CN108048807B - 具有抗菌生物活性MoO3-SiO2纳米晶复合涂层的制备方法 - Google Patents

具有抗菌生物活性MoO3-SiO2纳米晶复合涂层的制备方法 Download PDF

Info

Publication number
CN108048807B
CN108048807B CN201710864169.5A CN201710864169A CN108048807B CN 108048807 B CN108048807 B CN 108048807B CN 201710864169 A CN201710864169 A CN 201710864169A CN 108048807 B CN108048807 B CN 108048807B
Authority
CN
China
Prior art keywords
workpiece
target
sio
voltage
moo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710864169.5A
Other languages
English (en)
Other versions
CN108048807A (zh
Inventor
徐江
孙腾腾
姚凡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xinjiang Yihe Biological Co ltd
Original Assignee
Nanjing University of Aeronautics and Astronautics
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Aeronautics and Astronautics filed Critical Nanjing University of Aeronautics and Astronautics
Priority to CN201710864169.5A priority Critical patent/CN108048807B/zh
Publication of CN108048807A publication Critical patent/CN108048807A/zh
Application granted granted Critical
Publication of CN108048807B publication Critical patent/CN108048807B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • C23C14/0036Reactive sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/083Oxides of refractory metals or yttrium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/10Glass or silica

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Physical Vapour Deposition (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Abstract

本发明公开一种具有抗菌生物活性MoO3‑SiO2纳米晶复合涂层的制备方法,涉及双阴极等离子溅射沉积和离子氧化复合工艺以及涂层材料的结构设计与选材领域;本发明采用的双阴极等离子溅射沉积技术参数为:靶材电压800V~1000V,工件电压250V~350V,靶材与工件间距10mm~20mm,工作气压25Pa~40Pa,沉积温度750℃~950℃,沉积时间3.0h~5.0h;采用的离子氧化工艺参数为:靶材电压650~750V,工件电压250V~350V,靶材与工件间距10mm~20mm,工作气压25Pa~40Pa,O2分压0.1Pa~1.0Pa,氧化试剂1.0h~2.0h;工件材料为海洋船体用各类不锈钢;本发明方法制备的MoO3‑SiO2纳米晶复合涂层具有高硬度、高韧性以及优异的腐蚀抗力和抗微生物腐蚀能力,能明显提高用于海洋船体用各类不锈钢的耐磨性、抗腐蚀性能和抗菌性能。

Description

具有抗菌生物活性MoO3-SiO2纳米晶复合涂层的制备方法
技术领域
本发明涉及双阴极等离子溅射沉积和离子氧化复合工艺以及涂层材料的结构设计与选材领域,特别是一种具有抗菌活性的MoO3-SiO2纳米晶复合涂层的制备方法,该方法适用于在不锈钢材料表面制备具有良好耐腐蚀性能、良好的抗菌性能、高的结合力与强韧性涂层。
背景技术
21世纪是海洋的世纪,占地球面积71%的辽阔而神秘的海洋是生命的摇篮,人类未来也寄希望于海洋,随着陆地资源日益减少,开发广阔丰富的海洋资源成为人们不断地追求的新目标。海洋开发要面对恶劣的海洋环境,因而海洋资源开发和利用的基础设施面临着严重的海洋微生物腐蚀问题。目前全世界每年因腐蚀造成的经济损失约为7000亿美元,金属材料在海洋中的损失相当严重,并且腐蚀是导致各种基础设施和工业设备破坏和报废的主要原因。目前,采用表面改性手段在海洋金属材料表面制备各种涂层,将基体材料的力学性能和涂层材料的抗菌特性有效地结合,已成为改善海洋金属材料的耐微生物腐蚀最有效的方法之一。作为一个拥有1.8万km海岸线的世界海洋大国之一,研究海洋结构材料在海水中的微生物腐蚀具有十分重要的理论和现实意义。
海洋腐蚀环境苛刻,海水中的盐浓度高(一般在3.5%左右),富氧,并存在着大量海洋微生物,加之海浪冲击和阳光照射,海洋腐蚀环境较为严酷。在海洋环境中服役的基础设施和重工业设施的腐蚀问题严重,特别是船舶与海洋平台的腐蚀问题更加突出,腐蚀已经成为影响船舶、近海工程、远洋设施服役安全、寿命、可靠性的重要因素。而海洋微生物的存在,会附着在船底中生长和繁殖,从而使船体污损和发生腐蚀,造成船体粗糙,摩擦力增大,从而降低船舶航行的速度,增加燃耗。
MoO3-SiO2涂层复合材料可以有效提高基体材料的力学性能,且MoO3为典型的光催化材料,具有无毒,光化学稳定性,可以有效降解污染物。目前制备该复合涂层的方法为化学沉积法,获得的涂层与基体结合度不好,且致密性差,晶粒度较大,无法得到均匀细小的纳米晶力学性能均较低,耐腐蚀性能差,且制备效率低,且并不涉及耐腐蚀性能及抗菌性能,无法满足现有远洋船舶材料需求。
发明内容
针对上述问题,本发明利用纳米晶MoO3的抗菌特性,采用双阴极等离子溅射沉积技术和离子氧化的复合工艺,在工件表面制备具有抗菌特性MoO3-SiO2纳米晶复合涂层,该涂层具有特殊的纳米尺度表面形貌,能明显提高不锈钢的腐蚀抗力和表面抗菌活性。本发明目的是这样实现的:
分别依次采用双阴极等离子溅射沉积技术和离子氧化工艺,在工件表面制备MoO3-SiO2纳米晶复合涂层;
对于双阴极等离子溅射装置,通过调节靶材和工件电压以及通入真空室中的Ar气压,控制靶材(提供欲沉积的元素)溅射沉积量与工件表面的温度(较高且合适的处理温度有利于元素在基体的扩散,提高其扩散速率,并形成均匀致密的纳米晶,有利于增加涂层厚度,提高对于基体材料的保护)。
对于离子氧化工艺,通过优化相应工艺参数(温度、时间、氧分压等),以得到综合性能优异的MoO3-SiO2纳米晶复合涂层。
具体而言,本发明所提供双阴极等离子溅射沉积技术和离子氧化工艺具体参数如下:
a.双阴极等离子溅射沉积工艺参数如下:靶材电压800V~1000V,工件电压250V~350V,靶材与工件间距10mm~20mm, 工作气压25Pa~40Pa,沉积温度750℃~950℃,沉积时间3.0h~5.0h;所述工作气压是指氩气气压。
b.离子氧化工艺参数:靶材电压650V~750V,工件电压250~350V,靶材与工件间距10 mm~20 mm,工作气压25Pa~40Pa,氧分压0.1Pa~1Pa,氧化时间1h~2h,氧化温度:450℃~600℃;所述工作气压是指氩气和氧气的混合气压,其中氩气和氧气的体积比为20:1。
c.工件材料:海洋船体材料,优选316L不锈钢。
d.靶材:等摩尔质量混合的Mo-Si靶,纯度>99.9%。
进一步,本发明具有抗菌生物活性MoO3-SiO2纳米晶复合涂层的制备方法中,上述步骤a双阴极等离子溅射工艺优选参数为:靶材电压:950V,工件电压:350V,靶材与工件间距:15mm,工作气压:35Pa,沉积温度:950℃,沉积时间:4h;步骤b等离子氧化工艺优选参数为:氧化电压:700V,工件电压:300V,氧化温度:600℃,工作气压:35Pa,氧分压:1Pa,氧化时间:1.5h。
本发明采用双阴极等离子溅射沉积技术,在靶材表层制备了具有抗菌活性的耐蚀MoO3-SiO2纳米晶复合涂层。该涂层由8-20nm的MoO3纳米晶粒与非晶SiO2组成,组织致密均匀、无冶金缺陷,与基体结合良好。电化学测试和抗菌实验表明该涂层明显提高了不锈钢基体的腐蚀抗力和抗菌生物活性,显示出巨大的耐海洋微生物腐蚀的应用潜力,具体而言,本发明具有以下有益效果:
1.纳米化提高了复合涂层的韧性和硬度,本专利采用双阴极等离子溅射沉积和离子氧化复合技术制备的MoO3-SiO2纳米晶复合涂层,等离子溅射技术元素扩渗速度快,离子轰击不仅可以取出试样表面氧化层,而且可以使基体材料表面产生大量空位,有利于离子吸附,本发明制备的涂层微观结构如图1所示。
该涂层不仅具有高的显微硬度,测试结果表明,纳米晶复合涂层材料将316L不锈钢硬度由5.5GPa提高至12.3GP。而利用纳米压入法评价涂层的韧性结果表明:在压入深度为200~450nm之间且处于同一压入深度时,MoO3-SiO2纳米晶复合涂层的载荷峰值明显高于316L不锈钢,表明涂层抵抗外加载荷的能力要优于316L不锈钢基体,因纳米晶颗粒改变了材料的变形机制从而提高了材料表面韧性,使其呈现较高的韧性。
2.本发明制备的MoO3-SiO2复合纳米晶涂层在模拟海水溶液中电化学腐蚀抗力结果如图2所示,模拟海水溶液中的动电位极化测试表明,在所测试温度范围(10℃~30℃)内,涂层比316L不锈钢基体,具有低的自腐蚀电流密度,更高的极化阻抗,表现出优异的电化学腐蚀抗力。
3.MoO3-SiO2复合纳米晶涂层在含菌培养基中的抗菌活性结果如图3所示,在含大肠杆菌的固体LB培养基中37℃恒温培养24小时后,纳米晶复合涂层表面细菌数目明显少于316L不锈钢基体,MoO3-SiO2复合纳米晶涂层对于大肠杆菌杀菌率大80.7%,对于金黄色葡萄球菌的杀菌率约为68.9%;这是因为本发明制得的复合纳米晶涂层中MoO3为纳米晶结构,而SiO2以非晶形式存在,形成良好的内部组织结构,且将沉积过程与氧化过程分开,所制得涂层具有良好的疏水特性,有效的降低了海水中污染物在其表面的附着而产生的腐蚀失效,这是现有其他技术无法实现的。
4.本发明源级靶材材料选择范围宽,几乎所有导电金属材料都可以作为靶材,并且源级靶材利用率高,消耗少(本发明靶材利用率约为90%,而目前常规技术靶材的利用率仅为70%),节省资源。
5.本发明制备方法能耗低,相比传统固体渗金属,不需要外加热源,处理时间短;并且无污染,实验过程中不产生任何有毒气体,绿色环保。
附图说明
图1为实施例1获得的MoO3-SiO2纳米晶涂层的明场TEM照片。
图2为MoO3-SiO2纳米晶涂层,316L不锈钢基体在模拟海水溶液中不同温度下的动电位极化曲线比较结果示意图。
图3为MoO3-SiO2纳米晶涂层材料和316L不锈钢抗菌检测试验结果照片。
图4为实施例2获得的MoO3-SiO2纳米晶涂层的明场TEM照片。
图5为实施例3获得的MoO3-SiO2纳米晶涂层的明场TEM照片。
具体实施方案
下面结合附图对本发明作进一步详细说明。
本实施例中使用的等离子设备参见文献“L. Liu, J. Xu, P. Munroe, J. Xu,Z.H. Xie, Electrochemical behavior of (Ti1− xNbx)5Si3 nanocrystalline films insimulated physiological media, Acta Biomater. 10 (2014) 1005-1013)”中公开的等离子设备。
实施例中使用的靶材:为等摩尔质量混合的Mo-Si靶,纯度>99.9%;其制备步骤如下:将摩尔质量比为1:1的Mo、Si粉末混合,然后将混合后的粉末放入球磨罐内,加入工业乙醇作为过程控制剂;球磨设定时间为10小时,球磨转速为300r/min,球磨完成后,取出,放入烘箱内烘制(80℃),烘干乙醇得到混合均匀的粉末;利用酒精灯及坩埚使用聚乙烯醇制取成型剂,压靶,采用粉末压力机,设定压力为40帕,稳定时间为20-25分钟,取出后放入烘箱内(80℃),干燥处理,即获得混合Mo-Si靶;实施例中使用的靶材为直径60mm,厚4mm的圆盘型靶材。
实施例中使用的工件为直径30mm,厚度2mm的圆形316L不锈钢材料,实验前用砂纸对基体进行打磨,抛光至镜面,并用超声波酒精清洗。
实施例1
MoO3-SiO2纳米晶复合涂层制备工艺,利用双阴极等离子溅射沉积及离子氧化法,在316L不锈钢工件表面制备致密均匀无缺陷的MoO3-SiO2纳米晶复合涂层,获得MoO3-SiO2纳米晶复合涂层材料,具体步骤参数如下:
双阴极等离子溅射工艺及离子氧化参数:
a.双阴极等离子溅射工艺参数:
靶材电压:950V;
工件电压:350V;
靶材与工件间距:15mm;
工作气压:35Pa;
沉积温度:850℃;
沉积时间:4h;
b. 离子氧化工艺参数:
氧化电压:700V;
工件电压:300V;
氧化温度:600℃;
工作气压:35Pa;
氧分压:1.0P;
氧化时间:1.5h。
本实施例中双阴极等离子溅射工艺中工作气压是指氩气气压;离子氧化工艺中工作气压是指氩气和氧气的混合气压,其中氩气与氧气的体积比为20:1
图1为MoO3-SiO2纳米晶复合涂层的明场TEM照片。从中可以看出,本实施例制备的涂层由大小8-20nm的MoO3纳米晶粒与非晶SiO2组成,平均晶粒尺寸约为10.5nm。
利用纳米压入法评价涂层的韧性表明:压入载荷为40mN时压痕周围没有观察到裂纹的萌生和发展,证明纳米晶复合涂层具有高的抵抗外加载荷的能力从而强化不锈钢表面抵抗塑性变形的能力,且该涂层的硬度为12.3GPa,弹性模量为125.6GPa,与基体的结合强度达到56N,远远高出采用化学喷涂等方法所得。
纳米压入法参照:Zhao Xiaoli, Xie Zonghan, Paul Munroe. Nanoindentationof hard multilayer coatings: Finite element modelling. Materials acience andengineering A, 528 (2011) 1111-11160。
由划痕法可以得出,涂层与基体临界结合力达65.7N,界面致密无孔洞裂纹出现,满足经验法则所示使用金刚石压头进行划痕实验达到工程应用要求时最小临界力为30N。
划痕法参照:Sture Hogmark, Staffan Jacobson, Mats Larsson. Design andevaluation of tribological coatings. Wear. 246 (2000) 20-33。
图2为本实施例获得的涂层在模拟海水溶液(浓度为3.5% 的NaCl溶液)中的动电位极化测试结果示意图,图2(a)为316L不锈钢基体,图2(b)为MoO3-SiO2纳米晶复合涂层材料.可见,MoO3-SiO2纳米晶复合涂层材料较316L不锈钢基体,具有低的自腐蚀电流密度和钝化电流密度,高的极化阻抗值,表现出优异的电化学腐蚀抗力。
分别将100μL(活菌量为1×106 CFUs/mL)的大肠杆菌(典型的革兰氏阴性菌)和金黄色葡萄球菌(典型的格兰氏阳性菌)滴加到本实施例获得的MoO3-SiO2纳米晶复合涂层材料和316L不锈钢材料表面,并在24孔板里37℃恒温培养24h,然后用磷酸盐缓冲液洗去材料表面细菌并进行连续稀释,取稀释液在LB固体培养基37℃继续恒温培养24h后取出,进行菌落计数。检测结果如图3所示,其中图3(a)为316L不锈钢/大肠杆菌检测结果;图3(b)为316L不锈钢/金黄色葡萄球菌检测结果,图3(c)为MoO3-SiO2纳米晶复合涂层材料/大肠杆菌检测结果;图3(d)为MoO3-SiO2纳米晶复合涂层材料/金黄色葡萄球菌检测结果。由图3可见,MoO3-SiO2纳米晶复合涂层材料表面细菌数目明显少于316L不锈钢基体涂层材料表面生长的细菌数目,且计算获得涂层对于大肠杆菌杀菌率为80.7%,对金黄色葡萄球菌杀菌率约为68.9%,计算公式如下:
杀菌率计算公式为Ra=(A-B)/B*100%,其中A为不锈钢基体生长细菌数目,B为MoO3-SiO2纳米晶复合涂层材料表面生长细菌数目。
同时,由图3可见,MoO3-SiO2纳米晶涂层表面无明显微生物腐蚀缺陷且表面细菌数量明显少于不锈钢基体,而对于316L不锈钢基体,表面产生明显的微生物腐蚀坑,并且表面附着大量大肠杆菌。因此认为MoO3-SiO2纳米晶复合涂层表面细菌微生物腐蚀较316L不锈钢基体具有明显的微生物腐蚀抗力,表现出高的抗菌生物活性,且对多种细菌均有较好的杀菌效果。
平板法参照:Qin Hui, Cao Huiliang, Zhao Yaochao, et al.. In vitro andin vivo anti-biofilm effects of silver nanoparticles immobilized on titanium.Biomaterials. 35 (2014) 9114-9125)。
实施例2
本实施例利用双阴极等离子溅射沉积及离子氧化法,在316L不锈钢工件表面制备致密均匀无缺陷的MoO3-SiO2纳米晶复合涂层,所使用的靶材、工件与实施例1相同,实验具体参数如下:
b.双阴极等离子溅射工艺参数:
靶材电压:850V;
工件电压:300V;
靶材与工件间距:15mm;
工作气压:35Pa;
沉积温度:850℃;
沉积时间:4h;
b. 离子氧化工艺参数:
氧化电压:700V;
工件电压:300V;
氧化温度:600℃;
工作气压:35Pa;
氧分压:1.0P;
氧化时间:1.5h。
本实施例获得的MoO3-SiO2纳米晶复合涂层材料的明场TEM照片如图4所示,可见,涂层晶粒尺寸较大,且晶粒大小不均匀,较大的晶粒严重影响材料的力学性能。究其原因,可能是温度变化引起晶粒变化,导致涂层性能低于实施例1。
实施例3
一种MoO3-SiO2纳米晶复合涂层制备工艺,利用双阴极等离子溅射沉积及离子氧化法,在316L不锈钢工件表面制备致密均匀无缺陷的MoO3-SiO2纳米晶复合涂层,所使用的靶材、工件与实施例1相同,本实施例实验参数如下:
a.双阴极等离子溅射工艺参数:
靶材电压950 V;
工件电压350 V;
靶材与工件间距15 mm;
工作气压(Ar)35 Pa;
沉积温度:950℃;
沉积时间:4h;
b. 离子氧化工艺参数:
氧化电压:800V;
工件电压:300V;
氧化温度:800℃;
工作气压(Ar):35Pa;
氧分压:1.0P;氧化时间:1.5h。
本实施例获得的MoO3-SiO2纳米晶复合涂层材料的明场TEM照片如图5所示,可见,涂层晶粒尺寸较大,且晶粒大小不均匀,较大的晶粒严重影响材料的力学性能。由此温度得出的涂层性能低于实施例1。
在具体实施过程中,双阴极等离子溅射Mo-Si层工艺参数,靶材电压:800V~1000V,工件电压:250V~350V,靶材与工件间距:10mm~20mm,工作气压:25Pa~40Pa,沉积温度:750℃~950℃,沉积时间:3.0h~5.0h的范围内;等离子氧化工艺参数,氧化电压:650V~750V,工件电压250V~350V,氧化温度:450℃~600℃,工作气压:25Pa~40Pa,氧分压:0.1Pa-1Pa,氧化时间:1.0h~2.0h的范围内,均可实现在工件表面制备MoO3-SiO2纳米晶复合涂层之目的。
以上实施例仅用以说明本发明的技术方案而非限制,尽管参照较佳实施例对本发明进行了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改,其均应涵盖在本发明的权利要求范围当中。

Claims (6)

1.一种具有抗菌生物活性MoO3-SiO2纳米晶复合涂层的制备方法,其特征在于,具体步骤如下:
a.首先利用双阴极等离子溅射Mo-Si层,工艺参数如下:
靶材电压:800V~1000V;
工件电压:250V~350V;
靶材与工件间距:10mm~20mm;
工作气压:25Pa~40Pa;
沉积温度:750℃~950℃;
沉积时间:3.0h~5.0h;
b.其次进行等离子氧化,工艺参数如下:
氧化电压:650V~750V;
工件电压:250V~350V;
氧化温度:450℃~600℃;
工作气压:25Pa~40Pa;
氧分压:0.1Pa~1Pa;
氧化时间:1.0h~2.0h。
2.根据权利要求1所述具有抗菌生物活性MoO3-SiO2纳米晶复合涂层的制备方法,其特征在于,所述靶材为等摩尔质量混合的Mo-Si靶。
3.根据权利要求2所述具有抗菌生物活性MoO3-SiO2纳米晶复合涂层的制备方法,其特征在于,所述工件为316L不锈钢。
4.根据权利要求1所述具有抗菌生物活性MoO3-SiO2纳米晶复合涂层的制备方法,其特征在于,步骤a双阴极等离子溅射的工作气压是指氩气气压。
5.根据权利要求4所述具有抗菌生物活性MoO3-SiO2纳米晶复合涂层的制备方法,其特征在于,步骤b等离子氧化工作气压是指氩气和氧气的混合气压,氩气和氧气的体积比为20:1。
6.根据权利要求1-5之一所述具有抗菌生物活性MoO3-SiO2纳米晶复合涂层的制备方法,其特征在于,步骤a双阴极等离子溅射工艺参数为:靶材电压:950V,工件电压:350V,靶材与工件间距:15mm,工作气压:35Pa,沉积温度:950℃,沉积时间:4h;步骤b等离子氧化工艺参数为:氧化电压:700V,工件电压300V,氧化温度:600℃,工作气压:35Pa,氧分压:1Pa,氧化时间:1.5h。
CN201710864169.5A 2017-09-22 2017-09-22 具有抗菌生物活性MoO3-SiO2纳米晶复合涂层的制备方法 Active CN108048807B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710864169.5A CN108048807B (zh) 2017-09-22 2017-09-22 具有抗菌生物活性MoO3-SiO2纳米晶复合涂层的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710864169.5A CN108048807B (zh) 2017-09-22 2017-09-22 具有抗菌生物活性MoO3-SiO2纳米晶复合涂层的制备方法

Publications (2)

Publication Number Publication Date
CN108048807A CN108048807A (zh) 2018-05-18
CN108048807B true CN108048807B (zh) 2019-07-30

Family

ID=62119545

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710864169.5A Active CN108048807B (zh) 2017-09-22 2017-09-22 具有抗菌生物活性MoO3-SiO2纳米晶复合涂层的制备方法

Country Status (1)

Country Link
CN (1) CN108048807B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111463436B (zh) * 2020-04-20 2021-11-02 华鼎国联四川动力电池有限公司 一种锂离子电池集流体及其制备方法
CN111850492B (zh) * 2020-07-03 2021-09-21 南京航空航天大学 一种基于摩擦诱导抗菌特性增强涂层的制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000355752A (ja) * 1999-06-16 2000-12-26 Nippon Steel Hardfacing Co Ltd 可動部品の表面に適用されるセラミック溶射皮膜
CN101481791A (zh) * 2009-01-07 2009-07-15 江苏华阳金属管件有限公司 高韧性纳米晶硅化物涂层的制备方法
CN101610679A (zh) * 2006-11-13 2009-12-23 约瑟夫·彼得·古根比齐勒 具有抗菌作用的物质

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101593150B1 (ko) * 2006-11-27 2016-02-11 마이크로파이레틱스 히터스 인터내셔널, 인코포레이티드 항미생물성 물질 및 코팅

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000355752A (ja) * 1999-06-16 2000-12-26 Nippon Steel Hardfacing Co Ltd 可動部品の表面に適用されるセラミック溶射皮膜
CN101610679A (zh) * 2006-11-13 2009-12-23 约瑟夫·彼得·古根比齐勒 具有抗菌作用的物质
CN101481791A (zh) * 2009-01-07 2009-07-15 江苏华阳金属管件有限公司 高韧性纳米晶硅化物涂层的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
《等离子体氧化制备超薄SiO2层的性质》;鲍云等;《半导体学报》;20010831;第22卷(第8期);第1011-1014页

Also Published As

Publication number Publication date
CN108048807A (zh) 2018-05-18

Similar Documents

Publication Publication Date Title
Gilewicz et al. Corrosion resistance of CrN and CrCN/CrN coatings deposited using cathodic arc evaporation in Ringer's and Hank's solutions
CN108048807B (zh) 具有抗菌生物活性MoO3-SiO2纳米晶复合涂层的制备方法
Bai et al. Effect of Cu content on microstructure, mechanical and anti-fouling properties of TiSiN-Cu coating deposited by multi-arc ion plating
Ma et al. Tribocorrosion behavior in artificial seawater and anti-microbiologically influenced corrosion properties of TiSiN-Cu coating on F690 steel
Rahimi et al. Comparison of corrosion and antibacterial properties of Al alloy treated by plasma electrolytic oxidation and anodizing methods
Zhai et al. Corrosion behavior of the chitosan‑zinc composite films in sulfate-reducing bacteria
Bai et al. Structure and properties of TiSiN/Cu multilayer coatings deposited on Ti6Al4V prepared by arc ion plating
Xu et al. Antimicrobial and biocorrosion-resistant MoO3-SiO2 nanocomposite coating prepared by double cathode glow discharge technique
CN103882421B (zh) 采用等离子体喷涂技术制备的非晶合金涂层及其制备方法
CN108611672B (zh) 铝合金硬质阳极氧化电解液、制备方法及应用
CN104674200A (zh) 一种金属防腐层的制备方法
CN105970215A (zh) 一种轴承的复合层制备方法及其轴承
CN106929799B (zh) 耐高温防护涂层及其制备方法与应用
CN100519840C (zh) 镁合金表面磷化处理方法
Wang et al. Construction of antifouling Cu-modified TiO2 coating via micro-arc oxidation: The influence of Cu content
CN110117774A (zh) 一种tc4钛合金表面涂层及其制备方法和tc4钛合金产品
Tian et al. Effect of coating composition on the micro-galvanic dissolution behavior and antifouling performance of plasma-sprayed laminated-structured CuTi composite coating
CN108048809B (zh) 耐蚀抗菌的含银MoO3-SiO2纳米晶复合涂层的制备方法
CN114318467B (zh) 一种适用于海洋环境下钛合金耐磨损、抗菌复合涂层及其制备方法
CN110453174A (zh) 一种用于钛合金基体表面的防护涂层及其制备方法
CN113584444B (zh) 一种超硬疏水自清洁薄膜的制备方法
Chang et al. Wear and Corrosion Resistance of CrN Films on Oxynitriding-treated Vanadis 8 Tool Steel via the DC Magnetron Sputtering Process
CN111411313B (zh) 一种非晶/纳米晶涂层、设备、应用以及制备方法
Madaoui et al. The effect of substrate bias voltage on the electrochemical corrosion behaviors of thin film deposited on stainless steel by r. f magnetron sputtering
CN113235145A (zh) 钛合金表面制备‘非晶外-多晶内’双膜抗菌涂层的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20210908

Address after: 835219 headquarters of the 66th regiment of kekedala City, Xinjiang Uygur Autonomous Region

Patentee after: XINJIANG YIHE BIOLOGICAL Co.,Ltd.

Address before: No. 29, Qinhuai District, Qinhuai District, Nanjing, Jiangsu

Patentee before: Nanjing University of Aeronautics and Astronautics