CN108011295B - 具有多量子阱结构的半导体激光二极管 - Google Patents

具有多量子阱结构的半导体激光二极管 Download PDF

Info

Publication number
CN108011295B
CN108011295B CN201711043860.3A CN201711043860A CN108011295B CN 108011295 B CN108011295 B CN 108011295B CN 201711043860 A CN201711043860 A CN 201711043860A CN 108011295 B CN108011295 B CN 108011295B
Authority
CN
China
Prior art keywords
layer
laser diode
semiconductor laser
well
lattice constant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201711043860.3A
Other languages
English (en)
Other versions
CN108011295A (zh
Inventor
小河直毅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Device Innovations Inc
Original Assignee
Sumitomo Electric Device Innovations Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Device Innovations Inc filed Critical Sumitomo Electric Device Innovations Inc
Publication of CN108011295A publication Critical patent/CN108011295A/zh
Application granted granted Critical
Publication of CN108011295B publication Critical patent/CN108011295B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/343Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/34313Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser with a well layer having only As as V-compound, e.g. AlGaAs, InGaAs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/227Buried mesa structure ; Striped active layer
    • H01S5/2275Buried mesa structure ; Striped active layer mesa created by etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/0206Substrates, e.g. growth, shape, material, removal or bonding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/026Monolithically integrated components, e.g. waveguides, monitoring photo-detectors, drivers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/343Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/34306Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser emitting light at a wavelength longer than 1000nm, e.g. InP based 1300 and 1500nm lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/343Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/34346Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser characterised by the materials of the barrier layers
    • H01S5/34366Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser characterised by the materials of the barrier layers based on InGa(Al)AS
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/343Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/34346Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser characterised by the materials of the barrier layers
    • H01S5/3438Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser characterised by the materials of the barrier layers based on In(Al)P
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/12Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers
    • H01S5/1231Grating growth or overgrowth details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/2205Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers
    • H01S5/2222Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers having special electric properties
    • H01S5/2226Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers having special electric properties semiconductors with a specific doping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/305Structure or shape of the active region; Materials used for the active region characterised by the doping materials used in the laser structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/305Structure or shape of the active region; Materials used for the active region characterised by the doping materials used in the laser structure
    • H01S5/3054Structure or shape of the active region; Materials used for the active region characterised by the doping materials used in the laser structure p-doping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/3403Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers having a strained layer structure in which the strain performs a special function, e.g. general strain effects, strain versus polarisation
    • H01S5/3406Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers having a strained layer structure in which the strain performs a special function, e.g. general strain effects, strain versus polarisation including strain compensation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/3407Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers characterised by special barrier layers

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Geometry (AREA)
  • Semiconductor Lasers (AREA)

Abstract

本申请公开了具有光栅的半导体激光二极管(LD)。LD包括掩埋光栅的下包覆层、以及有源层和上包覆层。有源层具有彼此交替布置的势垒层和阱层的多量子阱(MQW)结构。MQW结构还包括在势垒层和阱层之间的中间层,并且具有势垒层和阱层的晶格常数之间的晶格常数。中间层的厚度小于1nm。

Description

具有多量子阱结构的半导体激光二极管
本申请要求于2016年10月31日提交的日本专利申请No.2016-213567的优先权,其内容通过引用的方式合并于此。
技术领域
本发明涉及半导体激光二极管(LD)。
背景技术
多量子阱(MQW)结构已经在半导体激光二极管(LD)、半导体光调制器等的有源层中被广泛使用。美国专利USP 6,978,055B已经公开了具有在阱层和势垒层之间的中间层的MQW结构。一种类型的LD在具有MQW结构的有源层下方实现了光栅。当阱层和势垒层显示出很大的晶格失配时,这些层的外延生长变得不能补偿光栅的不连续性,这可能导致光栅各个波纹(corrugation)边缘的异常生长。
发明内容
本发明的一方面涉及半导体激光二极管,其包括由InP制成的半导体衬底、设置在半导体衬底上的光栅、n型层以及MQW有源层,MQW有源层包括彼此交替堆叠的势垒层和阱层。n型层将光栅埋入其中。势垒层具有拉伸应力,而阱层具有压缩应力。本发明的特征在于,MQW有源层还包括各自在势垒层和阱层之间的多个中间层。中间层在势垒层的应力和阱层的应力之间具有应力;并且中间层的厚度小于1nm。
附图说明
参照附图,从以下对本发明的优选实施例的详细描述中将更好地理解上述和其它目的、方面和优点,其中:
图1A示出了沿其光轴观察的截面图,图1B示出了沿光轴的另一截面图;
图2示意性地示出了有源层中的多量子阱(MQW)结构;
图3是光栅的平面图;
图4示意性地示出了光栅的波纹的侧面边缘的区域的截面图;
图5A示出了没有中间层的能带图,图5B示出了在Ew<Eb<Em的条件下具有中间层的能带图,并且图5C示出了在Em<Ew<Eb的条件下具有中间层的能带图;
图6A示出了形成LD的处理;图6B示出了图6A所示的处理之后的处理,并且图6C示出了图6B所示的处理之后的处理;
图7A示出了图6C所示的处理之后的形成LD的处理,图7B示出了图7A所示的处理之后的处理,并且图7C示出了图7B所示的处理之后的处理;
图8示出了图7C所示的处理之后形成LD的处理;以及
图9示出了四元化合物InxAlyGa1-x-yAs的晶格常数与能带隙的关系。
具体实施方式
接下来,将参照附图描述根据本发明的实施例。在附图的描述中,彼此相同或相似的标记或符号将指彼此相同或相似的元件,而不进行重复说明。
第一实施例
图1示出了根据本发明的第一实施例的半导体激光二极管(LD)1的从激光沿其传播的方向观察的截面图;图1B还示出了LD 1的沿着图1A所示的线IB-IB截取的截面。本实施例的LD 1提供了n型InP衬底2、n型InP下包覆层3、有源层4、p型InP上包覆层5、p型InP阻挡层6,n型InP阻挡层7、p型InP层8、接触层9、钝化膜10、p型电极11和n型电极12。
n型InP下包覆层3、有源层4和p型上包覆层5按该次序堆叠在n型InP衬底2上。n型InP下包覆层3、有源层4和p型上包覆层5的这些层形成高度为例如2.0μm的台地。
n型InP衬底2掺杂有1.0×1018cm-3浓度的硅(Si)。n型InP下包覆层3也掺杂有1.0×1018cm-3浓度的Si并且具有0.5μm的厚度。有源层4具有包括InAlGaAs的MQW结构。有源层4的细节或MQW结构将稍后描述。p型InP上包覆层5可以掺杂有1.0×1018cm-3浓度的锌(Zn)并且具有0.2μm的厚度。
n型InP下包覆层3包括光栅14,光栅14具有沿着LD 1的光轴以预设间距周期性布置的波纹。光栅14包括折射率不同于n型InP包覆层的折射率的InGaAsP。波纹具有例如约0.1μm的高度。
p型InP阻挡层和n型InP阻挡层设置在n型InP衬底2上以便在其各自的侧面掩埋台面。p型InP阻挡层6掺杂有4.0×1017cm-3浓度的Zn并且具有3.0μm的厚度。n型InP阻挡层7可以掺杂有1.0×1019cm-3浓度的Si并且具有0.4μm的厚度。
p型InP层8和p型接触层9覆盖p型上包覆层5和n型InP阻挡层7,并按此次序生长在其上。p型InP层8掺杂有1.2×1018cm-3浓度的Zn并且具有2.0μm的厚度。接触层9可以由掺杂有1.2×1019cm-3浓度的Zn的InGaAs制成并且具有0.5μm的厚度。接触层的带隙能量小于p型InP层8的带隙能量。p型InP层8可作为p型上包覆层5的一部分来操作。
具有与台地重叠的开口的钝化膜10覆盖接触层9。即,InGaAs接触层9在与台地重叠的部分中从钝化膜10中的开口暴露出来。钝化膜10可以由电绝缘材料(通常为氧化硅(SiO2))制成。p型电极11覆盖钝化膜10以及从钝化膜10中的开口暴露的InGaAs接触层9。p型电极11可以是钛(Ti)、铂(Pt)和金(Au)的合金。设置在n型InP衬底2背面的n型电极12可以由金(Au)、锗(Ge)和镍(Ni)的共熔金属制成。
图2放大了本实施例的有源层4。有源层4提供了彼此交替堆叠的势垒层41和阱层42,并且还提供了势垒层41和阱层42之间的中间层43。势垒层41中的一个与n型InP下包覆层3接触,而势垒层41中的另一个与p型InP上包覆层5接触。在本实施例中,势垒层41、阱层42和中间层43由InxAlyGa1-x-yAs制成,但其组分彼此不同。阻挡层41具有对InP衬底2的拉伸应力,而阱层42显示出对InP衬底2的压缩应力。中间层43在阻挡层41中的拉伸应力和阱层42中的压缩应力之间显示出中等的应力。
图3是光栅14的平面图。光栅包括多个波纹14a,每个波纹14a具有横向宽度大于台地宽度的矩形平面形状。波纹14a沿着LD 1的光轴并且以亚微米的间距而被布置成阵列。由于间距如此狭窄,所以n型包覆层3可以可靠地掩埋波纹14a之间的间隙,这使得n型下包覆层3的顶面平坦。然而,n型包覆层3的顶面留下了反映各个矩形的侧边缘的台阶。当不在势垒层41和阱层42之间插入中间层43的情况下,有源层4(准确地为势垒层41和阱层42)要在n型包覆层3的这样台阶表面上生长时,在与波纹14的侧面边缘对应的反映了势垒层41和阱层42之间的晶格常数的较大差异的区域处可能发生异常生长。图4示意性地示出了与波纹14a的侧面边缘相对应的区域的截面。如本说明书稍后说明的,与波纹14a的侧面边缘相对应的区域将随着台地的形成而被移除。然而,图4所示的有源层4的异常生长穿透波纹14a的中心区域,因此,异常生长的影响被留在台地内的有源层中。
本实施例提供了势垒层41和阱层42之间的中间层,其中中间层43具有在势垒层41的应力和阱层42的应力之间的应力。例如,假设势垒层41、阱层和中间层43由InxAlyGa1-x- yAs制成,并且将势垒层41的In组分表示为xb,将阱层42的In组分表示为xw,并且将中间层的In组分表示为xm,xb<xm<xw的关系使势垒层41与中间层43之间的晶格常数中的差异以及中间层43和阱层42之间的晶格常数中的差异小于不插入中间层43的情况下势垒层41和阱层42之间的晶格常数的差异。例如,当势垒层41相对于InP衬底2(或InP包覆层3)的晶格常数小于-0.6%(这导致势垒层41中的拉伸应力)并且阱层42同样相对于InP衬底2(或InP包覆层3)的晶格常数大于+1.7%(这导致阱层42中的压缩应力)时,中间层43相对于InP衬底2(或InP包覆层3)的晶格常数优选大于-0.6%但小于+1.7%。
晶格常数在势垒层41的晶格常数和阱层42的晶格常数之间的中间层43可以减轻在势垒层41和阱层42中导致的应力。然而,较厚的中间层43过度地减轻了应力,并且抑制了根据应力得到的诸如发射效率、发射稳定性等的优点。因此,中间层43优选较薄,例如比1nm薄。
此外,对于其带隙能量接近势垒层41的带隙能量的较厚的中间层43,中间层43实质上作为势垒层进行操作;而对于其带隙能量接近阱层42的带隙能量的较厚的中间层43,中间层43会导致载流子的复合,这可能加宽激光的光谱宽度。
对于各层的带隙能量,势垒层41、阱层42和中间层43的带隙能量分别表示为Eb、Ew和Em;Ew<Eb<Em或Em<Ew<Eb的关系是优选的。图5A示出了没有中间层的能带图,图5B示出了具有Ew<Eb<Em关系的能带图,并且图5C示出了具有Em<Ew<Eb关系的能带图。
在前一种情况中,Ew<Eb<Em,对于该能带图,中间层43的组分可以更接近势垒层41和阱层42两者的组分。因为后一种状况可能增加中间层43中的载流子复合,所以,前一种情况,即中间层43的组分更接近势垒层41的组分。另一方面,在后一种情况中,即Em<Ew<Eb,中间层43的组分可以更接近势垒层41的组分。例如,将势垒层41的Al组分表示为yb,阱层42的组分表示为yw,中间层43的组分表示为ym,并且将势垒层41的组分进一步设置为xb=0.44和yb=0.28,这意味着势垒层41为In0.44Al0.28Ga0.28As,阱层42的组分为xw=0.79和yw=0.16,这意味着阱层42为In0.79Al0.16Ga0.05As;于是,针对Ew<Eb<Em的状况,中间层42的组分优选为xm=0.52和ym=0.48,即In0.52Al0.48As,或者,针对Em<Ew<Eb的状况,其组分优选为xm=0.53和ym=0,即In0.53Ga0.47As。
第二实施例
接下来,将描述形成LD的处理。首先,如图6A所示,在半导体晶片16上外延生长光栅层30。然后,如图6B所示,在光栅层30上形成光致抗蚀剂图案,伴随随后利用光致抗蚀剂图案作为蚀刻掩模来蚀刻光栅层30,可以在光栅层30中形成波纹14。半导体晶片16作为LD1中的n型InP衬底2来操作。
然后,用n型InP下包覆层3掩埋波纹14。n型InP下包覆层3可以掺杂有1.0×1018cm-3浓度的Si并且具有例如约0.5μm的厚度。此后,该处理在n型下包覆层3上外延生长有源层4。通过金属有机化学气相沉积(MOCVD)技术,使用分别用作铟(In)、镓(Ga)、铝(Al)、砷(As)和磷(P)的源的三甲基铟(TMI)、三甲基镓(TMG)、三甲基铝(TMA)、胂(AsH3)以及磷化氢(PH3)来生长有源层4。生长压力例如为10000Pa,并且生长温度为660℃至700℃。对于势垒层41,源气体的流动速率为TMA=0.6ccm(cc/min),TMG=0.5ccm,TMI=0.6ccm,对于阱层42为TMA=0.3ccm,TMG=0.1ccm,TMI=1.3ccm。对于Ew<Eb<Ew状况下的中间层43,源气体的流动速率为TMA=0.6ccm和TMI=0.6ccm;而对于另一状况Em<Ew<Eb,源气体的流动速率为TMG=0.6ccm和TMI=0.6ccm。对于每个层和状况,胂(AsH3)的流动速率为40ccm。在这样的状况下,中间层43的生长速率显示为0.2nm/sec,势垒层41的生长速率为0.3nm/sec,阱层42的生长速率为0.2nm/sec;对于阻挡层41、阱层42和中间层43的生长时间分别为30秒、15秒和5秒。短于10秒的生长周期可以形成比1nm薄的中间层43。
图9示出了四元化合物InxAlyGa1-x-yAs的晶格常数与能隙的关系。当对于势垒层41为xb=0.44和yb=0.28的组分时(其对应于In0.44Al0.28Ga0.28As的复合物),复合物显示1.18eV的带隙能量,并且对于阱层42的xw=0.79和yw=0.16的另一组分(其对应于In0.79Al0.16Ga0.05As的复合物)具有0.855eV的能隙;对于Ew<Eb<Em的布置,中间层优选地具有xm=0.52和ym=0.48的组分,其与具有1.48eV的带隙能量的InAlAs相对应,或者对于Em<Ew<Eb的布置,为xm=0.53和ym=0,其与具有0.75eV的带隙能量的InGaAs相对应。在这样的状况下,中间层43的晶格常数与InP的晶格常数实质上相匹配,并且势垒层41和阱层42分别具有比InP的晶格常数短的晶格常数和比InP的晶格常数长的晶格常数。也就是说,将势垒层41和阱层42的晶格常数设置在InP的晶格常数的各侧。
参考图6C,该处理在有源层4上生长p型InP上包覆层5,其中p型InP包覆层5以1.0×1018cm-3的浓度掺杂Zn,并且具有0.2μm的厚度。之后,如图7A所示,掩模17在p型上包覆层5上被图案化,以形成波纹14的条状展开边缘部分,但覆盖其中心部分,该中心部分被转换成包括p型上包覆层4、有源层4、n型下包覆层3和半导体衬底2的一部分的台地条。
然后,如图7B所示,蚀刻层5至层2的从图案化的掩模17暴露的部分,该处理可以形成台地。掩模17具有例如3μm的宽度以及0.5μm的厚度,其由氧化硅(SiO2)制成,而覆盖有掩模17的波纹14具有例如10μm的宽度。
之后,使用含反应气体的氯气依次蚀刻从掩模17暴露的p型包覆层5、有源层4、n型包覆层3以及衬底2的一部分,这形成了半导体衬底2上的台地。因此,形成了宽度和高度分别为约2.0μm和1.5μm的台地。
然后,如图7C所示,在台面的各侧依次选择性地生长p型InP掩埋层6和n型InP掩埋层7。p型InP掩埋层6以4.0×1017cm-3的浓度掺杂Zn并且厚度为3.0μm,而n型InP掩埋层7以1.0×1019cm-3的浓度掺杂Si并且厚度为0.4μm。
移除图案化的掩模17,该处理在台地和n型掩埋层7上生长p型InP层8。生长的p型InP层8可作为p型上包覆层5的一部分来操作。p型InP层8可以掺杂有1.2×1018cm-3浓度的Zn并且具有2.0μm的厚度。
此后,该处理在p型InP层8上生长接触层9。接触层9可以由掺杂有Zn的p型InGaAs制成并且厚度为0.5μm。用绝缘膜10覆盖接触层9以便暴露台地上方的接触层9的一部分,并且沉积p型电极11以便与暴露在绝缘膜10中的开口内的接触层9相接触,并且在半导体衬底2的整个背面沉积n型电极12。绝缘层10可以由例如氧化硅(SiO2)制成。p型电极11可以通过允许钛(Ti)、铂(Pt)和金(Au)的堆叠金属而形成,而n型电极12可以由金(Au)、锗(Ge)和镍(Ni)的共熔金属制成。因此,本发明的LD1可以如图8所示完成。
虽然为了说明的目的在本文中描述了本发明的特定实施例,但是对于本领域技术人员来说,许多变型和改变将变得显而易见。因此,所附权利要求旨在包括落在本发明的真实精神和范围内的所有这些变型和变化。

Claims (17)

1.一种半导体激光二极管,包括:
半导体衬底,其由磷化铟(InP)制成;
光栅,其设置在所述半导体衬底上;
n型层,其掩埋所述光栅;以及
有源层,其具有多量子阱(MQW)结构的布置,所述多量子阱结构包括彼此交替堆叠的多个势垒层和多个阱层,所述势垒层具有拉伸应力,并且所述阱层具有压缩应力,所述多量子阱结构还提供了各自夹在所述势垒层和所述阱层之间的多个中间层,
其中,所述中间层在所述势垒层和所述阱层之间各自具有应力并且具有小于1nm的厚度,
其中,所述势垒层由晶格常数短于InP的晶格常数的半导体材料制成,并且所述阱层由晶格常数长于所述InP的晶格常数的半导体材料制成,并且
其中,所述中间层由晶格常数介于所述势垒层的晶格常数与所述阱层的晶格常数之间的半导体材料制成。
2.根据权利要求1所述的半导体激光二极管,
其中,所述n型层由InP制成。
3.根据权利要求1所述的半导体激光二极管,
其中,所述中间层的晶格常数与所述InP的晶格常数实质上相等。
4.根据权利要求1所述的半导体激光二极管,
其中,所述中间层的能带隙大于所述势垒层的能带隙和所述阱层的能带隙。
5.根据权利要求4所述的半导体激光二极管,
其中,所述中间层的晶格常数与所述InP的晶格常数实质上相等。
6.根据权利要求1所述的半导体激光二极管,
其中,所述中间层的能带隙小于所述势垒层的能带隙和所述阱层的能带隙。
7.根据权利要求6所述的半导体激光二极管,
其中,所述中间层的晶格常数与所述InP的晶格常数实质上相等。
8.根据权利要求1所述的半导体激光二极管,
其中,所述势垒层、所述阱层和所述中间层各自由具有彼此不同的组分的InAlGaAs制成。
9.根据权利要求8所述的半导体激光二极管,
其中,所述势垒层由In0.44Al0.28Ga0.28As制成,并且所述阱层由In0.79Al0.16Ga0.05As制成。
10.根据权利要求9所述的半导体激光二极管,
其中,所述中间层由InAlAs制成。
11.根据权利要求9所述的半导体激光二极管,
其中,所述中间层由InGaAs制成。
12.根据权利要求2所述的半导体激光二极管,
其中,所述中间层的晶格常数与所述InP的晶格常数实质上相等。
13.根据权利要求2所述的半导体激光二极管,
其中,所述中间层的能带隙大于所述势垒层的能带隙和所述阱层的能带隙,并且
其中,所述中间层的晶格常数与所述InP的晶格常数实质上相等。
14.根据权利要求2所述的半导体激光二极管,
其中,所述中间层的能带隙小于所述势垒层的能带隙和所述阱层的能带隙,并且
其中,所述中间层的晶格常数与所述InP的晶格常数实质上相等。
15.根据权利要求12至14中任一项所述的半导体激光二极管,
其中,所述势垒层、所述阱层和所述中间层各自由具有彼此不同的组分的InAlGaAs制成,并且
其中,所述势垒层由In0.44Al0.28Ga0.28As制成,并且所述阱层由In0.79Al0.16Ga0.05As制成。
16.根据权利要求15所述的半导体激光二极管,
其中,所述中间层由InAlAs制成。
17.根据权利要求15所述的半导体激光二极管,
其中,所述中间层由InGaAs制成。
CN201711043860.3A 2016-10-31 2017-10-31 具有多量子阱结构的半导体激光二极管 Active CN108011295B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016213567 2016-10-31
JP2016-213567 2016-10-31

Publications (2)

Publication Number Publication Date
CN108011295A CN108011295A (zh) 2018-05-08
CN108011295B true CN108011295B (zh) 2021-02-12

Family

ID=62022604

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711043860.3A Active CN108011295B (zh) 2016-10-31 2017-10-31 具有多量子阱结构的半导体激光二极管

Country Status (3)

Country Link
US (1) US10230217B2 (zh)
JP (1) JP2018078290A (zh)
CN (1) CN108011295B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106785914B (zh) * 2017-03-22 2019-09-20 青岛海信宽带多媒体技术有限公司 半导体激光芯片及半导体激光装置
CN110600996B (zh) * 2019-09-26 2024-05-14 苏州矩阵光电有限公司 一种量子阱层结构、半导体激光器及制备方法
CN112636178B (zh) * 2021-03-10 2021-06-01 陕西源杰半导体科技股份有限公司 激光器芯片及制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102055133A (zh) * 2009-11-04 2011-05-11 中国科学院半导体研究所 电吸收调制隧穿注入式分布反馈半导体激光器的制作方法
CN102332681A (zh) * 2011-08-01 2012-01-25 长春理工大学 一种低线宽的f-p腔应变量子阱激光器
CN102545052A (zh) * 2012-03-09 2012-07-04 北京工业大学 一种具有光栅结构的边发射半导体激光器

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3147596B2 (ja) * 1993-07-23 2001-03-19 松下電器産業株式会社 歪多重量子井戸構造体およびそれを用いた半導体レーザ
JP2933051B2 (ja) * 1997-03-21 1999-08-09 日本電気株式会社 多重量子井戸構造光半導体装置およびその製造方法
JPH10290049A (ja) * 1997-04-15 1998-10-27 Hitachi Ltd 半導体レーザ素子
JP3033717B2 (ja) * 1997-08-11 2000-04-17 古河電気工業株式会社 面発光半導体レーザ素子
JP3705047B2 (ja) 1998-12-15 2005-10-12 日亜化学工業株式会社 窒化物半導体発光素子
EP1265327B1 (en) * 2001-06-02 2007-11-07 Seoul National University Industry Foundation Vertical cavity surface emitting laser
JP3904947B2 (ja) 2002-03-01 2007-04-11 三菱電機株式会社 光変調器
JP2006108278A (ja) * 2004-10-04 2006-04-20 Matsushita Electric Ind Co Ltd 半導体レーザ装置
WO2009116140A1 (ja) * 2008-03-18 2009-09-24 富士通株式会社 光半導体素子及びその製造方法
US9048618B2 (en) * 2013-03-12 2015-06-02 Finisar Corporation Short gain cavity distributed bragg reflector laser

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102055133A (zh) * 2009-11-04 2011-05-11 中国科学院半导体研究所 电吸收调制隧穿注入式分布反馈半导体激光器的制作方法
CN102332681A (zh) * 2011-08-01 2012-01-25 长春理工大学 一种低线宽的f-p腔应变量子阱激光器
CN102545052A (zh) * 2012-03-09 2012-07-04 北京工业大学 一种具有光栅结构的边发射半导体激光器

Also Published As

Publication number Publication date
CN108011295A (zh) 2018-05-08
US20180123320A1 (en) 2018-05-03
JP2018078290A (ja) 2018-05-17
US10230217B2 (en) 2019-03-12

Similar Documents

Publication Publication Date Title
US11205739B2 (en) Semiconductor light-emitting device and method of manufacturing the same
US9972973B2 (en) Process of forming semiconductor optical device and semiconductor optical device
US6784010B2 (en) Nitride-based semiconductor laser device and method for the production thereof
JP5037169B2 (ja) 窒化物系半導体発光素子及びその製造方法
US7842532B2 (en) Nitride semiconductor device and method for manufacturing the same
US20060060833A1 (en) Radiation-emitting optoelectronic component with a quantum well structure and method for producing it
US7485902B2 (en) Nitride-based semiconductor light-emitting device
CN108011295B (zh) 具有多量子阱结构的半导体激光二极管
US7482617B2 (en) Optical semiconductor device and fabrication method thereof
US20180375290A1 (en) Semiconductor laser
JPH0864906A (ja) 半導体装置の製法
US20170271848A1 (en) Method for manufacturing semiconductor device and semiconductor device
JP5673253B2 (ja) 光半導体素子、半導体レーザ、および光半導体素子の製造方法
KR20220140748A (ko) 마이크로-led 및 이의 제작 방법
JP5717640B2 (ja) オプトエレクトロニクス半導体チップおよびオプトエレクトロニクス半導体チップの製造方法
WO2019208697A1 (ja) 光半導体素子およびその製造方法ならびに光集積半導体素子およびその製造方法
JP6251934B2 (ja) 半導体レーザの製造方法
JP3469847B2 (ja) 窒化物系半導体素子およびその製造方法
JPH1187764A (ja) 半導体発光装置とその製造方法
JP3865827B2 (ja) 斜面発光型半導体レーザ装置及びその製造方法
JP4240854B2 (ja) 窒化物系半導体発光素子およびその製造方法
JP2020038905A (ja) 半導体レーザおよび半導体レーザの製造方法
JP5024008B2 (ja) 半導体発光素子及びその製造方法
KR20100069590A (ko) 반도체 레이저의 제조 방법
JP2004228277A (ja) 光半導体装置およびその製造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant