CN108052150B - 一种带高阶曲率补偿的带隙基准电压源 - Google Patents

一种带高阶曲率补偿的带隙基准电压源 Download PDF

Info

Publication number
CN108052150B
CN108052150B CN201711337876.5A CN201711337876A CN108052150B CN 108052150 B CN108052150 B CN 108052150B CN 201711337876 A CN201711337876 A CN 201711337876A CN 108052150 B CN108052150 B CN 108052150B
Authority
CN
China
Prior art keywords
switching tube
circuit
band
electrode
resistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201711337876.5A
Other languages
English (en)
Other versions
CN108052150A (zh
Inventor
胡建伟
罗旭程
程剑涛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Awinic Technology Co Ltd
Original Assignee
Shanghai Awinic Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Awinic Technology Co Ltd filed Critical Shanghai Awinic Technology Co Ltd
Priority to CN201711337876.5A priority Critical patent/CN108052150B/zh
Publication of CN108052150A publication Critical patent/CN108052150A/zh
Application granted granted Critical
Publication of CN108052150B publication Critical patent/CN108052150B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • G05F1/46Regulating voltage or current wherein the variable actually regulated by the final control device is dc
    • G05F1/56Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices
    • G05F1/565Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices sensing a condition of the system or its load in addition to means responsive to deviations in the output of the system, e.g. current, voltage, power factor
    • G05F1/567Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices sensing a condition of the system or its load in addition to means responsive to deviations in the output of the system, e.g. current, voltage, power factor for temperature compensation

Abstract

本发明公开了一种带高阶曲率补偿的带隙基准电压源,包括:启动电路、带隙核心电路和高阶曲率补偿电路,其中:启动电路的输入端与带隙核心电路的输出端相连,启动电路的输出端与带隙核心电路的第一输入端相连,高阶曲率补偿电路的输出端与带隙核心电路的第二输入端相连,带隙核心电路的输出即为基准电压源,启动电路、带隙核心电路和高阶曲率补偿电路串接于电源电压和系统地之间;启动电路用于为带隙核心电路提供启动电流;高阶曲率补偿电路用于为带隙核心电路提供补偿电流;带隙核心电路用于产生带隙基准电源电压。通过本发明可以实现抵消带隙基准电压随温度的高阶非线性,减小带隙基准电压源温漂。

Description

一种带高阶曲率补偿的带隙基准电压源
技术领域
本发明涉及半导体集成电路技术领域,特别是涉及一种带高阶曲率补偿的带隙基准电压源。
背景技术
目前,基准电压源已作为半导体集成电路中不可缺少的基本模块,其广泛用于放大器、模数转换器、数模转换器、射频、传感器和电源管理芯片中。传统的基准电压源包括基于齐纳二极管反向击穿特性的电压基准、基于PN结正向导通特性的电压基准和带隙基准等多种实现方式,其中,由于带隙基准具有高精度、低温漂和高电源抑制比等优点,因此,得到了广泛应用。
图1所示为现有技术中的带隙基准电压源,利用两个PNP三极管Q1和Q2的发射极-基极电压VEB的差值ΔVEB来产生正温度系数的电压,利用Q1的VEB来产生负温度系数的电压。其中,两个PNP三极管Q1和Q2的发射结面积比例为1:8,MOS管(metal oxidesemiconductor,金属氧化物半导体晶体管)M1和M2的宽长比为1:1,R2和R3的阻值为1:1。带隙基准电压VBG的表达式为:
Figure GDA0002334003690000011
其中,VBE_Q3为NPN三极管Q3的基极电压,VT为NPN三极管Q3的截止电压,VEB的负温度系数约为-2mV/℃,VT的正温度系数约为+0.085mV/℃,通过选取合适的R1、R2、R3、R4阻值,可得到零温度系数的带隙基准电压。
然而由于VEB的负温度系数为非线性,且VT的线性正温度特性只能补偿一阶温度系数,这种结构的温度系数被限制在20到100ppm/℃,导致带隙基准电压源的温漂比较大,因此,无法应用于对温漂要求较高的场合。
发明内容
本发明的目的在于提出一种带高阶曲率补偿的带隙基准电压源,以解决现有技术中带隙基准电压源温漂较大的问题。
为达到上述目的,本发明提供了以下技术方案:
一种带高阶曲率补偿的带隙基准电压源,包括:启动电路、带隙核心电路和高阶曲率补偿电路,其中:
所述启动电路的输入端与所述带隙核心电路的输出端相连,所述启动电路的输出端与所述带隙核心电路的第一输入端相连,所述高阶曲率补偿电路的输出端与所述带隙核心电路的第二输入端相连,所述带隙核心电路的输出即为基准电压源,所述启动电路串接于电源电压和系统地之间,所述带隙核心电路串接于所述电源电压和所述系统地之间,所述高阶曲率补偿电路串接于所述电源电压和所述系统地之间;
所述启动电路用于为所述带隙核心电路提供启动电流,所述启动电路包括:第一开关管、第二开关管、第三开关管和第一电阻,其中:所述第一开关管的栅极作为所述启动电路的输入端与所述带隙核心电路的输出端相连;所述第一开关管的漏极与所述第二开关管的漏极相连,其公共端与所述第一电阻的一端相连,所述第一电阻的另一端与所述电源电压相连;所述第二开关管的栅极和漏极相连,所述第三开关管的漏极作为所述启动电路的输出端与所述带隙核心电路的第一输入端相连;所述第一开关管的源极、所述第二开关管的源极和所述第三开关管的源极相连,并与所述系统地相连;
所述启动电路用于为所述带隙核心电路提供启动电流;
所述高阶曲率补偿电路用于为所述带隙核心电路提供补偿电流;
所述带隙核心电路用于产生带隙基准电源电压。
优选地,所述第一开关管、所述第二开关管和所述第三开关管为NMOS管。
优选地,所述带隙核心电路包括:第四开关管、第五开关管、第六开关管、第二电阻、第三电阻、第四电阻、第五电阻、第六电阻、第一NPN三极管、第二NPN三极管及运算放大器,其中:
所述第五开关管的源极、所述第六开关管的源极与所述电源电压相连,所述第五开关管的栅极和所述第六开关管的栅极相连,所述第五开关管的栅极和所述第五开关管的漏极相连;
所述第五开关管的漏极与所述第四开关管的漏极相连,且其公共端作为所述带隙核心电路的第一输入端与所述启动电路的输出端相连;
所述第四开关管的栅极与所述运算放大器的输出端相连,所述运算放大器的正相输入端与所述第四电阻和所述第一NPN三极管的发射极的公共端相连,所述第一NPN三极管的基极和集电极与所述系统地相连;
所述运算放大器的反相输入端与所述第五电阻和所述第六电阻的公共端相连,所述第六电阻的另一端与所述第二NPN三极管的发射极相连,所述第二NPN三极管的基极和集电极与所述系统地相连;
所述第四电阻和所述第五电阻的公共端与所述第三电阻的一端相连,所述第三电阻的另一端与所述第二电阻的一端相连;
所述第二电阻的另一端与所述第六开关管的源极相连,且其公共端作为所述带隙核心电路的输出端相连,同时其公共端作为所述带隙核心电路的第三输入端与所述高阶曲率补偿电路的第二输出端相连;
所述第二电阻和所述第三电阻的公共端作为所述带隙核心电路的第二输入端与所述高阶曲率补偿电路的第一输出端相连。
优选地,所述第四开关管为NMOS管。
优选地,所述第五开关管和所述第六开关管为PMOS管。
优选地,所述高阶曲率补偿电路包括:第七开关管、第八开关管、第九开关管、第十开关管、第十一开关管、第十二开关管、第十三开关管及第三NPN三极管,其中:
所述第七开关管的源极、所述第九开关管的源极、所述第十开关管的源极、所述第十一开关管的源极与所述电源电压相连;
所述第七开关管的栅极与所述第五开关管的栅极和所述第六开关管的栅极相连,所述第七开关管的楼极与所述第三NPN三极管的集电极相连,所述第三NPN三极管的集电极与所述第八开关管的栅极相连;
所述第三NPN三极管的发射极与系统地相连,所述第三NPN三极管的基极与所述第八开关管的源极相连,所述第八开关管的漏极与所述第九开关管的漏极相连,所述第九开关管的栅极与所述第九开关管的漏极相连,所述第九开关管、所述第十开关管的栅极和所述第十一开关管的栅极相连;
所述第十开关管的漏极与所述第十二开关管的漏极相连,所述第十二开关的漏极与栅极相连,所述第十二开关管的源极与所述系统地相连;
所述第十一开关管的源极作为所述高阶曲率补偿电路的第二输出端与所述带隙核心电路的第三输入端相连,所述第十二开关管的栅极与所述第十三开关管的栅极相连,所述第十三开关管的源极与所述系统地相连;
所述第十三开关管的漏极作为所述高阶曲率补偿电路的第一输出端与所述带隙核心电路的第二输入端相连。
优选地,所述第八开关管、所述第十二开关管和所述第十三开关管为NMOS管。
优选地,所述第七开关管、所述第九开关管、所述第十开关管和所述第十一开关管为PMOS管。
经由上述的技术方案可知,与现有技术相比,本发明公开了一种带高阶曲率补偿的带隙基准电压源,包括:启动电路、带隙核心电路和高阶曲率补偿电路,其中:启动电路的输入端与带隙核心电路的输出端相连,启动电路的输出端与带隙核心电路的第一输入端相连,高阶曲率补偿电路的输出端与带隙核心电路的第二输入端相连,带隙核心电路的输出即为基准电压源,启动电路串接于电源电压和系统地之间,带隙核心电路串接于电源电压和系统地之间,高阶曲率补偿电路串接于电源电压和系统地之间;启动电路用于为带隙核心电路提供启动电流;高阶曲率补偿电路用于为带隙核心电路提供补偿电流;带隙核心电路用于产生带隙基准电源电压。本发明提供的的高阶曲率补偿电路较好的补偿了带隙基准电压的低温段,因此设计带隙核心电路时,通过合理的设计第二电阻R2、第三电阻R3、第四电阻R4、第五电阻R5和第六电阻R6的阻值,使得带隙基准电压在低温段和高温段的温度特性不对称,在低温段表现出正温度特性偏大一些,叠加上高阶曲率补偿电流后,更好的抵消了带隙基准电压随温度的高阶非线性,减小带隙基准电压源温漂。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图获得其他的附图。
图1为现有技术中的带隙基准电压源的电路原理图;
图2为本发明实施例提供的一种带高阶曲率补偿的带隙基准电压源的电路框图;
图3为本发明实施例提供的一种带高阶曲率补偿的带隙基准电压源的电路原理图;
图4为本发明实施例提供的带隙基准电压源的温度特性仿真结果。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
参见图2所示,本发明实施例提供了一种带高阶曲率补偿的带隙基准电压源,包括:启动电路101、带隙核心电路102和高阶曲率补偿电路103,其中:
所述启动电路101的输入端与所述带隙核心电路102的输出端相连,所述启动电路101的输出端与所述带隙核心电路102的第一输入端相连,所述高阶曲率补偿电路103的输出端与所述带隙核心电路102的第二输入端相连,所述带隙核心电路102的输出即为基准电压源,所述启动电路101串接于电源电压VCC和系统地之间,所述带隙核心电路102串接于所述电源电压VCC和所述系统地之间,所述高阶曲率补偿电路103串接于所述电源电压VCC和所述系统地之间;所述启动电路101用于为所述带隙核心电路提供启动电流;所述高阶曲率补偿电路103用于为所述带隙核心电路提供补偿电流;所述带隙核心电路102用于产生带隙基准电源电压。
参见图3所示,上述所述启动电路101包括:第一开关管M1、第二开关管M2、第三开关管M3和第一电阻R1,其中:
所述第一开关管M1的栅极作为所述启动电路101的输入端与所述带隙核心电路102的输出端相连;所述第一开关管M1的漏极与所述第二开关管M2的漏极相连,其公共端与所述第一电阻R1的一端相连,所述第一电阻R1的另一端与所述电源电压VCC相连;所述第二开关管M2的栅极和漏极相连,所述第三开关管M3的漏极作为所述启动电路101的输出端与所述带隙核心电路102的第一输入端相连;所述第一开关管M1的源极、所述第二开关管M2的源极和所述第三开关管M3的源极相连,并与所述系统地相连。
优选地,所述第一开关管M1、所述第二开关管M2和所述第三开关管M3为NMOS管。
参见图3所示,上述所述带隙核心电路102包括:第四开关管M4、第五开关管M5、第六开关管M6、第二电阻R2、第三电阻R3、第四电阻R4、第五电阻R5、第六电阻R6、第一NPN三极管Q1、第二NPN三极管Q2及运算放大器OP,其中:
所述第五开关管M5的源极、所述第六开关管M6的源极与所述电源电压VCC相连,所述第五开关管M5的栅极和所述第六开关管M6的栅极相连,所述第五开关管M5的栅极和所述第五开关管M5的漏极相连。
所述第五开关管M5的漏极与所述第四开关管M4的漏极相连,且其公共端作为所述带隙核心电路102的第一输入端与所述启动电路101的输出端相连;所述第四开关管M4的栅极与所述运算放大器OP的输出端相连,所述运算放大器OP的正相输入端与所述第四电阻R4和所述第一NPN三极管Q1的发射极的公共端相连,所述第一NPN三极管Q1的基极和集电极与所述系统地相连。
所述运算放大器OP的反相输入端与所述第五电阻R5和所述第六电阻R6的公共端相连,所述第六电阻R6的另一端与所述第二NPN三极管Q2的发射极相连,所述第二NPN三极管Q2的基极和集电极与所述系统地相连。
所述第四电阻R4和所述第五电阻R5的公共端与所述第三电阻R3的一端相连,所述第三电阻R3的另一端与所述第二电阻R2的一端相连;所述第二电阻R2的另一端与所述第六开关管M6的源极相连,且其公共端作为所述带隙核心电路102的输出端相连,同时其公共端作为所述带隙核心电路102的第三输入端与所述高阶曲率补偿电路103的第二输出端相连;所述第二电阻R2和所述第三电阻R3的公共端作为所述带隙核心电路102的第二输入端与所述高阶曲率补偿电路103的第一输出端相连。
优选地,所述第四开关管M4为NMOS管。
优选地,所述第五开关管M5和所述第六开关管M6为PMOS管。
参见图3所示,上述所述高阶曲率补偿电路103包括:第七开关管M7、第八开关管M8、第九开关管M9、第十开关管M10、第十一开关管M11、第十二开关管M12、第十三开关管M13及第三NPN三极管Q3,其中:
所述第七开关管M7的源极、所述第九开关管M9的源极、所述第十开关管M10的源极、所述第十一开关管M11的源极与所述电源电压VCC相连;
所述第七开关管M7的栅极与所述第五开关管M5的栅极和所述第六开关管M6的栅极相连,所述第七开关管M7的漏极与所述第三NPN三极管Q3的集电极相连,所述第三NPN三极管Q3的集电极与所述第八开关管M8的栅极相连。
所述第三NPN三极管Q3的发射极与系统地相连,所述第三NPN三极管Q3的基极与所述第八开关管M8的源极相连,所述第八开关管M8的漏极与所述第九开关管M9的漏极相连,所述第九开关管M9的栅极与所述第九开关管M9的漏极相连,所述第九开关管M9、所述第十开关管M10的栅极和所述第十一开关管M11的栅极相连。
所述第十开关管M10的漏极与所述第十二开关管M12的漏极相连,所述第十二开关M12的漏极与栅极相连,所述第十二开关管M12的源极与所述系统地相连。
所述第十一开关管M11的源极作为所述高阶曲率补偿电路103的第二输出端与所述带隙核心电路102的第三输入端相连,所述第十二开关管M12的栅极与所述第十三开关管M13的栅极相连,所述第十三开关管M13的源极与所述系统地相连。
所述第十三开关管M13的漏极作为所述高阶曲率补偿电路103的第一输出端与所述带隙核心电路102的第二输入端相连。
优选地,所述第八开关管M8、所述第十二开关管M12和所述第十三开关管M13为NMOS管。
优选地,所述第七开关管M7、所述第九开关管M9、所述第十开关管M10和所述第十一开关管M11为PMOS管。
本发明提供的带高阶曲率补偿的带隙基准电压源的工作原理:
当电源电压VCC上电时,VBG开始时尚未建立,第一开关管M1关断,电源电压VCC上升到一定值时,第二开关管M2导通,第五开关管M5有电流流过,当VBG电压上升到大于第一开关管M1的阈值电压时,第一开关管M1导通,启动电路101关闭。电路脱离了零简并点,并最终进入到一种稳定的工作状态。
本发明的曲率补偿电路103结合了ΔVEB的正温度特性和第三NPN三极管Q3工作在共射极的电流放大系数β的正温度特性,构建了一个高阶负温度特性补偿电路,用来补偿带隙基准电压源低温段的温度特性。
ΔVEB为线性的正温度系数:
Figure GDA0002334003690000082
其中,K是波尔茨曼常数,q是一个电子所带的电荷。
第三NPN三极管Q3工作在共射极的电流放大系数为:
Figure GDA0002334003690000081
其中,JpE代表发射极空穴电流密度,JnE代表发射极电子电流密度,τb代表少子渡越基区所需的平均时间,1/τB代表少子在单位时间内的复合几率,ΔEG为禁带宽度变化值。
温度升高时,发射区禁带宽度变窄效应减弱,β增大。由于β具有指数正温度特性,ΔVEB/β表现为高阶负温度特性。第五开关管M5、第六开关管M6和第七开关管M7的宽长比为1:1:1,第九开关管M9、第十开关管M10和第十一开关管M11的宽长比为1:1:1,第十二开关管M12和第十三开关管M13的宽长比为1:1,第一NPN三极管Q1和第二NPN三极管Q2的发射结面积比例为1:8,第二电阻R2和第三电阻R3的阻值为1:1;则带隙基准输出电压VBG为:
Figure GDA0002334003690000091
其中,VBE_Q1为第一NPN三极管Q1的基极电压,VT为第一NPN三极管Q1的截止电压,β为第三NPN三极管Q3工作在共射极的电流放大系数。
本发明的高阶曲率补偿电路提供的补偿电流较好的补偿了带隙基准电压的低温段,因此本发明设计带隙核心电路时,可以通过合理的设计第二电阻R2、第三电阻R3、第四电阻R4、第五电阻R5和第六电阻R6的阻值,使得带隙基准电压在低温段和高温段的温度特性不对称,在低温段表现出正温度特性偏大一些,因此,叠加上高阶曲率补偿电流后,更好的抵消了VEB随温度的高阶非线性。
图4为本发明实施例提供的带隙基准电压源的温度特性仿真结果。当电源电压为5V,温度范围为-40℃到125℃时,VBG变化范围为0.82mV,温度系数为4.1ppm/℃。本发明的带隙基准电压源的最低工作电压为1.6V,可用于电源电压较低的场合,本发明的带隙基准电压源的静态电流仅为8μA。
由于ΔVEB和β随工艺波动变化很小,本发明的高阶曲率补偿电路103具有很好的抗工艺波动性能。这种补偿电路只由一个NPN三极管和一些电流镜组成,实现方式非常简单,可以很容易实现。由于具有高精度、低温漂、低工作电压、低静态电流和很好的抗工艺波动等特性,本发明的带隙基准电压源可广泛应用于模数转换器、数模转换器、射频、传感器和电源管理芯片中。
综上所述,本发明提供了一种带高阶曲率补偿的带隙基准电压源,包括:启动电路、带隙核心电路和高阶曲率补偿电路,其中:启动电路的输入端与带隙核心电路的输出端相连,启动电路的输出端与带隙核心电路的第一输入端相连,高阶曲率补偿电路的输出端与带隙核心电路的第二输入端相连,带隙核心电路的输出即为基准电压源,启动电路串接于电源电压和系统地之间,带隙核心电路串接于电源电压和系统地之间,高阶曲率补偿电路串接于电源电压和系统地之间;启动电路用于为带隙核心电路提供启动电流;高阶曲率补偿电路用于为带隙核心电路提供补偿电流;带隙核心电路用于产生带隙基准电源电压。本发明的高阶曲率补偿电路较好的补偿了带隙基准电压的低温段,因此设计带隙核心电路时,通过合理的设计第二电阻R2、第三电阻R3、第四电阻R4、第五电阻R5和第六电阻R6的阻值,使得带隙基准电压在低温段和高温段的温度特性不对称,在低温段表现出正温度特性偏大一些,叠加上高阶曲率补偿电流后,更好的抵消了带隙基准电压随温度的高阶非线性,减小带隙基准电压源温漂。
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括上述要素的物品或者设备中还存在另外的相同要素。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (8)

1.一种带高阶曲率补偿的带隙基准电压源,其特征在于,包括:启动电路、带隙核心电路和高阶曲率补偿电路,其中:
所述启动电路的输入端与所述带隙核心电路的输出端相连,所述启动电路的输出端与所述带隙核心电路的第一输入端相连,所述高阶曲率补偿电路的输出端与所述带隙核心电路的第二输入端相连,所述带隙核心电路的输出即为基准电压源,所述启动电路串接于电源电压和系统地之间,所述带隙核心电路串接于所述电源电压和所述系统地之间,所述高阶曲率补偿电路串接于所述电源电压和所述系统地之间;
所述启动电路用于为所述带隙核心电路提供启动电流,所述启动电路包括:第一开关管、第二开关管、第三开关管和第一电阻,其中:所述第一开关管的栅极作为所述启动电路的输入端与所述带隙核心电路的输出端相连;所述第一开关管的漏极与所述第二开关管的漏极相连,其公共端与所述第一电阻的一端相连,所述第一电阻的另一端与所述电源电压相连;所述第二开关管的栅极和漏极相连,所述第三开关管的漏极作为所述启动电路的输出端与所述带隙核心电路的第一输入端相连;所述第一开关管的源极、所述第二开关管的源极和所述第三开关管的源极相连,并与所述系统地相连;
所述高阶曲率补偿电路用于为所述带隙核心电路提供补偿电流;
所述带隙核心电路用于产生带隙正温度特性基准电源电压;
所述高阶曲率补偿电路结合线性的正温度系数的正温度特性与所述第三开关管工作在共射极的电流放大系数的正温度特性,构建高阶负温度特性补偿电路,用来补偿所述带隙基准电压源低温段的温度特性。
2.根据权利要求1所述的带高阶曲率补偿的带隙基准电压源,其特征在于,所述第一开关管、所述第二开关管和所述第三开关管为NMOS管。
3.根据权利要求1所述的带高阶曲率补偿的带隙基准电压源,其特征在于,所述带隙核心电路包括:第四开关管、第五开关管、第六开关管、第二电阻、第三电阻、第四电阻、第五电阻、第六电阻、第一NPN三极管、第二NPN三极管及运算放大器,其中:
所述第五开关管的源极、所述第六开关管的源极与所述电源电压相连,所述第五开关管的栅极和所述第六开关管的栅极相连,所述第五开关管的栅极和所述第五开关管的漏极相连;
所述第五开关管的漏极与所述第四开关管的漏极相连,且其公共端作为所述带隙核心电路的第一输入端与所述启动电路的输出端相连;
所述第四开关管的栅极与所述运算放大器的输出端相连,所述运算放大器的正相输入端与所述第四电阻和所述第一NPN三极管的发射极的公共端相连,所述第一NPN三极管的基极和集电极与所述系统地相连;
所述运算放大器的反相输入端与所述第五电阻和所述第六电阻的公共端相连,所述第六电阻的另一端与所述第二NPN三极管的发射极相连,所述第二NPN三极管的基极和集电极与所述系统地相连;
所述第四电阻和所述第五电阻的公共端与所述第三电阻的一端相连,所述第三电阻的另一端与所述第二电阻的一端相连;
所述第二电阻的另一端与所述第六开关管的源极相连,且其公共端作为所述带隙核心电路的输出端相连,同时其公共端作为所述带隙核心电路的第三输入端与所述高阶曲率补偿电路的第二输出端相连;
所述第二电阻和所述第三电阻的公共端作为所述带隙核心电路的第二输入端与所述高阶曲率补偿电路的第一输出端相连。
4.根据权利要求3所述的带高阶曲率补偿的带隙基准电压源,其特征在于,所述第四开关管为NMOS管。
5.根据权利要求3所述的带高阶曲率补偿的带隙基准电压源,其特征在于,所述第五开关管和所述第六开关管为PMOS管。
6.根据权利要求3所述的带高阶曲率补偿的带隙基准电压源,其特征在于,所述高阶曲率补偿电路包括:第七开关管、第八开关管、第九开关管、第十开关管、第十一开关管、第十二开关管、第十三开关管及第三NPN三极管,其中:
所述第七开关管的源极、所述第九开关管的源极、所述第十开关管的源极、所述第十一开关管的源极与所述电源电压相连;
所述第七开关管的栅极与所述第五开关管的栅极和所述第六开关管的栅极相连,所述第七开关管的漏极与所述第三NPN三极管的集电极相连,所述第三NPN三极管的集电极与所述第八开关管的栅极相连;
所述第三NPN三极管的发射极与系统地相连,所述第三NPN三极管的基极与所述第八开关管的源极相连,所述第八开关管的漏极与所述第九开关管的漏极相连,所述第九开关管的栅极与所述第九开关管的漏极相连,所述第九开关管、所述第十开关管的栅极和所述第十一开关管的栅极相连;
所述第十开关管的漏极与所述第十二开关管的漏极相连,所述第十二开关的漏极与栅极相连,所述第十二开关管的源极与所述系统地相连;
所述第十一开关管的源极作为所述高阶曲率补偿电路的第二输出端与所述带隙核心电路的第三输入端相连,所述第十二开关管的栅极与所述第十三开关管的栅极相连,所述第十三开关管的源极与所述系统地相连;
所述第十三开关管的漏极作为所述高阶曲率补偿电路的第一输出端与所述带隙核心电路的第二输入端相连。
7.根据权利要求6所述的带高阶曲率补偿的带隙基准电压源,其特征在于,所述第八开关管、所述第十二开关管和所述第十三开关管为NMOS管。
8.根据权利要求6所述的带高阶曲率补偿的带隙基准电压源,其特征在于,所述第七开关管、所述第九开关管、所述第十开关管和所述第十一开关管为PMOS管。
CN201711337876.5A 2017-12-14 2017-12-14 一种带高阶曲率补偿的带隙基准电压源 Active CN108052150B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711337876.5A CN108052150B (zh) 2017-12-14 2017-12-14 一种带高阶曲率补偿的带隙基准电压源

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711337876.5A CN108052150B (zh) 2017-12-14 2017-12-14 一种带高阶曲率补偿的带隙基准电压源

Publications (2)

Publication Number Publication Date
CN108052150A CN108052150A (zh) 2018-05-18
CN108052150B true CN108052150B (zh) 2020-03-10

Family

ID=62132662

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711337876.5A Active CN108052150B (zh) 2017-12-14 2017-12-14 一种带高阶曲率补偿的带隙基准电压源

Country Status (1)

Country Link
CN (1) CN108052150B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108664072B (zh) * 2018-06-11 2020-05-12 上海艾为电子技术股份有限公司 一种高阶温度补偿带隙基准电路
CN109388171B (zh) * 2018-12-10 2024-02-09 上海艾为电子技术股份有限公司 一种带隙基准电压源及电子设备
CN114115422B (zh) * 2021-12-10 2023-10-20 河南省科学院集成电路研究所 一种带隙基准电路
CN114489218B (zh) * 2021-12-29 2024-03-19 深圳市国微电子有限公司 低温漂低压低失调的带隙基准电压源和电子设备
CN114721458A (zh) * 2022-04-01 2022-07-08 无锡中科微电子工业技术研究院有限责任公司 一种采用指数补偿的带隙基准电压源

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4797577A (en) * 1986-12-29 1989-01-10 Motorola, Inc. Bandgap reference circuit having higher-order temperature compensation
CN102591394A (zh) * 2012-02-24 2012-07-18 电子科技大学 一种带隙基准电压源
CN103064457A (zh) * 2012-12-21 2013-04-24 厦门大学 一种基于负反馈的cmos带隙基准电路
CN104977969A (zh) * 2015-06-30 2015-10-14 重庆邮电大学 一种高电源抑制比高阶曲率补偿的带隙基准参考电路

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4797577A (en) * 1986-12-29 1989-01-10 Motorola, Inc. Bandgap reference circuit having higher-order temperature compensation
CN102591394A (zh) * 2012-02-24 2012-07-18 电子科技大学 一种带隙基准电压源
CN103064457A (zh) * 2012-12-21 2013-04-24 厦门大学 一种基于负反馈的cmos带隙基准电路
CN104977969A (zh) * 2015-06-30 2015-10-14 重庆邮电大学 一种高电源抑制比高阶曲率补偿的带隙基准参考电路

Also Published As

Publication number Publication date
CN108052150A (zh) 2018-05-18

Similar Documents

Publication Publication Date Title
CN108052150B (zh) 一种带高阶曲率补偿的带隙基准电压源
US9977111B2 (en) Reference voltage temperature coefficient calibration circuit and method
US7777558B2 (en) Bandgap reference circuit
US20200073429A1 (en) Bandgap reference circuit and high-order temperature compensation method
US6987416B2 (en) Low-voltage curvature-compensated bandgap reference
US7166994B2 (en) Bandgap reference circuits
KR100790476B1 (ko) 저전압 밴드갭 기준전압 발생기
CN101930248B (zh) 可调负电压基准电路
CN101901018B (zh) 电压基准电路
US9582021B1 (en) Bandgap reference circuit with curvature compensation
CN112859996B (zh) 一种低压高精度带隙基准电路
CN108052151B (zh) 一种无嵌位运放的带隙基准电压源
CN110320954B (zh) 一种基于凹凸曲率补偿的低温漂带隙基准电路
CN110895423B (zh) 用于与绝对温度成比例电路的系统和方法
CN112987836A (zh) 一种高性能的带隙基准电路
CN107817860B (zh) 低压带隙基准电路及电压发生电路
US6885179B1 (en) Low-voltage bandgap reference
CN211956253U (zh) 温度补偿带隙基准电路
CN113467562A (zh) 一种高端无运放带隙基准源
TWI514106B (zh) 參考電源產生電路及應用其之電子電路
CN111293876B (zh) 一种电荷泵的线性化电路
CN112000162A (zh) 一种带隙基准电压源
US20060132223A1 (en) Temperature-stable voltage reference circuit
CN116880644A (zh) 一种高阶曲率温度补偿带隙基准电路
Andreou et al. An all-subthreshold, 0.75 V supply, 2ppm/° C, CMOS Voltage Reference

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CP02 Change in the address of a patent holder
CP02 Change in the address of a patent holder

Address after: 201199 Room 1201, Lane 908, Xiuwen Road, Minhang District, Shanghai

Patentee after: Shanghai Awinic Technology Co.,Ltd.

Address before: 200233 Guiping Road, Xuhui District, Shanghai, No. 680, 303-39, 303-39

Patentee before: Shanghai Awinic Technology Co.,Ltd.