CN107994000A - 用于系统级封装的tsv转接板及其制备方法 - Google Patents

用于系统级封装的tsv转接板及其制备方法 Download PDF

Info

Publication number
CN107994000A
CN107994000A CN201711352521.3A CN201711352521A CN107994000A CN 107994000 A CN107994000 A CN 107994000A CN 201711352521 A CN201711352521 A CN 201711352521A CN 107994000 A CN107994000 A CN 107994000A
Authority
CN
China
Prior art keywords
tsv
substrates
areas
preparation
diode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201711352521.3A
Other languages
English (en)
Other versions
CN107994000B (zh
Inventor
张捷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Flexible Electronics Technology of THU Zhejiang
Original Assignee
Xian Cresun Innovation Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Cresun Innovation Technology Co Ltd filed Critical Xian Cresun Innovation Technology Co Ltd
Priority to CN201711352521.3A priority Critical patent/CN107994000B/zh
Publication of CN107994000A publication Critical patent/CN107994000A/zh
Application granted granted Critical
Publication of CN107994000B publication Critical patent/CN107994000B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/482Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of lead-in layers inseparably applied to the semiconductor body
    • H01L23/485Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of lead-in layers inseparably applied to the semiconductor body consisting of layered constructions comprising conductive layers and insulating layers, e.g. planar contacts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/58Structural electrical arrangements for semiconductor devices not otherwise provided for, e.g. in combination with batteries
    • H01L23/60Protection against electrostatic charges or discharges, e.g. Faraday shields
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/27Manufacturing methods

Abstract

本发明涉及一种用于系统级封装的TSV转接板及其制备方法,该方法包括:S101、选取Si衬底;S102、刻蚀所述Si衬底形成TSV,填充后形成TSV区;S103、刻蚀所述Si衬底在所述TSV区之间形成至少一个隔离沟槽,填充后形成隔离区;S104、在所述隔离区上制备二极管;S105、在所述TSV区的第一端面与所述二极管之间形成互连线;S106、在所述TSV区的第二端面制备金属凸点以完成所述TSV转接板的制备。本发明提供的TSV转接板通过在TSV转接板上加工二极管作为ESD防护器件,解决了基于TSV工艺的集成电路系统级封装抗静电能力弱的问题,增强了集成电路系统级封装的抗静电能力。

Description

用于系统级封装的TSV转接板及其制备方法
技术领域
本发明属半导体集成电路技术领域,特别涉及一种用于系统级封装的TSV转接板及其制备方法。
背景技术
随着微电子技术的不断进步,仅依靠在单一芯片上集成更多的器件来提高芯片的性能已经无法满足实际的需求。因此,叠置芯片封装技术逐渐成为技术发展的主流。叠置芯片封装技术是在不改变封装体尺寸的前提下,在同一个封装体内的垂直方向叠置多个芯片的封装技术。其中,硅通孔(Through-Silicon Via,简称TSV)转接板是实现上下芯片互连的连接板,其不仅可以减小互连线的长度,而且可以降低电路的功耗。
在半导体行业里面,随着集成电路集成度的提高以及器件特征尺寸的减小,集成电路中静电放电(Electro-Static Discharge,简称ESD)引起的潜在性损坏已经变得越来越明显。据有关报道,集成电路领域的故障中有近35%的故障是由ESD所引发的,因此芯片内部都设计有ESD保护结构来提高器件的可靠性。
转接板通常是指芯片与封装基板之间的互连和引脚再分布的功能层。转接板可以将密集的I/O引线进行再分布,实现多芯片的高密度互连,成为纳米级集成电路与毫米级宏观世界之间电信号连接最有效的手段之一。在利用转接板实现多功能芯片集成时,不同芯片的抗静电能力不同,在三维堆叠时抗静电能力弱的芯片会影响到封装后整个系统的抗静电能力,因此如何提高基于TSV工艺的系统级封装的抗静电能力成为半导体行业亟待解决的问题。
发明内容
为了提高基于TSV工艺的系统级封装的抗静电能力,本发明提供了一种用于系统级封装的TSV转接板及其制备方法;本发明要解决的技术问题通过以下技术方案实现:
本发明的实施例提供了一种用于系统级封装的TSV转接板的制备方法,包括:
S101、选取Si衬底;
S102、刻蚀Si衬底形成TSV,填充后形成TSV区;
S103、刻蚀Si衬底在TSV区之间形成至少一个隔离沟槽,填充后形成隔离区;
S104、在隔离区上制备二极管;
S105、在TSV区的第一端面与二极管之间形成互连线;
S106、在TSV区的第二端面制备金属凸点以完成TSV转接板的制备。
在本发明的一个实施例中,S102包括:
S1021、利用光刻工艺,在Si衬底的上表面形成TSV的刻蚀图形;
S1022、利用深度反应离子刻蚀法(Deep Reactive Ion Etching,简称DRIE)工艺,刻蚀Si衬底形成TSV;
S1023、热氧化TSV在TSV的内壁形成氧化层;
S1024、利用湿法刻蚀工艺,刻蚀氧化层以完成TSV的平整化;
S1025、利用光刻工艺形成TSV的填充图形;
S1026、利用化学气相淀积(Chemical Vapor Deposition,简称CVD)工艺,在TSV内填充多晶硅,并通入掺杂气体进行原位掺杂形成TSV区。
其中,TSV的深度小于Si衬底的厚度。
在本发明的一个实施例中,S103包括:
S1031、利用CVD工艺,在Si衬底上淀积钝化层;
S1032、利用光刻工艺在TSV区之间形成隔离沟槽的填充图形;
S1033、利用干法刻蚀工艺形成隔离沟槽;
S1034、利用CVD工艺,淀积SiO2对隔离沟槽进行填充,形成隔离区;
其中,隔离区的深度小于TSV的深度。
在本发明的一个实施例中,S104包括:
S1041、在隔离区上制备二极管器件沟槽;
S1042、利用CVD工艺,在二极管器件沟槽内淀积多晶硅材料;
S1043、分别光刻P+有源区和N+有源区,采用带胶离子注入工艺进行P+注入和N+注入,去除光刻胶,形成二极管的阳极和阴极;
S1044、进行高温退火,激活杂质;
S1045、在衬底表面淀积SiO2以形成隔离层。
在本发明的一个实施例中,S106之前还包括:
x1、利用辅助圆片作为Si衬底上表面的支撑件;
x2、利用机械磨削减薄工艺对Si衬底下表面进行减薄,再利用化学机械抛光(Chemical Mechanical Polishing,简称CMP)工艺,对Si衬底的下表面进行平整化处理,直到露出TSV区的第二端面。
在本发明的一个实施例中,S106包括:
S1061、利用溅射工艺,在Si衬底的下表面形成衬垫层和阻挡层,利用CVD工艺在TSV区的第二端面形成钨插塞;
S1062、淀积绝缘层,在TSV区的第二端面光刻金属凸点的图形,利用电化学工艺淀积金属,通过化学机械研磨工艺去除多余的金属,在TSV区的第二端面形成金属凸点;
S1073、拆除辅助圆片。
在本发明的一个实施例中,Si衬底的掺杂浓度为1014~1017cm-3,厚度为150~250μm。
在本发明的一个实施例中,TSV区的深度为40~80μm。
在本发明的一个实施例中,隔离区的深度为400~500nm。
与现有技术相比,本发明具有以下有益效果:
1、本发明提供的TSV转接板通过在TSV转接板上加工ESD防护器件二极管,增强了层叠封装芯片的抗静电能力;
2、本发明通过在TSV转接板上加工二极管,利用转接板较高的散热能力,提高了器件工作中的大电流通过能力;
3、本发明提供的TSV转接板的二极管周围均被二氧化硅绝缘层包围,可有效减小有源区与衬底间的寄生电容;
4、本发明提供的新型TSV转接板的制备方法均可在现有的TSV工艺平台中实现,因此兼容性强,适用范围广。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例提供的一种用于系统级封装的TSV转接板的制备方法流程示意图;
图2为本发明实施例提供的另一种用于系统级封装的TSV转接板的制备方法流程图;
图3a-图3h为本发明实施例提供的又一种用于系统级封装的TSV转接板的制备方法流程图;
图4为本发明实施例提供的一种TSV转接板结构示意图。
具体实施方式
下面结合具体实施例对本发明做进一步详细的描述,但本发明的实施方式不限于此。
实施例一
请参见图1,图1为本发明实施例提供的一种用于系统级封装的TSV转接板的制备方法流程示意图,包括:
S101、选取Si衬底;
S102、刻蚀Si衬底形成TSV,填充后形成TSV区;
S103、刻蚀Si衬底在TSV区之间形成至少一个隔离沟槽,填充后形成隔离区;
S104、在隔离区上制备二极管;
S105、在TSV区的第一端面与二极管之间形成互连线;
S106、在TSV区的第二端面制备金属凸点以完成TSV转接板的制备。
优选地,S102可以包括:
S1021、利用光刻工艺,在Si衬底的上表面形成TSV的刻蚀图形;
S1022、利用DRIE工艺,刻蚀Si衬底形成TSV;
S1023、热氧化TSV在TSV的内壁形成氧化层;
S1024、利用湿法刻蚀工艺,刻蚀氧化层以完成TSV的平整化;
S1025、利用光刻工艺形成TSV的填充图形;
S1026、利用CVD工艺,在TSV内填充多晶硅,并通入掺杂气体进行原位掺杂形成TSV区。
其中,TSV的深度小于Si衬底的厚度。
优选地,S103可以包括:
S1031、利用CVD工艺,在Si衬底上淀积钝化层;
S1032、利用光刻工艺在TSV区之间形成隔离沟槽的填充图形;
S1033、利用干法刻蚀工艺形成隔离沟槽;
S1034、利用CVD工艺,淀积SiO2对隔离沟槽进行填充,形成隔离区;
其中,隔离区的深度小于TSV的深度。
优选地,S104可以包括:
S1041、在隔离区上制备二极管器件沟槽;
S1042、利用CVD工艺,在二极管器件沟槽内淀积多晶硅材料;
S1043、分别光刻P+有源区和N+有源区,采用带胶离子注入工艺进行P+注入和N+注入,去除光刻胶,形成二极管的阳极和阴极;
S1044、进行高温退火,激活杂质;
S1045、在衬底表面淀积SiO2以形成隔离层。
具体地,S106之前还包括:
x1、利用辅助圆片作为Si衬底上表面的支撑件;
x2、利用机械磨削减薄工艺对Si衬底下表面进行减薄,再利用CMP工艺,对Si衬底的下表面进行平整化处理,直到露出TSV区的第二端面。
优选地,S106可以包括:
S1061、利用溅射工艺,在Si衬底的下表面形成衬垫层和阻挡层,利用CVD工艺在TSV区的第二端面形成钨插塞;
S1062、淀积绝缘层,在TSV区的第二端面光刻金属凸点的图形,利用电化学工艺淀积金属,通过化学机械研磨工艺去除多余的金属,在TSV区的第二端面形成金属凸点;
S1073、拆除辅助圆片。
优选地,Si衬底的掺杂浓度为1014~1017cm-3,厚度为150~250μm。
优选地,TSV区的深度为40~80μm。
优选地,隔离区的深度为400~500nm。
本实施例提供的TSV转接板的制备方法,通过在TSV转接板上加工横向结构二极管,增强了系统级封装的抗静电能力,解决了三维堆叠时抗静电能力弱的芯片会影响到封装后整个系统的抗静电能力的问题;同时,本实施例提供TSV转接板的二极管周围设置上下贯通的隔离区,具有较小的漏电流和寄生电容。
实施例二
请参照图2,图2为本发明实施例提供的另一种用于系统级封装的TSV转接板的制备方法流程图,本实施例在上述实施例的基础上,对本发明的新型TSV转接板的制备方法进行详细描述如下。具体地,包括如下步骤:
S201、选取Si衬底;
S202、利用刻蚀工艺在Si衬底上制备多个TSV;
S203、在Si衬底上淀积多晶硅材料对TSV进行填充形成TSV区;
S204、在TSV区之间的Si衬底上制备多个隔离区;
S205、在隔离区上制备横向结构的二极管;
S206、利用电镀工艺在Si衬底上表面制备铜互连线;
S207、利用CMP工艺,对Si衬底进行减薄,直到漏出TSV;
S208、在Si衬底下表面利用电镀的方法形成铜凸点以完成TSV转接板的制备。
其中,选取Si衬底的原因在于,Si的热力学性能与芯片相同,利用Si材料作为转接板可以最大程度上减小由于热膨胀系数的差异和残余应力引起的芯片的弯曲和芯片应力。Si衬底的晶向可以是(100)、(110)或者(111),另外,衬底的掺杂类型可以为N型,也可以为P型。
优选地,S202可以包括如下步骤:
S2021、利用光刻工艺,通过涂胶、光刻、显影等步骤完成TSV刻蚀图形;
S2022、利用DRIE工艺,刻蚀Si衬底形成TSV。
其中,TSV的数量为至少两个,TSV的深度小于Si衬底的厚度;
进一步地,S203可以包括如下步骤:
S2031、热氧化TSV使TSV内壁形成氧化层;
S2032、利用湿法刻蚀工艺刻蚀TSV内壁的氧化层以完成TSV内壁的平整化。
S2033、利用光刻工艺,通过涂胶、光刻、显影等步骤完成TSV填充图形
S2034、利用CVD工艺,淀积多晶硅材料对TSV进行填充,同时通入掺杂气体进行原位掺杂,实现掺杂元素的原位激活,形成高掺杂的多晶硅TSV区。
其中,其中,通过TSV内壁的平整化可以防止TSV侧壁的突起形成电场集中区域;通过在TSV区进行高掺杂的多晶硅填充,可以形成杂质分布均匀、且高掺杂浓度的导电材料,有利于减小TSV的电阻。
优选地,S204可以包括:
S2041、利用CVD工艺,在Si衬底上淀积SiO2层和Si3N4层;
S2042、利用光刻工艺,通过涂胶、光刻、显影等步骤,在TSV区之间的Si衬底完成沟槽隔离区图形;
S2043、利用干法刻蚀工艺形成隔离沟槽;
S2044、利用CVD工艺,淀积SiO2对隔离沟槽进行填充,形成隔离区。
优选地,S205包括:
S2051、利用光刻工艺,通过涂胶、光刻、显影等步骤在隔离区上形成二极管器件沟槽;
S2052、利用CVD工艺,在二极管器件沟槽内淀积多晶硅材料;
S2053、光刻P+有源区,采用带胶离子注入工艺进行P+注入,去除光刻胶,形成二极管的阳极;
S2054、光刻N+有源区,采用带胶离子注入工艺进行N+注入,去除光刻胶,形成二极管的阴极;
S2055、进行高温退火,激活杂质;
S2056、利用PECVD工艺,在衬底表面淀积SiO2
S2057、利用CMP工艺对衬底表面进行平坦化。
其中,通过在隔离区上制备横向二极管,可以形成杂质分布均匀、且高掺杂浓度的二极管阳极和阴极,形成杂质分布陡峭的PN结,进一步提高了防静电器件的性能。
优选地,S206可以包括如下步骤:
S2061、利用溅射或CVD工艺,在Si衬底上表面形成衬垫层和阻挡层,并利用CVD工艺在TSV区的第一端以及二极管的阳极和阴极形成钨插塞;
S2062、淀积绝缘层,光刻铜互连图形,利用电化学镀铜工艺淀积铜,通过化学机械研磨工艺去除多余的铜,形成TSV区的第一端与二极管串接的铜互连线。
进一步地,在制备铜互连线时,可利用金属互连线围绕成螺旋状而使其具有电感的特性以更好用于射频集成电路的静电防护。
优选地,S207可以包括如下步骤:
S2071、利用高分子材料作为中间层,将Si衬底上表面与辅助圆片键合,通过辅助圆片支撑Si衬底上表面;
S2072、利用机械磨削减薄工艺对Si衬底下表面进行减薄,直到减到略大于TSV深度的厚度;
S2073、利用CMP工艺对Si衬底下表面进行平整,直到露出TSV区的第二端。
优选地,S208可以包括如下步骤:
S2081、利用溅射或CVD工艺在Si衬底下表面形成衬垫层和阻挡层,利用CVD工艺在TSV区的第二端形成钨插塞;
S2082、淀积绝缘层,在TSV区的第二端光刻铜凸点图形,利用电化学镀铜工艺淀积铜,通过化学机械研磨工艺去除多余的铜,在TSV区的第二端形成铜凸点。
S2083、利用加热机械的工艺拆除临时键合的辅助圆片。
本实施例提供的TSV转接板的制备方法,与典型的CMOS工艺相兼容,有利于产业化;采用横向结构的二极管器件,寄生电容小,对射频集成电路影响小。
实施例三
本实施例在上述实施例的基础上,对本发明的新型TSV转接板的制备方法中具体参数举例描述如下。具体地,请参照图3a-图3h,图3a-3h为本发明实施例提供的又一种用于系统级封装的TSV转接板的制备方法流程图,
S301、选取Si衬底301,如图3a所示;
优选地,Si衬底的掺杂浓度为1014~1017cm-3,厚度为150~250μm。
S302、如图3b所示;利用刻蚀工艺在Si衬底上制备三个TSV302,可以包括如下步骤:
S3021、在1050℃~1100℃的温度下,利用热氧化工艺在Si衬底上表面生长一层800nm~1000nm的SiO2层;
S3022、利用光刻工艺,通过涂胶、光刻、显影等步骤完成TSV刻蚀图形;
S3023、利用DRIE工艺刻蚀Si衬底,形成深度为40~80μm的TSV;
S3024、利用CMP工艺,去除Si衬底上的SiO2,对衬底表面进行平坦化。
S303、如图3c所示;在Si衬底上淀积多晶硅材料对TSV进行填充形成TSV区,具体可以包括如下步骤:
S3031、在1050℃~1100℃的温度下,热氧化TSV内壁形成厚度为200nm~300nm的氧化层;
S3032、利用湿法刻蚀工艺,刻蚀TSV内壁的氧化层以完成TSV及隔离沟槽内壁的平整化。以防止TSV侧壁的突起形成电场集中区域;
S3033、利用光刻工艺,通过涂胶、光刻、显影等步骤完成TSV填充图形;
S3034、在600℃~620℃的温度下,利用CVD工艺淀积多晶硅材料对TSV进行填充,同时通入掺杂气体进行原位掺杂,并实现掺杂元素的原位激活,形成高掺杂的多晶硅填充。这样在对TSV填充时可以形成杂质分布均匀、且高掺杂浓度的导电材料填充,利于减小TSV的电阻。多晶硅掺杂浓度优选2×1021cm-3,掺杂杂质优选磷;
S3035、利用CMP工艺,对衬底表面进行平坦化。
S304、如图3d所示;在两个TSV区之间的Si衬底上分别制备两个隔离区303,具体可以包括如下步骤:
S3041、利用CVD工艺,在Si衬底上连续生长两层材料,第一层可以是厚度为20~50nm的SiO2层,第二层可以是厚度为30~60nm的Si3N4层;
S3042、利用光刻工艺,通过涂胶、光刻、显影等步骤,在两个TSV区之间的Si衬底上分别形成浅沟槽隔离区图形;
S3043、采用湿法刻蚀工艺,刻蚀Si3N4层,形成隔离区图形,再采用干法刻蚀,形成深400~500nm的浅沟槽;
S3044、采用CVD工艺,在750℃温度下,淀积SiO2材料,将沟槽填满;
S3045、利用CMP工艺对衬底表面进行平坦化。
S305、如图3e所示;在隔离区上制备横向结构的二极管304,具体可以包括如下步骤:
S3051、利用光刻工艺,通过涂胶、光刻、显影等工艺在隔离区上形成二极管器件图形;
S3052、利用LPCVD工艺,在600℃~950℃的温度下,选择性外延生长多晶硅,同时通入掺杂气体进行原位掺杂,并实现掺杂元素的原位激活,形成N-掺杂的多晶硅填充。掺杂浓度为5×1014cm-3,掺杂杂质优选磷;
S3053、光刻P+有源区,利用带胶离子注入工艺进行P+注入,去除光刻胶,形成二极管的阳极。掺杂浓度为5×1018cm-3,掺杂杂质为硼;
S3054、光刻N+有源区,利用带胶离子注入工艺进行N+注入,去除光刻胶,形成二极管的阴极。掺杂浓度优选5×1018cm-3,掺杂杂质优选磷;
S3055、将衬底在950~1100℃温度下,退火15~120s,进行杂质激活;
S3056、利用PECVD工艺,在衬底表面淀积SiO2
S3057、利用CMP工艺对衬底表面进行平坦化。
S306、如图3f所示;利用电镀工艺在Si衬底上表面形成铜互连线305,具体可以包括如下步骤:
S3061、利用等离子体增强化学气相沉积(Plasma Enhanced Chemical VaporDeposition,PECVD)工艺,在衬底表面淀积SiO2层;
S3062、在TSV区的第一端以及二极管的阳极和阴极,利用光刻工艺,通过涂胶、光刻、显影等工艺完成接触孔图形;
S3063、利用CVD工艺,在TSV区的第一端以及二极管的阳极和阴极淀积Ti膜、TiN膜和钨以形成钨插塞;
S3064、利用CMP工艺对衬底表面进行平坦化。
S3065、淀积SiO2绝缘层,光刻铜互连图形,利用电化学镀铜的方法淀积铜,通过化学机械研磨的方法去除多余的铜,形成TSV区的第一端与二极管串接铜互连线;
S3066、利用CMP工艺对衬底表面进行平坦化。
S3067、利用PECVD工艺,在衬底表面淀积SiO2层;
S307、如图3g所示;利用化学机械抛光工艺对Si衬底进行减薄,漏出TSV区,具体可以包括如下步骤:
S3071、利用高分子材料作为中间层,将Si衬底上表面与辅助圆片键合,通过辅助圆片的支撑完成Si衬底的减薄;
S3072、利用机械磨削减薄工艺对Si衬底下表面进行减薄,直到减到略大于TSV区深度的厚度,优选大于TSV深度10μm;
S3073、利用CMP工艺对Si衬底下表面进行平整,直到露出TSV区;
S308、如图3h所示;在Si衬底下表面利用电镀的方法形成铜凸点306,具体可以包括如下步骤:
S3081、利用PECVD工艺,在衬底下表面淀积SiO2层;
S3082、在TSV区的第二端,利用光刻工艺,通过涂胶、光刻、显影等工艺完成接触孔图形;
S3083、利用CVD工艺,在TSV区的第二端面淀积Ti膜、TiN膜和钨以形成钨插塞;
S3084、利用CMP工艺对衬底表面进行平坦化;
S3085、淀积SiO2绝缘层,在TSV区的第二端光刻铜凸点图形,利用电化学镀铜工艺淀积铜,通过化学机械研磨工艺去除多余的铜,刻蚀SiO2层,在TSV区的第二端形成铜凸点;
S3086、利用加热机械的方法拆除临时键合的辅助圆片。
本实施例提供的TSV转接板的制备方法,采用二极管器件周边被SiO2绝缘层包围的工艺,可有效减小有源区与衬底间的寄生电容。本发明在考虑工艺可行性的基础上通过优化设置一定长度的TSV孔及利用给定范围的掺杂浓度,并且考虑器件的电流通过能力,减小了寄生电容和电阻,并利用TSV孔引入的电感对器件的寄生电容进行一定程度的调谐,在提高系统级封装抗ESD能力的同时扩大了ESD保护电路的工作范围。
实施例四
请参照图4,图4为本发明实施例提供的一种用于系统级封装的TSV转接板结构示意图;该TSV转接板利用上述如图3a-图3h所示的制备工艺制成。
具体地,新型TSV转接板包括:
Si衬底401;
至少两个TSV区402,设置于Si衬底401内;
至少两个隔离区403,设置于Si衬底401内并位于每两个TSV区402之间;
二极管404,设置于隔离区403之上;
互连线405,对TSV区402的第一端面和二极管404进行串行连接;
钝化层406,设置于Si衬底401之上,用于对TSV区402与二极管404之间进行隔离。
优选地,Si衬底401的掺杂类型为N型或P型,掺杂浓度为1014~1017cm-3,厚度为150~250μm。
优选地,TSV区402内的材料为多晶硅,多晶硅的掺杂浓度为2×1021cm-3,掺杂杂质为磷。
具体地,TSV区402上下贯通Si衬底401。
具体地,TSV区402的第一端面和二极管404与互连线405之间设置有钨插塞。
进一步地,TSV区402的第二端面上设置有钨插塞和金属凸点407。
进一步地,还包括设置于Si衬底401上下表面的绝缘层408。
具体地,隔离区403用于和Si衬底401上下表面的绝缘层408形成封闭的隔离区域以隔离二极管404。
优选地,TSV区的深度为40~80μm。
优选地,隔离区的深度为400~500nm。
本实施例提供的TSV转接板,结构简单,能够承受很大的ESD电流而不至于使半导体器件发热失效;利用转接板较高的散热能力,提高了器件工作中的大电流通过能力;同时,在TSV转接板的二极管周围设置上下贯通的隔离沟槽,具有较小的漏电流和寄生电容。
以上内容是结合具体的优选实施方式对本发明所作的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。例如,本发明中提及的多个隔离区仅仅是依据本发明提供的器件结构截面图进行说明,其中,多个隔离区也可以是某一个整体中例如环状体的截面图显示的第一部分和第二部分,对于本发明所属技术领域的普通技术人员来说,不应局限于这些说明,在不脱离本发明构思的前提下,还可以做出若干简单推演或替换,都应当视为属于本发明的保护范围。

Claims (10)

1.一种用于系统级封装的TSV转接板的制备方法,其特征在于,包括:
S101、选取Si衬底;
S102、刻蚀所述Si衬底形成TSV,填充后形成TSV区;
S103、刻蚀所述Si衬底在所述TSV区之间形成至少一个隔离沟槽,填充后形成隔离区;
S104、在所述隔离区上制备二极管;
S105、在所述TSV区的第一端面与所述二极管之间形成互连线;
S106、在所述TSV区的第二端面制备金属凸点以完成所述TSV转接板的制备。
2.根据权利要求1所述的制备方法,其特征在于,S102包括:
S1021、利用光刻工艺,在所述Si衬底的上表面形成所述TSV的刻蚀图形;
S1022、利用DRIE工艺,刻蚀所述Si衬底形成所述TSV;
S1023、热氧化所述TSV在所述TSV的内壁形成氧化层;
S1024、利用湿法刻蚀工艺,刻蚀所述氧化层以完成所述TSV的平整化;
S1025、利用光刻工艺形成所述TSV的填充图形;
S1026、利用CVD工艺,在所述TSV内填充多晶硅,并通入掺杂气体进行原位掺杂形成所述TSV区。
3.根据权利要求1所述的制备方法,其特征在于,S103包括:
S1031、利用CVD工艺,在Si衬底上淀积钝化层;
S1032、利用光刻工艺在所述TSV区之间形成隔离沟槽的填充图形;
S1033、利用干法刻蚀工艺形成隔离沟槽;
S1034、利用CVD工艺,淀积SiO2对隔离沟槽进行填充,形成隔离区;
其中,所述隔离区的深度小于所述TSV的深度。
4.根据权利要求1所述的制备方法,其特征在于,S104包括:
S1041、在所述隔离区上制备二极管器件沟槽;
S1042、利用CVD工艺,在所述二极管器件沟槽内淀积多晶硅材料;
S1043、分别光刻P+有源区和N+有源区,采用带胶离子注入工艺进行P+注入和N+注入,去除光刻胶,形成所述二极管的阳极和阴极;
S1044、进行高温退火,激活杂质;
S1045、在所述衬底表面淀积SiO2以形成隔离层。
5.根据权利要求1所述的制备方法,其特征在于,S106之前还包括:
x1、利用辅助圆片作为所述Si衬底上表面的支撑件;
x2、利用机械磨削减薄工艺对所述Si衬底下表面进行减薄,再利用CMP工艺,对所述Si衬底的下表面进行平整化处理,直到露出所述TSV区的第二端面。
6.根据权利要求1所述的制备方法,其特征在于,S106包括:
S1061、利用溅射工艺,在所述Si衬底的下表面形成衬垫层和阻挡层,利用CVD工艺在所述TSV区的第二端面形成钨插塞;
S1062、淀积绝缘层,在所述TSV区的第二端面光刻所述金属凸点的图形,利用电化学工艺淀积金属,通过化学机械研磨工艺去除多余的金属,在所述TSV区的第二端面形成所述金属凸点;
S1063、拆除所述辅助圆片。
7.根据权利要求1所述的制备方法,其特征在于,所述Si衬底的掺杂浓度为1014~1017cm-3,厚度为150~250μm。
8.根据权利要求1所述的制备方法,其特征在于,所述TSV区的深度为40~80μm。
9.根据权利要求8所述的制备方法,其特征在于,所述隔离区的深度为400~500nm。
10.一种用于系统级封装的TSV转接板,其特征在于,所述TSV转接板由权利要求1~9任一项所述的方法制备形成。
CN201711352521.3A 2017-12-15 2017-12-15 用于系统级封装的tsv转接板及其制备方法 Active CN107994000B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711352521.3A CN107994000B (zh) 2017-12-15 2017-12-15 用于系统级封装的tsv转接板及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711352521.3A CN107994000B (zh) 2017-12-15 2017-12-15 用于系统级封装的tsv转接板及其制备方法

Publications (2)

Publication Number Publication Date
CN107994000A true CN107994000A (zh) 2018-05-04
CN107994000B CN107994000B (zh) 2021-01-12

Family

ID=62037718

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711352521.3A Active CN107994000B (zh) 2017-12-15 2017-12-15 用于系统级封装的tsv转接板及其制备方法

Country Status (1)

Country Link
CN (1) CN107994000B (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI235474B (en) * 2004-10-20 2005-07-01 Sitronix Technology Corp Whole-chip electrostatic discharge protection method
TW200618248A (en) * 2004-04-30 2006-06-01 Wj Communications Inc ESD protection structure with sige bjt devices
US20090124072A1 (en) * 2007-11-14 2009-05-14 Samsung Electronics Co., Ltd. Semiconductor device having through electrode and method of fabricating the same
US20110068387A1 (en) * 2009-09-23 2011-03-24 Denso Corporation Semiconductor device including vertical transistor and horizontal transistor and method of manufacturing the same
US20120329277A1 (en) * 2009-03-05 2012-12-27 International Business Machines Corporation Two-sided semiconductor structure
US20150048497A1 (en) * 2013-08-16 2015-02-19 Qualcomm Incorporated Interposer with electrostatic discharge protection
CN105190888A (zh) * 2013-05-06 2015-12-23 高通股份有限公司 静电放电二极管
CN105470309A (zh) * 2016-01-06 2016-04-06 无锡新洁能股份有限公司 具有防静电保护结构的低压mosfet器件及其制造方法
CN106816684A (zh) * 2016-12-20 2017-06-09 西安科锐盛创新科技有限公司 用于可重构多层全息天线的Ge基等离子pin二极管制备方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200618248A (en) * 2004-04-30 2006-06-01 Wj Communications Inc ESD protection structure with sige bjt devices
TWI235474B (en) * 2004-10-20 2005-07-01 Sitronix Technology Corp Whole-chip electrostatic discharge protection method
US20090124072A1 (en) * 2007-11-14 2009-05-14 Samsung Electronics Co., Ltd. Semiconductor device having through electrode and method of fabricating the same
US20120329277A1 (en) * 2009-03-05 2012-12-27 International Business Machines Corporation Two-sided semiconductor structure
US20110068387A1 (en) * 2009-09-23 2011-03-24 Denso Corporation Semiconductor device including vertical transistor and horizontal transistor and method of manufacturing the same
CN105190888A (zh) * 2013-05-06 2015-12-23 高通股份有限公司 静电放电二极管
US20150048497A1 (en) * 2013-08-16 2015-02-19 Qualcomm Incorporated Interposer with electrostatic discharge protection
CN105470309A (zh) * 2016-01-06 2016-04-06 无锡新洁能股份有限公司 具有防静电保护结构的低压mosfet器件及其制造方法
CN106816684A (zh) * 2016-12-20 2017-06-09 西安科锐盛创新科技有限公司 用于可重构多层全息天线的Ge基等离子pin二极管制备方法

Also Published As

Publication number Publication date
CN107994000B (zh) 2021-01-12

Similar Documents

Publication Publication Date Title
CN108109960A (zh) 用于系统级封装的硅通孔转接板及其制备方法
CN108122889A (zh) 基于横向二极管的tsv转接板
CN208256669U (zh) 用于系统级封装的tsv转接板
CN208256668U (zh) 用于系统级封装的防静电装置
CN108010853A (zh) 基于硅通孔的转接板及其制备方法
CN208256663U (zh) 用于系统级封装的tsv转接板
CN107946240A (zh) Tsv转接板及其制备方法
CN207753005U (zh) 用于系统级封装的tsv转接板
CN207753012U (zh) 用于系统级封装的防静电转接板
CN208385399U (zh) 用于三维集成电路封装的硅通孔转接板
CN107994000A (zh) 用于系统级封装的tsv转接板及其制备方法
CN108063114B (zh) 基于横向二极管的tsv转接板及其制备方法
CN108122818A (zh) 用于系统级封装的防静电装置及其制备方法
CN208570599U (zh) 基于横向二极管的tsv转接板
CN208385403U (zh) 用于系统级封装的防静电装置
CN108054134A (zh) 用于系统级封装的tsv转接板及其制备方法
CN208256667U (zh) 用于系统级封装的防静电转接板
CN108321154A (zh) 基于scr管的tsv转接板及其制备方法
CN208422908U (zh) 基于bjt的系统级封装抗静电转接板
CN208208751U (zh) 用于系统级封装的硅通孔转接板
CN108109953A (zh) 用于系统级封装的tsv转接板
CN108054155A (zh) 用于三维集成电路封装的硅通孔转接板
CN207753013U (zh) 用于系统级封装的防静电装置
CN108321117A (zh) 基于mos管的tsv转接板及其制备方法
CN108054139A (zh) Tsv转接板及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right
TA01 Transfer of patent application right

Effective date of registration: 20201201

Address after: 314000 Floor 15 of Block B of Zhejiang Tsinghua Yangtze River Delta Research Institute, Nanhu District, Jiaxing City, Zhejiang Province

Applicant after: INSTITUTE OF FLEXIBLE ELECTRONICS TECHNOLOGY OF THU, ZHEJIANG

Address before: 710065 No. 86 Leading Times Square (Block B), No. 2, Building No. 1, Unit 22, Room 12202, No. 51, High-tech Road, Xi'an High-tech Zone, Shaanxi Province

Applicant before: Xi'an Cresun Innovation Technology Co.,Ltd.

GR01 Patent grant
GR01 Patent grant