bright裂解缓冲液以及荧光素酶底物(普洛麦格公司,E2620)至板中且在室温下孵育5分钟。使用EnVision读板仪(珀金埃尔默公司)读取因底物被荧光素酶氧化而产生的荧光。
随后使用相对光单位(RLU)值计算特异性反应%,如方程式5中所述:
IC50值使用GraphPad Prism软件通过使用四参数逻辑斯谛方程式(方程式4)的曲线拟合来确定:
显示抗体IL330002、IL330004、IL330020、IL330071、IL330125和IL330126的经纯化IgG制剂抑制NFκB驱动的荧光素酶活性,其中代表性效力(IC50)显示于表7中。
表7:人类ST2经转染海拉NFkB报告基因测定中的IC50结果
图4A显示在荧光素酶NFκB报告基因测定中IL-33抗体IL330002、IL330004、IL330020、IL330071、IL330125和IL330126相比于阴性对照IgG对NFκB活性的抑制。
IgG抑制在Huvec中的NFκB信号传导
由通过免疫荧光染色检测的p65/RelA NFkB亚单位的核易位评估人脐静脉内皮细胞(Huvec)中响应于IL-33的NFκB信号传导。在ArrayScan VTi HCS读取器(Cellomics公司)上进行核染色强度的成像和定量。
Huvec获自康伯司公司(Cambrex)且根据所推荐方案维持于完全EBM-2培养基(龙沙集团(Lonza))中。Huvec收获自含急性酶(accutase)(PAA,#L11-007)的烧瓶,并且在培养基[EBM-2(龙沙集团,#CC-3156)与EGM-2 SingleQuot Kit Suppl.&Growth Factors(龙沙集团,#CC-4176)]中以1x104个/100μL/孔接种至96孔黑色壁、透明平底的经胶原蛋白I涂覆的板(格雷内尔公司)中,并且在37℃、5%CO2下孵育18-24小时。此后,抽吸培养基,使细胞单层完整,并且用如下文所论述的测定测试样品置换。
在96孔U型底聚丙烯板(格雷内尔公司,650201)中的完全培养基中将经纯化IgG的测试样品(一式两份地)稀释至所希望的浓度。在与适当测试抗体混合的完全培养基中制备IL-33(艾迪珀公司),得到总体积为120μl/孔的最终1ng/mLIL-33浓度。将所有样品在37℃下孵育30min,随后将100μlIL-33/抗体混合物转移至测定板。在37℃下孵育30分钟后,抽吸培养基,使细胞单层完整,并且用已预温热至37℃的3.7%甲醛溶液使细胞固定15分钟。抽吸固定剂且用100μL/孔PBS洗涤细胞两次。
根据制造商的说明书使用Cellomics NFκB测定试剂盒(赛墨科技公司,#8400492)染色细胞的NFκB。简言之,用体积为50μL的一级抗体溶液使细胞在室温下渗透15分钟,阻断15分钟且染色1小时。将板在阻断缓冲液中洗涤2次且在室温下用二级抗体溶液染色1小时,二级抗体溶液包括赫斯特(Hoechst)核染色剂以及二级抗体。将板在PBS中洗涤2次。将细胞储存于最终体积为150μL/孔的PBS中且用黑色遮光密封件(珀金埃尔默公司,#6005189)覆盖,随后在ArrayScan VTiHCS读取器上读取。使用适合算法计算核染色强度。使用GraphpadPrism软件分析数据。通过使用四参数逻辑斯谛方程式(方程式4)的曲线拟合确定IC50值。
图4B显示在Huvec NFκB易位测定中IL-33抗体IL330004相比于抗NIP IgG1阴性对照抗体NIP228对NFκB活性的抑制。p65/RelA NFκB的核易位受抗体IL330004抑制。当作为经纯化IgG测试时,抗体IL330004的IC50经计算为12nM。
使用BIAcore计算IL-33抗体的结合亲和力
使用BIAcore 2000生物传感器(BIAcore AB公司),通过表面等离子体共振确定示例性结合成员的经纯化IgG样品与人类和食蟹猴IL-33的结合亲和力,基本上如Karlsson等人,J Immunol Methods[免疫学方法杂志]145(1-2):229-40(1991)所述。简言之,根据制造商的说明书使用标准胺偶联试剂(BIAcore公司)使蛋白质G'(西格玛奥德里奇公司,P4689)与CM5传感器芯片表面共价偶联。蛋白质G'表面用于经由Fc结构域捕获经纯化抗IL-33抗体,提供每个周期大约290RU的表面密度。使在HBS-EP缓冲液(BIAcore AB公司)中制备的在600nM与18.75nM之间的一系列浓度的人类或食蟹猴IL-33通过传感器芯片表面。在每次抗体注射之间使用pH 1.7和pH 1.5的两个10mM甘氨酸洗液使表面再生。所得传感图使用BIA评估3.1软件评估且拟合至1:1朗格缪尔(Langmuir)结合模型,提供相对结合数据。结合至人类或食蟹猴IL-33的抗体IL330002和IL330004的结合结果(KD、Ka和Kd)显示于表8中。
表8:示例性结合成员的BIAcore结合亲和力
IL-33抗体与胞内IL-33结合
上文所述的选择和活性研究使用重组或商业来源的成熟IL-33(氨基酸112-270)。研究表明全长IL-33也可能是有活性的(Cayrol等人,Proc Natl Acad Sci U S A[美国国家科学院院刊]106(22):9021-6(2009);Hayakawa等人,Biochem Biophys Res Commun[生物化学和生物物理学研究通讯]387(1):218-22(2009);Talabot-Ayer等人,J Biol Chem.[生物化学杂志]284(29):19420-6(2009))。通过原代支气管平滑肌细胞(BSMC)的免疫荧光染色确定抗体与全长(“天然”)IL-33的结合。
BSMC获自康伯司公司且根据制造商的说明书维持于完全平滑肌生长培养基(龙沙集团)中。细胞收获自含急性酶(PAA #L11-007)的烧瓶,并且在培养基[SMBM(龙沙集团#CC-3181)与SMGM SingleQuot Kit Suppl.&Growth Factors(龙沙集团#CC-4149)]中以2x104个/100μL/孔接种至96孔黑色壁、透明平底的经胶原蛋白I涂覆的板(格雷内尔公司)中,并且在37℃、5%CO2下孵育18-24小时。此后,抽吸培养基,使细胞单层完整,并且用已预温热至37℃的3.7%甲醛溶液使细胞固定15分钟。抽吸固定剂且用100μL/孔PBS洗涤细胞两次。使细胞在室温下使用渗透缓冲液(赛墨科技公司,#8400492)渗透15分钟,在PBS中洗涤2次且在室温下用100μL/孔PBS/1%BSA(西格玛公司,#A9576)阻断30-60分钟。将阻断缓冲液移去,并且通过已在阻断缓冲液中稀释的抗IL-33抗体或适合的同种型对照抗体在室温下滴定1小时来置换。
将板在PBS中洗涤2次且在室温下用二级抗体溶液染色1小时,二级抗体溶液包括以1:10000稀释的赫斯特染料(10mg/mL;赛墨科技公司)以及以1:1000稀释的二级抗体(抗人类IgG(H+L),Alexa488轭合物2mg/mL;英杰公司,#A11013)。将板在PBS中洗涤三次。将细胞储存于最终体积为150μL/孔的PBS中且用黑色遮光密封件(珀金埃尔默公司,#6005189)覆盖,随后在ArrayScan VTi HCS读取器上成像。
用商业多克隆抗体(R&D系统公司,#AF3625)确认经培养的BSMC的IL-33表达,用抗山羊IgG(H+L),Alexa488轭合物2mg/mL;英杰公司,#A11055)检测。图5显示IL-33抗体IL330004(右图)相比于CAT-002阴性对照(左图),通过免疫荧光染色检测支气管平滑肌细胞中的内源性IL-33。抗体IL330004显示清楚的BSMC核染色,与全长IL-33的预期定位一致且用商业pAb检测。
实例2分离和鉴定抗IL-33scFv抗
通过噬菌体ELISA鉴定IL-33特异性结合子
试剂和选择描述于实例1中。单链Fv片段展示于噬菌体粒子上且在单点ELISA筛选中经测试为未纯化制剂。若吸光度450nm>0.5且对于同一样品在对照(胰岛素和IL-4RαHis)上<0.1-0.2,则认为噬菌体展示的scFv结合IL-33抗原。
图6显示针对人类IL-33、食蟹猴IL-33和胰岛素筛选的单板的数据。一个特定人类/食蟹猴交叉反应IL-33结合子显示于孔C4中,并且孔A12和B12含有对照IL-33结合克隆。
通过Axxora IL33305B竞争鉴定IL-33结合子
Axxora IL33305B竞争测定为利用荧光微量测定技术(FMAT)的均相测定。该测定评估在384孔格式中在粗scFv上清液样品或经纯化scFv和IgG存在下Axxora IL33305B mAb(埃克拉公司/艾迪珀公司,#AG-20A-0041-C050)与重组生物素化人类IL-33His的结合的抑制。
scFv在细菌周质中表达,并且在针对已知生物活性IL33305B mAb的FMAT表位竞争测定中针对其抑制活性进行筛选。使生物素化IL-33固定于经链霉亲和素涂覆的珠粒(Spherotec公司,#SVP-60-5)上,并且使用山羊抗小鼠-647标记的抗体(分子探针公司(Molecular Probes)A21236)检测与Axxora IL33305B Ab的相互作用。FMAT系统是巨大共焦成像器,其测量与珠粒相关的红色荧光。
在应用生物系统公司细胞检测系统8200读取器上读取板。氦氖激发激光在孔底部的100μm深度内聚焦,扫描1mm2区域。珠粒沉降在孔底部,并且在633nm下激光激发之后具有结合荧光团的那些珠粒(其中荧光团的局部浓度与未结合荧光团相比相对较高)在使用PMT1测量的650-685nm下发射信号。溶液中的未结合荧光团在激发深度之外或局部浓度相对较低,并且因此不发射显著信号。有效阻断IL33305B与IL-33结合的scFv或IgG样品将因此使孔底部的珠粒:IL-33:IL33305B:抗小鼠-647标记的抗体复合物的量减少,导致所测量的荧光减少。
对于测定设置,制备以下各项:
(1)IL33305B与抗小鼠AF647混合物,在测定缓冲液[含有0.1%BSA(西格玛公司,#A9576)和0.1%吐温-20(西格玛公司,P2287)的PBS(Gibco公司,14190-094)]中将IL33305B稀释至2.25nM且与在测定缓冲液中稀释至2μg/ml(最终400ng/ml)的抗小鼠AF647混合。
(2)IL-33与珠粒混合物,将2.5nM生物素化人类IL-33His添加至含0.0095%w/v链霉亲和素珠粒的测定缓冲液中且在室温下在旋转下孵育1小时,在使用之前,使这些粒子在2000rpm下旋转沉降15分钟且再悬浮于原始体积测定缓冲液中。
(3)样品制剂,在96深孔板中产生粗scFv上清液样品。将来自96孔主板各孔的5μl培养物转移至含有900μl2TY+100μg/ml氨比西林+0.1%葡萄糖培养基的格雷内尔深孔板,并且在37℃、280rpm下孵育5小时。然后以100ul/孔添加TY中的10mMIPTG,并且将板在30℃、280rpm下孵育过夜。第二天早晨,使板在3200rpm下旋转沉降15分钟。对于高通量筛选,将来自深孔板的scFv上清液直接转移至测定板以达到20%的最终浓度。
对于IC50测定,典型地一式两份地在测定缓冲液中3倍稀释经纯化scFv或IgG,得到11个浓度点。使用96孔格雷内尔聚丙烯(格雷内尔公司,650201)板用于稀释液制备。
向384孔透明底部非结合表面黑色板(柯仕达公司,#3655)的列1-22中添加以下各项:10μl样品、20μlIL33305B/抗小鼠AF647混合物和20μl IL-33/珠粒混合物。在所有情况下,总孔体积是40μl。典型地在这些实验中使用的对照包括:添加IL-33/珠粒混合物加抗小鼠AF647(非特异性结合);IL330305B/抗小鼠AF647混合物加IL-33/珠粒混合物(总结合)。密封板且在室温下在暗处孵育四个小时,并且然后在应用生物系统公司细胞检测系统8200读取器上读取。用速度算法分析数据,选通设置为颜色比<0.4,尺寸<15且分钟计数20。来自粗scFv上清液样品的命中被定义为与总结合对照孔相比显示50%或更大信号抑制。使用Prism(Graphpad)曲线拟合软件绘制经纯化scFv和IgG滴定的剂量反应曲线。
将scFv重新格式化为IgG1
对如通过噬菌体展示的scFv结合实验所测定展示令人希望的物种交叉反应性和特异性特征或在表位竞争测定中展示针对Axxora I133305B的抑制效果(如上文所述)的scFv进行DNA测序(Osbourn等人,Immunotechnology[免疫技术]2(3):181-96(1996);Vaughan等人,Nat.Biotechnol.[自然生物技术]14(3):309-14(1996))。首先,将具有令人希望特性的scFv转化为全免疫球蛋白G1(IgG1)或无效应同种型IgG1 TM(并入突变L234F、L235E和P331S的IgG1 Fc序列),如实例1中所述的抗体格式。对应于抗体IL330065、IL330099、IL330101、IL330107、IL33149和IL330180的不同区域的SEQ ID NO显示于表9中。
表9.抗IL-33抗体序列
IgG的结合测定
使用基于板的ELISA确定抗IL-33抗体的物种交叉反应性。用PBS中的0.5μg/ml生物素化抗原涂覆链霉亲和素板(赛墨科技公司,AB-1226)。用抗人类IgG HRP(西格玛公司,A0170)检测经纯化IgG制剂的结合。结合曲线的EC50数据显示于表10中。
表10:IL-33抗体与His标签化人类、食蟹猴或小鼠IL-33的结合
在噬菌体展示的scFv格式中确定IL330180结合至人类IL-33而非食蟹猴或小鼠IL-33。
抗IL-33抗体抑制IL-33功能反应
IgG抑制TF-1细胞增殖
使用细胞生存力测定评估抗IL-33抗体对IL-33诱导的TF-1细胞增殖/存活率的抑制。CellTiter-发光细胞生存力测定(普洛麦格公司)是基于所存在的ATP的定量(其指示代谢活性细胞的存在)测定培养物中活细胞数量的均相法。在测试抗体存在或不存在下使细胞暴露于IL-33。在用IL-33刺激72小时之后通过CellTiter-Glo测量细胞生存力。
具体而言,使用增殖测定评估抗IL-33抗体对IL-33诱导的TF-1细胞增殖的抑制。TF-1细胞是来自R&D系统公司的礼物且根据制造商的说明书维持。测定培养基包含含有5%胎牛血清(热灭活,γ照射)、1%丙酮酸钠(西格玛公司,S8636)、1%-2%青霉素/链霉素(英杰公司,15140-122)的RPMI-1640与GLUTAMAX I(英杰公司,61870)。在各测定之前,将TF-1细胞通过在300xg下离心5分钟而丸化,通过抽吸移出培养基,并且然后使细胞再悬浮于测定培养基中。将此过程重复两次,将细胞以2x105个细胞/ml的最终浓度再悬浮于测定培养基中。在96孔U型底聚丙烯板(格雷内尔公司,650201)中的测定培养基中将IgG测试溶液(一式两份地)滴定至所希望的浓度范围,并且将50μL转移至96孔平底组织培养物处理板(柯仕达公司,#3598)。添加重组人类IL-33(亚历克西斯公司,ALX-522-098-3010)至适当测试抗体滴定液中,得到100μL/孔的总体积。然后添加100μl细胞悬浮液至100μl IL-33或IL-33和抗体混合物中,得到200μL/孔的总测定体积和20,000个/孔的总细胞数。在该测定中使用100ng/mL IL-33的最终测定浓度,选择该浓度作为提供大约80%最大增殖反应的剂量。将板在37℃和5%CO2下孵育72小时。小心地自测定板移出100μL上清液。每孔添加根据制造商的说明书复原的100μL CellTiter-Glo(普洛麦格公司,G7571)。将板在板振荡器上在500rpm下振荡5分钟,并且在EnVision读板仪(珀金埃尔默公司)上读取荧光。使用GraphpadPrism软件分析数据。通过使用三参数或四参数逻辑斯谛方程式的曲线拟合确定IC50值。
对于达到完整抑制曲线的那些抗体,计算IC50值且概述于下表11中。经纯化IgG制剂能够抑制响应于IL-33的TF-1增殖。图7A显示IL330065和IL330101(相比于对照mAb和hST2/Fc)对于TF-1增殖测定的抑制%,其中x轴是以摩尔浓度计的抗体浓度且y轴是最大反应百分比。
IL-33抗体抑制HuvecIL-6释放
使用细胞因子释放测定评估抗IL-33抗体对IL-33诱导的人脐静脉内皮细胞(Huvec)IL-6产生的抑制。在测试抗体存在或不存在下使细胞暴露于IL-33。
Huvec获自康伯司公司且根据制造商的方案维持于完全EBM-2培养基(龙沙集团)中。细胞收获自含急性酶(PAA,#L11-007)的烧瓶,并且在培养基(EBM-2(龙沙集团,#CC-3156)与EGM-2 SingleQuot Kit Suppl.&Growth Factors(龙沙集团,#CC-4176))中以1x104个/100μL/孔接种至96孔平底组织培养物处理板(柯仕达公司,#3598)中,并且在37℃、5%CO2下孵育18-24小时。此后,抽吸培养基,使细胞单层完整,并且用如下文所论述的测定测试样品置换。
在96孔U型底聚丙烯板(格雷内尔公司,650201)中的完全培养基中将经纯化IgG的测试溶液(一式两份地)稀释至所希望的浓度。在与适当测试抗体混合的完全培养基中制备IL-33(艾迪珀公司),得到30ng/mL的最终IL-33浓度。将所有样品在室温下孵育30分钟,随后将120μlIL-33/抗体混合物转移至测定板。在18-24小时孵育之后,通过适于铕读取的ELISA(R&D系统公司,DY206)在细胞上清液中测量IL-6。将黑色Fluro-Nunc Maxisorp板(VWR,#437111)用50μL捕获抗体涂覆,使用自动板洗涤器(伯腾公司(Biotek))用PBS-吐温(0.01%)洗涤三次,并且在室温下用250μL/孔PBS/1%BSA(西格玛公司,#A9576)阻断1-2小时。将板如上所述洗涤,并且在室温下与50μL肥大细胞测定上清液一起孵育1-2小时。在用PBS-吐温洗涤3次之后,根据制造商的说明书使板与检测抗体(50uL/孔)一起孵育。将ELISA板在PBS-吐温中洗涤三次,并且在测定缓冲液(珀金埃尔默公司,4002-0010)中以1:1000稀释链霉亲和素-铕(珀金埃尔默公司,1244-360)且在室温下以50μL/孔添加持续45-60分钟。将板然后在DELFIA洗涤缓冲液中洗涤7次,随后添加50μl/孔增强溶液(珀金埃尔默公司,4001-0010)且使用时间分辨荧光测定法(激发340nM,发射615nM)分析。使用Graphpad Prism软件分析数据。通过使用三参数或四参数逻辑斯谛方程式的曲线拟合确定IC50值。对于达到完整抑制曲线的那些抗体,计算IC50值且概述于下表11中。与对照抗体相比,抗体IL330065、IL330099、IL330101、IL330107、IL330149和IL330180的经纯化IgG制剂(IgG1或IgG1-TM)抑制IL-6产生。示例性结合成员的效力基本上不受IgG1-TM Fc序列突变(L234F、L235E和P331S)的存在的影响,并且所示的数据是组合两种格式的信息。图7B显示IL330065和IL330101的最大IL-6释放%(相比于人类ST2-Fc、抗IL33 pAb AF3625(R&D系统公司)和对照mAb),其中x轴是以摩尔浓度计的抗体浓度且y轴是最大反应百分比。
抑制人类肥大细胞细胞因子释放
使用细胞因子释放测定评估抗IL-33抗体对IL-33诱导的人类肥大细胞IL-6产生的抑制。除IL-6之外,使用替代duoset ELISA或Mesoscale Discovery多重分析测量细胞上清液中的其他细胞因子(IL-5、IL-6、IL-8、IL-10、IL-13、GM-CSF和TNFα)。
人类肥大细胞是通过脐带血CD133+祖细胞(龙沙集团,#2C-108)于体外分化产生,基本上如Andersen等人(J Immunol Methods[免疫学方法杂志]336:166-174(2008))中所述。将祖细胞根据制造商的说明书解冻且在补充有1%青霉素/链霉素(英杰公司,15140-122)和生长因子:100ng/mL干细胞因子(派普泰克公司,#AF-300-07)和50ng/mL IL-6(派普泰克公司,#AF-200-6)的不含血清的增殖培养基(StemSpan公司,#09650)中体外培养8周。另外,在前三周期间在培养基中包括1ng/mL IL-3(R&D系统公司,#203-IL)。细胞在期间维持<5x105个/mL。
将肥大细胞在测定培养基(StemSpan公司,#09650;1%青霉素/链霉素(英杰公司,15140-122)和100ng/mL干细胞因子(派普泰克公司,#AF-300-07))中培养过夜,随后在测试抗体存在或不存在下暴露于IL-33。
对于细胞因子释放测定,移出细胞,丸化(150g,10分钟)且再悬浮于测定培养基(StemSpan公司,#09650;1%青霉素/链霉素(英杰公司,15140-122)和100ng/mL干细胞因子(派普泰克公司#AF-300-07))中。使细胞返回至烧瓶且在测定设置之前培养18-24小时。对于样品评估,在96孔U型底聚丙烯板(格雷内尔公司,650201)中的测定培养基中滴定IgG的测试溶液(一式两份地)至所希望的浓度范围,并且将50μL测试溶液转移至96孔平底组织培养物处理板(柯仕达公司,#3598)。将已在测定培养基中稀释至90ng/mL的50μL重组人类IL-33(艾迪珀公司,#522-098-3010)添加至适当测试抗体滴定液中,得到100μL/孔的总体积。然后添加50μl细胞悬浮液(1.5x105)至100μl IL-33或IL-33与抗体混合物中,得到150μL/孔的总测定体积和5x104个/孔的总细胞数。在该测定中使用30ng/mL IL-33的最终测定浓度,选择该浓度作为提供大约50%-80%最大细胞因子反应的剂量。将板在37℃和5%CO2下孵育18-24小时。
通过适于铕读取的ELISA(R&D系统公司,DY206)在细胞上清液中测量IL-6。将黑色Fluro-Nunc Maxisorp板(VWR,#437111)用50μL捕获抗体涂覆,使用自动板洗涤器(伯腾公司(Biotek))用PBS-吐温(0.01%)洗涤三次,并且在室温下用250μL/孔PBS/1%BSA(西格玛公司,#A9576)阻断1-2小时。将板如上所述洗涤,并且在室温下与50μL肥大细胞测定上清液一起孵育1-2小时。在用PBS-吐温洗涤3次之后,根据制造商的说明书使板与检测抗体(50μL/孔)一起孵育。将ELISA板在PBS-吐温中洗涤三次,并且在DELFIA测定缓冲液(珀金埃尔默公司,4002-0010)中以1:1000稀释链霉亲和素-铕(珀金埃尔默公司,1244-360)且在室温下以50μL/孔添加持续45-60分钟。将板然后在DELFIA洗涤缓冲液中洗涤7次,随后添加50μl/孔增强溶液(珀金埃尔默公司,4001-0010)且使用时间分辨荧光测定法(激发340nM,发射615nM)分析。使用Graphpad Prism软件分析数据。通过使用三参数或四参数逻辑斯谛方程式的曲线拟合确定IC50值。
图8A显示通过增加抗体IL330065、IL330099、IL330101、IL330107、IL33149和IL330180的浓度使IL-6产生减少,其中x轴是以摩尔浓度计的抗体浓度且y轴是最大反应%。与对照抗体相比,测试抗体的经纯化IgG制剂能够抑制IL-6活性。示例性结合成员的效力基本上不受IgG1-TM Fc序列突变(L234F、L235E和P331S)的存在的影响,并且数据组合两种格式的信息。TF-1增殖测定、HUVECIL-6产生和肥大细胞IL-6产生的IC50结果显示于表11中。
表11.自初试人类scFv噬菌体展示文库鉴定的克隆的示例性效力
根据制造商的说明书使用Meso-Scale Diagnostics Demonstration 10-plex人类细胞因子测定(#K15002B-1)检测细胞上清液中的另外的细胞因子(IL-5、IL-6、IL-8、IL-10、IL-13和GM-CSF)。使用与上文所述的IL-6ELISA相似的方案通过适于铕读取的ELISA在细胞上清液中测量细胞因子。
显示肥大细胞在用IL-33(Meso-Scale Diagnostics Demonstration 10-plex人类细胞因子测定#K15002B-1;R&D系统公司,#DY213)刺激之后产生一系列细胞因子。图8B-F分别显示IL-33驱动的GM-CSF、IL10、IL-8、IL-13和IL-5产生的抑制。这些结果显示抗体IL330065、IL330101、IL330107和IL330149能够抑制IL-33驱动的所测量的所有细胞因子的产生。
天然全长IL-33的结合和中和
上文所述的选择和活性研究使用重组的内部或商业来源的成熟IL-33(氨基酸112-270)。全长IL-33也可能是有活性的(Cayrol等人,Proc Natl Acad Sci U S A[美国国家科学院院刊]106(22):9021-6(2009);Hayakawa等人,Biochem Biophys Res Commun[生物化学和生物物理学研究通讯]387(1):218-22(2009);Talabot-Ayer等人,JBiolChem.[生物化学杂志]284(29):19420-6(2009))。为评估抗体与全长IL-33的结合,克隆全长IL-33且在HEK293-EBNA细胞中表达。如下文所述,显示所选抗体结合至全长IL-33,如通过蛋白质印迹法所确定。
全长人类IL-33的克隆和表达
编码人类全长(FL)IL-33的cDNA分子(Swiss Prot登录号O95760,氨基酸1-270)是通过引物延伸PCR克隆合成,并且克隆至pDONR221(英杰公司,12536-017)中且根据制造商的说明书(英杰公司,12538-120)使用LR网关克隆酶II转移至哺乳动物表达载体pDEST12.2(英杰公司)。pDEST12.2载体已经修饰以含有pCEP4载体(英杰公司)的oriP复制起点,在转染至表达EBNA-1基因产物的细胞系(诸如HEK293-EBNA细胞)中之后允许游离型质粒复制。HEK293-EBNA细胞经脂染胺2000(英杰公司,11668-019)转染。在蛋白酶抑制剂(罗氏公司(Roche),05892791001)存在下使用超声处理使表达FL HuIL-33的细胞(和经模拟物转染的对照)裂解。
表达全长人类IL-33的细胞裂解物的蛋白质印迹分析
使来自细胞裂解物的蛋白质变性且用SDS样品缓冲液和DTT还原,随后通过SDS-PAGE电泳分离且转移至硝化纤维素膜。将膜用PBS-T中的5%脱脂奶粉阻断1h,与一级抗体(0.5μg/mL)一起孵育1h,在PBS-T中洗涤三次,然后与HRP轭合二级抗体(1/10,000山羊抗人类IgG稀释液(西格玛公司,A0170))一起孵育1h且在PBS-T中洗涤三次。用Amersham ECL加检测试剂(GE医疗集团,RPN2132)检测HRP。通过比较迁移与Magic Mark XP(英杰公司,LC5602)的迁移来估算尺寸。图9通过蛋白质印迹法显示IL-33抗体(IL330065、IL330101、IL330107和IL330149)与全长人类IL-33的结合。
肥大细胞细胞因子的中和对全长IL-33细胞裂解物起反应
在经急性酶(PAA,#L11-007)转染之后24小时收获表达全长(FL)HuIL-33的HEK293-EBNA细胞(和经模拟物转染的对照)。将细胞用PBS稀释至1x107个/mL,并且使用组织均质器均质化30秒。通过离心移除细胞碎片。将肥大细胞用不同浓度的细胞裂解物刺激。仅在经全长IL-33转染的细胞裂解物而非经模拟物转染的细胞裂解物的情况下观察到细胞因子产生刺激。选择刺激次最大细胞因子释放的裂解物浓度(大约EC50)用于抗体中和研究。
对于细胞因子释放测定,将肥大细胞在测定培养基(StemSpan公司,#09650;1%青霉素/链霉素(英杰公司,15140-122)和100ng/mL干细胞因子(派普泰克公司,#AF-300-07))中培养过夜,随后在测试抗体存在或不存在下暴露于FL HuIL-33。在18-24小时之后通过测定上清液的ELISA检测IL-6和IL-13产生。上文描述该方案的详细描述(实例2-0007)。
图10显示抗IL-33抗体IL330065和IL330101对由经全长IL-33转染的细胞的细胞裂解物刺激的肥大细胞IL-6和IL-13产生的影响。经纯化IgG制剂能够抑制由全长IL-33细胞裂解物诱导的IL-6(图10A)和IL-13(图10B)产生。
IL-33抗体的非竞争作用模式
经纯化IgG抑制IL-33与ST2结合
抗IL-33抗体抑制-His标签化的IL-33结合至ST2受体的能力是在生物化学(均相时间分辨荧光,Cis生物国际公司)竞争测定中评估,其完整方法描述于实例1中。
图11A显示在增加抗体IL330065、IL330099、IL330101、IL330107、IL33149和IL330180的浓度的情况下受体-配体竞争测定的特异性结合结果。这些结果显示抗体IL330065、IL330099、IL330101、IL330107、IL33149和IL330180不是IL-33:ST2相互作用的竞争抑制剂。
IgG抑制在Huvec中的NFkB信号传导
如实例1中所述由通过免疫荧光染色检测的p65/RelA NFkB亚单位的核易位评估Huvec中响应于IL-33的NFkB信号传导。
图11B显示在增加抗体IL330065、IL330099、IL330101、IL330107和IL330149的浓度的情况下的Huvec NFkB易位。这些结果显示IL330065、IL330099、IL330101、IL330107和IL330149在IL-33刺激的Huvec中在刺激之后30分钟不抑制p65/RelA NFkB的核易位。这些结果与抗体IL330065、IL330099、IL330101、IL330107、IL33149和IL330180不能抑制IL-33结合至ST2一致。
表位竞争测定中IL-33抗体的表位分组
在生物化学(均相时间分辨荧光,Cis生物国际公司)表位竞争测定中评估抗体与mAb IL330101或mAb IL330180竞争结合至生物素化人类IL-33的能力。
下文所述的表位竞争测定用于测量IgG格式的前导抗体与生物素化IL-33的结合。识别与前导抗体相似的表位的测试scFv样品将与该前导抗体竞争结合至IL-33,导致测定信号减少。
通过添加5微升各抗体测试样品稀释液至384孔小体积测定板(柯仕达公司,3673)中来测试经纯化抗IL-33 scFv抗体样品对生物素化人类IL-33结合前导抗体的抑制。接着,制备含有8nM IL330180 IgG1或12nM IL330101 IgG1和40nM抗人类Fc检测剂(Cis生物国际公司,61HFXLB)的溶液,并且添加2.5微升至测定板中。此后添加含有4nM(对于IL330180表位竞争测定)或18nM(对于IL330101表位竞争测定)生物素化人类IL-33(埃克拉公司,AG-40B-0038;生物素化)和4.65nM链霉亲和素穴状化合物检测剂(Cis生物国际公司,610SAKLB)的2.5微升溶液。在由含有0.8M氟化钾(BDH,103444T)和0.1%牛血清白蛋白(BSA,西格玛公司A9576)的杜尔贝科氏PBS(英杰公司,14190185)组成的测定缓冲液中进行所有稀释。将测定板在室温下孵育2小时,随后在4℃下孵育16小时,随后使用EnVision读板仪(珀金埃尔默公司)读取在620nm和665nm发射波长下的时间分辨荧光。使用如先前所述的方程式1至3分析数据。通过仅用链霉亲和素穴状化合物检测剂置换生物素化IL-33/链霉亲和素穴状化合物组合来定义阴性对照(非特异性结合)。
IL330101和IL330180表位竞争测定的结果分别显示于图8A和8B中。图12A显示IL330101 scFv、IL330107 scFv、IL330149 scFv、IL330065 scFv、不相关scFv和IL330180scFv与mAb IL330101结合至生物素化人类IL-33的竞争性结合。这些结果显示IL330101scFv、IL330107 scFv、IL330149 scFv竞争性地抑制IL330101结合至生物素化人类IL-33。
图12B显示在生物化学中评估的IL330180、IL330101、IL330149、IL330065和不相关scFv与mAb IL330180结合至生物素化人类IL-33的竞争性结合。这些结果显示IL330101、IL330149和IL330065不竞争性地抑制IL330180结合至生物素化人类IL-33。
使用此方法的表位分组显示三组包含IL330101、IL330107和IL330149(在第1组中)、IL330065(在第2组中)和IL330180(在第3组中)的抗体,如表12中详述。
表12.表位分组图
实例3优化抗IL-33 AbIL330101
亲和力成熟
使用靶向诱变方法和基于亲和力的噬菌体展示选择来优化IL330101。使用如所述(Clackson,T.和Lowman,H.B.Phage Display–A Practical Approach,2004.OxfordUniversity Press[噬菌体展示-一种实用的方法,2004,牛津大学出版社])的标准分子生物学技术通过寡核苷酸指导的可变重链(VH)互补决定区2和3(CDR2和CDR3)和轻链(VL)CDR3诱变来形成来源于前导克隆的大scFv噬菌体文库。使文库经受基于亲和力的噬菌体展示筛选以便选择具有针对人类和小鼠IL-33的更高亲和力的变体。使用如实例1和2中所述的试剂基本上如先前所述(Thompson,J等人J Mol Biol[分子生物学杂志],1996.256:第77-88页)进行选择。简言之,使scFv噬菌体粒子与重组生物素化人类IL-33溶液(艾迪珀公司;如在实例1内的蛋白质修饰中所述进行生物素化)一起孵育。然后,遵循制造商的建议将结合至抗原的scFv噬菌体捕获于链霉亲和素涂覆的顺磁性珠粒(M-280)上。所选scFv噬菌体粒子然后如先前所述(Osbourn,J.K.等人,Immunotechnology[免疫技术],1996.2(3):第181-96页)挽救,并且在四轮选择内在典型地500nM至500pM的交替和降低浓度的人类或小鼠生物素化IL-33存在下重复选择过程。
未经纯化scFv抑制IL-33与mAb结合
使代表数量的来自选择输出的个别克隆在96孔板中生长。scFv在细菌周质中表达(Kipriyanov等人,J Immunol Methods[免疫学方法杂志]200(1-2):69-77(1997)),并且在基于均相FRET(荧光共振能量转移)(均相时间分辨荧光,Cis生物国际公司)的IL-33:mAb结合测定中针对其抑制活性进行筛选。在此测定中,样品与IL330101IgG竞争结合至生物素化人类IL-33或小鼠IL-33His。此类表位竞争测定是基于如下原理:识别与抗IL-33IgG相似的表位的测试抗体样品将与IgG竞争结合至生物素化IL-33,导致测定信号减少。
通过添加5微升样品至384孔小体积测定板(柯仕达公司,3673)中来测试未经纯化抗IL-33 scFv样品对生物素化人类或小鼠IL-33His结合至IL330101的抑制。接着,制备含有12nM IL330101以及40nM抗人类Fc XL665检测剂(Cis生物国际公司,61HFCXLB)的溶液用于人类IL-33测定,并且制备含有2nM IL330101以及40nM抗人类Fc XL665检测剂(Cis生物国际公司,61HFCXLB)的溶液用于小鼠测定。添加2.5微升至测定板中。此后添加含有18nM生物素化人类IL-33(艾迪珀公司,AG-40B-0038)以及4.6nM链霉亲和素穴状化合物检测剂(Cis生物国际公司,610SAKLB)的2.5微升溶液用于人类测定,或含有2nM生物素化小鼠IL-33His以及4.6nM链霉亲和素穴状化合物检测剂(Cis生物国际公司,610SAKLB)的2.5微升溶液用于食蟹猴测定。在杜尔贝科氏PBS(英杰公司,14190185)中含有0.8M氟化钾(VWR,26820.236)和0.1%牛血清白蛋白(BSA,PAA,K05-013)的测定缓冲液中进行所有稀释。将测定板在室温下孵育4小时,随后在4摄氏度下孵育16小时,并且使用EnVision读板仪(珀金埃尔默公司)读取在620nm和665nm发射波长下的时间分辨荧光。通过计算665/620nm比率,随后计算各样品的ΔF%值分析数据。665/620nm比率用于使用方程式1校正样品干扰。然后使用方程式2计算各样品的ΔF%。通过仅用链霉亲和素穴状化合物检测剂置换生物素化IL-33与链霉亲和素穴状化合物检测剂的组合来定义阴性对照(非特异性结合)。ΔF%值随后用于计算特异性结合%,如方程式3所述。
在表位竞争测定达到其灵敏度极限时,用使用中间优化的mAb IL330259的测定来测试未经纯化scFv样品。通过添加5微升各样品至384孔小体积测定板(柯仕达公司,3673)中来测试未经纯化抗IL-33抗体样品对生物素化人类IL-33或生物素化小鼠IL-33His结合DyLight标记的IL330259的抑制。接着,制备含有20nM DyLight标记的IL330259的溶液用于人类IL-33测定且制备含有4nM DyLight标记的IL330259的溶液用于小鼠测定,并且添加2.5微升至测定板(按照制造商的说明书使用试剂盒(赛墨科技公司,53051)标记的IgG)中。此后添加含有20nM生物素化人类IL-33(艾迪珀公司,AG-40B-0038)或1.6nM生物素化小鼠IL-33His以及6nM链霉亲和素穴状化合物检测剂(Cis生物国际公司,610SAKLB)的2.5微升溶液。在杜尔贝科氏PBS(英杰公司,14190185)中含有0.8M氟化钾(VWR,26820.236)和0.1%牛血清白蛋白(BSA,PAA,K05-013)的测定缓冲液中进行所有稀释。将测定板在室温下孵育4小时,随后在4摄氏度下孵育16小时,并且使用EnVision读板仪(珀金埃尔默公司)读取在620nm和665nm发射波长下的时间分辨荧光。通过计算665/620nm比率,随后计算各样品的ΔF%值分析数据。665/620nm比率用于使用方程式1校正样品干扰。然后使用方程式2计算各样品的ΔF%。通过仅用链霉亲和素穴状化合物检测剂置换生物素化IL-33与链霉亲和素穴状化合物检测剂的组合来定义阴性对照(非特异性结合)。ΔF%值随后用于计算特异性结合%,如方程式3所述。
经纯化scFv抑制IL-33与mAb结合
对显示作为未经纯化周质提取物对IL-33:mAb相互作用的抑制效果相比于IL330101更大的单链Fv克隆进行DNA测序(Osbourn等人,Immunotechnology[免疫技术]2(3):181-96(1996);Vaughan等人,Nat Biotechnol[自然生物技术]14(3):309-14(1996))。独特scFv再次在细菌中表达且通过亲和层析纯化(如WO 01/66754中所述)。这些样品的效力是通过经纯化制剂的稀释系列与IL330101 IgG竞争结合至如上文所述的生物素化人类IL-33、生物素化小鼠IL-33His或生物素化食蟹猴IL-33His,但在添加生物素化食蟹猴IL-33His测定(以12nM浓度添加生物素化食蟹猴IL-33His)的情况下确定。
图13:显示在增加IL-33scFv抗体IL330101、IL330259的浓度的情况下对由生物素化人类IL-33结合至IL330101所产生的FRET信号的抑制,其中x轴是以摩尔浓度计的抗体浓度且y轴是特异性结合%。
选择能够比IL330101在更大程度上抑制IL-33:mAb相互作用的经纯化scFv制剂用于转化为IgG格式。IgG表达和纯化的方法描述于实例1中。
在表位竞争测定达到其灵敏度极限时,用使用中间优化的mAb(IL330259)的测定来测试经纯化scFv样品。通过添加生物素化食蟹猴IL-33His测定(以12nM浓度添加生物素化食蟹猴IL-33His)来测试经纯化抗IL-33抗体样品对如上文所述的生物素化人类IL-33、生物素化小鼠IL-33His或生物素化食蟹猴His IL-33结合IL330259的抑制。
基于序列和表位竞争数据,通过标准分子生物学技术使所选VH和VL输出再组合形成克隆含有随机配对VH和VL序列的文库(例如,VH CDR2/VL CDR3和VH CDR3/VL CDR3文库)。可替代地,使VH CDR3和VL CDR3序列随机配对且与选自改进变体的集合的特定VHCDR2序列再组合,产生所有三个CDR均是非亲本的文库。典型地在所有重组文库上进行五轮使用10nM至10pM的降低和交替浓度的人类和小鼠生物素化IL-33的亲和力选择以鉴定具有改进动力学的scFv序列。可替代地,在四轮选择内在1000x未生物素化IL-33存在下使用固定浓度的生物素化IL-33(例如,1nM、100pM或300pM)选择重组文库持续增加的时间量(例如30分钟、1小时、2小时或4小时),该过程在本领域已知为‘解离速率’或‘竞争’选择,以便鉴定具有改进动力学的scFv。
再次在表位竞争测定中如先前所述针对抑制经标记的huIL-33与IL330101亲本抗体或VH CDR2优化抗体IL330259的结合的能力来筛选样品。对与IL330101相比显示显著改进的抑制效果的scFv进行DNA测序,并且产生独特变体作为经纯化scFv用于进一步表征。如实例1中所述,将抑制性scFv转化为全免疫球蛋白G1(IgG1)抗体格式。
可替代地,个别独特VH CDR2、VH CDR3和VL CDR3序列特定且合理地直接再组合和产生作为IgG。在此实例中,在无任何另外的亲和力选择的情况下测试IgG的改进动力学。
根据所有策略鉴定具有改进动力学的抗体,并且由IL330259、IL330377、IL330388、IL330396、IL330398和H338L293示例。
将IL330101亲本和经优化抗IL-33抗体的VH和VL结构域的氨基酸序列与IMGT数据库(Lefranc,M.P.等人Nucl.AcidsRes.2009.37(Database issue):D1006-D1012[核酸研究,2009,37(数据库发行号):D1006-D1012])中的已知人类种系序列进行比对,并且通过序列相似性鉴定最接近种系。对于IL330101抗体谱系的VH结构域,此为IGHV3-21/IGHJ2。对于VL结构域,其为IGIV3-25/IGLJ3。不考虑保持不变的维尼尔残基(Foote,J.等人,J MolBiol[分子生物学杂志],1992.224:第487页),在VH结构域的框架中不需要变化且在VL框架中需要4个变化(V3E、T5M、A45V和V104L;Kabat编号)。这些位置如所指示使用标准定点诱变技术用适当诱变引物变化。以此方式种系化的抗体以‘fgl’后缀出现在序列表中。对应于抗体IL330259、H338L293、IL330377、IL330388、IL330396和IL330398的不同区域的SEQ ID NO显示于表13中。
表13.抗IL-33抗体序列
经纯化IgG抑制IL-33与mAb结合
在生物化学(均相时间分辨荧光,Cis生物国际公司)竞争测定中评估抗IL-33抗体抑制生物素化人类IL-33、生物素化小鼠IL-33His或食蟹猴IL-33His结合至DyLight标记的IL330101 IgG的能力。
通过添加5微升各浓度的样品至384孔小体积测定板(柯仕达公司,3673)中来测试经纯化抗IL-33抗体样品对生物素化人类IL-33、生物素化小鼠IL-33His或生物素化食蟹猴His IL-33结合DyLight标记的IL330101的抑制。接着,制备含有40nMDyLight标记的IL330101的溶液且添加2.5微升至测定板(按照制造商的说明书使用试剂盒(赛墨科技公司,53051)标记)中。此后添加含有40nM生物素化人类IL-33(艾迪珀公司,AG-40B-0038)、2.5nM生物素化小鼠IL-33His或12nM生物素化食蟹猴IL-33His以及4.6nM链霉亲和素穴状化合物检测剂(Cis生物国际公司,610SAKLB)的2.5微升溶液。在杜尔贝科氏PBS(英杰公司,14190185)中含有0.8M氟化钾(VWR,26820.236)和0.1%牛血清白蛋白(BSA,PAA,K05-013)的测定缓冲液中进行所有稀释。将测定板在室温下孵育4小时,随后在4摄氏度下孵育16小时,并且使用EnVision读板仪(珀金埃尔默公司)读取在620nm和665nm发射波长下的时间分辨荧光。通过计算665/620nm比率,随后计算各样品的ΔF%值分析数据。665/620nm比率用于使用方程式1校正样品干扰。然后使用方程式2计算各样品的ΔF%。通过仅用链霉亲和素穴状化合物检测剂置换生物素化IL-33与链霉亲和素穴状化合物检测剂的组合来定义阴性对照(非特异性结合)。ΔF%值随后用于计算特异性结合%,如方程式3所述。
图14A:显示在增加IL-33 IgG1抗体IL330101、IL330259的浓度的情况下对由生物素化人类IL-33结合至IL330101所产生的FRET信号的抑制,其中x轴是以摩尔浓度计的抗体浓度且y轴是特异性结合%。
在表位竞争测定达到其灵敏度极限时,用使用中间优化的mAb IL330259的测定来测试经纯化IgG样品。此如对于测试经纯化scFv所述。
在IL330259表位竞争测定达到其灵敏度极限时,用使用优化的mAb(H338L293)的第三测定来测试经纯化IgG样品。通过添加5微升各样品至384孔小体积测定板(柯仕达公司,3673)中来测试经纯化抗IL-33抗体样品对生物素化人类IL-33、生物素化食蟹猴IL-33His或生物素化小鼠IL-33His结合DyLight标记的H338L293的抑制。接着,制备含有20nM DyLight标记的H338L293的溶液且添加2.5微升至测定板(按照制造商的说明书使用试剂盒(赛墨科技公司,53051)标记)中。此后添加含有4nM生物素化人类IL-33(艾迪珀公司,AG-40B-0038)、0.8nM生物素化小鼠IL-33His或1.6nM生物素化食蟹猴IL-33His以及4.6nM链霉亲和素穴状化合物检测剂(Cis生物国际公司,610SAKLB)的2.5微升溶液。在杜尔贝科氏PBS(英杰公司,14190185)中含有0.8M氟化钾(VWR,26820.236)和0.1%牛血清白蛋白(BSA,PAA,K05-013)的测定缓冲液中进行所有稀释。将测定板在室温下孵育4小时,随后在4℃下孵育16小时,并且使用EnVision读板仪(珀金埃尔默公司)读取在620nm和665nm发射波长下的时间分辨荧光。通过计算665/620nm比率,随后计算各样品的ΔF%值分析数据。665/620nm比率用于使用方程式1校正样品干扰。然后使用方程式2计算各样品的ΔF%。通过仅用链霉亲和素穴状化合物检测剂置换生物素化IL-33与链霉亲和素穴状化合物检测剂的组合来定义阴性对照(非特异性结合)。ΔF%值随后用于计算特异性结合%,如方程式3所述。
图14B:显示在增加IgG1抗体H338L293、IL330396和IL330388的浓度的情况下对由生物素化人类IL-33结合至H338L293所产生的FRET信号的抑制,其中x轴是以摩尔浓度计的抗体浓度且y轴是特异性结合%。
IL-33抗体抑制HuvecIL-6产生
如实例2中所述,评估抗体抑制IL-33刺激的自Huvec产生IL-6的能力。
图15A显示通过增加抗体(IL330101、IL330377、H338L293、IL330388、IL330396、IL330398)的浓度使IL-6产生减少,其中x轴是以摩尔浓度计的抗体浓度且y轴是最大反应%。抗体的经纯化IgG制剂抑制了最大约70%IL-6活性,相比之下,商业多克隆抗体抑制100%。
IL-33抗体抑制肥大细胞IL-6产生
如实例2中所述,评估抗体抑制IL-33刺激的从源自人类脐带血的肥大细胞产生IL-6的能力。
图15B显示通过增加抗体(IL330101、H338L293、IL330388、IL330396)的浓度使IL-6产生减少,其中x轴是以摩尔浓度计的抗体浓度且y轴是最大反应%。与阴性对照抗体相比,抗体的经纯化IgG制剂抑制了100%IL-6活性。
HUVECIL-6产生和肥大细胞IL-6产生的IC50结果显示于表14中。
表14.经优化抗体的示例性效力
抗体药理学
使用实例2中所述的方法通过增加IL-33(艾迪珀公司)的浓度诱导源自脐带血的肥大细胞的IL-6产生。此剂量反应是在浓度增加的H338L293或IL330388存在下进行,产生IL-33剂量反应曲线向右移。使用GraphPad PRISM软件(拉荷亚,加利福尼亚州,美国)计算在抗体不存在和存在下的IL-33EC50值,并且计算剂量比(DR)。数据绘制为log[抗体]M(x轴)与log[DR-1](y轴)。此清楚地显示非竞争性特征(曲线图),为别构调节剂所特有。为对此进行研究,使来自各实验的数据归一化且合并成单一数据集。使用Prism Graphpad软件拟合别构模型,并且确定Kb和α值。所检查的两个前导的α值相似,指示α值是约0.02(即,在结合抗体时IL-33亲和力/效力的最大减少是约50倍)。可估算H338L293(约4.2nM)和IL330388(约1.7nM)的功能性亲和力(Kb)。
图16显示在肥大细胞IL-6产生测定中对IL330388和H338L293的Schild分析。两个抗体均展示别构调节剂的特征。
使用BIAcore计算IL-33抗体的结合亲和力
使用BIAcore2000(GE医疗集团)通过溶液亲和力确定示例性结合成员的经纯化IgG样品与人类、食蟹猴或小鼠IL-33的结合亲和力。使生物素化IL33表面固定于经抗生蛋白链菌素涂覆的传感器芯片(GE医疗集团目录号BR-1000-32)上。使抗IL33抗体与不同浓度的未经标记IL33在25℃下一起孵育且平衡48小时。通过使样品流经IL33芯片且测量相比于标准抗体曲线的反应来确定游离抗体的量。使用在BIA评价软件中拟合的溶液亲和力确定亲和力。抗体IL330101、H338L293、IL330388、IL330396结合至人类、食蟹猴或小鼠IL33的亲和力显示于表15中。
表15:示例性结合成员的BIAcore溶液亲和力
实例4IL-33的氧化还原调节
试剂
编码人类IL-33(氨基酸112-270)、登录号(Swiss-Prot)O95760的成熟组分的cDNA是通过引物延伸PCR合成,并且克隆至pJexpress404(DNA2.0)中。编码序列经修饰以在蛋白质的N末端含有10xhis、Avitag和Xa因子蛋白酶裂解位点(MHHHHHHHHHHAAGLNDIFEAQKIEWHEAAIEGR)。通过转化大肠杆菌BL21(DE3)细胞产生N末端标签化His10/Avitag IL33-01(WT,SEQ ID 632)。在自体诱导培养基(Overnight ExpressTM自体诱导系统1,默克密理博公司(Merck Millipore),71300-4)中在37℃下培养经转化细胞18小时,随后通过离心收获细胞且储存在-20℃下。使细胞再悬浮于含有完全蛋白酶抑制剂混合物片剂(罗氏公司,11697498001)、2.5μ/ml全能核酸酶(默克密理博公司,70746-3)和1mg/ml重组溶菌酶的BugBuster(默克密理博公司,70921-5)中。通过在4℃下在75,000xg下离心2小时使细胞裂解物澄清。通过在50mM磷酸钠(pH 8.0)、300mM NaCl、20mM咪唑中的镍亲和层析,在50mM磷酸钠(pH 8.0)、300mM NaCl、250mM咪唑中洗脱,自上清液纯化IL-33蛋白。通过在磷酸盐缓冲盐水(pH 7.4)中使用Superdex 75 10/300GL柱进行尺寸排阻层析进一步纯化IL-33。通过SDS PAGE分析峰级分。将含有纯IL-33的级分合并,并且通过Nanodrop A280测量来测量浓度。通过SDS PAGE分析最终样品。
为产生去标签化IL-33(BK349),使N末端标签化His10/Avitag IL33-01与每毫克蛋白质10个单位Xa因子(GE医疗集团27-0849-01)在2倍DPBS缓冲液中在室温下一起孵育1小时。在2倍DPBS中在S75柱(GE医疗集团28-9893-33)上使用SEC层析以1ml/min流动速率纯化未标签化IL33。
表16中所概述的其他试剂是如实例1中所述产生。
表16.IL-33试剂
蛋白质修饰
如实例1中所述使用EZ连接磺基-NHS-LC-生物素(赛默公司/皮尔斯公司,21335)经由游离胺对本文所用的IgG和经修饰的受体蛋白进行生物素化。使用EZ连接生物素-BMCC(普达生物公司/皮尔斯公司,产品编号21900)经由游离半胱氨酸对本文所用的IL-33蛋白进行生物素化。
IL-33在体外快速失去活性
在HUVEC信号传导测定(30分钟)和IL-6产生测定(18-24小时)中测量IL-33活性,其方法分别描述于实例1和2中。
图17显示在HUVEC信号传导测定(30分钟)和IL-6产生测定(18-24小时)中所测量的人类IL-33、半胱氨酸生物素化IL-33或经细胞培养基预处理的IL-33的活性。图17A显示如通过NFkB或IL-6测定所测量的人类IL-33活性(艾迪珀公司)的比较,其中x轴是以摩尔浓度计的人类IL-33浓度且y轴是最大反应%。相比于短(30分钟)测定,IL-33在过夜测定下不太显著有效。经由半胱氨酸残基生物素化的人类IL-33His在短(30分钟)测定与较长(过夜)测定之间不失去活性(图17B)。为研究此现象,使IL-33(BK349)在细胞培养基(EBM-2(龙沙集团,#CC-3156)与EGM-2 SingleQuot Kit Suppl.&Growth Factors(龙沙集团,#CC-4176))中预处理18小时,并且然后与未处理IL-33比较诱导NFkB信号传导的能力。已用培养基预处理的IL-33展示显著活性损失(图17C)。
IL-33的SDS-PAGE分析
为研究IL-33蛋白的潜在变化,通过SDS PAGE电泳在还原或非还原条件下分析PBS/0.1%牛血清白蛋白(BSA)或经伊斯科夫改良型杜尔贝科氏培养基(IMDM)处理的人类IL-33(BK349或人类IL-33His)和小鼠IL-33His。在1倍NuPAGE凝胶装载缓冲液(英杰公司)中制造样品,并且在90℃下变性3min。还原型样品含有2%β-巯基乙醇。根据制造商的说明书使用MOPS运行缓冲液(英杰公司)在NuPAGE Novex 12% Bis-Tris微型凝胶(英杰公司)上运行样品。还原型和非还原型样品在单独凝胶上运行。每个泳道装载500ngIL-33。使凝胶在振荡平台上在ddH20中洗涤3x5min,并且然后使用EzBlue(基于考马斯亮蓝G-250的凝胶染色试剂,西格玛公司G1041)染色1小时。使凝胶在dH2O中脱色且使用Epsom扫描仪扫描。
图18显示在用伊斯科夫改良型杜尔贝科氏培养基(IMDM)处理之前或之后在还原或非还原条件下人类或小鼠IL-33的SDS-PAGE。仅在非还原条件下观察到在用IMDM处理后IL-33的表观分子量差异,意味着人类和小鼠IL-33的氧化还原相关修饰的存在。图18A显示仅在非还原条件下观察到的在用IMDM处理后人类IL-33(BK349)的表观分子量差异。图18B显示在非还原条件下非生物素化与生物素化的人类IL-33His。观察到在IMDM处理之后IL-33His而非半胱氨酸生物素化IL-33His的表观分子量差异。图18C显示仅在非还原条件下观察到的在用IMDM处理后小鼠IL-33His的表观分子量差异。
质谱分析和二硫键作图
经培养基处理的人类IL-33形式经纯化用于进一步分析。使人类IL-33(BK349)与60%IMDM培养基一起或在PBS中以300μg/ml最终蛋白质浓度在37℃下孵育18小时。18小时后,使用AKTAxpress FPLC系统(GE医疗集团)在2倍DPBS中在S7516:600Superdex柱(GE医疗集团28-9893-33)上使用尺寸排阻层析(SEC)自培养基组分纯化经培养基处理的IL33。通过SDSPAGE分析峰级分,并且合并非聚集纯级分且通过LC-MS分析。
图19显示通过SEC纯化经IMDM处理的人类IL-33。收集单体级分用于进一步分析。
LC-MS
使用与Synapt G1四极杆飞行时间(QToF)质谱仪(沃特斯公司(Waters),米尔福德港,美国)耦合的Acquity UPLC进行反相(RP)LC-MS分析。将在10mM Tris HCl(pH 8)中以1mg/ml稀释的1μg经纯化蛋白质注射至保持在65℃下的50mm x 2.1mm、1.7μm粒度BEH300C4分析柱(沃特斯公司,米尔福德港,美国)上。使用5分钟二元梯度以0.15mL/min恒定流动速率洗脱蛋白质;溶剂B在1分钟内最初由5%增加至95%,在2分钟内减少至20%且在另外2分钟内返回至5%。清洁柱,随后通过在高(95%)与低(5%)溶剂B之间振荡5分钟进行后续注射。溶剂A(水)和B(乙腈)以0.01%(v/v)三氟乙酸和0.1%(v/v)甲酸补充。在500m/z与4500m/z之间采集光谱。关键仪器参数包括正电离模式,源电压:3.4kV,样品锥电压:50V,源温度:140℃,去溶剂化温度:400℃。使用BioPharmaLynx(沃特斯公司,米尔福德港,美国)使电荷包膜解卷积。
图20显示通过LC-MS确定的PBS与IMDM处理的IL-33的完整质量。经IMDM处理的IL-33与经PBS处理的IL-33相比展示4Da损失,与两个二硫键的形成相容。
二硫键作图
对于各样品,在100mM磷酸钠、1mM N-乙基马来酰亚胺(pH 7.0)缓冲液中以3mg/ml制备50μg蛋白质,并且在室温下孵育20分钟。使干燥样品再悬浮于7M盐酸胍、100mM NaCl、10mM磷酸钠中,并且在37℃下孵育30分钟。将变性蛋白质稀释至0.3mg/ml且用Glu-C以1:50E:S比率在2M胍、100mM磷酸钠、0.1mM EDTA(pH 7.0)中在37℃下消化。2小时后,添加第二相等Lys-C等分试样。在另外2小时之后,使消化物分裂(split);对于还原分析,使消化物与50mM二硫苏糖醇一起在室温下孵育15min。使用与Synapt G2 QToF质谱仪(沃特斯公司,米尔福德港,美国)耦合的Acquity UPLC通过RP LC-MS分析还原型和非还原型样品。对于各样品,将5μg Lys-C消化物注射至保持在55℃下的150mm x 2.1mm、1.7μm粒度BEH300 C18分析柱(沃特斯公司,米尔福德港,美国)上。使用75分钟二元梯度以0.2mL/min恒定流动速率洗脱肽;溶剂B自0%增加至35%。清洁柱,随后通过在高(95%)与低(5%)溶剂B之间振荡5分钟进行后续注射。溶剂A(水)和B(乙腈)以0.02%(v/v)三氟乙酸补充。使用数据独立采集模式在50m/z与2000m/z之间采集光谱。使用BioPharmaLynx(沃特斯公司,米尔福德港,美国)处理低和高能量光谱。
图21显示经IMDM处理的人类IL-33的二硫键作图。图21A显示来自DSB IL-33的非还原型和还原型Lys-C肽作图分析的组合解卷积质谱。图21B显示含半胱氨酸肽的分离光谱。独特的还原型和非还原型样品的肽分别以绿色和蓝色突出显示。数据与两个二硫桥键的形成一致。所鉴定的一个物种分别在半胱氨酸C208与C249之间和C227与C232之间具有桥键。然而,未解析主要峰且可能存在其他物种。图21C显示通过二硫键键合的IL-33的非还原型和还原型Lys-C肽作图分析所鉴定的二硫键键合肽的序列。二硫键由两个连字符(--)表示。Lys-C错裂解由方形括号表示。
二硫键键合的IL-33的NMR分析
基于所报道的IL-33结构(Lingel,A.等人Structure[结构]17,1398-1410(2009);Liu,X.等人Proc.Natl.Acad.Sci.USA[美国科学院院刊]110,14918-14923(2013)),半胱氨酸残基的接近度不足以在无显著构型变化的情况下发生二硫键键合。为对此进行研究,进行NMR异核多量子相干(HMQC)分析。
15N-IL-33蛋白的产生
使用编码具有N末端6His标签和TEV蛋白酶裂解位点的野生型IL-33(SEQ ID.633)的DNA转化大肠杆菌BL21 Gold细胞。将经转化细胞在补充有5g/L15N-IsoGroTM粉末的M9基本培养基中在37℃下培养直至其达到0.6至0.8的OD600nm,此时通过添加100mM IPTG诱导蛋白质表达。在18℃下继续培养另外20小时,随后通过离心收获细胞且储存在-80℃下。使细胞再悬浮于含有完全蛋白酶抑制剂片剂(罗氏公司,11697498001)、2.5U/ml全能核酸酶(默克密理博公司,70746-3)和1mg/ml重组溶菌酶的50mM磷酸钠(pH 8.0)、300mM NaCl、20mM咪唑、5mM β-巯基乙醇中。再悬浮细胞使用恒定系统(Constant Systems)细胞瓦解剂在25kpsi下裂解,并且通过在4℃下在75,000xg下离心2小时澄清。通过在50mM磷酸钠(pH8.0)、300mM NaCl、20mM咪唑、5mM β-巯基乙醇中的镍亲和层析,在50mM磷酸钠(pH 8.0)、300mM NaCl、250mM咪唑、5mM β-巯基乙醇中洗脱,自上清液纯化IL-33。在4℃下使洗脱的蛋白质与TEV蛋白酶一起孵育且透析至50mM磷酸钠(pH 8.0)、300mM NaCl、20mM咪唑、5mM β-巯基乙醇中。通过在50mM磷酸钠(pH 8.0)、300mM NaCl、20mM咪唑、5mM β-巯基乙醇中的镍亲和层析自未裂解IL-33分离去标签化蛋白质。通过使用AKTAxpress FPLC系统(GE医疗集团)在20mM磷酸钠(pH 6.5)、100mM NaCl、5mM β-巯基乙醇中使用HiLoad 16/60 Superdex75柱(GE医疗集团)进行尺寸排阻层析进一步纯化IL-33。通过SDS PAGE分析峰级分。
将含有纯IL-33的级分合并,并且通过Nanodrop A280测量来测量浓度。使用Amicon 10,000分子量截断旋转浓缩器将蛋白质浓缩至9.5mg/ml的最终浓度以用于NMR分析。
使PBS(pH 7.4)中的经纯化的15N标记的蛋白质与60%IMDM培养基一起以0.28mg/ml最终蛋白质浓度在37℃下孵育18小时。18小时后,使用Amicon 10,000分子量截断旋转浓缩器将蛋白质浓缩至0.8mg/ml的浓度。然后通过在PBS(pH 7.4)中使用HiLoad 16/60Superdex75进行尺寸排阻层析来纯化蛋白质。通过SDS PAGE分析峰级分,并且合并非聚集纯级分。最后,使用Amicon 10,000分子量截断旋转浓缩器将蛋白质浓缩至1.8mg/ml(100μM)的浓度以用于NMR分析。
NMR分析
在配备有含Z轴梯度的5mm TCI冷冻探针的Bruker Avance 600MHz光谱仪运行Topspin 2.3上在298K下记录NMR光谱。如所述通过添加5%氧化氘制备15N标记的IL33 WT样品以允许样品锁定。使用sofast HMQC脉冲序列(Schanda,P;Brutscher,B;Very fast two-dimensional NMR spectroscopy for real-time investigation of dynamic events inproteins on the time scale of seconds[非常快的二维NMR光谱学实时研究蛋白质在几秒时间尺度上的动态事件],J.Am.Chem.Soc.[美国化学学会杂志](2005)127,8014-5)在(F2xF1)1024x64复点(状态-TPPI模式)、9615x1460Hz吹扫宽度、53.4msx43.8ms采集时间下采集示例性1H-15N相关光谱。
图22A显示对经IMDM处理的WT IL33的SDS PAGE分析。SDS PAGE显示在浓缩用于NMR之前和之后还原型和非还原型经IMDM处理的WTIL33。
图22B显示WT IL33的NMR分析。在IMDM培养基处理之前和之后0.1mM经15N标记的IL33 WT的1H-15N HMQC光谱的叠加分别以黑色和红色绘图。两个光谱的比较指示在IMDM处理之后完全不同且不太有序的结构。
圆二色性(CD)光谱学。
为确认构象变化和进一步研究,进行圆二色性(CD)光谱学分析。
在Jasco-815仪器(伊斯顿,马里兰州)上进行远UV和近UV CD分析。对于远UV CD,在10mM磷酸盐缓冲溶液(pH=6.9)中在20℃下分别在redIL-33和DSB IL-33的0.14mg/mL和0.12mg/mL的样品浓度下在1mm路径长度比色皿中在180nm至260nm波长范围内记录光谱。对于近UV CD,在DPBS缓冲溶液中在20℃下分别在redIL-33和DSB IL-33的1.38mg/mL和0.89mg/mL的样品浓度下在10mm路径长度比色皿中在260nm至350nm波长范围内记录光谱。记录缓冲溶液的CD光谱且自所有样品光谱减去以校正仪器、比色皿和基线效果。CD Pro软件用于使光谱解卷积成二级结构元素。
图22C:近UV圆二色性(CD)光谱学。在260nm至350nm波长范围内记录光谱。最终光谱是4次扫描的平均值。芳香族氨基酸和二硫化物吸收带是改编自Kelly(Kelly S.M.等人How to study proteins by Circular Dichroism[如何通过圆二色性研究蛋白质].Biochimica et Biophysica Acta[生物化学与生物物理学学报],1751,119-139(2005))。所观察到的Trp吸收周围椭圆率差异与单独色氨酸(W193)的环境变化一致,表明在此区域中还原型IL-33与DSB IL-33之间的三级结构变化。在大约260nm强度内的差异与自二硫键形成引入另外的发色团一致。
图22D:IL-33的关键特征。Trp193、半胱氨酸和ST2结合位点(Liu,X.等人Structuralinsights into the interaction of IL-33 with its receptors[对IL-33与其受体相互作用的结构观察].Proc.Natl.Acad.Sci.USA[美国国家科学院院刊]110,14918-14923(2013))指示于经解析的IL-33结构中(Lingel 2009)。
图22E:远UV圆二色性(CD)光谱学。在190nm至260nm波长范围内记录光谱。最终光谱是8次扫描的平均值。远UV光谱与如先前此蛋白质家族所见的显著β-片层二级结构一致(ChangB.S.等人,Formation of an active dimer during storage of interleukin-1receptor antagonist in aqueous solution[在水溶液中在白介素-1受体拮抗剂的贮存过程中形成活性二聚体].Biophysical Journal[生物物理学杂志].71,3399-3406(1996);CraigS.等人Conformation,Stability and folding of Interleukin1β[白介素1β的构象、稳定和折叠].Biochemistry[生物化学].26,3570-3576(1987);HaileyK.L.等人Pro-interleukin(IL)-1β shares a core region of stability as compared with matureIL-1β while maintaining a distinctly different configurational landscape[前白介素(IL)-1β享有与成熟IL-1β相比的稳定性核心区域同时保持明显不同构型格局].J.Biol.Chem.[生物化学杂志]284.26137-26148(2009);Hazudat D.等人Purificationand characterisation of Human Recombinant Precursor Interleukin 1β[人类重组前体白介素1β的纯化和表征].J.Biol.Chem.[生物化学杂志]264,1689-1693(1989);MeyersC.A.等人,Purification and characterization of Human recombinant interleukin-1β[人类重组白介素-1β的纯化和表征].J.Biol.Chem.[生物化学杂志]262,11176-11181(1987))。光谱显著不同,表明DSBIL-33相对于还原型IL-33的二级结构变化。
CD光谱指示IL-33形式之间的显著构象变化。redIL-33光谱与所公布的数据一致。DSB-IL-33光谱与不同于还原形式的结构化蛋白一致。为映射可在还原型IL-33与DSB-IL-33之间大部分改变的区域,进行氢/氘交换质谱。
氢/氘交换质谱(HDX-MS)。
使蛋白质在磷酸盐缓冲盐水(pH 7.4)中稀释至3.5μM。此储备液用于通过用氘化(10mM磷酸钠,pD 6.6)水性溶剂稀释10倍来引发标记实验。进行初始映射实验以将质谱种类分配给来自IL33的胃蛋白酶肽序列。这主要如所描述进行21。简言之,将质子化稀释蛋白与淬灭溶液(100mM磷酸钾(pH 2.55)、0.1M TCEP,1℃)以1:1混合,使得最终混合物pH是2.55。将淬灭蛋白注射至具有固定胃蛋白酶柱(2.0x30mm;Poroszyme,生命技术公司(LifeTechnologies))、C18捕获柱(VanGuard ACQUITY BEH 2.1x5mm;沃特斯公司)和分析C18柱(1.0x100mm ACQUITY BEH;沃特斯公司)的Waters HDX Manager中。流动相是在H2O中的0.1%甲酸(A)和在ACN中的0.1%甲酸(B),使得其pH是2.55。将蛋白质施加于胃蛋白酶且以100μL/min缓冲液A捕获柱,并且以3%-40%40μL/minB线性梯度自分析柱洗脱。肽序列是通过Protein Lynx Global Server(沃特斯公司)3.0.2和DynamX 3.0(沃特斯公司)自MSE片段数据分配。关于测序,除仅将质谱仪设置为MS扫描之外,采集标记数据。在DynamX和MatLab(迈斯沃克公司(Mathworks))中分析肽水平数据。
图23显示还原型IL-33和DSB IL-33的氢交换质谱(HX-MS)分析。图23A比较还原型IL-33(左图)和DSB IL-33(右图)中的部分氢交换(氘)。出于比较目的,在两种情况下将数据作图至所公布的IL-33结构上(lingel2009)。不可获得数据(HX-MS数据)的序列覆盖间隙以灰蓝色突出显示。半胱氨酸残基的侧链展示为棒。图23B显示与ST2结合位点重叠的差示HX-MS数据的结构模型(红色和洋红色)(Liu2013)。暗蓝色指示DSB IL-33中的氢交换相对于还原型IL-33增加的区域。ST2结合位点1位于具有最大H/D交换差异的区域且有可能结构已改变。
还原型IL-33对比DSB IL-33与ST2的结合(BIAcore)
二硫键键合的IL-33有可能为极其不同于还原型结合ST2的IL-33形式的结构(图22、23),并且向二硫键键合形式的转化与功能性活性的损失相关(图17C)。为对此进行研究,通过BIAcore分析测试二硫键键合的IL-33形式结合ST2的能力。使用BIAcore 2000(GE医疗集团)通过表面等离振子共振确定IL-33与ST2胞外结构域的直接结合。在CM5传感器芯片(GE医疗集团BR-1003-99)上使用抗人类Fc捕获(GE医疗集团BR-1003-39)经由Fc标签固定ST2,得到大约150RU的稳定表面。使IL-33以30μl/min流经表面三分钟以确定结合速率。通过使缓冲液以30ul/min流动15分钟来测量解离。使用BIA评价软件解译传感图,并且使用1:1(朗格缪尔)结合模型使用双参考减去传感图确定动力学。
图24A显示redIL-33结合至ST2。显示7.8nM至0.24nM的传感图,给出0.2nM的KD。
图24B显示二硫键键合的IL-33(IL33-DSB)结合至ST2。显示500nM至0.24nM的传感图,未观察到明显结合。
ST2结合和活性的损失使得假设氧化可以是终止IL-33活性和限制体内ST2依赖性免疫应答的持续时间的机制。
IL-33形式的检测
为确定二硫键键合的IL-33形式确实存在于体内,使用三种不同商业IL-33检测测定(2种人类IL-33和一种小鼠IL-33)。将人类和小鼠IL-33 Duoset ELISA(RnD系统公司(RnD Systems))转化为MSD格式(中尺度发现公司(Meso Scale Discovery),罗克维尔,马里兰州)。捕获抗体的涂覆浓度如下:抗小鼠IL-33 pAb 37.5μg/ml;抗人类IL-33 pAb 18μg/mL。在PBS中用0.03%Triton X-100稀释捕获抗体,并且将5μl点涂至标准结合板(中尺度发现公司,罗克维尔,马里兰州)上的各孔中心中且在室温下保持干燥过夜。将板在PBS-吐温中洗涤3次,并且通过密封板用25μl测定稀释剂阻断且在振荡(450rpm)下在室温下孵育30分钟。将25μl样品或在测定稀释剂中稀释的校准剂转移至经阻断的测定板,在振荡(450rpm)下在室温下孵育2小时。将板在PBS-吐温和25μl检测试剂(检测抗体加链霉亲和素SulfoTag,均在抗体稀释剂中稀释至1μg/ml)中洗涤3次。将板密封且在振荡下在室温下孵育1小时。将板在PBS-吐温中洗涤3次。添加在蒸馏水中2倍稀释的150μl读取缓冲液T。在15分钟内读取板(中尺度发现公司,罗克维尔,马里兰州)。
根据制造商的说明书进行Millipore人类IL-33测定(目录号HTH17MAG-14K批号2159117)。简言之,将IL-33标准品和样品在测定缓冲液中稀释且在振荡(500rpm)、避光下在室温下与珠粒一起孵育1小时。移出孔内含物且用200uL洗涤缓冲液洗涤2次。每孔添加25uL检测抗体,并且在室温下孵育板1小时。添加25uL链霉亲和素-PE(不洗涤),并且在振荡(850rpm)且避光下孵育板另外30分钟。移出孔内含物且用200uL洗涤缓冲液洗涤2次。使样品再悬浮于125uL测定缓冲液中,覆盖且在850rpm下振荡30秒。在Bio-Plex 200(伯乐公司(BioRad))上分析样品。在低RP1下读取板,计数50个珠粒/区域(区域44),双重检测闸设置为5000(低)和25000(高)。
图25显示对检测还原型和二硫键键合的IL-33形式的三种商业IL-33ELISA测定的分析。还显示ST2对还原型和二硫键键合形式的测定信号的干扰的影响。图25A和B显示两种商业人类IL-33测定显著检测到二硫键键合的IL-33形式(IL33-DSB),表明此为迄今为止其他人在人类离体样品中已测量的主要种类。‘还原型’而非氧化型/二硫键键合的IL-33测定信号可通过添加sST2消除。图25C显示小鼠IL-33测定,其检测到还原和氧化形式的小鼠IL-33。‘还原型’而非氧化型IL-33测定信号可通过添加sST2消除。
由于不能鉴定对人类IL-33的还原ST2活性形式具有特异性的商业测定,研发了自己的新颖测定。使用IL330425 mAb(SEQ ID NO.62和67)或IL330004 mAb(SEQ ID NO.12和17)作为捕获抗体。分别用生物素化sST2.Fc(R&D系统公司)或生物素化IL330425(SEQ IDNO.62和67)检测所捕获的IL-33。在PBS中用0.03%Triton X-100将捕获抗体稀释至150μg/mL,并且将5μl点涂至标准结合板(中尺度发现公司,罗克维尔,马里兰州)上的各孔中心中且在室温下保持干燥过夜。将板在PBS-吐温中洗涤3次,并且通过密封板用25μl测定稀释剂阻断且在振荡(450rpm)下在室温下孵育30分钟。将25μl样品或在测定稀释剂中稀释的校准剂转移至经阻断的测定板,在振荡(450rpm)下在室温下孵育2小时。将板在PBS-吐温和25μl检测试剂(检测抗体加链霉亲和素SulfoTag,均在抗体稀释剂中稀释至1μg/ml)中洗涤3次。将板密封且在振荡下在室温下孵育1小时。将板在PBS-吐温中洗涤3次。添加在蒸馏水中2倍稀释的150μl读取缓冲液T。在15分钟内读取板(中尺度发现公司,罗克维尔,马里兰州)。
图26A、B显示对检测还原型IL-33具有特异性的ELISA测定。未观察到二硫键键合形式的检测。
转化为二硫键键合的IL-33形式的时间过程
使用如上文所述检测不同IL-33形式的测定来监测自redIL-33转化为其二硫键键合形式的时间过程。在100%人类血清、PBS/1%BSA或IMDM/1%BSA中在37℃下孵育10μg/mL去标签化redIL-33。在时间点t=0、15分钟、30分钟、1小时、2小时、4小时、6小时、8小时和24小时,移出10ul等分试样且添加至90ul PBS/1%BSA(1/10稀释至1μg/ml)中,将此分为3x30ul等分试样且在-80℃下储存前快速冷冻于干冰上。还在ELISA分析之前立即新鲜制备t=0样品作为冷冻/解冻循环的对照。使用上文所述的人类MSD(R&D系统公司)和IL33004/IL330425-生物素测定分析样品以分别测量二硫键键合和还原型IL-33。总之,这些测定允许监测还原型IL-33向二硫键键合的IL-33形式的转化。
为确认ELISA的结果,通过蛋白质印迹法分析时间过程样品中的IL-33。在还原或非还原条件下对样品进行SDS-PAGE。在1倍NuPAGE凝胶装载缓冲液(英杰公司)中制造样品,并且在90℃下变性3分钟。还原型样品含有2%β-巯基乙醇。根据制造商的说明书使用MOPS运行缓冲液(英杰公司)在NuPAGE Novex 12%Bis-Tris微型凝胶(英杰公司)上运行样品。还原型和非还原型样品在单独凝胶上运行。每个泳道装载100pg IL-33。将蛋白质转移至硝化纤维素膜(英杰公司目录号IB3010-02),并且用抗IL-33 pAb(R&D系统公司)通过蛋白质印迹法检测。
图27显示人类IL-33在IMDM或人类血清中的孵育时间过程。图27A:使用IL-33ELISA(IL33004/IL330425-生物素和人类R&D系统公司MSD测定)分别检测还原型和二硫键键合IL-33。图27B:使用蛋白质印迹分析检测还原型和二硫键键合IL-33形式。快速发生向二硫键键合IL-33形式的转化,在1-2小时内有50%转化。在ELISA和蛋白质印迹分析中,还原型IL-33的消失与氧化型IL-33的出现密切相关。
人源化IL-33转基因小鼠的产生
为研究内源性IL-33的行为和生命周期,使用小鼠IL-33基因经人类IL-33基因置换的转基因小鼠。如下文所述产生人源化IL-33转基因小鼠。简言之,使小鼠基因组片段(获自C57BL/6J RPCIB-731 BAC文库)、人类基因组片段(获自人类RPCIB-753 BAC文库)和所选特征(诸如重组位点和选择标记物)组合形成靶向载体(数据未显示)。
靶向载体经BstBI线性化且电穿孔至TaconicArtemis Balb/cJ ES细胞系(Balb/c.2)中,并且用嘌呤霉素(阳性选择)和更昔洛韦(阴性选择)选择ES细胞克隆。然后通过PCR与Southern分析的组合来筛选所得耐嘌呤霉素ES细胞克隆以鉴定正确靶向ES克隆。使这些纯系扩增且冷冻于液氮中。
在给予激素之后,使超排卵C57BL/6雌性与C57BL/6雄性配对。在dpc 3.5下自子宫分离囊胚。对于显微注射,将囊胚置于一滴DMEM(在矿物油下含15%FCS)中。使用内径为12-15微米的平头压电致动显微注射吸管将10-15个靶向BALB/c ES细胞注射至各囊胚中。在回收之后,将8个经注射囊胚转移至交配后2.5天假孕NMRI雌性的各子宫角。通过ES细胞与C57BL/6宿主的毛色比重(白色/黑色)在嵌合体(G0)中测量嵌合。使高度嵌合小鼠育种菌株BALB/cJBomTac雌性突变体以用于呈现Flp重组酶基因(Flp-Deleter菌株)。通过白色菌株BALB/c后代(G1)的呈现来鉴定通过毛色的种系传递。实际种系传递是使用对靶向等位基因(数据未显示)具有特异性的引物通过PCR基因分型确认。
体内氧化还原IL-33形式的存在。
先前已描述小鼠中互隔交链孢霉菌(Alternaria alternata)诱导的气道炎症的模型(Kouzaki等人J.Immunol.[免疫学杂志]2011,186:4375-4387;Bartemes等人,J.Immunol[免疫学杂志],2012,188:1503-1513)。将雄性或雌性野生型或人源化IL-33小鼠(6-10周)用异氟醚简单麻醉,并且经鼻内给予总体积为50μl的25μg互隔交链孢霉菌(ALT)提取物(格瑞尔公司(Greer),雷诺阿(Lenoir),北卡罗来纳州)或媒剂。在ALT攻击之后多个时间点,将小鼠用戊巴比妥钠最终麻醉,随后进行支气管肺泡灌洗术(BAL)。经由气管套管通过灌洗(0.3ml、0.3ml和0.4ml)收集支气管肺泡灌洗液(BALF)。使BALF离心,并且使用上文所述的测定分析上清液的氧化还原IL-33形式的存在。所有工作均在适当项目许可证授权下根据英国内政部(UK Home Office)道德与管理标准进行。
图28显示使用多个ELISA测定的组合对在ALT鼻内攻击之后在不同时间点收集的人源化IL-33小鼠的BALF的分析。使用(A)密理博公司(Millipore)、(B)R&D系统公司(R&Dsystems)和(C)IL330425/sST2-生物素测定在sST2存在或不存在下测量IL-33(左边图)。将在sST2存在下的信号(来自所消除的还原型IL-33级分的信号)与二硫键键合的IL-33标准进行比较以定量二硫键键合的IL-33的水平。还原型IL-33信号被计算为相对于还原型IL-33标准所定量的在ST2存在和不存在下在IL-33测量之间的信号差值。还原型IL-33的估值显示于右边图上。所有测定显示所释放的IL-33显著呈其还原形式,在5min与30min之间达到最大,随后快速下降,截至120分钟变得不可检测。反之,IL-33-DSB自时间0逐渐增加,在30-120分钟达到峰值且截至24小时消失。这些数据与IL-33以还原形式释放且然后在体内快速氧化成IL33-DSB的模型一致。
图29显示对在ALT鼻内攻击之后在不同时间点收集的野生型BALB/c小鼠的BALF的分析。图29A在sST2存在或不存在下使用小鼠IL-33 ELISA(R&D系统公司)测量IL-33(经培养基处理的小鼠IL-33用作标准曲线)。图29B将在sST2存在下的信号(来自所消除的还原型IL-33级分的信号)与经培养基处理的小鼠IL-33标准进行比较以定量氧化型IL-33的水平。还原型IL-33信号被计算为相对于还原型小鼠IL-33标准所定量的在ST2存在和不存在下在IL-33测量之间的信号差值。数据显示所释放的IL-33显著呈其还原形式,在15分钟达到峰值,随后快速下降,截至120分钟变得不可检测。反之,IL-33-DSB自时间0逐渐增加,在45-60分钟达到峰值且截至24小时消失。这些数据与IL-33以还原形式释放且然后在体内快速氧化成IL33-DSB的模型一致。
实例5抗IL-33抗体的表征
H338L293引起构象变化
单克隆抗体H338L293(SEQ ID NO182和187)(其产生描述于实例2和3中)是IL-33的别构调节剂。IL-33可使构象显著变化为二硫键键合形式(如实例4中所述)。以下实验表明H338L293 mAb似乎使IL-33分子不稳定,促进其未折叠且加速转化为二硫键键合形式。本文所用的试剂和蛋白质修饰如先前实例中所述。
Sypro橙测定
Sypro橙非特异性地结合至疏水性表面,并且水强烈淬灭Sypro橙的荧光。在蛋白质未折叠时,暴露的疏水性表面结合染料,导致荧光增加。使5μM抗体与20μM redIL-33在25℃下在由5000x储备液(生命技术公司S-6650)在1xDPBS中稀释的8xSYPRO橙染料存在下一起孵育。使用Chromo4实时检测器(Bio-rad)每隔一分钟测量荧光(激发490nm和发射575nm)。观察到孵育redIL-33与H338L293抗体而非单独redIL-33或抗体,荧光信号增加,指示蛋白质未折叠。
图30A显示在8xSYPRO橙染料存在下在25℃下使5μM抗体与20μM redIL33孵育之后100分钟的相对荧光单位。在redIL-33 H338L293而非IL330004或对照mAb存在下,荧光信号增加指示蛋白质未折叠。
图30B显示在8xSYPRO橙染料存在下在25℃下使不同浓度的H338L293与20μMredIL33孵育之后随时间推移的相对荧光单位。荧光信号随着抗体浓度增加而增加。
SDS-PAGE电泳
为确定H338L293是否可能影响二硫键键合的IL-33,通过比较还原型与非还原型SDS-PAGE分析在H338L293存在下监测IL-33。在含有1.5mg/ml H338L293 mAb、NIP228 mAb或未添加mAb的PBS/0.1% BSA中孵育100μg/ml重组人类IL-33112-270(BK349)。在标准组织培养恒温箱中在37℃下孵育样品20h。在还原和非还原条件下在Novex 12% Bis-Tris微型NuPAGE凝胶(英杰公司)上通过SDS-PAGE分析含有1μgIL-33的样品。随后将SDS-PAGE凝胶在ddH20中洗涤3x5min,在EzBlue(西格玛公司G1041,基于考马斯亮蓝G-250的蛋白质染色)中孵育1h,并且在ddH20中脱色直至凝胶的背景清晰。所有凝胶染色步骤均在摆动平台上在室温下进行。使用Epsom数字扫描仪可视化凝胶。
图30C显示IL-33的SDS-PAGE分析。预孵育IL-33与H338L293(而非对照mAb或无mAb),在非还原条件下增加较快迁移的二硫键键合IL-33形式的存在。
IgG抑制在Huvec中的NFkB信号传导
如实例1中所述由通过免疫荧光染色检测的p65/RelA NFkB亚单位的核易位评估人脐静脉内皮细胞中响应于IL-33的NFkB信号传导。在多个浓度的测试抗体H338L293存在下用不同IL-33浓度刺激细胞30分钟或6小时。
图31显示H338L293对HUVEC上经IL-33刺激的NFkB易位的影响。这些结果显示如先前所见在刺激30分钟之后H338L293不抑制经IL-33刺激的Huvec中p65/RelA NFkB的核易位。然而,6小时后看见抑制。结果与H338L293不能直接抑制IL-33结合至ST2但能够在几小时内使IL-33转化为非ST2结合形式一致。
经纯化IgG抑制IL-33与ST2结合
如实例1中所述在生物化学(均相时间分辨荧光,Cis生物国际公司)竞争测定中评估H338L293抑制His标签化的IL-33结合至ST2受体的能力。测试两个条件。首先,完全如同实例1,同时添加抗体和IL-33至测定中。如先前,经纯化IgG制剂在所测试浓度下不能抑制IL-33:ST2相互作用。其次,使H338L293与IL-33His一起预孵育18小时,随后添加至测定中。在此情况下,观察到IL-33:ST2结合的浓度依赖性抑制。综合而言,这些数据与随时间推移H338L293使IL-33转化为非ST2结合形式一致。
图32显示在增加H338L293浓度的情况下对由人类IL-33结合至人类ST2所产生的FRET信号的抑制,其中x轴是以摩尔浓度计的抗体浓度且y轴是特异性结合%。这些结果显示H338L293仅在与配体长期预孵育之后抑制IL-33结合至ST2。
表位作图
尝试H338L293 IgG的表位作图使得澄清结合至此IgG的IL-33的模式。进行尺寸排阻层析(SEC)实验使得观察IL-33:IgG复合物的形成。在Agilent HP1100HPLC上以0.5mLmin-1用杜尔贝科氏PBS平衡BioSep-SES-S 2000柱(300x7.4mm,s/n550331-4)。使用来自二极管阵列探测器(DAD)的280nm信号检测峰。这些研究确认抗体-抗原复合物形成相当缓慢,耗费至少几个小时。一旦允许足够时间用于完整复合物形成,添加胰蛋白酶至预形成的IL-33:IgG复合物中,随后进行SEC分析。36min胰蛋白酶消化导致主峰的保留时间增加至14.1分钟(在未处理复合物峰洗脱时间(13.6min)与完整H338L292 IgG洗脱(14.4min)之间的中间)。然后使用质谱法鉴定最小H338L293 IgG表位。Shimadzu MALDI-TOF MS观察到的来自所捕获的14.1min峰的质量是3,209Da和4,485.3Da。ABI4800 MALDI-TOF MS观察到的质量是3,208.9Da高强度峰,还存在次级4,486.4Da峰。所观察到的3206-3208Da前体离子质量和对3,206Da前体离子的ABI4800 MS/MS片段化分析符合所预测的胰蛋白酶IL-33片段MLMVTLSPTKDFWLHANNKEHSVELHK。此位于如下文所显示r人类IL-33-FlagHis10的总一级序列(SEQ ID NO.627)内:-
MSITGISPITEYLASLSTYNDQSITFALEDESYEIYVEDLKKDEKKDKVLLSYYESQHPSNESGDGVDGKMLM VTLSPTKDFWLHANNKEHSVELHKCEKPLPDQAFFVLHNMHSNCVSFECKTDPGVFIGVKDNHLALIKVDSSENLCTENILFKLSETNPAFLYKVVGAADYKDDDDKAAHHHHHHHHHH
所鉴定的肽与截短(LSPTKDFWLHANNKEHSVELHK)和两者的加扰变体一起然后以化学方式合成且用于验证T100 Biacore(GE医疗集团)结合研究。根据制造商的说明书使用标准胺偶联试剂使蛋白质G'(西格玛奥德里奇公司,P4689)与CM5传感器芯片(GE医疗集团)的表面共价偶联。蛋白质G'表面用于经由Fc结构域捕获H338L293或ST2-Fc,提供每个周期大约290RU的表面密度。使在HBS-EP+缓冲液中制备的一系列浓度的IL33肽通过传感器芯片表面。在每次抗体注射之间使用pH 1.7和pH 1.5的两个10mM甘氨酸洗液使表面再生。所得传感图是使用Biacore T100评估软件2.0.3(GE医疗集团)评估且拟合为1:1朗格缪尔结合模型,提供相对结合数据。
全长合成表位肽强烈结合至H338L293 IgG而非IL-33受体(ST2-Fc)。全长和截短合成肽均强烈结合至H338L293,但加扰全长和截短版本并非如此。此强烈证明通过肽切除所鉴定的IL-33片段不是人工产物,并且表示H338L293表位的核心。使0.625-20nM截短肽流经H338L293 IgG以估算亲和力。获得良好质量1:1拟合,给出2.36nM的KD值。
图33显示H338L293的表位作图。上图显示在H338L293用胰蛋白酶消化之前和之后的情况下对IL33:IgG复合物的SEC分析。下图显示由Lingel等人2009描述经确定强烈结合至IL-33结构内的颜色是黑色的H338L293的截短肽。
实例6 Cys→SerIL-33突变体
为理解人类IL-33的四个游离半胱氨酸在其转化为二硫键键合形式中的作用,生成所有可能的Cys向Ser突变体的完整图。大部分这些突变型IL-33分子与野生型IL-33相比显示相似的通过ST2的初始活性。在培养基中孵育之后,突变体不展示较快凝胶迁移,与缺乏形成2个二硫键的能力一致。然而,在培养基处理之后的效力损失在突变体之间变化。
生成IL-33半胱氨酸向丝氨酸突变体的图
编码人类IL-33(112-270)、登录号(Swiss-Prot)O95760的成熟组分的cDNA分子和在所有组合(总计15个)中具有1、2、3或4个半胱氨酸残基突变为丝氨酸的一系列变体是通过引物延伸PCR合成,并且克隆至pJexpress404(DNA2.0)中。野生型(WT)和突变型IL-33编码序列经修饰以在蛋白质的N末端含有10xhis、Avitag和Xa因子蛋白酶裂解位点(MHHHHHHHHHHAAGLNDIFEAQKIEWHEAAIEGR)。
使用编码IL-33突变体的DNA转化大肠杆菌BL21 Gold细胞。将经转化细胞在37℃下培养直至其达到0.3至0.5的OD600nm。培养物然后在18℃下生长直至其达到0.6至0.8的OD600nm,此时通过添加100mM IPTG诱导蛋白质表达。在18℃下继续培养另外20小时,随后通过离心收获细胞且储存在-80℃下。
使细胞再悬浮于含有完全蛋白酶抑制剂片剂(罗氏公司,11697498001)、2.5μ/ml全能核酸酶(默克密理博公司,70746-3)和1mg/ml重组溶菌酶的50mM磷酸钠(pH 8.0)、300mM NaCl、20mM咪唑、5mMβ-巯基乙醇中。再悬浮细胞使用恒定系统细胞瓦解剂在25kpsi下溶解,并且通过在4℃下在75,000xg下离心2小时澄清。通过在50mM磷酸钠(pH 8.0)、300mM NaCl、20mM咪唑、5mM β-巯基乙醇中的镍亲和层析,在50mM磷酸钠(pH 8.0)、300mMNaCl、250mM咪唑、5mM β-巯基乙醇中洗脱,自上清液纯化IL33。通过在磷酸盐缓冲盐水(pH7.4)中使用Superdex 75 10/300 GL柱(GE医疗集团)进行尺寸排阻层析进一步纯化IL33。通过SDS PAGE分析峰级分。将含有纯IL33的级分合并,并且通过Nanodrop A280测量来测量浓度。通过SDS PAGE和完整质谱分析最终样品。使蛋白质在液氮中快速冷冻。
表17.IL-33突变体序列
IL-33 Cys→Ser突变体的活性
为检查蛋白质完整性,在ST2依赖性信号传导测定中测量未处理的野生型IL-33(IL33-01)和IL-33突变体的活性。如实例1中所述由通过免疫荧光染色检测的p65/RelANFkB亚单位的核易位评估人脐静脉内皮细胞(Huvec)中响应于IL-33的NFκB信号传导。为研究在细胞培养基处理之后的活性损失,使IL-33蛋白01-16在伊斯科夫改良型杜尔贝科氏培养基(IMDM)中孵育过夜且相比于未处理蛋白质进行评估。
表18.HUVECNFkB易位测定中的IL-33突变体的活性
图34显示在用IMDM处理18小时之前和之后IL-33突变体的活性。已用培养基预处理的野生型IL-33(IL33-01)完全损失可检测活性。所有突变体展示效力损失比WT少。一些突变体完全免受效力损失。
人类肥大细胞细胞因子释放
为看见突变体在体外较长时间点在刺激下游反应时是否更有效,使用过夜肥大细胞IL-6产生测定测量人类IL-33野生型和所选突变体的活性。测定方法描述于实例2中。数据由IL33-11示例。
图35A显示IL33-11在刺激人类肥大细胞IL-6产生时的效力比IL-33 WT更大。使用不同浓度的无先前处理的IL33-01(WT)和IL33-11来刺激源自人类脐带血的肥大细胞的IL-6产生,其中x轴是以摩尔浓度计的IL-33浓度且y轴是在18小时之后在上清液中检测的IL-6水平。
突变型IL-33的体内效力
用异氟醚使雌性BALB/c小鼠(6-8周)简单麻醉,并且经鼻内给予总体积为50μl的0.1-10μg野生型人类IL-33(IL33-01,SEQ ID NO:632)、IL33-11(SEQ ID NO:643)或媒剂。在攻击之后24小时,用戊巴比妥钠使小鼠最终麻醉,随后进行支气管肺泡灌洗术(BAL)。收集BALF且如实例4中所述进行分析。
图35B显示鼻内给予IL33-11双重突变体相比于天然IL-33仅需要多达十分之一蛋白质用于等效ST2依赖性IL-5反应。此与小鼠肺环境中相比于野生型IL-33的更快速灭活的长期突变体活性一致。
IL33-11的NMR分析
为研究IL33-11与野生型人类IL-33蛋白(IL33-01)之间的构象差异,进行NMR分析。
15N-IL-33蛋白的产生
使用编码具有N末端6His标签和TEV蛋白酶裂解位点的野生型IL-33(SEQ ID.633)的DNA转化大肠杆菌BL21 Gold细胞。将经转化细胞在补充有5g/L15N-IsoGroTM粉末的M9基本培养基中在37℃下培养直至其达到0.6至0.8的OD600nm,此时通过添加100mM IPTG诱导蛋白质表达。在18℃下继续培养另外20小时,随后通过离心收获细胞且储存在-80℃下。使细胞再悬浮于含有完全蛋白酶抑制剂片剂(罗氏公司,11697498001)、2.5U/ml全能核酸酶(默克密理博公司,70746-3)和1mg/ml重组溶菌酶的50mM磷酸钠(pH 8.0)、300mM NaCl、20mM咪唑、5mM β-巯基乙醇中。再悬浮细胞使用恒定系统细胞瓦解剂在25kpsi下裂解,并且通过在4℃下在75,000xg下离心2小时澄清。通过在50mM磷酸钠(pH 8.0)、300mM NaCl、20mM咪唑、5mM β-巯基乙醇中的镍亲和层析,在50mM磷酸钠(pH 8.0)、300mM NaCl、250mM咪唑、5mM β-巯基乙醇中洗脱,自上清液纯化IL-33。在4℃下使洗脱的蛋白质与TEV蛋白酶一起孵育且透析至50mM磷酸钠(pH 8.0)、300mM NaCl、20mM咪唑、5mM β-巯基乙醇中。通过在50mM磷酸钠(pH 8.0)、300mM NaCl、20mM咪唑、5mM β-巯基乙醇中的镍亲和层析自未裂解IL-33分离去标签化蛋白质。通过使用AKTAxpress FPLC系统(GE医疗集团)在20mM磷酸钠(pH6.5)、100mM NaCl、5mM β-巯基乙醇中使用HiLoad 16/60 Superdex 75柱(GE医疗集团)进行尺寸排阻层析进一步纯化IL-33。通过SDS PAGE分析峰级分。将含有纯IL-33的级分合并,并且通过Nanodrop A280测量来测量浓度。使用Amicon 10,000分子量截断旋转浓缩器将蛋白质浓缩至1.8mg/ml(100μM)的最终浓度以用于NMR分析。
NMR分析
在配备有含Z轴梯度的5mm TCI冷冻探针的Bruker Avance 600MHz光谱仪运行Topspin 2.3上在298K下记录NMR光谱。如所述通过添加5%氧化氘制备15N标记的IL33 WT样品以允许样品锁定。使用sofast HMQC脉冲序列(Schanda,P;Brutscher,B;Very fast two-dimensional NMR spectroscopy for real-time investigation of dynamic events inproteins on the time scale of seconds[非常快的二维NMR光谱学实时研究蛋白质在几秒时间尺度上的动态事件],J.Am.Chem.Soc.[美国化学学会杂志](2005)127,8014-5)在(F2xF1)1024x64复点(状态-TPPI模式)、9615x1460Hz吹扫宽度、53.4msx43.8ms采集时间下采集示例性1H-15N相关光谱。
图36显示0.1mM经15N标记的IL33-01和IL33-11的1H-15N HMQC光谱叠加分别以黑色和红色绘图。指示相关残基的分配。数据显示峰正如预期在C208和C259周围移位。然而,从T185至A196存在比预期更多的峰移位,可能指示构型变化。
实例7使用IL33-11分离和鉴定抗IL-33抗体
Cys→Ser突变型IL-33蛋白使IL-33以其还原形式稳定,并且具有不同于野生型的构象(如实例6中所述)。突变蛋白可提供不同抗体表位的可用性或表位的更大寿命/稳定性,并且可因此适用于分离中和IL-33抗体,尤其是IL-33还原形式。此实例使用抗氧化突变型IL33-11蛋白分离噬菌体展示的IL-33抗体。
重组蛋白
N末端标签化His10/AvitagIL33-01(WT,SEQ ID NO.632),N末端标签化
通过转化大肠杆菌BL21(DE3)细胞产生His10/Avitag IL33-11(C208S、C259S,SEQID 643)和N末端标签化His10/Avitag食蟹猴IL-33(SEQ ID 649)。在自体诱导培养基(Overnight ExpressTM自体诱导系统1,默克密理博公司,71300-4)中在37℃下培养经转化细胞18小时,随后通过离心收获细胞且储存在-20℃下。使细胞再悬浮于含有完全蛋白酶抑制剂混合物片剂(罗氏公司,11697498001)、2.5μ/ml全能核酸酶(默克密理博公司,70746-3)和1mg/ml重组溶菌酶的BugBuster(默克密理博公司,70921-5)中。通过在4℃下在75,000xg下离心2小时使细胞裂解物澄清。通过在50mM磷酸钠(pH 8.0)、300mM NaCl、20mM咪唑中的镍亲和层析,在50mM磷酸钠(pH 8.0)、300mM NaCl、250mM咪唑中洗脱,自上清液纯化IL-33蛋白。通过在磷酸盐缓冲盐水(pH 7.4)中使用Superdex 75 10/300 GL柱进行尺寸排阻层析进一步纯化IL-33。通过SDS PAGE分析峰级分。将含有纯IL-33的级分合并,并且通过Nanodrop A280测量来测量浓度。通过SDS PAGE分析最终样品。
实例1中所述的人类ST2载体经修饰以含有具有C末端Flag-His标签的人类ST2ECD(SEQ ID NO650)。
表19.试剂
蛋白质修饰
遵循制造商的方案使用生物素连接酶(BirA)(Avidty,Bulk BirA)对含有Avitag序列基元(GLNDIFEAQKIEWHE)的蛋白质进行生物素化。如实例1中所述使用EZ连接磺基-NHS-LC-生物素(赛默公司/皮尔斯公司,21335)经由游离胺对本文所用的所有IgG和经修饰的无Avitag蛋白质进行生物素化。
选择
基本上如实例1中所述进行选择但使用IL33-11 C208S、C259S突变蛋白。简言之,使scFv噬菌体粒子与生物素化重组IL-33-11溶液一起孵育(经由Avi标签生物素化)。将粒子与100nM生物素化重组IL33-11一起孵育2小时。然后,遵循制造商建议将结合至抗原的scFv捕获于链霉亲和素涂覆的顺磁性珠粒(,M-280)上。在一系列洗涤周期中使用PBS-吐温洗掉未结合噬菌体。洗脱留在抗原上的噬菌体粒子,感染进入细菌,并挽救以用于下一轮筛选。在浓度降低的生物素化IL33-11(50nM和25nM)存在下再进行两轮选择。
未经纯化scFv抑制IL-33与ST2结合
使来自在上文所述的两轮或三轮选择之后的选择输出的代表性数目的个别克隆在96孔板中生长。scFv在细菌周质中表达(Kipriyanov等人,J Immunol Methods[免疫学方法杂志]200(1-2):69-77(1997)),并且在基于均相FRET(荧光共振能量转移)(均相时间分辨荧光,Cis生物国际公司)的IL-33:ST2结合测定中针对其抑制活性进行筛选。基本上,方法类似于实例1中所述的那些方法。在此测定中,样品与His标签化的人类ST2竞争结合至生物素化人类IL33-01(IL33-01,SEQ ID No.632)(野生型)或生物素化人类IL33-11(IL33-11,SEQ ID No.643)。
通过添加5微升各抗体测试样品稀释液至384孔小体积测定板(柯仕达公司,3673)中来测试未经纯化抗IL-33抗体样品对生物素化IL-33结合His标签化ST2的抑制。接着,制备含有4nM人类His标签化ST2和5nM抗XL665检测剂(Cis生物国际公司,61FG2XLB)的溶液,并且添加2.5微升混合物至测定板中。此后添加含有2.4nM生物素化人类IL33-01或IL33-11以及1.5nM链霉亲和素穴状化合物检测剂(Cis生物国际公司,610SAKLB)的2.5微升溶液。在杜尔贝科氏PBS(英杰公司,14190185)中含有0.8M氟化钾(VWR,26820.236)和0.1%牛血清白蛋白(BSA,PAA,K05-013)的测定缓冲液中进行所有稀释。将测定板在室温下孵育1小时,并且使用EnVision读板仪(珀金埃尔默公司)在620nm和665nm发射波长下读取时间分辨荧光。将板在4摄氏度下孵育另外16小时(过夜),并且再次读取时间分辨荧光。通过仅用链霉亲和素穴状化合物检测剂置换生物素化人类IL33-01或IL33-11与链霉亲和素穴状化合物检测剂的组合来定义阴性对照(非特异性结合)。如实例1中所述分析数据。
经纯化scFv抑制IL-33与ST2结合
对显示作为未纯化周质提取物在两个时间点对IL-33:ST2相互作用的抑制效果的单链Fv克隆进行DNA测序(Osbourn等人,Immunotechnology[免疫技术]2(3):181-96(1996);Vaughan等人,Nat Biotechnol[自然生物技术]14(3):309-14(1996))。独特scFv再次在细菌中表达且通过亲和层析纯化(如WO 01/66754中所述)。这些样品的效力是通过如上文所述的经纯化制剂的稀释系列与His标签化的人类ST2竞争结合至生物素化IL33-01或生物素化IL33-11来确定。将测定板在室温下孵育1小时(1小时孵育),或将测定板在室温下孵育1小时,随后在4摄氏度下孵育16小时(过夜孵育)。选择能够在两个时间点抑制IL-33:ST2相互作用的经纯化scFv制剂用于转化为IgG格式。
图37A:显示在1小时孵育之后在增加IL-33 scFv抗体33v20064浓度的情况下对由人类IL-33-01结合至人类ST2所产生的FRET信号的抑制,其中x轴是以摩尔浓度计的抗体浓度且y轴是特异性结合%。
图37B:显示在1小时孵育之后在增加IL-33 scFv抗体33v20064浓度的情况下对由IL33-11结合至人类ST2所产生的FRET信号的抑制,其中x轴是以摩尔浓度计的抗体浓度且y轴是特异性结合%。
图37C:显示在过夜孵育之后在增加IL-33 scFv抗体33v20064浓度的情况下对由人类IL-33-01结合至人类ST2所产生的FRET信号的抑制,其中x轴是以摩尔浓度计的抗体浓度且y轴是特异性结合%。
图37D:显示在过夜孵育之后在增加IL-33 scFv抗体33v20064浓度的情况下对由IL33-11结合至人类ST2所产生的FRET信号的抑制,其中x轴是以摩尔浓度计的抗体浓度且y轴是特异性结合%。
将scFv重新格式化为IgG1
如实例1中所述将能够抑制IL-33:ST2相互作用的经纯化scFv制剂转化为全免疫球蛋白G1(IgG1)抗体格式。抑制程度类似于或大于IL330004的抗体(实例1,SEQ ID No.12和17)直接用于进一步分析。这类抗体由33v20064示例。对应于抗体33v20064的不同区域的SEQ ID NO.显示于表20中。
表20.抗IL-33抗体序列
经纯化IgG抑制IL-33与ST2结合
在生物化学(均相时间分辨荧光,Cis生物国际公司)竞争测定(其原理描述于上文中)中评估抗IL-33抗体抑制生物素化IL-33-01结合至-His标签化的ST2受体的能力。通过经纯化IgG的稀释系列与人类-His标签化的ST2竞争结合至人类生物素化人类IL-33-01(SEQ ID No.632)来确定经纯化IgG制剂的活性。
图38A:显示在1小时孵育之后在增加33v20064 IgG1抗体浓度的情况下对由人类IL-33结合至人类ST2所产生的FRET信号的抑制,其中x轴是以摩尔浓度计的抗体浓度且y轴是特异性结合%。
图38B:显示在过夜孵育之后在增加33v20064 IgG1抗体浓度的情况下对由人类IL-33结合至人类ST2所产生的FRET信号的抑制,其中x轴是以摩尔浓度计的抗体浓度且y轴是特异性结合%。
IgG抑制在Huvec中的IL-6产生
评估33v20064对HUVEC中IL-33刺激的IL-6产生的抑制,其方法描述于实例2中。使用His-Avi人类IL-33野生型(IL33-01,SEQ ID No.632)(30ng/mL)或His-Avi突变型IL-33(IL33-11,SEQ ID No.643)(30ng/mL)在不同浓度的测试抗体存在下刺激HUVEC。
图39A:显示抗体33v20064相比于IL330004和抗NIP IgG1阴性对照抗体NIP228对自IL33-01(WT)刺激的HUVEC的IL-6产生的抑制,其中x轴是以摩尔浓度计的抗体浓度且y轴是最大反应%。33v20064显示在高抗体浓度下对WT IL-33反应的部分抑制,而IL330004显示无效果。
图39B:显示抗体33v20064相比于IL330004和抗NIP IgG1阴性对照抗体NIP228对自IL33-11刺激的HUVEC的IL-6产生的抑制,其中x轴是以摩尔浓度计的抗体浓度且y轴是最大反应%。33v20064相比于IL330004显示对IL33-11突变体刺激的IL-6产生的更完全抑制。
抗IL-33抗体的交叉反应性
使用基于均相FRET(荧光共振能量转移)(均相时间分辨荧光,Cis生物国际公司)的IL-33:mAb结合测定来确定抗IL-33抗体33v20064的交叉反应性。在此测定中,样品与生物素化人类IL-33-01(SEQ IDNo.632)竞争结合至DyLight标记的33v20064 IgG。
表21:FRET测定试剂
通过添加5微升各IL-33样品稀释液至384孔小体积测定板(柯仕达公司,3673)中来测试人类、食蟹猴和小鼠IL-33His(实例1中所述)对人类IL-33结合至DyLight标记的33v20064的抑制。接着,制备含有20nM DyLight标记的33v20064的溶液,并且添加2.5微升至测定板(按照制造商的说明书使用试剂盒(英诺华生物科学公司(InnovaBiosciences),326-0010)标记)中。此后添加含有1.2nM生物素化人类IL-33-01以及1.5nM链霉亲和素穴状化合物检测剂(Cis生物国际公司,610SAKLB)的2.5微升溶液。在杜尔贝科氏PBS(英杰公司,14190185)中含有0.8M氟化钾(VWR,26820.236)和0.1%牛血清白蛋白(BSA,PAA,K05-013)的测定缓冲液中进行所有稀释。将测定板在室温下孵育1小时,并且使用EnVision读板仪(珀金埃尔默公司)在620nm和665nm发射波长下读取时间分辨荧光。通过计算665/620nm比率,随后计算各样品的ΔF%值分析数据。665/620nm比率用于使用方程式1校正样品干扰。然后使用方程式2计算各样品的ΔF%。通过仅用链霉亲和素穴状化合物检测剂置换生物素化人类IL-33与链霉亲和素穴状化合物检测剂的组合来定义阴性对照(非特异性结合)。ΔF%值随后用于计算特异性结合%,如方程式3所述。IC50值使用GraphPadPrism软件通过使用四参数逻辑斯谛方程式(方程式4)的曲线拟合来确定。这些结果表明33v20064与食蟹猴IL-33交叉反应。而33v20064不显示与小鼠IL-33竞争。
图40A:显示在增加测试蛋白的浓度的情况下对由生物素化人类IL-33-01结合至DyLight标记的33v20064所产生的FRET信号的抑制,其中x轴是以摩尔浓度计的测试样品浓度且y轴是特异性结合%。在人类和食蟹猴而非小鼠IL-33的情况下观察到FRET信号的抑制。
抗IL-33抗体的选择性
使用基于均相FRET(荧光共振能量转移)(均相时间分辨荧光,Cis生物国际公司)的IL-33:mAb结合测定来确定抗IL-33抗体33v20064的选择性。在此测定中,样品与生物素化His-Avi人类IL-33(IL33-01,SEQ ID No.632)竞争结合至野生型DyLight标记的33v20064 IgG。如上文所述测试人类IL-1α和人类IL-1β对生物素化IL-33-01结合DyLight标记的33v20064的抑制。这些结果表明33v20064不显示与人类IL-1α或IL-1β竞争。
图40B:显示在增加测试蛋白的浓度的情况下对由生物素化人类IL-33-01结合至DyLight标记的33v20064所产生的FRET信号的抑制,其中x轴是以摩尔浓度计的测试样品浓度且y轴是特异性结合%。在人类IL-1α或IL-1β的情况下未观察到FRET信号的抑制。
实例8抗IL-33 Ab 33v20064的优化
种系化33v20064的框架区
将亲本抗体33v20064的VH和VL结构域的氨基酸序列与IMGT数据库(Lefranc,M.P.等人Nucl.AcidsRes.2009.37(Database issue):D1006-D1012[核酸研究,2009,37(数据库发行号):D1006-D1012])中的已知人类种系序列进行比对,并且通过序列相似性鉴定最接近种系。对于33v20064抗体谱系的VH结构域,此为IGHV3-23*01。对于VL结构域,其为IGLV3-1。在33v20064上进行种系化,随后进行亲和力成熟过程。不考虑保持不变的维尼尔残基(Foote 1992),在不同于种系的33v20064 VL结构域的框架中存在6个残基,用适当诱变引物使用Kunkel诱变方法(Clackson,T.和Lowman,H.B.Phage Display–A PracticalApproach,2004.Oxford University Press[噬菌体展示-一种实用的方法,2004,牛津大学出版社])使其中5个恢复至最接近种系序列。此种系化的产物是33_640001。序列ID号描述于表22中。
表22.抗体33v20064种系序列
经纯化scFv抑制IL-33与ST2结合
将33_640001的活性与其非种系化亲本33v20064进行比较。如实例7中所述在生物化学(均相时间分辨荧光,Cis生物国际公司)竞争测定中评估scFv抗体抑制生物素化HisAvi人类IL-33(IL33-01,SEQ ID No.632)结合至-His标签化的ST2受体的能力。
图41A:显示在1小时孵育之后在增加scFv抗体浓度的情况下对由人类IL-33结合至人类ST2所产生的FRET信号的抑制,其中x轴是以摩尔浓度计的抗体浓度且y轴是特异性结合%。33_640001具有等效于其非种系化亲本的活性。
图41B:显示在过夜孵育之后在增加scFv抗体浓度的情况下对由人类IL-33结合至人类ST2所产生的FRET信号的抑制,其中x轴是以摩尔浓度计的抗体浓度且y轴是特异性结合%。33_640001具有等效于其非种系化亲本的活性。
亲和力成熟
使用靶向诱变方法和基于亲和力的噬菌体展示选择来优化33v20064。使用如所述(Clackson 2004)的标准分子生物学技术通过寡核苷酸指导的可变重链(VH)互补决定区3(CDR3)和轻链(VL)CDR3诱变来形成来源于种系化亲本(33_640001)的大scFv噬菌体文库。对于VH CDR3,还包括在Kabat定义的CDR之前的两个维尼尔位置(即,VH位置93和94)以用于在靶向诱变方法中的潜在优化。使文库经受基于亲和力的噬菌体展示筛选以便选择具有针对人类IL-33的更高亲和力的变体。这些选择是通过使生物素化His-Avi人类IL-33野生型(IL33-01,SEQ ID NO.632)和生物素化His Avi突变型IL-33(IL33-11,SEQ ID NO.643)抗原在依序轮回中交替或仅生物素化IL33-11抗原在所有轮回中交替来进行。基本上如先前所述(Thompson 1996)进行选择。简言之,使scFv噬菌体粒子与重组生物素化抗原溶液一起孵育。然后,遵循制造商建议将结合至抗原的scFv噬菌体捕获于链霉亲和素涂覆的顺磁性珠粒(M-280)上。然后如先前所述(Osbourn,J.K.等人,Immunotechnology[免疫技术],1996.2(3):第181-96页)使所选scFv噬菌体粒子获救,并且在浓度降低的生物素化抗原(典型地50nM至10pM)存在下在五轮选择内重复选择过程。
还基本上如Hanes等人所述使用核糖体展示技术优化33v20064(Hanes,J.等人,Methods in Enzymology[酶学方法],2000.328:第404-30页)。使用亲本scFv克隆33v20064作为用于文库构建和转化为核糖体展示格式的模板用于后续选择。在DNA水平上,将T7启动子添加在5'端,以有效地转录为mRNA。在mRNA水平上,构建体含有原核生物核糖体结合位点(夏因-达尔加诺(Shine-Dalgarno)序列)。在单链的3'端,移除终止密码子,并添加M13细菌噬菌体gIII(基因III)的一部分作为初生scFv多肽与核糖体之间的间隔区(Hanes 2000)。
遵循制造商的建议使用DiversifyTMPCR(聚合酶链式反应)随机诱变试剂盒(BD生物科学公司(BD Biosciences))通过随机诱变形成来源于亲本(33v20064)scFv构建体的核糖体展示文库。选择此易错PCR(EP)的条件以引入平均每1000个碱基对8.1个核苷酸变化(根据制造商)。所得EP文库然后用于基于亲和力的核糖体展示选择(Hanes 2000)。利用RiboMAXTM大规模RNA生产系统(T7)(普洛麦格公司),按照制造商方案,以及基于大肠杆菌的无原核细胞翻译系统在体外表达scFv。通过使生物素化IL33-01和生物素化IL33-11抗原在依序轮回中交替或仅生物素化IL-33-11抗原在所有轮回中交替,使所产生的scFv抗体-核糖体-mRNA(ARM)复合物以溶液形式与生物素化人类IL-33抗原一起孵育。遵循制造商建议(Dynal)将特异性结合的三元复合物(IL-33:ARM)捕获在链霉亲和素涂覆的顺磁性珠粒(M-280)上,同时洗掉未结合ARM。然后将编码结合的scFv的mRNA通过逆转录-PCR(RT-PCR)恢复。在浓度降低的生物素化人类IL-33(100nM至100pM,在5轮内)的情况下对所得群体重复选择过程以进行更多轮选择,使得富集且从而选择对IL-33具有较高亲和力的克隆。将第3轮、第4轮和第5轮选择的输出亚克隆至pCantab6(McCaffeerty,J.等人,ApplBiochem Biotechnol[应用生物化学与生物技术],1994.47(2-3):第157页)中,并且如下文所述鉴定改进的克隆。
未经纯化scFv抑制IL-33与mAb结合
使代表数量的来自选择输出的个别克隆在96孔板中生长。scFv在细菌周质中表达(Kipriyanov等人,J Immunol Methods[免疫学方法杂志]200(1-2):69-77(1997)),并且在基于均相FRET(荧光共振能量转移)(均相时间分辨荧光,Cis生物国际公司)的IL-33:mAb结合测定中针对其抑制活性进行筛选。在此测定中,样品与DyLight标记的33v20064IgG竞争结合至生物素化His Avi IL-33-01(SEQ ID NO.632)或生物素化His Avi食蟹猴IL-33(SEQ ID NO.649)。此类表位竞争测定是基于如下原理:识别与经标记的抗IL-33IgG相似的表位的测试抗体样品将与经标记的IgG竞争结合至生物素化IL-33,导致测定信号减少。
通过添加5微升样品至384孔小体积测定板(柯仕达公司,3673)中来测试未经纯化抗IL-33抗体样品对生物素化His Avi IL33-01(人类)或生物素化His Avi食蟹猴IL-33结合DyLight标记的33v20064的抑制。接着,制备含有2.4nM DyLight标记的33v20064用于人类IL-33测定且制备6nM DyLight标记的33v20064用于食蟹猴测定,并且添加2.5微升至测定板(按照制造商的说明书使用试剂盒(英诺华生物科学公司,326-0010)标记)中。此后添加含有0.8nM生物素化人类IL-33-01以及0.75nM链霉亲和素穴状化合物检测剂(Cis生物国际公司,610SAKLB)的2.5微升溶液用于人类测定,或含有4nM生物素化食蟹猴IL-33以及1.5nM链霉亲和素穴状化合物检测剂(Cis生物国际公司,610SAKLB)的2.5微升溶液用于食蟹猴测定。在杜尔贝科氏PBS(英杰公司,14190185)中含有0.8M氟化钾(VWR,26820.236)和0.1%牛血清白蛋白(BSA,PAA,K05-013)的测定缓冲液中进行所有稀释。将测定板在室温下孵育1小时,并且使用EnVision读板仪(珀金埃尔默公司)在620nm和665nm发射波长下读取时间分辨荧光。通过计算665/620nm比率,随后计算各样品的ΔF%值分析数据。665/620nm比率用于使用方程式1校正样品干扰。然后使用方程式2计算各样品的ΔF%。通过仅用链霉亲和素穴状化合物检测剂置换生物素化IL-33与链霉亲和素穴状化合物检测剂的组合来定义阴性对照(非特异性结合)。ΔF%值随后用于计算特异性结合%,如方程式3所述。
在表位竞争测定达到其灵敏度极限时,用使用中间优化的mAb 33_640027的测定来测试未经纯化scFv样品。该测定基本上如对于33v20064竞争测定所述,作了以下修改:制备20nM DyLight标记的33_640027且添加2.5微升至测定板中。此后添加含有0.32nM生物素化人类IL-33-01以及0.75nM链霉亲和素穴状化合物检测剂(Cis生物国际公司,610SAKLB)的2.5微升溶液用于人类测定,或含有0.8nM生物素化食蟹猴IL-33以及1.5nM链霉亲和素穴状化合物检测剂(Cis生物国际公司,610SAKLB)的2.5微升溶液用于食蟹猴测定。
经纯化scFv抑制IL-33与mAb结合
对显示作为未纯化周质提取物对IL-33:mAb相互作用的抑制效果的单链Fv克隆进行DNA测序(Osbourn等人,Immunotechnology[免疫技术]2(3):181-96(1996);Vaughan等人,Nat Biotechnol[自然生物技术]14(3):309-14(1996))。独特scFv再次在细菌中表达且通过亲和层析纯化(如WO 01/66754中所述)。通过经纯化制剂的稀释系列与DyLight标记的33v20064IgG或DyLight标记的33_640027 IgG竞争结合至生物素化His Avi IL33-01、生物素化His Avi IL33-11或生物素化HisAvi食蟹猴IL-33来测试经纯化抗IL-33抗体样品的抑制效力。方法如前述部分中所述。
表23.表位竞争测定中scFv抗体的活性
将scFv重新格式化为IgG1
如实例1中所述将来自IL-33:mAb结合测定的具有例如希望的特性的单链Fv克隆转化为全免疫球蛋白G1(IgG1)抗体格式。这些包括抗体33_640027(来源于EP文库选择)和33_640047、33_640050(来源于VH CDR3区块诱变文库选择),对应于这些抗体的不同区域的SEQ ID NO显示于表24中
表24.IL33抗体的序列
经纯化IgG抑制IL-33与mAb结合
如所述在生物化学(均相时间分辨荧光,Cis生物国际公司)竞争测定中评估抗IL-33抗体抑制生物素化His Avi IL33-01、生物素化His Avi IL33-11或生物素化HisAvi食蟹猴IL-33结合至DyLight标记的33v20064 IgG或DyLight标记的33_640027 IgG的能力。选择来自IL-33:mAb结合测定的具有令人希望的特性的IgG用于进一步分析。
IgG抑制在Huvec中的IL-8产生
使用细胞因子释放测定评估抗IL-33抗体对IL-33诱导的人脐静脉内皮细胞(Huvec)IL-8产生的抑制。基本上如实例2中所述的作了轻微修改,在测试抗体或ST2.Fc(R&D系统公司)存在或不存在下使细胞暴露于IL-33。在完全培养基中将经纯化IgG的测试溶液(一式两份地)稀释至所希望的浓度。在与适当测试抗体混合的完全培养基中制备N末端HisAvi IL-33(IL33-01,SEQ ID NO632),得到2ng/mL的最终IL-33浓度。将所有样品在室温下孵育30分钟,随后将IL-33/抗体混合物转移至测定板。在18-24小时孵育之后,如实例2中所述通过适于铕读取的ELISA(R&D系统公司,DY208)在细胞上清液中测量IL-8。使用GraphpadPrism软件分析数据。通过使用四参数逻辑斯谛方程式的曲线拟合确定IC50值。计算IC50值且概述于下表25中。
图42A显示在33v20064、33_640050、人类ST2-Fc或对照mAb存在下经IL33-01刺激的HUVEC,其中x轴是以摩尔浓度计的抗体浓度且y轴是最大反应百分比(IL-8产生)。
哺乳动物全长IL-33的中和
全长IL-33也是有活性的(Cayrol等人,Proc Natl Acad Sci U S A[美国国家科学院院刊]106(22):9021-6(2009);Hayakawa等人,Biochem Biophys Res Commun[生物化学和生物物理学研究通讯]387(1):218-22(2009);Talabot-Ayer等人,J Biol Chem.[生物化学杂志]284(29):19420-6(2009))。
为评估抗体中和全长IL-33的能力,在经急性酶(PAA,#L11-007)转染之后24小时收获表达全长(FL)HuIL-33的HEK293-EBNA细胞(和经模拟物转染的对照)。将细胞用PBS稀释至1x108个/mL,并且使用组织均质器均质化30秒。通过离心移除细胞碎片。用不同浓度的细胞裂解物刺激HUVEC。仅在经全长IL-33转染的细胞裂解物而非经模拟物转染的细胞裂解物的情况下观察到细胞因子产生刺激。选择刺激次最大细胞因子释放的1:1000裂解物浓度(大约EC50)用于抗体中和研究。如上文所述进行实验。计算IC50值且概述于下表25中。
图42B显示在33v20064、33_640050、人类ST2-Fc或对照mAb存在下经全长IL-33细胞裂解物刺激的HUVEC,其中x轴是以摩尔浓度计的抗体浓度且y轴是最大反应百分比(IL-8产生)。
表25.Huvec IL-8测定中的IC50值
IgG防止IL-33二硫键键合形式
使IL-33-01(0.14nM或3ng/mL)在含有1%BSA的IMDM或PBS中在抗体(25μg/mL)或人类ST2-Fc(105μg/mL)存在或不存在下在37℃、5%CO2下孵育0-24小时。在不同时间点移出等分试样且添加至含有PBS或sST2的预冷却板中(最终浓度10.5μg/mL)。在收获时将sST2掺人对照mAb和未处理样品中以使继续进行的IL-33氧化反应停止。将样品等分至预冷冻96孔板中且储存在-80℃下。在DELFIA检测系统(珀金埃尔默公司)替代链霉亲和素-HRP的取代的情况下根据制造商的说明书(R&D系统公司,目录号DY3625,批号1362797)进行人类IL-33 ELISA且继续。简言之,将黑色96孔Maxisorp板在室温下用50ul/孔捕获抗体涂覆过夜。将板在PBS中用300μL 0.05%吐温-20洗涤3次且在室温下用150uL1%BSA/PBS阻断1小时。将板洗涤3次,并且在振荡(400rpm)下在室温下添加50ul/孔样品或标准品至板中持续2小时。将板洗涤3次,并且在振荡(400rpm)下在室温下添加50ul/孔检测抗体至板中持续2小时。如先前所述洗涤板,并且在室温、避光下在振荡(400rpm)下将在DELFIA测定缓冲液中以1/1000稀释的50ul/孔链霉亲和素-铕添加至板中持续40分钟。用300ul/孔DELFIA洗涤缓冲液洗涤板7次。添加50ul/孔DELFIA增强溶液(预温热至室温)至板中。在室温、避光下孵育10分钟之后,使用EnVision读板仪(珀金埃尔默公司)测量荧光。在Microsoft Excel中进行标准和数据插值,在GraphPad Prism软件中进行后续分析。
如实例4图24A中所论述,此ELISA检测在此实验中所测量的IL-33浓度范围内的显著二硫键键合IL-33(IL33-DSB)。ELISA在本文中用于监测在测试抗体存在下IL-33向其二硫键键合形式的转化。
图43显示在测试抗体存在或不存在下在IMDM(图43A)或PBS(图43B)中孵育期间IL33-01向其二硫键键合形式(IL33-DSB)的转化,其中x轴是以小时计的时间且y轴是IL-33-DSB浓度。IL330004和33v20064使IL-33转化为IL33-DSB的速率减慢。33_640050和ST2.Fc在所测试的时间过程内防止向IL-33-DSB转化。
有益突变重组和进一步优化
出于产生进一步亲和力改进的目的,使自前述选择和筛选级联鉴定的有益突变以多种不同方式通过简单加成方法或经由在进一步选择下的重组文库方法重组。
序列分析表明存在两个单点突变‘热点’,其在许多前导抗体序列中是普遍的;在VHCDR3中的I98M和在VLCDR2中的Q50R(Kabat编号)。使用标准分子生物学技术将这两个突变移植至33_640001构建体上,产生新抗体33_640036。在进一步重组中,使33_640047的VH与33_640036的VL配对,产生抗体33_640117。这些是使用加成方法的序列重组的实例。SEQ IDNO显示于表26中。
表26.IL33抗体的序列
另外,来自覆盖VHCDR3和VLCDR3区的区段诱变文库的选择输出已显示亲和力改进和良好序列多样性,并且因此使用群体克隆方法重组。第3轮选择输出被重组形成文库,其中克隆含有随机配对的单独随机VHCDR3和VLCDR3序列。这些重组VHCDR3/VLCDR3文库然后用于核糖体展示选择,通过使生物素化His Avi人类IL-33野生型(IL33-01,SEQ ID NO.632)和生物素化His Avi突变型IL-33(IL33-11,SEQ ID NO.643)抗原在依序轮回中交替或仅生物素化His Avi IL33-11抗原在所有轮回中交替来进行。在浓度降低的生物素化抗原(50nM至30pM)存在下在五轮选择内基本上如对于个别CDR3文库所述进行选择。
由来自重组VHCDR3/VLCDR3文库的选择输出的代表性数目的个别scFv制备粗的含scFv周质提取物。如所述在生物化学(均相时间分辨荧光,Cis生物国际公司)竞争测定中评估抗IL-33抗体抑制生物素化His Avi IL33-01或生物素化His Avi食蟹猴IL-33结合至DyLight标记的33v20064 IgG或DyLight标记的33_640027 IgG的能力。对与亲本scFv相比显示显著改进的抑制效果的scFv变体和产生预重组的前导进行DNA测序,并且产生独特重组变体作为经纯化scFv且如前述部分中所述进行测试。
获自这些重组文库的优化抗体由33_640076、33_640081、33_640082、33_640084、33_640086和33_640087示例。这些抗体的SEQ ID NO显示于表27中。
表27.IL33抗体的序列
在核糖体展示选择程序期间由于重复几轮的PCR扩增而将另外的自发突变引入这些scFv格式抗体的可变区中。这些事件增加输出的序列多样性,但在其发生于框架区中时通常是不令人希望的。因此,使用标准分子生物学技术使在33_640076、33_640081、33_640082、33_640084、33_640086和33_640087的框架区中发生的自发突变恢复至如实例3中所述的IgG构建体上的种系。此类发生于任一CDR或与CDR相邻的维尼尔残基(例如,通过Kabat编号的VH位置27、28、29、30、93和94)中的自发突变保持不变。作为增加亲和力的另外策略,同时还将先前鉴定的‘热点’(在VL CDR2中的Q50R突变)移植至构建体上。由这些种系化和热点移植修饰产生的抗体被命名为33_640076-1、33_640081-A、33_640082-2、33_640084-2、33_640086-2和33_640087-2,分别对应于其亲本抗体33_640076、33_640081、33_640082、33_640084、33_640086和33_640087。这些抗体的SEQ ID NO.显示于表28中。
表28.IL33抗体的序列
另外的CDR的优化
作为增加亲和力的另一策略,优化另外的CDR。使用如所述(Clackson 2004)的标准分子生物学技术通过寡核苷酸指导的可变重链(VH)CDR1和CDR2和轻链(VL)CDR1和CDR2的诱变来形成来源于种系化亲本(33_640001)的大scFv噬菌体文库。如对于VHVLCDR3文库所述进行选择和筛选。改进最多的抗体变体获自VHCDR2文库。这些抗体变体由33_640166、33_640169、33_640170示例。这些抗体的SEQ ID NO显示于表29中。
表29.IL33抗体的序列
作为实现进一步亲和力改进的另外策略,使用标准分子生物学方法将33_640166、33_640169和33_640170的VHCDR2序列移植至33_640076-1、33_640082-2、33_640086-2和33_640087-2的IgG构建体上。由这些重组产生的抗体由33_640076-4、33_640082-4、33_640082-6、33_640082-7、33_640086-6和33_640087-7示例。序列来源和SEQ ID NO显示于表30中。
表30.IL33抗体的序列来源和SEQ ID号
还使用群体克隆和选择方法进行有益VHCDR3/VLCDR3和VHCDR2序列的重组。使用标准分子生物学技术使来自覆盖VHCDR2区的区段诱变文库的第3轮选择输出与在群体克隆方法中重组VHCDR3/VLCDR3文库的第3轮选择输出重组。使包含大量scFv变体的选择输出重组形成文库,其中克隆含有来源于VHCDR3/VLCDR3和VHCDR2选择的随机配对序列。在浓度降低的生物素化抗原(典型地3nM至3pM)存在下在五轮选择内如对于VHVLCDR3文库所述进行选择。如对于VHVLCDR3文库所述在生物化学测定中筛选来自选择输出的代表性数目的个别scFv的粗的含scFv周质提取物。对与亲本scFv相比显示显著改进的抑制效果的scFv变体和产生预重组的前导进行DNA测序。
在利用33_640027的表位竞争测定达到其灵敏度极限时,用使用33_640117的测定来测试经纯化scFv样品。该测定基本上如对于33v20064竞争测定所述,作了以下修改:制备2.5nM DyLight标记的33_640117且添加2.5微升至测定板中。此后添加含有0.12nM生物素化人类IL-33-01以及0.75nM链霉亲和素穴状化合物检测剂(Cis生物国际公司,610SAKLB)的2.5微升溶液用于人类测定,或含有0.24nM生物素化食蟹猴IL-33以及1.5nM链霉亲和素穴状化合物检测剂(Cis生物国际公司,610SAKLB)的2.5微升溶液用于食蟹猴测定。在一小时和过夜孵育之后读取荧光。直接取用在两个时间点最有效力样品以重新格式化为IgG。
独特重组变体被评估为经纯化scFv,并且然后选择活性最强scFv且如实例1中所述转化为IgG1格式。获自这些重组文库的抗体由33_640201和33_640237示例。使在核糖体展示选择期间引入33_640201和33_640237的框架区中的自发突变恢复至如先前在此部分中所述的种系序列,并且其种系化对应物被分别命名为33_640201-2和33_640237-2。这些抗体的SEQ ID显示于表31中。
表31.IL33抗体的序列
VHCDR3/VLCDR3和VHCDR2的通过合理重组或群体方法优化的抗体数据由33_640082-6、33_640087-7、33_640201和33_640237示例于图44和45中。
经纯化IgG抑制IL-33与mAb结合
如上文所述在生物化学(均相时间分辨荧光,Cis生物国际公司)竞争测定中评估抗IL-33抗体抑制生物素化His Avi人类IL-33或食蟹猴His Avi IL-33结合至DyLight标记的33_640117 IgG的能力。
图44A显示在1小时孵育之后在增加抗体33v20064、33_640050、33_640082-6、33_640087-7、33_640201和33_640237的浓度的情况下对由生物素化人类IL-33(IL33-01)结合至DyLight标记的33_640117 IgG所产生的FRET信号的抑制,其中x轴是以摩尔浓度计的抗体浓度且y轴是特异性结合%。
图44B显示在过夜孵育之后在增加抗体33v20064、33_640050、33_640082-6、33_640087-7、33_640201和33_640237的浓度的情况下对由生物素化人类IL-33(IL33-01)结合至DyLight标记的33_640117IgG所产生的FRET信号的抑制,其中x轴是以摩尔浓度计的抗体浓度且y轴是特异性结合%。
图44C显示在1小时孵育之后在增加抗体33v20064、33_640050、33_640082-6、33_640087-7、33_640201和33_640237的浓度的情况下对由生物素化食蟹猴His Avi IL-33结合至DyLight标记的33_640117 IgG所产生的FRET信号的抑制,其中x轴是以摩尔浓度计的抗体浓度且y轴是特异性结合%。
表32.117个表位竞争测定中IgG1抗体的IC50值
IgG抑制在Huvec中的IL-8产生
在Huvec IL-8产生测定中测试IgG。如先前所述在测试抗体存在或不存在下使细胞暴露于N末端His Avi IL-33(IL33-01,SEQ ID NO632)或哺乳动物全长IL-33细胞裂解物(FL-IL33裂解物)。计算IC50值且概述于下表33中。
图45A显示在测试抗体33_640050、33_640082-6、33_640087-7、33_640201和33_640237存在下经IL33-01刺激的HUVEC,其中x轴是以摩尔浓度计的抗体浓度且y轴是最大反应百分比(IL-8产生)。
图45B显示在测试抗体33_640050、33_640082-6、33_640087-7、33_640201和33_640237存在下经全长IL-33细胞裂解物刺激的HUVEC,其中x轴是以摩尔浓度计的抗体浓度且y轴是最大反应百分比(IL-8产生)。
表33.Huvec IL-8测定中的IC50值
种系化IGLJ序列
将抗体33_640076-4、33_640081-A、33_640082-6、33_640082-7、33_640084-2、33_640086-6、33_640087-7、33_640201-2和33_640237-2的VL框架区的氨基酸序列与IMGT数据库(Lefranc,M.P.等人Nucl.AcidsRes.2009.37(Database issue):D1006-D1012[核酸研究,2009,37(数据库发行号):D1006-D1012])中的已知人类IGLJ种系序列进行比对,并且通过序列相似性鉴定最接近种系。对于所有这些抗体,此为IGLJ2,其与VL区的位置104(Kabat编号)处的抗体具有单个氨基酸差异。使用标准分子生物学方法使此残基恢复至如实例3中所述的种系。所得抗体被命名为33_640076-4B、33_640081-AB、33_640082-6B、33_640082-7B、33_640084-2B、33_640086-6B、33_640087-7B、33_640201-2B和33_640237-2B,分别对应于其亲本谱系33_640076-4、33_640081-A、33_640082-6、33_640082-7、33_640084-2、33_640086-6、33_640087-7、33_640201-2和33_640237-2。这些抗体的VH和VL区的SEQ ID显示于表34中。
表34.种系化IL33抗体的序列
IgG1 VH序列 VL序列
33_640076-4B SEQ ID NO:592 SEQ ID NO:594
33_640081-AB SEQ ID NO:596 SEQ ID NO:598
33_640082-6B SEQ ID NO:600 SEQ ID NO:602
33_640082-7B SEQ ID NO:604 SEQ ID NO:606
33_640084-2B SEQ ID NO:608 SEQ ID NO:610
33_640086-6B SEQ ID NO:612 SEQ ID NO:614
33_640087-7B SEQ ID NO:616 SEQ ID NO:618
33_640201-2B SEQ ID NO:620 SEQ ID NO:622
33_640237-2B SEQ ID NO:624 SEQ ID NO:626
实例9体内气道炎症模型
克隆、表达和纯化IL-33细胞因子捕获物
自Swiss Prot获得小鼠IL-1RAcP和小鼠ST2的蛋白质序列(登录号分别为Q61730和P14719)。小鼠IL-33细胞因子捕获物是基于Economides等人2003设计,并且由与人类IgG1的Fc部分融合的氨基酸1-359 Q61730和氨基酸27-332 P14719组成。将蛋白质序列进行密码子优化(Geneart)且克隆至pDEST12.2中,OriP蛋白利用IL-1RAcP的天然信号肽自细胞分泌至培养基中。为在CHO细胞中表达,通过重叠引物PCR移除网关接头。使捕获物表达载体转染至CHO瞬态哺乳动物细胞中。使小鼠IL-33捕获物表达且分泌至培养基中。合并收获物且过滤,随后使用蛋白质A层析纯化。将培养上清液装载至5ml Hitrap蛋白质A柱(GE医疗集团)上且用1xDPBS洗涤,使用0.1M柠檬酸钠(pH 3.0)使结合捕获物自柱洗脱且通过添加Tris-HCl(pH 9.0)中和。通过使用S200 16:600 Superdex柱(GE医疗集团)在1xDPBS中进行SEC进一步纯化所洗脱的材料,并且基于氨基酸序列使用消光系数以分光光度法确定浓度(Mach等人,Anal.Biochem.[分析生物化学]200(1):74-80(1992))。
人源化IL-33小鼠
先前已在实例4中描述产生人源化IL-33小鼠的方法。在气道和/或过敏性炎症的模型中使用人源化小鼠评估抗人类IL-33抗体的影响。
体内气道炎症模型
先前已描述小鼠中互隔交链孢霉菌(ALT)诱导的气道炎症的模型(Kouzaki等人J.Immunol.[免疫学杂志]2011,186:4375-4387;Bartemes等人,J.Immunol[免疫学杂志],2012,188:1503-1513)。内源性IL-33在ALT暴露之后快速释放且驱动IL-33依赖性IL-5产生和肺嗜酸性粒细胞增多。将雄性或雌性野生型或人源化IL-33小鼠(6-10周)用异氟醚简单麻醉,并且经鼻内给予总体积为50μl的25μg ALT提取物(格瑞尔公司,雷诺阿,北卡罗来纳州)或媒剂。小鼠经腹膜内或经鼻内用以下测试物质治疗:IL330004 IgG (SEQ ID No.12和17)、H338L293 IgG(SEQ ID No.182和187)、小鼠IL-33捕获物33_640050(SEQ ID No.302和307)、同终型对照IgG(NIP228)或媒剂(PBS,10ml/kg),在24小时后(对于腹膜内治疗)或2小时后(对于鼻内治疗)用ALT鼻内攻击。在攻击之后24小时,将小鼠用戊巴比妥钠最终麻醉,随后放血且进行支气管肺泡灌洗术(BAL)。经由气管套管通过灌洗(0.3ml、0.3ml和0.4ml)收集支气管肺泡灌洗液(BALF)。使BALF离心,计数细胞(通过FACS(FacsCALIBER,BD)的总细胞)且通过ELISA(中尺度发现公司,罗克维尔,马里兰州)分析细胞因子的上清液。对经Diff-Quik(飞世尔科技公司(Fisher Scientific),英国)染色的细胞离心涂片制剂进行分类细胞计数(200个细胞/载片)。所有工作均在适当项目许可证授权下根据英国内政部道德与管理标准进行。
图46显示H338L293以剂量依赖性方式抑制野生型BALB/c小鼠中ALT诱导的BALIL-5和嗜酸粒细胞增多。在用25μg ALT攻击之前-2小时经鼻内给与测试物质(10、30或100mg/kg,如括号中所指示)。在ALT攻击之后24小时收获BALF且分析IL-5(图46A)和嗜酸性粒细胞(图46B)的存在。通过邦弗伦尼多重比较检验使用单因子ANOVA确定测试物质的显著影响。相比于对照mAb,***p<0.001,~~p<0.01(n=4-8)。使用小鼠IL-33捕获物作为阳性对照。
图47显示H338L293(30mg/kg)和小鼠IL-33捕获物(10mg/kg)而非IL330004(30mg/kg)抑制人源化IL-33小鼠中ALT诱导的BAL IL-5。在用25μg ALT攻击之前-2小时经鼻内给与测试物质。在ALT攻击之后24小时收获BALF且分析IL-5的存在。通过邦弗伦尼多重比较检验使用单因子ANOVA确定测试物质的显著影响。***p<0.001,**p<0.01(n=4)。
图48显示33_640050以剂量依赖性方式抑制人源化IL-33小鼠中交链孢属诱导的BAL IL-5。在用25μg交链孢属攻击之前-24小时经腹膜内给与测试物质(0.3、3或30mg/kg,如括号中所指示)。在ALT攻击之后24小时收获BALF且分析IL-5的存在。通过邦弗伦尼多重比较检验使用单因子ANOVA确定测试物质的显著影响。***p<0.001,**p<0.01(n=4-5)。
实例10抗IL-33抗体的表征
经纯化IgG抑制IL-33与ST2结合
在生物化学(均相时间分辨荧光,Cis生物国际公司)竞争测定(其原理描述于上文中)中评估抗IL-33抗体抑制生物素化IL33-01结合至-His标签化的ST2受体的能力。通过经纯化IgG的稀释系列与人类-His标签化的ST2竞争结合至人类生物素化人类IL33-01(SEQ ID No.632)来确定经纯化IgG制剂的活性。
图49A:显示在过夜孵育之后在增加抗体33v20064、33_640087-7、33_640087-7B、33_640050和33_640237-2B的浓度的情况下对由人类IL-33结合至人类ST2所产生的FRET信号的抑制,其中x轴是以摩尔浓度计的抗体浓度且y轴是特异性结合%。
IgG抑制在Huvec中的IL-8产生
在Huvec IL-8产生测定中测试IgG。如先前所述在测试抗体存在或不存在下使细胞暴露于N末端His Avi IL-33(IL33-01,SEQ ID NO632)。计算IC50值且概述于下表35中。数据显示IGLJ序列的种系化对抗体效力无任何影响。
图49B显示在测试抗体33_640087-7、33_640087-7B、33_640237-2和33_640237-2B存在下经IL33-01刺激的HUVEC,其中x轴是以摩尔浓度计的抗体浓度且y轴是最大反应百分比(IL-8产生)。
表35.Huvec IL-8测定中的IC50值
抗体 IC50(nM)与His Avi IL-33
33_640087-7 0.041
33_640087-7B 0.046
33_640237-2 0.105
33_640237-2B 0.067
抗IL-33抗体的选择性和交叉反应性
使用基于均相FRET(荧光共振能量转移)(均相时间分辨荧光,Cis生物国际公司)的IL-33:mAb结合测定确定种系化抗IL-33抗体的选择性和交叉反应性。在此测定中,样品与生物素化人类IL-33-01(SEQ ID No.632)竞争结合至DyLight标记的33_640087-7B IgG(SEQ ID No.618和618)或33_640237-2B IgG(SEQ ID No.624和626)。
通过添加5微升各样品稀释液至384孔小体积测定板(柯仕达公司,3673)中来测试人类、食蟹猴和小鼠IL-33His(描述于实例1和表21中)、人类IL-1α和IL-1β(R&D系统公司)(表21)或大鼠IL-33(金斯瑞公司(GenScript))对人类IL-33结合至DyLight650标记的33_640087-7B或DyLight650标记的33_640237-2B的抑制。接着,制备含有1.2nMDyLight650标记的33_640087-7B或33_640237-2B的溶液,并且添加2.5微升至测定板(按照制造商的说明书使用试剂盒(英诺华生物科学公司,326-0010)标记)中。此后添加含有0.12nM生物素化人类IL-33-01以及0.75nM链霉亲和素穴状化合物检测剂(Cis生物国际公司,610SAKLB)的2.5微升溶液。在杜尔贝科氏PBS(英杰公司,14190185)中含有0.8M氟化钾(VWR,26820.236)和0.1%牛血清白蛋白(BSA,PAA,K05-013)的测定缓冲液中进行所有稀释。测定板在室温下孵育4小时随后在4摄氏度下孵育18小时,并且使用EnVision读板仪(珀金埃尔默公司)读取在620nm和665nm发射波长下的时间分辨荧光。通过计算665/620nm比率,随后计算各样品的ΔF%值分析数据。665/620nm比率用于使用方程式1校正样品干扰。然后使用方程式2计算各样品的ΔF%。通过仅用链霉亲和素穴状化合物检测剂置换生物素化人类IL-33与链霉亲和素穴状化合物检测剂的组合来定义阴性对照(非特异性结合)。ΔF%值随后用于计算特异性结合%,如方程式3所述。IC50值使用GraphPad Prism软件通过使用四参数逻辑斯谛方程式(方程式4)的曲线拟合来确定。这些结果表明33_640087-7B和33_640237-2B与食蟹猴IL-33而非小鼠IL-33、大鼠IL-33、人类IL-1α或人类IL-1β交叉反应。
图50A:显示在增加测试蛋白的浓度的情况下对由生物素化人类IL-33-01结合至DyLight标记的33_640087-7B(SEQ ID No.618和618)所产生的FRET信号的抑制,其中x轴是以摩尔浓度计的测试样品浓度且y轴是特异性结合%。在人类和食蟹猴而非小鼠或大鼠IL-33、人类IL-1α或人类IL-1β的情况下观察到FRET信号的抑制。
图50B:显示在增加测试蛋白的浓度的情况下对由生物素化人类IL-33-01结合至DyLight标记的33_640237-2B(SEQ ID No.624和626)所产生的FRET信号的抑制,其中x轴是以摩尔浓度计的测试样品浓度且y轴是特异性结合%。在人类和食蟹猴而非小鼠或大鼠IL-33、人类IL-1α或人类IL-1β的情况下观察到FRET信号的抑制。
HUVEC IL-8测定中内源性IL-33的中和
为确定抗体是否能够中和内源性IL-33,使用人类肺组织提供内源性IL-33蛋白来源。该研究经NRES东英格兰(Cambridge East)研究伦理委员会(参考号08/H0304/56t5)批准,并且在患者知情同意下捐赠组织。帕普沃斯医院(Papworth Hospital)NHS信托研究组织银行(Trust Research Tissue Bank)供应于冰上Aqix RS-I培养基(Aqix Ltd)中的来自肺癌患者和肺移植手术的非癌相邻组织。将组织在PBS中以400mg/mL稀释且使用组织均质器均质化30秒。通过离心移除细胞碎片。用不同浓度的肺裂解物刺激HUVEC。选择刺激IL-8释放的裂解物EC50浓度用于抗体中和研究。如先前所述在测试抗体存在或不存在下使细胞暴露于肺裂解物。sST2抑制IL-8反应达到最大大约70%,表明大多数而非所有IL-8产生是由内源性IL-33在肺裂解物内驱动。33_640050和33_640087-7B IgG对IL-8反应的抑制程度类似于sST2,表明其结合和中和内源性IL-33的能力。33_640050 IgG以0.032nM的IC50中和肺裂解物。33_640087-7B以0.013nM的IC50中和肺裂解物。sST2以0.019nM的IC50中和肺裂解物。
图51显示相比于sST2在测试抗体33_640050和33_640087-7B存在下经人类肺裂解物刺激的HUVEC,其中x轴是以摩尔浓度计的抗体浓度且y轴是最大反应百分比(IL-8产生)。sST2抑制IL-8反应达到最大大约70%,表明大多数而非所有IL-8产生是由内源性IL-33在肺裂解物内驱动。两种抗体对IL-8反应的抑制程度均类似于sST2,表明其结合和中和内源性IL-33的能力。
体内气道炎症模型
先前已在实例4中描述产生人源化IL-33小鼠的方法。在如实例9中所述的互隔交链孢霉菌(ALT)诱导的气道炎症的模型中使用人源化小鼠评估33_640087-7B的影响。将雄性或雌性野生型或人源化IL-33小鼠(6-10周)用异氟醚简单麻醉,并且经鼻内给予总体积为50μl的25μg ALT提取物(格瑞尔公司,雷诺阿,北卡罗来纳州)或媒剂。小鼠经腹膜内用以下测试物质治疗:33_640087-7B IgG(SEQ ID No.618和618)、同种型对照IgG(NIP228)或媒剂(PBS,10ml/kg),在24小时后用ALT鼻内攻击。在攻击之后24小时,将小鼠用戊巴比妥钠最终麻醉,随后放血且进行支气管肺泡灌洗术(BAL)。经由气管套管通过灌洗(0.3ml、0.3ml和0.4ml)收集支气管肺泡灌洗液(BALF)。使BALF离心,并且通过ELISA(中尺度发现公司,罗克维尔,马里兰州)分析细胞因子的上清液。所有工作均在适当项目许可证授权下根据英国内政部道德与管理标准进行。
图52显示33_640087-7B以剂量依赖性方式抑制人源化IL-33小鼠中交链孢属诱导的BAL IL-5。在用25μg交链孢属攻击之前-24小时经腹膜内给与测试物质(0.1、1、3或10mg/kg,如括号中所指示)。在ALT攻击之后24小时收获BALF且分析IL-5的存在。通过邦弗伦尼多重比较检验使用单因子ANOVA确定测试物质的显著影响。***p<0.001,**p<0.01(n=5-6)。
实例11抗IL-33抗体的亲和力
使用通过BIACORETM的实时相互作用监测和对于33_640087-7B在平衡时使用KinExATM确定抗IL-33抗体片段(Fab)对重组人类IL33的亲和力。对于两种方法,通过SEC-HPLC纯化人类IL33蛋白以确保抗原以及Fab的质量以用于biacore分析。
Biacore亲和力分析
通过木瓜蛋白酶裂解自全长IgG1产生Fab片段,并且通过SEC纯化。在25℃下使用Biacore T100测量抗体片段(Fab)的亲和力。使用标准胺偶联技术使在10mM乙酸钠(pH4.5)中呈4μg/ml浓度的链霉亲和素共价固定于C1芯片表面上。达到115至170RU范围内的典型的最终链霉亲和素表面密度。将在HBS-EP+缓冲液中呈4μg/ml的重组酶促生物素化人类IL-33(自制)滴定至链霉亲和素芯片表面上,能够在饱和下实现约30RU Fab结合(Rmax)。此分析物低结合水平确保最小质量输送效果。
IL-33 Fab在HBS-EP+缓冲液中自5nM连续稀释至78pM且以50μl/min流经芯片,具有3分钟缔合和长达30分钟解离。在同一条件下进行多次仅缓冲液注射以允许双参考减去最终传感图集,使用BiaEval软件(2.0.1版本)分析。芯片表面通过3M MgCl2的脉冲完全再生。
使用上文所述的同一方法通过BIACORETM确定在人类IL-33的HEK-EBNA细胞中表达的ST2-Flag-His10(SEQ.ID no.650)的亲和力。
表36.抗IL-33 Fab的Biacore亲和力结果
KinExA亲和力分析
为确认在SPR测定下所见的高亲和力,转向动力学排除测定(KinExA)。越来越发现KinExA有利于解析较高亲和力蛋白质间相互作用,尤其是pM至亚pM范围内的那些蛋白质,其中基于表面的生物传感器技术达到其实际极限(Rathanaswami P,Roalstad S,RoskosL,Qiaojuan JS,Lackie S,Babcook J.Demonstration of an in vivo generated sub-picomolar affinity fully human monoclonal antibody to interleukin-8[完全人类单克隆抗体对白介素-8的体内生成亚皮摩尔亲和力的证明].Biochemical andBiophysical Research Communications[生物化学和生物物理研究通讯].2005;334:1004-1013)。
通过在KinExA 3200上进行的动力学排除测定测量抗体33_640087-7B的亲和力。通过在2.5ml的50mM碳酸氢钠(pH 8.4)中在室温下在不断搅拌下使200mg干UltraLinkBiosupport吖内酯珠粒与110μg IL-33(如先前所提及)混合2小时来制备取样珠粒。冲洗珠粒,并且用1M Tris(pH 8.7)中的10mg/ml BSA阻断。在使用前,使珠粒再悬浮于D-PBS、0.02%叠氮化钠中。在由DPBS(杜尔贝科氏PBS)中的1mg/ml BSA、0.02%叠氮化钠组成的样品缓冲液中制备33_640087-7B/IL-33平衡混合物。在不同IL-33浓度下使用两种不同IgG浓度,在自125pM连续稀释至61fM的IL-33的情况下用5pM 33_640087-7B,并且在自62.5pM连续稀释至15fM的IL-33的情况下用500fM 33_640087-7B,两者均在零IL-33对照的情况下进行。荧光二级检测试剂是在DPBS中的1mg/ml BSA、0.02%叠氮化钠、0.1%吐温20中稀释的Alexa Fluor 647山羊抗人类Fc。将样品在KinExA上运行同时容纳于设置在25℃下的温度控制柜中。使用KinExA Pro软件4.1.11版本分析数据。
KinExA测定指示33_640087-7B对于人类IL-33的KD<142fM(飞摩尔)(表37)。
表37. 33_640087-7B IgG的KinExA亲和力结果
实例12氧化型IL-33的活性
体内初步研究探索氧化型IL-33的活性
在实例4(还参见Cohen,E.S.等人Oxidation of the alarmin IL-33 regulatesST2-dependent inflammation[警报素IL-33的氧化作用调节ST2依赖性炎症].Nat.Commun.[自然通讯]6:8327 doi:10.1038/ncomms9327(2015))中,描述了氧化型的二硫键键合形式IL-33(DSB IL-33)的探索且显示此形式不结合ST2。为研究氧化型IL-33是否具有独立于ST2的替代活性,ST2缺陷型小鼠经腹膜内或经鼻内用重复剂量的人类IL-33治疗2、4或6周。在多个组织上进行组织学分析。
如先前所述产生ST2缺陷型小鼠(Townsend,M.J.,Fallon,P.G.,Matthews,D.J.,Jolin,H.E.以及McKenzie,A.N.J.(2000).T1/ST2-deficient mice demonstrate theimportance of T1/ST2 in developing primary T helper cell type 2 responses[T1/ST2缺陷型小鼠表现出T1/ST2在发展初次T辅助细胞2型应答中的重要性].J.Exp.Med.[实验医学杂志]191,1069–1076)。将雌性ST2缺陷型小鼠(12周)用异氟醚简单麻醉,并且经鼻内给予总体积为50μl的10μg N末端His Avi IL-33(IL33-01,SEQ ID NO632;批号CCH168,内毒素水平0.03EU/mg)或媒剂(PBS)。可替代地,通过腹膜内注射给予IL-33或媒剂。此过程每周重复3次持续总计18次治疗。接受仅2周或4周用IL-33治疗的小鼠被给予PBS持续给药前4周或2周,随后接受IL-33。
在最后一次治疗之后24小时,将小鼠用戊巴比妥钠最终麻醉,随后放血且进行支气管肺泡灌洗术(BAL)。使用EDTA冲洗注射器通过心脏出血收集血液。使用Sysmex XTVet血液学分析仪完成血液学。使剩余血液离心且提取血浆。经由气管套管通过灌洗(0.3ml、0.3ml和0.4ml)收集支气管肺泡灌洗液(BALF)。计数BAL细胞(通过流式细胞仪(MACSquant,美天旎生物技术公司(Miltenye Biotec))的BAL总细胞),并且使BALF离心以分离上清液,通过ELISA(中尺度发现公司,罗克维尔,马里兰州)分析细胞因子的上清液。对经Diff-Quik(飞世尔科技公司,英国)染色的细胞离心涂片制剂进行分类细胞计数(200个细胞/载片)。在PBS灌洗之后,经由气管输注用10%中性缓冲福尔马林(NBF)充气肺以维持肺架构且浸没固定于NBF中24-48小时。然后将固定的肺样品横向切成4个相等横截面,随后经由一系列醇、二甲苯加工且进入石蜡中。最后,使肺横截面然后嵌入石蜡块中。切割4μm组织学切片且用苏木精和曙红(H&E)染色用于分析和炎症评分评估。
所有工作均在适当项目许可证授权下根据英国内政部道德与管理标准进行。
为研究经由腹膜内或鼻内途径的IL-33暴露,使用如实例4中所述的Millipore人类IL-33测定(目录号HTH17MAG-14K批号2159117)在BALF和血浆中测量人类IL-33。使用sST2-Fc减少测定信号的能力确定ST2结合(还原型)与非ST2结合(氧化型)IL-33的存在。在鼻内给予之后,在2、4和6周端点在BALF和血浆中一致地检测到IL-33。大多数所检测到的IL-33是氧化型的。在单次腹膜内给予之后,在给药后5小时在血浆中短暂检测到IL-33,但截至24小时不可检测。在重复IL-33给予之后,在2、4或6周端点在BALF或血浆中未一致地检测到人类IL-33。这些数据指示氧化型IL-33的最佳全身暴露是经由鼻内给药实现。
图53A.体内初步研究的实验设计。ST2缺陷型小鼠通过经腹膜内或经鼻内重复给予人类IL-33或媒剂(PBS)6周(每组n=3-4)来治疗。在最终IL-33给予之后24小时收集组织、BALF和血清。
图53B.在向BALB/c小鼠重复给予人类IL-33之后对BAL液中人类IL-33暴露的分析。在来自如图53A中所述的经治疗小鼠的BALF中测量人类IL-33,其中x轴显示治疗组且y轴显示以任意单位计的人类IL-33测定信号。在鼻内给药之后仅在BALF中检测到IL-33。发现所检测到的IL-33显著氧化(非ST2结合)。
图53C在单次腹膜内给予人类IL-33(10μg)之后对血浆中IL-33暴露的分析。在给予之后2、5、24和48小时在血浆中测量人类IL-33,其中x轴显示分析的时间点且y轴显示以任意单位计的人类IL-33测定信号。在给药后5小时在血浆中短暂检测到IL-33,但截至24-48小时不可检测。
图53D在向BALB/c小鼠重复给予人类IL-33之后对血浆中IL-33暴露的分析。在来自如图53A中所述的经治疗小鼠的血浆中测量人类IL-33,其中x轴显示治疗组且y轴显示以任意单位计的人类IL-33测定信号。在鼻内给药之后仅在血浆中检测到IL-33。发现所检测到的IL-33显著氧化(非ST2结合)。
在多个组织上进行组织学分析。与肝、脑、脾、皮肤、胃、淋巴结或心脏中的对照相比,经人类IL-33治疗的小鼠中无相关异常。在肺中,与仅在鼻内组中且仅在6周治疗之后的对照相比,经IL-33治疗的小鼠中存在增加的淋巴细胞性血管周炎症。此与最高暴露于氧化型IL-33(图53)一致。总之,用IL-33治疗ST2 KO小鼠相比于对照增加经IL-33治疗的小鼠的肺中的血管周淋巴细胞性浸润的存在。此病理学可经由氧化型IL-33介导。
图54A显示来自经鼻内给予PBS 6周的小鼠(n=3)的肺组织的代表性H&E染色的石蜡切片。
图54B显示来自经鼻内给予IL-33 6周的小鼠(n=4)的肺组织的代表性H&E染色的石蜡切片。
对经IL-33治疗的小鼠肺的途径分析
为获得对小鼠肺中导致所观察到的炎性反应的通过氧化型IL-33调节的途径的理解,对经PBS治疗6周与经IL-33治疗6周的动物的肺组织进行微阵列分析。
收集7只ST2KO小鼠(如上文所述3只给与PBS且4只给与IL33-01)的肺组织,并且直接置于350μL RLT缓冲液(凯杰公司#79216)中。然后根据制造商的方案使用Qiagen组织研磨机(凯杰公司#85300)使组织破碎,并且使用RNeasy纤维组织试剂盒(凯杰公司#74704)纯化RNA。然后根据制造商的方案使用RNeasy微型柱(凯杰公司#74004)浓缩来自此试剂盒的经纯化RNA。然后使用昂飞公司(Affymetrix)的基因芯片WT加试剂试剂盒(昂飞公司#902513)使RNA扩增至单链DNA,并且杂交至小鼠转录组1.0(MTA1.0)基因芯片(昂飞公司#900720)上,在Affymetrix流体学装置中洗涤且在Affymetrix基因芯片扫描仪3000 7G上扫描。然后在Affymetrix表达控制台中处理数据。在Microsoft Excel中分析数据且对基因进行排序,其中至少2/4经IL33治疗的小鼠的信号变化比对照组平均值大±1.2倍。使用生物数据库网络(BioDBnet v2.1)将排序后的基因清单转化为KEGG ID,并且在KEGG途径分析(www.kegg.jp;KEGG Mapper v2.5)中分析。还使用生物反应途径分析(Ingenuity PathwayAnalysis,IPA)(凯杰公司)分析在KEGG途径中分析的同一基因。IPA分析表明与细胞周期相关的途径似乎被调节。示例性基因列于表38中。
表38.在ST2缺陷型小鼠中通过鼻内IL-33治疗调节的基因
Huvec中的DSB IL-33信号传导
为查明是否可在人类细胞上观察到对氧化型(DSB)人类IL-33的反应,探索体外人类细胞刺激。小鼠微阵列分析指示与细胞周期相关的途径的激活且因此研究p38 MAP激酶和JAK-STAT信号传导。根据制造商的说明书培养人脐静脉内皮细胞(Huvec)且用还原型或DSB IL-33刺激。通过免疫荧光染色检测p-p38 MAPK或p-STAT5的核易位。在ArrayScan VTiHCS读取器(Cellomics公司)上进行核染色强度的成像和定量。该测定基本上与对于NFkBp65/RelA核易位所述相同,但作了以下修改。
对于p-p38 MAPK测定,将Huvec在培养基[EBM-2(龙沙集团,#CC-3156)与EGM-2SingleQuot Kit Suppl.&Growth Factors(龙沙集团,#CC-4176)]中以1x104个/75μL/孔接种至96孔黑色壁、透明平底的经胶原蛋白I涂覆的板(格雷内尔公司#655956)中,并且在37℃、5%CO2下孵育18-24小时。在96孔U型底聚丙烯板(格雷内尔公司,650201)中的完全培养基中将还原型或DSB IL-33的测试样品(一式两份地)稀释至所希望的浓度,并且添加75μL至Huvec板中以引发刺激。在37℃下的15或30分钟测定孵育之后,使细胞在3.7%甲醛溶液中固定15分钟(通过添加已预温热至37℃的50μL16%溶液)。抽吸固定剂且用100μL/孔PBS洗涤细胞两次。染色细胞,用于p-p38与磷酸基-p38抗体(细胞信号传导公司(Cellsignalling)#9211S)以1:250稀释。简言之,用体积为50μL的一级抗体溶液使细胞在室温下渗透15分钟,阻断15分钟且染色1小时。将板在阻断缓冲液中洗涤2次,并且在室温下用二级抗体溶液(DyLight 488标记的山羊抗兔IgG;赛默飞世尔科技公司#35552,以1:400稀释度)和Hoechst核染色(赛默飞世尔科技公司#62249,以1:10000稀释度)染色1小时。将板在PBS中洗涤2次。将细胞储存于最终体积为150μL/孔的PBS中且用黑色遮光密封件(珀金埃尔默公司,#6005189)覆盖,随后在ArrayScan VTiHCS读取器上读取。使用适合算法计算核染色强度。使用Graphpad Prism软件分析数据。
对于pSTAT5测定,将Huvec在培养基[EBM-2(龙沙集团,#CC-3156)与EGM-2SingleQuot Kit Suppl.&Growth Factors(龙沙集团,#CC-4176)]中以1x104个/75μL/孔接种至96孔黑色壁、透明平底的经胶原蛋白I涂覆的板(格雷内尔公司#655956)中,并且在37℃、5%CO2下孵育18-24小时。在抽吸此完全培养基之后,将细胞在100μL PBS/孔中洗涤2次,抽吸PBS且添加75μL饥饿培养基[EBM-2(龙沙集团,#CC-3156)与青霉素/链霉素]至各孔中。然后在37℃、5%CO2下孵育细胞18小时。在96孔U型底聚丙烯板(格雷内尔公司,650201)中的饥饿培养基中将还原型或DSB IL-33的测试样品(一式两份地)稀释至所希望的浓度,并且添加75μL至Huvec板中以引发刺激。在37℃下的15或30分钟测定孵育之后,使细胞在3.7%甲醛溶液中固定15分钟(通过添加已预温热至37℃的50μL 16%溶液)。抽吸固定剂且用100μL/孔PBS洗涤细胞两次。染色细胞,用于p-STAT5与磷酸基-STAT5兔抗体C71E5(细胞信号传导公司#9314S)以1:250稀释,如上文所述检测。
还原型IL-33触发p-p38 MAPK信号传导,在氧化为DSB形式之后丧失信号传导(图55A),类似于先前对于NFkB信号传导所述(实例4至6)。然而,DSB IL-33而非还原型IL-33触发p-STAT5信号传导(图55B)。因此,在人类IL-33自还原型转化为DSB形式之后观察到信号传导途径激活的清楚切换,表明DSB IL-33可具有不同于已知IL-33途径的活性。
为确认核易位测定的结果,通过蛋白质印迹分析确定IL-33信号传导。如上所述用还原型或DSB IL-33(3ng/mL)刺激Huvec 15分钟。将细胞然后在冰冷PBS中洗涤两次,并且用含有HALT蛋白酶抑制剂(皮尔斯公司#78430)的250μL RIPA缓冲液(皮尔斯公司#89901)裂解。在还原条件下对样品进行SDS-PAGE。将样品与4x NuPAGE凝胶装载缓冲液(英杰公司)以3:1混合,并且在90℃下变性3分钟。还原型样品含有2%β-巯基乙醇。根据制造商的说明书使用MOPS运行缓冲液(英杰公司)在NuPAGE Novex 4%-12% Bis-Tris微型凝胶(英杰公司)上运行样品。将蛋白质转移至硝化纤维素膜(英杰公司目录号IB3010-02),并且用兔磷酸基-p38 MAPK抗体(细胞信号传导公司#9211S)、兔磷酸基-STAT5抗体C71E5(细胞信号传导公司#9314S)或兔p-JAK2抗体(细胞信号传导公司#3771S)通过蛋白质印迹法检测。一级抗体用抗兔HRP(细胞信号传导公司#7074)检测且使用ECL试剂(赛墨科技公司#34096)可视化。
图55A显示Huvec中响应于还原型IL-33或DSB IL-33(经IMDM培养基预处理的IL33-01)的p-p38 MAPK核易位活性,其中x轴显示IL-33浓度且y轴显示以任意单位计的核易位信号。观察到还原型而非氧化型IL-33的浓度依赖性信号。
图55B显示Huvec中响应于还原型IL-33或DSB IL-33(经IMDM培养基预处理的IL33-01)的p-STAT5核易位,其中x轴显示IL-33浓度且y轴显示以任意单位计的核易位信号。观察到DSB而非还原型IL-33的浓度依赖性信号。
图55C.对在经还原型IL-33或DSB IL-33(经IMDM培养基预处理的IL33-01)刺激15分钟的Huvec中的p-p38 MAPK、p-JAK2和p-STAT5的蛋白质印迹分析。在经还原型而非DSBIL-33刺激之后检测到p-p38 MAPK激活。在经DSB IL-33而非还原型IL-33刺激之后检测到p-JAK2和p-STAT5激活。
经由晚期糖基化终产物受体(RAGE)介导DSB IL-33的信号传导
为获得对在Huvec中通过DSB IL-33调节的途径的理解,如先前所述培养Huvec,以1x106个细胞/孔接种于6孔组织培养物处理板(Nunc 140675)中。在过夜孵育之后,将细胞用DSB IL-33刺激2或6小时。将细胞收集于350μL RLT缓冲液(凯杰公司#79216)中。根据制造商的方案使用RNeasy微型试剂盒(凯杰公司#74004)纯化RNA。然后使用昂飞公司的基因芯片WT加试剂试剂盒(昂飞公司#902513)使RNA扩增至单链DNA,并且杂交至人类基因组U133A 2.0(U133A 2.0)基因芯片(昂飞公司#900469)上,在Affymetrix流体学装置中洗涤且在Affymetrix基因芯片扫描仪3000 7G上扫描。然后在Affymetrix表达控制台中处理数据,并且对信号变化比未处理对照大±1.8倍的基因进行排序。观察到非常少基因表达变化(表39)。然而,使用独创性途径分析(Ingenuity Pathway Analysis,IPA)(凯杰公司)分析有限基因图,表明在2小时的EIF2信号传导途径和在6小时的AGER信号传导。这些可能表明清除/晚期糖基化终产物受体(RAGE)途径激活。
表39.在经DSB-IL-33刺激的Huvec中调节的基因。
晚期糖基化终产物受体(RAGE)是多配体受体,其属于免疫球蛋白超家族,并且识别多种配体,包括高迁移率族蛋白1(HMGB-1)、S100蛋白家族、晚期糖基化终产物(AGE)和β-片层纤维状材料。认为其参与氧化应激且与多种疾病的发病机制有关。
为评估DSB是否与RAGE直接相互作用,使用ELISA格式探索结合至还原型IL-33与DSB IL-33的RAGE(图56A)。如实例7中所述对还原型或DSB N末端His Avi IL-33(IL33-01,SEQ ID NO632)进行生物素化。用PBS中的50μg/ml生物素化抗原涂覆链霉亲和素板(赛墨科技公司,AB-1226),并且在室温下孵育1小时。将板用PBS-T(PBS+1%(v/v)吐温-20)洗涤3次且用300μl/孔阻断缓冲液(PBS与1%BSA(西格玛公司,A9576))阻断1小时。将板用PBS-T洗涤3次。在阻断缓冲液中稀释RAGE-Fc(R&D系统公司#1145-RG),添加至经IL-33涂覆的孔或对照(无IL-33)孔中且在室温下孵育1小时。在室温下用在50μl/孔阻断缓冲液中以1:5000稀释的抗人类IgG HRP(西格玛公司,A0170)检测RAGE-Fc持续1小时。将板用PBS-T洗涤3次且用50μl/孔TMB(西格玛公司,T0440)显影。用50μL/孔0.1M H2SO4淬灭反应,随后在EnVisionTM读板仪或相似设备上在450nm读取。
为进一步确认DSB IL-33与RAGE的相互作用,评估RAGE-Fc或抗RAGE抗体抑制Huvec中ST2非依赖性pSTAT5信号传导的能力。为此目的,根据上文所述的方案在RAGE-Fc(R&D系统公司#1145-RG)、ST2-Fc(R&D系统公司#523-ST)、抗RAGE mAb(来自WO2008137552)或对照试剂存在或不存在下使用不同浓度的DSB IL-33(经IMDM处理的IL33-01)刺激Huvec。用RAGE-Fc中和DSB IL-33(图56B)或用抗RAGE mAb中和受体(图56C)能够完全抑制pSTAT5信号。
图56A.通过ELISA的RAGE-Fc与还原型IL-33或DSB板表面的结合,其中x轴显示RAGE-Fc浓度且y轴显示在450nM下的吸光度。数据显示相比于还原型IL-33,RAGE与DSB IL-33的结合增加。
图56B显示在RAGE-Fc(50μg/mL)、ST2-Fc(50μg/mL)或抗NIP IgG1阴性对照抗体NIP228(50μg/mL)存在下在Huvec中pSTAT5对DSB IL-33反应。pSTAT5信号传导完全受RAGE-Fc而非ST2-Fc或NIP228抑制。
图56C显示在抗RAGE mAb,m4F4(10μg/mL)或小鼠IgG1阴性对照抗体(10μg/mL)存在下在Huvec中pSTAT5对DSB IL-33反应。pSTAT5信号传导完全受m4F4而非对照mAb抑制。
抗IL-33抗体防止DSB IL-33活性
如实例8中所述,结合IL-33的抗体可防止IL-33氧化成DSB形式(图43A)。评估IL-33抗体防止Huvec中的pSTAT5信号传导的能力。
在IMDM中制备固定浓度的33_640087-7B(SEQ ID No 616和618)、抗ST2(来自WO2013/173761 Ab2;SEQ ID 85和SEQ ID 19)和同种型对照mAb,并且然后与WT IL-33滴定(也在IMDM中制备)在96孔U型底板中组合(100μL与100μL)。将板在37℃和5%CO2下孵育过夜。将来自这些‘预孵育处理’板的各孔的75μL添加至如上文对于pSTAT5测定所述制备的‘饥饿’细胞中,并且在37℃下孵育15分钟。将细胞然后在冰冷PBS中洗涤两次,并且将eBioscience磷酸基-STAT5A/B Instant One ELISA(e生物科学公司(eBioscience)#85-86112-11)的100μL裂解缓冲液添加至各孔中。然后根据制造商的说明书测量细胞裂解物中的pSTAT5活性。
图57显示在33_640087-7B(10μg/mL)或抗ST2 mAb,Ab2(10μg/mL)存在下在Huvec中pSTAT5对经IMDM处理的IL-33反应,其中x轴是IL-33浓度且y轴是pSTAT5信号。pSTAT5信号传导完全受33_640087-7B而非抗ST2抑制,确认此反应是ST2非依赖性的。
抗IL-33抗体抑制上皮细胞中的RAGE依赖性反应
RAGE在肺上皮细胞中高度表达。评估肺上皮细胞系的DSB IL-33依赖性反应。为此目的,在补充有1%青霉素/链霉素和10%FBS的F12K培养基(Gibco公司#21127022)中培养A549细胞。用0.5%胰蛋白酶-EDTA(Gibco公司,#15400-054)收获细胞,洗涤且在96孔板中以1x105个细胞/孔接种于培养基中。然后在37℃、5%CO2下孵育细胞24小时。第二天,移出完全培养基,将细胞在PBS中洗涤两次,并且用‘饥饿’培养基(含1%青霉素/链霉素的F12K培养基)置换培养基,并且将板在37℃和5%CO2下孵育24小时。
在IMDM中制备固定浓度的33_640087-7B(SEQ ID No616和618)、抗ST2(WO 2013/173761 Ab2(SEQ ID 85和SEQ ID 19))、抗RAGE m4F4(来自WO 2008137552)和同种型对照mAb,并且然后与WT IL-33(也在IMDM中制备)在96孔U性底板中组合(100μL与100μL)。将细胞和处理板均在37℃和5%CO2下孵育过夜。将来自这些‘预孵育处理’板的各孔的75μL添加至如上文所述制备的‘饥饿’细胞中,并且将板在37℃和5%CO2下孵育24小时。然后通过添加96孔传斯维尔(transwell)板至低结合96孔接收板来设置96孔传斯维尔系统(康宁公司(Corning)#CLS3422-48EA)。将235μL完全培养基(补充有10%FBS和1%青霉素/链霉素的F12K培养基)添加至传斯维尔系统的底部室中。然后在PBS中洗涤96孔各孔的经处理A549细胞,胰蛋白酶消化分离,在1000rpm下离心5min,再悬浮于75μL‘饥饿’培养基中且添加至传斯维尔系统的顶部室中。将传斯维尔板然后在37℃、5%CO2下孵育16小时。然后自顶部和底部室移出培养基且使用235μL胰蛋白酶自底部室移出细胞。然后添加100μL胰蛋白酶/细胞悬浮液至100μL Cell Titer Glo(普洛麦格公司#G7571)中。在胰蛋白酶中制备新鲜A549细胞的滴定,并且以50:50添加至Cell Titer Glo中,形成标准细胞数曲线。然后根据制造商的说明书孵育和读取板。
图58A显示A549细胞在用在33_640087-7B(10μg/mL)、抗ST2mAb,Ab2(10μg/mL)或抗RAGE mAb 4F4存在下孵育的IL33-01处理后的迁移,其中x轴显示细胞预处理条件且y轴是迁移细胞数。数据表明用DSB IL-33预处理A549细胞使后续细胞迁移减少。此迁移抑制由抗RAGE mAb和33_640087-7B而非抗ST2逆转。
图58B显示A549细胞在用在33_640087-7B(10μg/mL)或抗ST2 mAb,Ab2(10μg/mL)存在下孵育的DSB IL33-01处理后的迁移,其中x轴显示细胞预处理条件且y轴是迁移细胞数。数据表明用DSB IL-33预处理A549细胞使后续细胞迁移减少。此迁移抑制未由33_640087-7B或抗ST2逆转。
总之,这些数据确认33_640087-7B通过防止还原型IL-33转化为DSB IL-33而非直接中和DSB IL-33来抑制DSB-IL-33活性,与其仅结合还原型ST2活性形式的IL-33的能力一致。

Claims (58)

1.一种经分离的IL-33蛋白或其活性片段,其通过减少或消除在该IL-33蛋白内的天然半胱氨酸之间形成二硫桥键的修饰而呈还原形式来稳定。
2.一种经分离的IL-33蛋白或其活性片段,其通过以下修饰而呈还原形式来稳定,其中
(i)一个或多个天然半胱氨酸经替代氨基酸置换;
(ii)一个或多个天然半胱氨酸缺失;
(iii)一个或多个天然半胱氨酸与化学实体轭合。
3.根据权利要求1或2所述的经分离的IL-33蛋白或其活性片段,其中该蛋白质经突变使得一个或多个半胱氨酸经非半胱氨酸氨基酸置换,例如其中选自Cys-208、Cys-227、Cys-232和Cys-259的一个、两个、三个或四个半胱氨酸经置换。
4.根据权利要求3所述的经分离的IL-33蛋白或其活性片段,其中一个或多个半胱氨酸残基经丝氨酸残基置换。
5.一种结合分子,其减弱或抑制redIL-33蛋白的活性。
6.根据权利要求5所述的结合分子,其催化redIL-33氧化为IL-33DSB。
7.根据权利要求6所述的结合分子,其中该分子结合IL-33-DSB。
8.根据权利要求5至7中任一项所述的结合分子,其包含抗体或其抗原结合片段。
9.如权利要求5至8中任一项所述的结合分子,其包含具有SEQ ID NO:183、SEQ ID NO:184和SEQ ID NO:185的VH CDR 1-3的重链可变结构域(VH)和轻链可变结构域(VL),其中一个或多个VHCDR具有3个或更少单一氨基酸取代。
10.如权利要求8所述的结合分子,其包含SEQ ID NO:183、SEQ ID NO:184和SEQ IDNO:185的VHCDR 1-3。
11.如权利要求5-10中任一项所述的结合分子,其包含具有SEQ ID NO:188、SEQ IDNO:189和SEQ ID NO:190的VLCDR 1-3的VL和VH,其中一个或多个VLCDR具有3个或更少单一氨基酸取代。
12.如权利要求11所述的结合分子,其包含SEQ ID NO:188、SEQ ID NO:189和SEQ IDNO:190的VLCDR 1-3。
13.如权利要求5至12中任一项所述的结合分子,其包含具有序列SEQ ID NO:183的VHCDR1、具有序列SEQ ID NO:184的VHCDR2、具有序列SEQ ID NO:185的VHCDR3、具有序列SEQ ID NO:188的VLCDR1、具有序列SEQ ID NO:189的VLCDR2和具有序列SEQ ID NO:190的VLCDR3。
14.一种特异性地结合至IL-33的经分离的抗体或其抗原结合片段,其中所述抗体或其抗原结合片段的VH和VL包含分别与SEQ ID NO:182和SEQ ID NO:187至少95%、90%或85%一致的氨基酸序列。
15.根据权利要求14所述的抗体或其抗原结合片段,其包含具有序列SEQ ID NO:182的VH和具有序列SEQ ID NO:187的VL。
16.根据权利要求5所述的结合分子,其中所述分子结合至如权利要求1至4中任一项所述的IL-33蛋白。
17.根据权利要求5或16所述的结合分子,其中所述分子对野生型redIL-33具有交叉反应性。
18.根据权利要求17所述的结合分子,其特异性地结合野生型redIL-33。
19.如权利要求5或16至18中任一项所述的结合分子,其包含具有SEQ ID NO:543、SEQID NO:544和SEQ ID NO:545的VH CDR的重链可变结构域(VH)和轻链可变结构域(VL),其中这些VHCDR中的一个或多个具有3个或更少单一氨基酸取代。
20.如权利要求19所述的结合分子,其包含SEQ ID NO:543、SEQ ID NO:544和SEQ IDNO:545的VHCDR 1-3。
21.如权利要求5、16至20中任一项所述的结合分子,其包含具有SEQ ID NO:548、SEQID NO:549和SEQ ID NO:550的VLCDR 1-3的VL和VH,其中一个或多个VLCDR具有3个或更少单一氨基酸取代。
22.如权利要求21所述的结合分子,其包含SEQ ID NO:548、SEQ ID NO:549和SEQ IDNO:550的VLCDR 1-3。
23.如权利要求20和22所述的结合分子,其包含具有序列SEQ ID NO:543的VHCDR1、具有序列SEQ ID NO:544的VHCDR2、具有序列SEQ ID NO:545的VHCDR3、具有序列SEQ ID NO:548的VLCDR1、具有序列SEQ ID NO:549的VLCDR2和具有序列SEQ ID NO:550的VLCDR3。
24.一种特异性地结合至IL-33的经分离的抗体或其抗原结合片段,其中所述抗体或其抗原结合片段的VH和VL包含分别与SEQ ID NO:542和SEQ ID NO:547至少95%、90%或85%一致的氨基酸序列。
25.根据权利要求24所述的抗体或其抗原结合片段,其包含具有序列SEQ ID NO:542的VH和具有序列SEQ ID NO:547的VL。
26.一种结合分子,其减弱IL-33DSB蛋白的活性。
27.根据权利要求26所述的结合分子,其防止或减少IL-33DSB与晚期糖基化终产物的受体(RAGE)结合。
28.如权利要求26或27所述的结合分子,其包含抗体或其抗原结合片段。
29.如权利要求25至27中任一项所述的结合分子,其中该结合分子是如权利要求5至8和16至25中任一项所述的结合分子。
30.如权利要求5至29中任一项所述的结合分子或其抗原结合片段,其选自由以下各项组成的组:人类抗体、嵌合抗体和人源化抗体。
31.如权利要求5至29中任一项所述的结合分子或抗体或其抗原结合片段,其选自由以下各项组成的组:天然存在的抗体、scFv片段、Fab片段、F(ab')2片段、微型抗体、双体抗体、三体抗体、四体抗体和单链抗体。
32.如权利要求5至29中任一项所述的结合分子或抗体或其抗原结合片段,其是单克隆抗体。
33.一种多核苷酸,其编码如权利要求5至32中任一项所述的结合分子或抗体或其抗原结合片段。
34.一种多核苷酸,其编码如权利要求5至32中任一项所述的结合分子、其抗原结合片段的VH。
35.一种多核苷酸,其编码如权利要求5至32中任一项所述的结合分子、其抗原结合片段的VL。
36.一种载体,其包含如权利要求33至35中任一项所述的多核苷酸。
37.一种组合物,其包含如权利要求33至35中任一项所述的多核苷酸或如权利要求36所述的载体。
38.一种宿主细胞,其包含如权利要求33至35中任一项所述的多核苷酸或如权利要求36所述的载体。
39.一种包含至少第一和第二载体的宿主细胞,其中所述第一载体与所述第二载体不相同,其中所述第一载体包含编码免疫球蛋白重链可变区的如权利要求34所述的多核苷酸,并且其中所述第二载体包含编码免疫球蛋白轻链可变区的如权利要求35所述的多核苷酸。
40.一种产生抗IL33抗体或其抗原结合片段的方法,其包括培养如权利要求38或39所述的宿主细胞并且回收所述抗体或其抗原结合片段。
41.一种抗IL33抗体或其抗原结合片段,其通过如权利要求40所述的方法产生。
42.一种用于检测样品中redIL-33表达的方法,其包括:
(a)分离含细胞的样品;
(b)使所述样品与如权利要求5至32中任一项所述的结合分子或其抗原结合片段接触;并且
(c)检测所述结合分子在所述样品中的结合。
43.一种药物组合物,其包含如权利要求5至32中任一项所述的结合分子或其抗原结合片段和载剂。
44.一种组合产品,其包含如权利要求5至32中任一项所述的结合分子或其抗原结合片段和第二治疗剂。
45.如权利要求5至32中任一项所述的结合分子或其抗原结合片段或如权利要求43所述的药物组合物或如权利要求44所述的组合产品在治疗中的用途。
46.一种用于治疗患有炎性病症的受试者的方法,其包括向该受试者给予有效量的如权利要求5至32中任一项所定义的结合分子或其抗原结合片段或如权利要求43所述的组合物。
47.根据权利要求46所述的用于治疗受试者的方法,其中该结合分子或其抗原结合片段抑制IL-33驱动的细胞因子产生。
48.根据权利要求46或47所述的用于治疗受试者的方法,其中该结合分子或其抗原结合片段抑制RAGE介导的效应。
49.根据权利要求46至48中任一项所述的用于预防受试者的炎性反应的方法,其中该结合分子或其抗原结合片段抑制IL-33驱动的细胞因子产生和/或RAGE介导的效应。
50.如权利要求46至49中任一项所述的方法,其中所述炎性病症是过敏性障碍。
51.如权利要求46至49中任一项所述的方法,其中所述炎性病症是哮喘或COPD。
52.如权利要求46-49所述的方法,其中所述炎性反应是在所述受试者的气道中。
53.一种鉴定治疗性抗体或其抗原结合片段的方法,其包括选择结合至redIL-33的抗体或其抗原结合片段,其中所述抗体或其抗原结合片段减弱redIL-33蛋白的活性。
54.如权利要求53所述的方法,其中所述治疗性抗体或其抗原结合片段选自由以下各项组成的组:人类抗体、嵌合抗体和人源化抗体。
55.如权利要求53或54所述的方法,其中所述治疗性抗体或其抗原结合片段选自由以下各项组成的组:天然存在的抗体、scFv片段、Fab片段、F(ab')2片段、微型抗体、双体抗体、三体抗体、四体抗体和单链抗体。
56.如权利要求53至55中任一项所述的方法,其中所述治疗性抗体或其抗原结合片段是单克隆抗体。
57.如权利要求53至56中任一项所述的方法,其中所述治疗性抗体或其抗原结合片段有效于治疗或预防受试者的炎性病症。
58.如权利要求57所述的方法,其中所述炎性病症是哮喘或慢性阻塞性肺病。
CN201680019480.3A 2015-03-31 2016-03-30 新颖的il33形式、il33的突变形式、抗体、测定及其使用方法 Active CN108064236B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201562140913P 2015-03-31 2015-03-31
US62/140913 2015-03-31
PCT/EP2016/056973 WO2016156440A1 (en) 2015-03-31 2016-03-30 A novel il33 form, mutated forms of il33, antibodies, assays and methods of using the same

Publications (2)

Publication Number Publication Date
CN108064236A true CN108064236A (zh) 2018-05-22
CN108064236B CN108064236B (zh) 2021-12-10

Family

ID=55640748

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201680019480.3A Active CN108064236B (zh) 2015-03-31 2016-03-30 新颖的il33形式、il33的突变形式、抗体、测定及其使用方法

Country Status (30)

Country Link
US (3) US10668150B2 (zh)
EP (3) EP4374916A3 (zh)
JP (3) JP6862351B2 (zh)
KR (1) KR102261618B1 (zh)
CN (1) CN108064236B (zh)
AU (3) AU2016239331C1 (zh)
BR (1) BR112017020955A2 (zh)
CA (1) CA2982400C (zh)
CL (2) CL2017002433A1 (zh)
CO (1) CO2017010753A2 (zh)
CY (1) CY1123925T1 (zh)
DK (1) DK3277717T3 (zh)
ES (1) ES2886114T3 (zh)
HK (1) HK1250728A1 (zh)
HR (1) HRP20210096T1 (zh)
HU (1) HUE053097T2 (zh)
IL (2) IL254551A0 (zh)
LT (1) LT3277717T (zh)
MX (1) MX2017012616A (zh)
MY (1) MY190209A (zh)
NZ (1) NZ736026A (zh)
PL (1) PL3277717T3 (zh)
PT (1) PT3277717T (zh)
RS (1) RS61438B1 (zh)
RU (1) RU2736299C2 (zh)
SG (1) SG11201707593UA (zh)
SI (1) SI3277717T1 (zh)
TW (1) TWI721973B (zh)
WO (1) WO2016156440A1 (zh)
ZA (1) ZA201707355B (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107973849A (zh) * 2017-11-30 2018-05-01 四川华神兽用生物制品有限公司 一种用于增强猪疫苗免疫效果的蛋白质及其应用
CN110567861A (zh) * 2019-09-09 2019-12-13 浙江普罗亭健康科技有限公司 基于质谱流式检测技术筛查具有免疫原性抗原肽的试剂盒及检测方法
CN111378037A (zh) * 2020-06-01 2020-07-07 南京诺艾新生物技术有限公司 一种抗hIL-33人源化单抗及其应用
CN111434687A (zh) * 2019-01-15 2020-07-21 南京赛新生物科技有限公司 一种新型的抗体及其应用
CN111434680A (zh) * 2019-01-15 2020-07-21 南京赛新生物科技有限公司 一种与il33相关疾病的新型的抗原表位肽及其应用
CN115551542A (zh) * 2020-05-11 2022-12-30 免疫医疗有限公司 抗il-33抗体的配制品

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI3088517T3 (fi) 2013-12-26 2023-11-30 Mitsubishi Tanabe Pharma Corp Ihmisen Anti-IL-33 neutraloiva monoklonaalinen vasta-aine
JP7231326B2 (ja) 2014-11-10 2023-03-01 ジェネンテック, インコーポレイテッド Il-33媒介性障害のための治療及び診断方法
EA201791029A1 (ru) 2014-11-10 2017-12-29 Дженентек, Инк. Антитела против интерлейкина-33 и их применение
CN109415436A (zh) 2016-04-27 2019-03-01 辉瑞公司 抗il-33抗体及其组合物、方法及用途
JOP20190093A1 (ar) 2016-10-28 2019-04-25 Lilly Co Eli أجسام مضادة لـ il-33 واستخداماتها
TWI784988B (zh) 2016-12-01 2022-12-01 美商再生元醫藥公司 治療發炎症狀的方法
AR110414A1 (es) 2016-12-21 2019-03-27 Cephalon Inc Anticuerpos que se unen específicamente a il-15 humana y usos de estos
EP3610041A1 (en) 2017-04-13 2020-02-19 Regeneron Pharmaceuticals, Inc. Treatment and inhibition of inflammatory lung diseases in patients having risk alleles in the genes encoding il33 and il1rl1
CA3066918A1 (en) 2017-06-12 2018-12-20 Bluefin Biomedicine, Inc. Anti-il1rap antibodies and antibody drug conjugates
WO2019045075A1 (ja) 2017-08-31 2019-03-07 田辺三菱製薬株式会社 Il-33アンタゴニストを含む子宮内膜症治療剤
WO2019183375A1 (en) * 2018-03-22 2019-09-26 Eureka Therapeutics, Inc. Antibody agents specifically recognizing monocarboxylate transporter 4 and uses thereof
IL277890B2 (en) 2018-04-11 2024-03-01 Regeneron Pharma Methods for quantification of IL-33
WO2020054871A1 (ja) * 2018-09-14 2020-03-19 田辺三菱製薬株式会社 ヒト抗il-33モノクローナル抗体含有医薬用組成物
WO2021018198A1 (en) * 2019-07-29 2021-02-04 Beijing Biocytogen Co., Ltd Genetically modified non-human animal with human or chimeric il33
IL292442A (en) 2019-11-04 2022-06-01 Medimmune Ltd Anti-il-33 therapeutic agent for the treatment of kidney disorders
WO2021089563A1 (en) 2019-11-04 2021-05-14 Medimmune Limited Methods of using il-33 antagonists
IL296256A (en) 2020-03-13 2022-11-01 Genentech Inc Antibodies against interleukin-33 and uses thereof
US20230110203A1 (en) 2020-03-13 2023-04-13 Medimmune Limited Therapeutic methods for the treatment of subjects with risk alelles in il33
EP4132972A1 (en) 2020-04-06 2023-02-15 MedImmune Limited Treating acute respiratory distress syndrome with il-33 axis binding antagonists
JP2024512240A (ja) 2021-02-18 2024-03-19 エフ. ホフマン-ラ ロシュ アーゲー 複雑な多段階の抗体相互作用を解明するための方法
CN113234157B (zh) * 2021-07-09 2021-09-21 上海普铭生物科技有限公司 亲和力成熟的人源化抗人il-33单克隆抗体及其应用
WO2023025932A1 (en) 2021-08-27 2023-03-02 Medimmune Limited Treatment of chronic obstructive pulmonary disease with an anti-interleukin-33 antibody
EP4430072A1 (en) * 2021-11-10 2024-09-18 Genentech, Inc. Anti-interleukin-33 antibodies and uses thereof
TW202402790A (zh) 2022-03-25 2024-01-16 英商梅迪繆思有限公司 減少呼吸系統感染之方法
WO2024038186A1 (en) 2022-08-19 2024-02-22 Medimmune Limited Treatment of acute respiratory failure
WO2024038185A1 (en) 2022-08-19 2024-02-22 Medimmune Limited Method of selecting patients for treatment with an il-33 axis antagonist
WO2024038187A1 (en) 2022-08-19 2024-02-22 Medimmune Limited Assay for detection of il-33
TW202423972A (zh) 2022-08-26 2024-06-16 英商梅迪繆思有限公司 使用抗介白素-33抗體的氣喘治療

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1917902A (zh) * 2004-02-17 2007-02-21 先灵公司 白细胞介素-33(il-33)和il-33受体复合物的用途
WO2014164959A2 (en) * 2013-03-13 2014-10-09 Regeneron Pharmaceuticals, Inc. Anti-il-33 antibodies and uses thereof

Family Cites Families (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4714681A (en) 1981-07-01 1987-12-22 The Board Of Reagents, The University Of Texas System Cancer Center Quadroma cells and trioma cells and methods for the production of same
US4474893A (en) 1981-07-01 1984-10-02 The University of Texas System Cancer Center Recombinant monoclonal antibodies
US4741900A (en) 1982-11-16 1988-05-03 Cytogen Corporation Antibody-metal ion complexes
GB2183662B (en) 1985-04-01 1989-01-25 Celltech Ltd Transformed myeloma cell-line and a process for the expression of a gene coding for a eukaryotic polypeptide employing same
GB8601597D0 (en) 1986-01-23 1986-02-26 Wilson R H Nucleotide sequences
US5225539A (en) 1986-03-27 1993-07-06 Medical Research Council Recombinant altered antibodies and methods of making altered antibodies
US4873192A (en) 1987-02-17 1989-10-10 The United States Of America As Represented By The Department Of Health And Human Services Process for site specific mutagenesis without phenotypic selection
US5892019A (en) 1987-07-15 1999-04-06 The United States Of America, As Represented By The Department Of Health And Human Services Production of a single-gene-encoded immunoglobulin
GB8717430D0 (en) 1987-07-23 1987-08-26 Celltech Ltd Recombinant dna product
WO1989012624A2 (en) 1988-06-14 1989-12-28 Cetus Corporation Coupling agents and sterically hindered disulfide linked conjugates prepared therefrom
US4925648A (en) 1988-07-29 1990-05-15 Immunomedics, Inc. Detection and treatment of infectious and inflammatory lesions
US5601819A (en) 1988-08-11 1997-02-11 The General Hospital Corporation Bispecific antibodies for selective immune regulation and for selective immune cell binding
US5530101A (en) 1988-12-28 1996-06-25 Protein Design Labs, Inc. Humanized immunoglobulins
US5136964A (en) 1989-01-19 1992-08-11 Arnold J. Cook Warning device for windsurfing craft
US5225538A (en) 1989-02-23 1993-07-06 Genentech, Inc. Lymphocyte homing receptor/immunoglobulin fusion proteins
ZA902949B (en) 1989-05-05 1992-02-26 Res Dev Foundation A novel antibody delivery system for biological response modifiers
DE69029036T2 (de) 1989-06-29 1997-05-22 Medarex Inc Bispezifische reagenzien für die aids-therapie
US5859205A (en) 1989-12-21 1999-01-12 Celltech Limited Humanised antibodies
US5314995A (en) 1990-01-22 1994-05-24 Oncogen Therapeutic interleukin-2-antibody based fusion proteins
WO1991014438A1 (en) 1990-03-20 1991-10-03 The Trustees Of Columbia University In The City Of New York Chimeric antibodies with receptor binding ligands in place of their constant region
US6172197B1 (en) 1991-07-10 2001-01-09 Medical Research Council Methods for producing members of specific binding pairs
GB9015198D0 (en) 1990-07-10 1990-08-29 Brien Caroline J O Binding substance
AU667460B2 (en) 1990-10-05 1996-03-28 Medarex, Inc. Targeted immunostimulation with bispecific reagents
ATE160379T1 (de) 1990-10-29 1997-12-15 Chiron Corp Bispezifische antikörper, verfahren zu ihrer herstellung und deren verwendungen
EP1149913A1 (en) 1990-11-09 2001-10-31 GILLIES, Stephen D. Cytokine immunoconjugates
WO1992019973A1 (en) 1991-04-26 1992-11-12 Surface Active Limited Novel antibodies, and methods for their use
PT1024191E (pt) 1991-12-02 2008-12-22 Medical Res Council Produção de auto-anticorpos a partir de reportórios de segmentos de anticorpo e exibidos em fagos
FR2686087A1 (fr) 1992-01-13 1993-07-16 Inst Nat Sante Rech Med Nouvel antigene lymphocytaire, anticorps correspondant et leurs applications.
CA2452130A1 (en) 1992-03-05 1993-09-16 Francis J. Burrows Methods and compositions for targeting the vasculature of solid tumors
US5731168A (en) 1995-03-01 1998-03-24 Genentech, Inc. Method for making heteromultimeric polypeptides
US6696248B1 (en) 1995-08-18 2004-02-24 Morphosys Ag Protein/(poly)peptide libraries
CA2229043C (en) 1995-08-18 2016-06-07 Morphosys Gesellschaft Fur Proteinoptimierung Mbh Protein/(poly)peptide libraries
US6737056B1 (en) 1999-01-15 2004-05-18 Genentech, Inc. Polypeptide variants with altered effector function
US6897044B1 (en) 1999-01-28 2005-05-24 Biogen Idec, Inc. Production of tetravalent antibodies
JP4794789B2 (ja) 1999-07-02 2011-10-19 モルフォシス・アクチェンゲゼルシャフト ゲノムdna断片またはestによってコードされる(ポリ)ペプチドに対する特異的結合パートナーの作成
US6849425B1 (en) 1999-10-14 2005-02-01 Ixsys, Inc. Methods of optimizing antibody variable region binding affinity
JP5198704B2 (ja) 2000-03-03 2013-05-15 メディミューン リミティド エオタキシンに対するヒト抗体及びそれらの使用
WO2002102855A2 (en) 2000-11-17 2002-12-27 University Of Rochester In vitro methods of producing and identifying immunoglobulin molecules in eukaryotic cells
ATE489395T1 (de) 2000-12-12 2010-12-15 Medimmune Llc Moleküle mit längeren halbwertszeiten, zusammensetzungen und deren verwendung
WO2002096948A2 (en) 2001-01-29 2002-12-05 Idec Pharmaceuticals Corporation Engineered tetravalent antibodies and methods of use
US20040132101A1 (en) 2002-09-27 2004-07-08 Xencor Optimized Fc variants and methods for their generation
KR100708398B1 (ko) 2002-03-22 2007-04-18 (주) 에이프로젠 인간화 항체 및 이의 제조방법
ES2902063T3 (es) 2006-09-08 2022-03-24 Abbvie Bahamas Ltd Proteínas de unión a interleucina-13
WO2008137552A2 (en) 2007-05-02 2008-11-13 Medimmune, Llc Anti-rage antibodies and methods of use thereof
JP2010527936A (ja) * 2007-05-18 2010-08-19 メディミューン,エルエルシー 炎症性疾患におけるil−33
WO2009055074A2 (en) 2007-10-25 2009-04-30 Wyeth Erbb2 binding proteins and use thereof
US8092804B2 (en) 2007-12-21 2012-01-10 Medimmune Limited Binding members for interleukin-4 receptor alpha (IL-4Rα)-173
KR101398363B1 (ko) * 2010-11-17 2014-05-22 추가이 세이야쿠 가부시키가이샤 혈액응고 제viii 인자의 기능을 대체하는 기능을 갖는 다중특이성 항원 결합 분자
US8790651B2 (en) * 2011-07-21 2014-07-29 Zoetis Llc Interleukin-31 monoclonal antibody
AR091069A1 (es) * 2012-05-18 2014-12-30 Amgen Inc Proteinas de union a antigeno dirigidas contra el receptor st2

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1917902A (zh) * 2004-02-17 2007-02-21 先灵公司 白细胞介素-33(il-33)和il-33受体复合物的用途
WO2014164959A2 (en) * 2013-03-13 2014-10-09 Regeneron Pharmaceuticals, Inc. Anti-il-33 antibodies and uses thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
刘曦: "细胞因子IL-33与受体相互作用的结构生物学研究", 《中国博士学位论文全文数据库 医药卫生科技辑》 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107973849A (zh) * 2017-11-30 2018-05-01 四川华神兽用生物制品有限公司 一种用于增强猪疫苗免疫效果的蛋白质及其应用
CN107973849B (zh) * 2017-11-30 2020-07-28 畜科生物工程有限公司 一种用于增强猪疫苗免疫效果的蛋白质及其应用
CN111434687A (zh) * 2019-01-15 2020-07-21 南京赛新生物科技有限公司 一种新型的抗体及其应用
CN111434680A (zh) * 2019-01-15 2020-07-21 南京赛新生物科技有限公司 一种与il33相关疾病的新型的抗原表位肽及其应用
CN111434680B (zh) * 2019-01-15 2021-11-23 南京赛新生物科技有限公司 一种与il33相关疾病的抗原表位肽及其应用
CN111434687B (zh) * 2019-01-15 2022-03-11 南京赛新生物科技有限公司 一种抗体及其应用
CN110567861A (zh) * 2019-09-09 2019-12-13 浙江普罗亭健康科技有限公司 基于质谱流式检测技术筛查具有免疫原性抗原肽的试剂盒及检测方法
CN110567861B (zh) * 2019-09-09 2021-12-21 浙江普罗亭健康科技有限公司 基于质谱流式检测技术筛查具有免疫原性抗原肽的试剂盒及检测方法
CN115551542A (zh) * 2020-05-11 2022-12-30 免疫医疗有限公司 抗il-33抗体的配制品
CN111378037A (zh) * 2020-06-01 2020-07-07 南京诺艾新生物技术有限公司 一种抗hIL-33人源化单抗及其应用
CN111378037B (zh) * 2020-06-01 2020-09-01 南京诺艾新生物技术有限公司 一种抗hIL-33人源化单抗及其应用

Also Published As

Publication number Publication date
AU2016239331A1 (en) 2017-10-26
HRP20210096T1 (hr) 2021-03-05
IL280045B (en) 2021-09-30
EP4374916A3 (en) 2024-08-28
KR20170132811A (ko) 2017-12-04
AU2019250213A1 (en) 2019-11-07
CY1123925T1 (el) 2022-05-27
US20200353078A1 (en) 2020-11-12
HUE053097T2 (hu) 2021-06-28
RU2017134909A (ru) 2019-03-28
CO2017010753A2 (es) 2018-03-20
NZ736026A (en) 2023-02-24
US11738081B2 (en) 2023-08-29
MY190209A (en) 2022-04-05
EP3277717B1 (en) 2020-11-18
WO2016156440A1 (en) 2016-10-06
IL280045A (en) 2021-03-01
AU2019250213B2 (en) 2021-12-02
AU2021257881A1 (en) 2021-11-18
EP3277717A1 (en) 2018-02-07
LT3277717T (lt) 2021-08-10
KR102261618B1 (ko) 2021-06-04
CL2017002433A1 (es) 2018-05-04
ES2886114T3 (es) 2021-12-16
JP6862351B2 (ja) 2021-04-21
PL3277717T3 (pl) 2021-05-31
BR112017020955A2 (pt) 2018-07-10
CA2982400A1 (en) 2016-10-06
ZA201707355B (en) 2022-06-29
MX2017012616A (es) 2018-04-10
JP2018516853A (ja) 2018-06-28
EP4374916A2 (en) 2024-05-29
AU2016239331B2 (en) 2019-07-25
SI3277717T1 (sl) 2021-03-31
AU2021257881B2 (en) 2022-02-17
EP3733701A1 (en) 2020-11-04
US20240016929A1 (en) 2024-01-18
RU2017134909A3 (zh) 2019-12-23
HK1250728A1 (zh) 2019-01-11
AU2016239331C1 (en) 2020-01-30
PT3277717T (pt) 2021-02-01
JP2021038226A (ja) 2021-03-11
US20180207265A1 (en) 2018-07-26
IL254551A0 (en) 2017-11-30
JP2024001166A (ja) 2024-01-09
CN108064236B (zh) 2021-12-10
TW201704259A (zh) 2017-02-01
CA2982400C (en) 2023-10-24
RS61438B1 (sr) 2021-03-31
DK3277717T3 (da) 2021-02-01
US10668150B2 (en) 2020-06-02
TWI721973B (zh) 2021-03-21
RU2736299C2 (ru) 2020-11-13
CL2020002269A1 (es) 2021-01-22
SG11201707593UA (en) 2017-10-30

Similar Documents

Publication Publication Date Title
US11738081B2 (en) Polynucleotides encoding IL33 antibodies and methods of using the same
JP7047017B2 (ja) 黄色ブドウ球菌(Staphylococcus aureus)α毒素に特異的に結合する抗体及び使用方法
WO2020020281A1 (zh) 抗tigit抗体及其用途
US7718174B2 (en) Anti-HGF/SF humanized antibody
KR102632796B1 (ko) Ilt7 결합 분자 및 이의 사용 방법
TW201922784A (zh) 4﹘1bb抗體及其製備方法和應用
JP2022141693A (ja) インターロイキン2に結合する抗体およびその使用
CN101389791A (zh) 融合蛋白文库的产生和筛选方法及其应用
Lightwood et al. The discovery, engineering and characterisation of a highly potent anti-human IL-13 fab fragment designed for administration by inhalation
KR20220035367A (ko) 항-dll3 키메라 항원 수용체 및 이의 용도
KR20230169944A (ko) Mage-a4 펩티드-mhc 항원 결합 단백질
CN114685655B (zh) Pd-1结合分子及其应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant