CN108048882A - 一种基于阳极氧化铝模板法制备图形化钴纳米线阵列的方法 - Google Patents

一种基于阳极氧化铝模板法制备图形化钴纳米线阵列的方法 Download PDF

Info

Publication number
CN108048882A
CN108048882A CN201711285684.4A CN201711285684A CN108048882A CN 108048882 A CN108048882 A CN 108048882A CN 201711285684 A CN201711285684 A CN 201711285684A CN 108048882 A CN108048882 A CN 108048882A
Authority
CN
China
Prior art keywords
cobalt
photoresist
oxidation aluminium
alumina template
working electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201711285684.4A
Other languages
English (en)
Inventor
邹强
苏奇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin University
Original Assignee
Tianjin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin University filed Critical Tianjin University
Priority to CN201711285684.4A priority Critical patent/CN108048882A/zh
Publication of CN108048882A publication Critical patent/CN108048882A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D1/00Electroforming
    • C25D1/006Nanostructures, e.g. using aluminium anodic oxidation templates [AAO]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

本发明涉及一种基于阳极氧化铝模板法制备图形化钴纳米线阵列的方法,包括下列步骤:准备铜片和多孔阳极氧化铝模板。工作电极的制备;涂覆光刻胶;曝光与显影;配制酸性电解液;多孔阳极氧化铝模板的孔洞润湿;钴纳米线及钴基底的制备:将铂片对电极和工作电极置于电解液中,两电极连接至电源,通过监测沉积电流的变化情况得知钴纳米线的沉积情况,当钴纳米线已经溢出多孔阳极氧化铝模板孔洞开始沉积时停止沉积;洗除光刻胶和阳极氧化铝模板。

Description

一种基于阳极氧化铝模板法制备图形化钴纳米线阵列的方法
技术领域
该发明设计纳米线制备领域,尤其涉及磁性纳米线阵列的制备领域。
背景技术
纳米线阵列在生命科学、医疗健康、环境保护、清洁能源等领域具有广泛应用,尤其是在医疗健康中的微流控芯片领域,纳米线阵列具有重要作用。
微流控芯片是一种在微米尺度空间对流体进行操控为主要特征的技术,具有将生物、化学等实验室的基本功能微缩到一个几平方厘米芯片上的能力,因此又被称为芯片实验室。在现阶段,主流形式的微流控芯片多由微通道形成网络,以可控流体贯穿整个系统,用以实现常规化学或生物等实验室的各种功能。微流控芯片的基本特征和最大优势是多种单元技术在微小可控平台上灵活组合和规模集成。
微流控芯片的样品检测或处理流程可分为进样、混合、检测或处理三个主要步骤,由于微流控芯片的空间尺度较小,雷诺系数较小,因此样品的混合是过程中的关键步骤。良好的混合可以让检测或处理结果更准确可信。但是仅仅依靠样品的自发混合远远无法达到要求。
受到生物界真核生物纤毛的启示,科研人员提出了将纤毛引入微流控芯片中,用于对样品进行混合。因此,仿生自然界的纤毛结构特点,制备形状类似的磁性纳米线阵列便显得尤为重要。到目前为止,有许多制备纳米线阵列的方法,其中电化学沉积是最为常见的方式之一。但电化学沉积中最常用的两种沉积模板,阳极氧化铝模板和聚碳酸酯模板,都无法自主设计孔洞分布,使得纳米线阵列的分布无法调节,在一定程度上限制了该项技术的发展。
发明内容
本发明的目的是提供一种基于阳极氧化铝模板的图形化纳米线阵列的制备方法,制备方法如下:
一种基于阳极氧化铝模板法制备图形化钴纳米线阵列的方法,包括下列步骤:
(1)准备铜片和多孔阳极氧化铝模板。
(2)工作电极的制备:将适量的武德合金加热熔化后,在紫铜片上涂覆均匀,然后将多孔阳极氧化铝模板覆于武德合金上表面;利用环氧树脂胶涂覆紫铜片背面及侧面,保证钴离子只能在多孔阳极氧化铝模板孔洞中沉积;取一根导线,一端连接紫铜片背面,另一端连接电极夹,制得工作电极。
(3)涂覆光刻胶:在多孔阳极氧化铝模板上表面涂覆适量光刻胶,将所述工作电极置于匀胶机中,使其均匀涂覆光刻胶。
(4)曝光与显影:利用紫外光透过掩膜版照射已经涂覆光刻胶的工作电极,照射过的光刻胶发生光化学反应,性质发生变化,被光刻版挡住的部分,未发生任何变化,通过显影将图形留在多孔阳极氧化铝模板上。
(5)配制酸性电解液:电解液包括:CoSO4 7H2O与H3BO3,摩尔浓度范围分别为0.60-0.66M/L和0.62-0.68M/L,并将pH值调节到2.5-3.5。
(6)多孔阳极氧化铝模板的孔洞润湿:将工作电极置于电解液中,使所述电解液中的钴离子进入多孔阳极氧化铝模板孔洞之中。
(7)钴纳米线及钴基底的制备:将铂片对电极和工作电极置于电解液中,两电极连接至电源,通过监测沉积电流的变化情况得知钴纳米线的沉积情况,当钴纳米线已经溢出多孔阳极氧化铝模板孔洞开始沉积时停止沉积。
(8)洗除光刻胶:利用丙酮洗除未曝光的光刻胶,之后用去离子水清洗工作电极。
(9)洗除阳极氧化铝模板:利用200mL 0.2M/L氢氧化钠溶液和200mL去离子水依次洗除阳极氧化铝模板,即可得到图形化的纳米线阵列。
与现有技术相比,该制备方法可以利用光刻工艺来调节阳极氧化铝模板的孔洞分布,从而调节纳米线的分布,避免纳米线密度过大造成的相互影响。拓展了微纳米机器人在生物医学和环境保护领域的应用范围。
附图说明
为了使本发明的内容更容易被清楚的理解,下面根据本发明的具体实施例并结合附图,对本发明作进一步的详细说明,其中:
图1为一般阳极氧化铝模板沉积的纳米线阵列示意图
图2为本发明的纳米线阵列示意图。
附图标记:101-钴纳米线;102-铜片;103-光刻胶。
具体实施方式
本发明的目的是提供一种基于阳极氧化铝模板的图形化纳米线阵列的制备方法,包括步骤:
(1)紫铜片基底的清洗:在使用前需要依次采用200mL去离子水、100mL丙酮、100mL无水乙醇和200mL去离子水对紫铜片基底(边长20mm)进行清洗,之后以30℃低温烘干备用。
(2)工作电极的制备:将适量的武德合金(熔点70℃)置于紫铜片上,共同放入烘箱中加热到其熔点(70℃),继续在此温度环境下,利用石英玻璃边缘将武德合金涂覆均匀,然后将多孔阳极氧化铝模板(圆形,孔径200nm,直径19mm)覆于武德合金上表面,同时保证所述多孔阳极氧化铝模板与所述武德合金有良好的接触,多孔阳极氧化铝模板的下表面可以被武德合金全部覆盖。取一根细铜线(直径0.8mm),一端连接紫铜片背面,另一端连接电极夹。利用环氧树脂胶涂覆紫铜片背面及侧面,保证钴离子只能在多孔阳极氧化铝模板孔洞中沉积。
(3)涂覆光刻胶:在上述工作电极上表面(即阳极氧化铝模板上表面)涂覆适量光刻胶SU-8,将所述工作电极置于匀胶机中,转速为3000-4000转/分。
(4)曝光与显影:利用紫外光透过掩膜版照射已经涂覆光刻胶的工作电极,照射过的光刻胶发生光化学反应,性质发生了变化,显影时就会和显影液发生化学反应并去除;而被光刻版挡住的部分,未发生任何变化,显影时不和显影液发生反应被保留在圆片上,这样光刻版的图形就转移到圆片表面,通过显影就能将图形留在圆片上。
(5)多孔阳极氧化铝模板的孔洞润湿:将工作电极置于所述石英电解槽的电解液中,利用磁力搅拌仪对电解液进行搅拌3min,使所述电解液中的钴离子进入多孔阳极氧化铝模板孔洞之中。
(6)钴纳米线101的制备:电解液的组成为:0.63M/L的CoSO4 7H2O与0.65M/L的H3BO3,同时利用H2SO4调节溶液pH=3。两电极体系是将铂片对电极和工作电极置于石英电解槽电解液中,两电极连接至电源,电源可以提供“正弦交流+恒压直流偏置”、“恒压直流”和“脉冲直流”等输出模式。利用数字多用表以监测沉积电流的变化情况,当钴纳米线在孔洞中沉积完成后,会继续在所述多孔阳极氧化铝模板上表面沉积,此时沉积电流会出现跃升。因此从沉积电流的变化情况可以得知纳米线的沉积情况。当钴纳米线101已经溢出所述多孔阳极氧化铝模板孔洞开始沉积时停止沉积。
(7)洗除光刻胶:利用丙酮洗除未曝光的光刻胶,之后用去200mL离子水清洗工作电极。
(8)洗除阳极氧化铝模板:利用200mL 0.2M/L氢氧化钠溶液和200mL去离子水依次洗除阳极氧化铝模板,即可得到图形化的纳米线阵列。

Claims (1)

1.一种基于阳极氧化铝模板法制备图形化钴纳米线阵列的方法,包括下列步骤:
(1)准备铜片和多孔阳极氧化铝模板。
(2)工作电极的制备:将适量的武德合金加热熔化后,在紫铜片上涂覆均匀,然后将多孔阳极氧化铝模板覆于武德合金上表面;利用环氧树脂胶涂覆紫铜片背面及侧面,保证钴离子只能在多孔阳极氧化铝模板孔洞中沉积;取一根导线,一端连接紫铜片背面,另一端连接电极夹,制得工作电极;
(3)涂覆光刻胶:在多孔阳极氧化铝模板上表面涂覆适量光刻胶,将所述工作电极置于匀胶机中,使其均匀涂覆光刻胶;
(4)曝光与显影:利用紫外光透过掩膜版照射已经涂覆光刻胶的工作电极,照射过的光刻胶发生光化学反应,性质发生变化,被光刻版挡住的部分,未发生任何变化,通过显影将图形留在多孔阳极氧化铝模板上;
(5)配制酸性电解液:电解液包括:CoSO4 7H2O与H3BO3,摩尔浓度范围分别为0.60-0.66M/L和0.62-0.68M/L,并将pH值调节到2.5-3.5;
(6)多孔阳极氧化铝模板的孔洞润湿:将工作电极置于电解液中,使所述电解液中的钴离子进入多孔阳极氧化铝模板孔洞之中;
(7)钴纳米线及钴基底的制备:将铂片对电极和工作电极置于电解液中,两电极连接至电源,通过监测沉积电流的变化情况得知钴纳米线的沉积情况,当钴纳米线已经溢出多孔阳极氧化铝模板孔洞开始沉积时停止沉积;
(8)洗除光刻胶:利用丙酮洗除未曝光的光刻胶,之后用去离子水清洗工作电极;
(9)洗除阳极氧化铝模板:利用200mL 0.2M/L氢氧化钠溶液和200mL去离子水依次洗除阳极氧化铝模板,即可得到图形化的纳米线阵列。
CN201711285684.4A 2017-12-07 2017-12-07 一种基于阳极氧化铝模板法制备图形化钴纳米线阵列的方法 Pending CN108048882A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711285684.4A CN108048882A (zh) 2017-12-07 2017-12-07 一种基于阳极氧化铝模板法制备图形化钴纳米线阵列的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711285684.4A CN108048882A (zh) 2017-12-07 2017-12-07 一种基于阳极氧化铝模板法制备图形化钴纳米线阵列的方法

Publications (1)

Publication Number Publication Date
CN108048882A true CN108048882A (zh) 2018-05-18

Family

ID=62122673

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711285684.4A Pending CN108048882A (zh) 2017-12-07 2017-12-07 一种基于阳极氧化铝模板法制备图形化钴纳米线阵列的方法

Country Status (1)

Country Link
CN (1) CN108048882A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109898113A (zh) * 2018-08-14 2019-06-18 河北民族师范学院 一种磁性Co纳米线/多孔氧化铝复合薄膜及其制备方法
CN112481660A (zh) * 2020-11-13 2021-03-12 中南大学深圳研究院 一种有序金属纳米线阵列的制备方法
CN112479154A (zh) * 2020-11-13 2021-03-12 中南大学深圳研究院 一种有序金属纳米针尖阵列的制备方法
CN112925171A (zh) * 2021-01-20 2021-06-08 桂林理工大学 基于阳极氧化铝模板的图案化电子光源及其制造方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101954762A (zh) * 2010-02-10 2011-01-26 湘潭大学 一种镀覆有含钴纳米线复合薄膜的钢带及其制备方法
CN106094445A (zh) * 2016-06-12 2016-11-09 中国科学院微电子研究所 大高宽比纳米级金属结构的制作方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101954762A (zh) * 2010-02-10 2011-01-26 湘潭大学 一种镀覆有含钴纳米线复合薄膜的钢带及其制备方法
CN106094445A (zh) * 2016-06-12 2016-11-09 中国科学院微电子研究所 大高宽比纳米级金属结构的制作方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
V.SUDHA RANI 等,: ""Structural and magnetic properties of electrodeposited cobalt nanowires in polycarbonate membrane"", 《PHYS.STATUS SOLIDI A》 *
任建林 等,: ""电沉积钴纳米线阵列耐腐蚀性能研究"", 《电镀与精饰》 *
李晓茹 等,: ""图案化金属铜纳米线阵列的制备与表征"", 《功能材料》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109898113A (zh) * 2018-08-14 2019-06-18 河北民族师范学院 一种磁性Co纳米线/多孔氧化铝复合薄膜及其制备方法
CN112481660A (zh) * 2020-11-13 2021-03-12 中南大学深圳研究院 一种有序金属纳米线阵列的制备方法
CN112479154A (zh) * 2020-11-13 2021-03-12 中南大学深圳研究院 一种有序金属纳米针尖阵列的制备方法
CN112925171A (zh) * 2021-01-20 2021-06-08 桂林理工大学 基于阳极氧化铝模板的图案化电子光源及其制造方法

Similar Documents

Publication Publication Date Title
CN108048882A (zh) 一种基于阳极氧化铝模板法制备图形化钴纳米线阵列的方法
CN107986230B (zh) 一种图形化仿生磁性微纳米机器人制备方法
JP4464041B2 (ja) 柱状構造体、柱状構造体を有する電極、及びこれらの作製方法
CN106498464B (zh) 一种金属纳微米枝晶有序阵列的制备方法
CN106119927B (zh) 电化学处理制备各向异性油水分离铜网的方法
CN108459003A (zh) 一种银纳米颗粒包覆氧化锌表面增强拉曼散射效应基底的制备方法
CN101851771A (zh) 可直接用于电化学沉积的有序多孔氧化铝模板及制备方法
CN108706543A (zh) 一种精确控制的纳米孔制造方法
CN101838835A (zh) 可直接用于电化学沉积的有序多孔氧化铝模板及制备方法
CN101775586A (zh) 在非铝基底上电化学定向生长多孔Al2O3膜的制备方法
CN103406248B (zh) 铜基超疏水表面结构的制备方法
CN105088297A (zh) 一种仿生油水分离铜网的制备方法
Zhang et al. Quantitative analysis of oxide growth during Ti galvanostatic anodization
Kim et al. Fabrication of TiO2 nanotube arrays and their application to a gas sensor
Zhu et al. A gold nanoparticle-modified indium tin oxide microelectrode for in-channel amperometric detection in dual-channel microchip electrophoresis
Cao et al. Inherent superhydrophobicity of Sn/SnOx films prepared by surface self-passivation of electrodeposited porous dendritic Sn
CN104942281B (zh) 一种多孔金纳米线及其制备方法和应用
CN108018587A (zh) 一种基于聚碳酸酯模板法制备图形化钴纳米线阵列的方法
Nguyen et al. Micro pH sensors based on iridium oxide nanotubes
CN108274014A (zh) 一种具有多重分枝状的纳米合金及其制备方法
CN108046210B (zh) 一种仿生磁性微纳米机器人制备方法
CN109908768A (zh) 碳纳米材料的穿孔方法以及过滤器成形体的制造方法
CN104404602A (zh) 一种表面多孔NiTi形状记忆合金制备方法
CN106645077B (zh) 热点尺寸小于5nm的SERS活性基底的制备方法
CN109082084B (zh) 一种具有纳米孔道的高分子膜及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20180518