CN107988186A - 一种冷适应性内切β-1,4-葡聚糖酶及其表达基因和应用 - Google Patents

一种冷适应性内切β-1,4-葡聚糖酶及其表达基因和应用 Download PDF

Info

Publication number
CN107988186A
CN107988186A CN201711273657.5A CN201711273657A CN107988186A CN 107988186 A CN107988186 A CN 107988186A CN 201711273657 A CN201711273657 A CN 201711273657A CN 107988186 A CN107988186 A CN 107988186A
Authority
CN
China
Prior art keywords
inscribe
ala
isosorbide
glucanase
cold tolerance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201711273657.5A
Other languages
English (en)
Inventor
叶建仁
陈飞飞
王立超
郗蓓蓓
刘婉慧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Forestry University
Original Assignee
Nanjing Forestry University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Forestry University filed Critical Nanjing Forestry University
Priority to CN201711273657.5A priority Critical patent/CN107988186A/zh
Publication of CN107988186A publication Critical patent/CN107988186A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/24Hydrolases (3) acting on glycosyl compounds (3.2)
    • C12N9/2402Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1)
    • C12N9/2405Glucanases
    • C12N9/2434Glucanases acting on beta-1,4-glucosidic bonds
    • C12N9/2437Cellulases (3.2.1.4; 3.2.1.74; 3.2.1.91; 3.2.1.150)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/02Monosaccharides
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/14Preparation of compounds containing saccharide radicals produced by the action of a carbohydrase (EC 3.2.x), e.g. by alpha-amylase, e.g. by cellulase, hemicellulase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y302/00Hydrolases acting on glycosyl compounds, i.e. glycosylases (3.2)
    • C12Y302/01Glycosidases, i.e. enzymes hydrolysing O- and S-glycosyl compounds (3.2.1)
    • C12Y302/01004Cellulase (3.2.1.4), i.e. endo-1,4-beta-glucanase

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Enzymes And Modification Thereof (AREA)

Abstract

本发明公开了一种冷适应性内切β‑1,4‑葡聚糖酶及其表达基因和应用,所述的冷适应性内切β‑1,4‑葡聚糖酶的氨基酸序列如 SEQ ID NO.1所示,其表达基因的核苷酸序列如 SEQ ID NO.3所示。本发明采用PCR技术从Burkholderia pyrrocinia JK‑SH007的总DNA中扩增内切葡聚糖酶基因片段,原核表达并纯化得到内切β‑1,4‑葡聚糖酶。通过对内切β‑1,4‑葡聚糖酶酶学分析表明:内切β‑1,4‑葡聚糖酶基因对羧甲基纤维素的最适反应温度为35℃,与报道的同类酶相比最适温度下降了10‑20℃。最适pH为6.0,该酶在30‑45℃和中性环境下较稳定,是一种具有良好工业应用价值的冷适应酶,将该酶运用于生物质能源领域将有利于降低其成本,进而实现同步发酵,且对阐释内切β‑1,4‑葡聚糖酶的相关生物学功能也具有重要意义。

Description

一种冷适应性内切β-1,4-葡聚糖酶及其表达基因和应用
技术领域
本发明属于生物技术和生物化工技术领域,涉及一种冷适应性内切β-1,4-葡聚糖酶及其表达基因和应用。
背景技术
能源短缺和能源消费所引起的环境问题已成为制约我国可持续发展的关键因素之一。我国迫切需要寻找一种清洁的可再生能源来代替化石能源。由于地球上木质纤维原料丰富、环保效益良好,所以利用纤维素酶水解木质纤维素生产乙醇是发展新能源的重要途径,该技术的应用具有巨大的发展潜力。其中发酵酶解技术是降解木质素生产乙醇的关键,纤维素水解生成葡萄糖的过程须依靠内切β-1,4-葡聚糖酶(endo-1,4-β-D-glucanase,EC 3.2.1.4)的协同作用才能完成。现有的生物质能源技术很难实现同步发酵,因其中利用内切β-1,4-葡聚糖酶水解纤维素的最适温度为45-55℃,而利用工程酵母菌发酵生产乙醇所需的温度为 25-30℃。因此寻找一种适应低温的内切β-1,4-葡聚糖酶等纤维素酶至关重要,将有利于实现同步发酵,所以对冷适应酶的研究将成为开发生物质能源的热点。
此外,内切β-1,4-葡聚糖酶可以影响植物器官脱落、果实成熟、组织生长等生理功能,且对植物定殖具有一定作用。所以内切β-1,4-葡聚糖酶不仅在纤维素乙醇的生产上具有重要价值,且对研究植物生理功能具有重要意义。
发明内容
发明目的:针对现有技术的不足,本发明的目的提供一种冷适应的内切β -1,4-葡聚糖酶,用于制备单糖。本发明的另一目的是提供上述冷适应的内切β -1,4-葡聚糖酶的表达基因。本发明还有一目的是提供上述冷适应的内切β-1,4- 葡聚糖酶的应用。
技术方案:为了实现上述发明目的,本发明采用的技术方案为:
一种冷适应性内切β-1,4-葡聚糖酶,其氨基酸序列如SEQ ID NO.1所示。
所述的冷适应性内切β-1,4-葡聚糖酶,其去信号肽氨基酸序列如SEQ ID NO.2所示。
所述的冷适应性内切β-1,4-葡聚糖酶的表达基因,核苷酸序列如SEQ ID NO.3所示。
所述的冷适应性内切β-1,4-葡聚糖酶的去信号肽的表达基因,其核苷酸序列如SEQ ID NO.4所示。
含有所述的冷适应性内切β-1,4-葡聚糖酶的表达基因的载体或宿主菌。
含有所述的冷适应性内切β-1,4-葡聚糖酶的去信号肽的表达基因的载体或宿主菌。
所述的冷适应性内切β-1,4-葡聚糖酶在生产单糖中的应用。
所述的冷适应性内切β-1,4-葡聚糖酶的的去信号肽在生产单糖中的应用。
所述的冷适应性内切β-1,4-葡聚糖酶对羧甲基纤维素的最适反应温度为 35℃,最适pH为6.0。
一种利用所述的冷适应性内切β-1,4-葡聚糖酶生产葡萄糖的方法:将核苷酸序列如SEQ ID NO.4所示的基因片段导入到pET-32a质粒载体中,将重组质粒转入E.coli BL21(DE3)中,通过亲和层析色谱分离纯化制得内切β-1,4-葡聚糖酶,然后将内切β-1,4-葡聚糖酶加入以CMC-Na为底物的反应液中,在温度为35℃, pH为6.0的条件下反应24h,得到的葡萄糖溶液。
有益效果:与现有技术相比,本发明采用PCR技术从Burkholderia pyrrociniaJK-SH007的总DNA中扩增内切葡聚糖酶基因片段,原核表达并纯化得到内切β-1,4-葡聚糖酶。通过对内切β-1,4-葡聚糖酶酶学分析表明:内切β-1,4-葡聚糖酶基因对羧甲基纤维素的最适反应温度为35℃,与报道的同类酶相比最适温度下降了10-20℃。最适pH为6.0,该酶在30-45℃和中性环境下较稳定,是一种具有良好工业应用价值的冷适应酶,将该酶运用于生物质能源领域将有利于降低其成本,进而实现同步发酵,且对阐释内切β-1,4-葡聚糖酶的相关生物学功能也具有重要意义。可见,本发明所述的内切β-1,4-葡聚糖酶的最适酶活温度更接近常温,在实际工业化生产中,有利于降低生产耗能,以实现生物质能源的同步化发酵。本发明所述的内切β-1,4-葡聚糖酶在重组菌株中表达量高,纯化过程简单,易于大规模工业化生产。本发明所述的含有信号肽的内切β-1,4-葡聚糖酶重组菌株,具有向细胞外分泌内切β-1,4-葡聚糖酶的能力,有利于直接利用该重组菌株进行生物质能源的同步发酵。
附图说明
图1是B.pyrrocinia JK-SH 007基因组DNA电泳图;图中,M:DL 15000marker,1:基因组DNA;
图2是PCR扩增目的基因电泳图;图中,M:DL 2000marker,1:目的基因;
图3是菌液PCR筛选阳性克隆电泳图,图中,M:DL 2000marker,1-10待检测克隆子;
图4是纯化的融合内切β-1,4-葡聚糖酶图;
图5是内切β-1,4-葡聚糖酶酶切产物的离子色谱分析图;图中,A:寡糖参考标准;B内切β-1,4-葡聚糖酶酶切CMC-Na产生葡萄糖;
图6是内切β-1,4-葡聚糖酶的酶学特征图;图中,A内切β-1,4-葡聚糖酶最适pH;B内切β-1,4-葡聚糖酶pH稳定性;C内切β-1,4-葡聚糖酶最适温度;D 内切β-1,4-葡聚糖酶温度稳定性;
图7是大肠杆菌转化子的CMC-Na平板图。
具体实施方式
下面结合具体实施例对本发明做进一步的说明。
实施例1
1、基因组DNA的提取
(1)从超低温冰箱取出25%浓度保存的甘油菌,在LB固体培养基上将分离自杨树的内生细菌Burkholderia pyrrocinia JK-SH007[Jia H R,Jian R Y,Hui L, etal.Isolation and characterization of a new Burkholderia pyrrocinia,strain JK-SH007as a potential biocontrol agent[J].World Journal of Microbiology&Biotechnology,2011,27(9):2203-2215.]进行活化,37℃培养16-24h;(2)将单菌落接种于50mL的LB液体培养基中,30℃恒温振荡过夜培养;(3)取1.5mL 培养物,12000rpm离心5min,弃上清;(4)离心收集的沉淀物中加入500μL 的CTAB溶液,振荡混匀,加入20μL溶菌酶(50mg/mL),依次37℃水浴30min, 65℃水浴10min;(5)加入50μL SDS(10%)、20μL蛋白酶K(20μg/mL)、 10μL RNA酶(l0mg/mL)37℃水浴3h以上或过夜;(6)加入500μL酚:氯仿: 异戊醇(25:24:1)抽提液,12000rpm离心10min,取上清;(7)加入等体积氯仿:异戊醇(24:1)抽提,振荡混匀,冰浴作用5min,4℃、12000rpm离心10min,取上清(如混浊,可重复一次);(8)加入l/10体积NaAc(3mol/L,pH5.2) 和2倍体积乙醇,混匀,-20℃沉淀DNA;(9)12000rpm,10min离心,弃上清,加lmL75%乙醇洗涤沉淀,离心2min;(10)弃上清,干燥,加入30μLTE 溶解DNA。
经琼脂糖凝胶电泳检测(图1),及紫外分光光度计检测其OD260与OD230的比值为1.80,OD260与OD280的比值为1.86,浓度为682.7ng/μL,完全满足后续实验。于-20℃冰箱中可长期保存。
2、内切β-1,4-葡聚糖酶基因的克隆
以步骤1提取的基因组DNA作为模板,采用LA酶扩增内切β-1,4-葡聚糖酶基因基因。PCR反应体系(50μL):La Taq 0.25μL,2×GC Buffer II 25μL, dNTP Mixture 10μL,引物Primer 1(CGAATTCATGGCGAAGCGACGGGTAAC) 8μL,引物Primer 2(CGAATTCTCAGCGGGC GGCGCACGAA)8μL,模板 DNA(<400ng)ddH2O补足50μL。PCR反应条件为:94℃10min;94℃30s,60℃30s,72℃1.5min,30个循环;72℃10min。PCR反应结束用1%的琼脂糖凝胶电泳检测PCR产物正确后(图2),用FavorPrepTM GEL/PCR Purification Mini Kit回收纯化PCR产物并于-20℃保存。
将内切β-1,4-葡聚糖酶基因的纯化产物与pMDTM19-T载体进行连接,连接体系(10μL):内切β-1,4-葡聚糖酶基因纯化产物4μL,pMDTM19-T载体1μL, Solution1 5μL,16℃连接过夜。连接产物转化于感受态细胞E.coli JM109中,涂布于含有IPTG(24mg/mL)、X-gal(20mg/mL)和Amp(100mg/mL)的 LB固体培养基上,37℃培养过夜。根据抗性筛选和蓝白斑筛选原理,挑选白色单菌落,并进行菌液PCR(图3)及测序鉴定,获得内切β-1,4-葡聚糖酶基因的克隆质粒,该基因核酸序列如SEQ ID NO.3所示,所表达的蛋白序列如SEQ ID NO.1所示。
3、内切β-1,4-葡聚糖酶基因的表达纯化
通过生物信息学的分析,将步骤2中获得的内切β-1,4-葡聚糖酶基因克隆质粒为模板,设计去除信号肽的特异引物PrimerF (CGGATCCATGGCGGACGCCGGCGCGA)和PrimerR(CGAATTCTCAGCGGGCGGCGCACGAA)进行PCR扩增。PCR反应体系(50μL):La Taq 0.25 μL,2×GC Buffer II 25μL,dNTP Mixture 10μL,引物PrimerF 8μL,引物PrimerR 8μL,模板DNA(<400ng)ddH2O补足50μL。PCR反应条件为: 94℃10min;94℃30s,60℃30s,72℃1.5min,30个循环;72℃10min。获得基因,其核酸序列为SEQ ID NO.4所示。将该基因酶切(BamH I,EcoRI) 纯化后,连入表达载体pET32a,通过42℃热激转化,将重组质粒导入E.coli BL21(DE3)中。将得到的含有重组质粒的大肠杆菌扩大培养,培养至OD600为 0.6时加入终浓度为0.5mM的IPTG,于16℃下过夜诱导。10000rpm离心,收集菌体。用pH为6.0,50mM PBS缓冲液洗涤菌体两次,超声破碎后,用镍离子亲和层析和超滤纯化出目的蛋白,经SDS-PAGE及westernblot检查,结果如图4所示,条带单一清晰,获得内切β-1,4-葡聚糖酶,其氨基酸序列如SEQID NO.2所示。取30μL CMC-Na相应的溶液与10μL适当的酶液,35℃水浴,反应 24h后,样品65℃水浴20min灭酶活,然后通过离子色谱检查,结果显示酶切反应生成大量的葡糖糖,浓度达到540.7mg/L(图5)。
实施例2
1、内切β-1,4-葡聚糖酶最适温度
为获得内切β-1,4-葡聚糖酶的最佳反应温度,本实施例设置不同温度梯度 (10-60℃)进行酶促反应,每隔5℃一个梯度。配制1%羧甲基纤维素钠底物,采用DNS法对酶的活性进行测定,以酶活最高者为100%。
2、内切β-1,4-葡聚糖酶最适反应pH值
为获得内切β-1,4-葡聚糖酶的最佳反应pH,设置不同pH梯度(3-11)进行酶促反应,每隔pH1设置一个梯度,1%羧甲基纤维素钠分别用pH 3.0-9.0的缓冲液配制,在最适温度下,采用DNS法对酶的活性进行测定,以酶活最高者为 100%。
3、内切β-1,4-葡聚糖酶热稳定性
设置不同温度梯度进行酶促反应,测定内切β-1,4-葡聚糖酶对温度的耐受性,将内切β-1,4-葡聚糖酶分别在40℃,50℃,60℃,70℃,80℃,90℃的条件下分别保温15min,30min,45min后,以pH为6.0的1%羧甲基纤维素钠为底物,检测不同温度保温不同时间下内切β-1,4-葡聚糖酶的剩余相对酶活性。
4、内切β-1,4-葡聚糖酶pH稳定性
配置pH为3-11的1%羧甲基纤维素钠溶液,在30℃条件下保温1h,然后在最适条件下检测酶活。检测不同pH条件下内切β-1,4-葡聚糖酶的剩余相对酶活性。
通过对内切葡聚糖酶酶学分析表明:内切葡聚糖酶基因对羧甲基纤维素的最适反应温度为35℃,相较于其他研究(表1),其最适反应温度相对较低;最适 pH为6.0,该酶在30-45℃及pH5-8的环境下较稳定(图6)。
表1内切β-1,4-葡聚糖酶的酶学特征
注:ND:未测定。
实施例3
CMC-Na刚果红平板试验:将含有信号肽的转化子(实例1中获得)和不含有信号肽的转化子(将实例1中获得克隆质粒,酶切(EcoR I和Hind III)后连接连入表达载体pET32a,通过42℃热激转化,将重组质粒导入E.coli BL21(DE3) 中获得,其氨基酸序列为:SEQ ID NO.1)分别接种在含有1%CMC-Na的LA 平板上,37℃恒温箱倒置培养过夜。待长出菌落后,用1mM IPTG诱导后继续培养10h。倒入0.1%刚果红溶液使其完全浸满平板表面,室温水平静置20min,倒掉刚果红溶液后,用6.6%NaCl溶液洗脱,重复洗涤三次,静置浸泡直至脱色清晰后观察是否有水解圈。
结果显示(图7)含有信号肽的转化子产生了水解圈,不含有信号肽的转化子没有产生水解圈,表明含有信号的内切β-1,4-葡聚糖酶的转化子能够向细胞外分泌内切β-1,4-葡聚糖酶。其最适酶活温度(35℃)与该菌的最适生长温度(℃) 吻合。有利于实现活体生物质能源的同步化发酵。
注:表1中涉及的参考文献,具体信息如下:
[1]Koichiro Murashima,Tomoko Nishimura,Yuko Nakamura,Jinichiro Koga,Tastuki Moriya,Naomi Sumida,Takashi Yaguchi,Toshiaki Kono.Purification andcharacterization of new endo-1,4-β-d-glucanases from Rhizopus oryzae.InEnzyme and Microbial Technology 2002;30:319-326.
[2]Guodong Liu,Yuqi Qin,Yibo Hu,Meirong Gao,Shengjuan Peng,YinboQu.An endo-1,4-β-glucanase PdCel5C from cellulolytic fungus Penicilliumdecumbens with distinctive domain composition and hydrolysis productprofile.Enzyme and Microbial Technology 2013;52:190-195.
[3]Yujuan Wang,Hang Yuan,Jun Wang,Zengliang Yu.Truncation of thecellulose binding domain improved thermal stability of endo-β-1,4-glucanasefrom Bacillus subtilis JA18,In Bioresource Technology 2009;100:345-349.
[4]Guizhi Liu,Qian Li,Na Shang,Jian-Wen Huang,Tzu-Ping Ko,WeidongLiu, Yingying Zheng,Xu Han,Yun Chen,Chun-Chi Chen,Jian Jin,Rey-Ting Guo.Functional and structural analyses of a 1,4-β-endoglucanase from Ganodermalucidum.In Enzyme and Microbial Technology 2016;86:67-74.
[5]Ueda,M.,Maruyama,T.,Kawasaki,K.et al.Purification,Characterization,and Gene Cloning of a Cold-Adapted Endo-1,4-b-glucanase fromBellamya chinensis laeta.Mol Biotechnol 2016;58:241.
[6]Kyoung-Mi Lee,Marimuthu Jeya,Ah-Reum Joo,Raushan Singh,In-Won Kim,Jung-Kul Lee.Purification and characterization of a thermostable endo-β-1,4-glucanase from a novel strain of Penicillium purpurogenum.In Enzyme andMicrobial Technology 2010;46:206-211.
[7]Bai X,Yuan X,Wen A,Li J,Bai Y,Shao T.Cloning,expression andcharacterization of a cold-adapted endo-1,4-β-glucanase from Citrobacterfarmeri A1,a symbiotic bacterium of Reticulitermes labralis.PeerJ 2016;4:e2679
[8]廖贵芹,汪娜,马立新.β-1,4-内切葡聚糖酶基因在毕赤酵母中的表达研究[J]. 湖北大学学报(自然科学版),2007,(02):186-188.
[9]侯进慧,张翔,乔高翔.菠萝泛菌β-1,4-内切葡聚糖酶基因克隆、表达与酶活性分析[J].食品科学,2016,37(23):211-215.
[10]朱泾,赵述淼,彭楠,梁运祥.冰岛硫化叶菌β-1,4-内切葡聚糖酶的同源表达、纯化与性质[J].华中农业大学学报,2011,30(06):674-679.
[11]黄君,张昌毅,赵述淼,梁运祥.黑曲霉内切β-1,4-葡聚糖酶在毕赤酵母中的高效表达[J].华中农业大学学报,2008,(05):611-615.
[12]范晓静,邱思鑫,胡方平.内生解淀粉芽孢杆菌TB2内切β-1,4-葡聚糖酶基因的克隆和原核表达分析[J].热带作物学报,2008,(04):443-449.
[13]常巧玲,孙建义,许英蕾,钱利纯.热纤梭菌内切β-1,4-葡聚糖酶基因celD在大肠杆菌中的表达及酶学特性分析[J].农业生物技术学报,2006,(06):1000-1001.
[14]徐伟佳,韩卫杰,李旺,陈玉林.桑天牛内切β-1,4-葡聚糖酶活性分析及其基因 CDs区的克隆与表达[J].西北农林科技大学学报(自然科学版),2011,39(01):29-35.
[15]李靖一,赵男,谢晶,于宏伟,马雯,郭润芳.展示在巴斯德毕赤酵母细胞表面的内切-1,4-β-葡聚糖酶的酶学性质[J].河北农业大学学报,2015,38(01):78-82+91。
序列表
<110> 南京林业大学
<120> 一种冷适应性内切β-1,4-葡聚糖酶及其表达基因和应用
<130> 100
<160> 8
<170> SIPOSequenceListing 1.0
<210> 1
<211> 405
<212> PRT
<213> Burkholderia pyrrocinia
<400> 1
Met Ala Lys Arg Arg Val Thr Arg Pro Ala Arg Arg Val Gly Ala Ala
1 5 10 15
Leu Ala Leu Ala Val Ala Met Ala Cys Ala Ala Gly Gly Met Ala Ala
20 25 30
Arg Ala Gln Ala Ala Gly Ala Gly Ala Thr Asp Ala Ala Ala Ala Gly
35 40 45
Cys Gly Ala Pro Trp Pro Arg Trp Asp Ala Phe Lys Arg Asp Phe Ile
50 55 60
Ser Ala Asp Gly Arg Val Ile Asp Val Gly Ser Ala Asp Ser Arg Thr
65 70 75 80
Val Ser Glu Gly Gln Ala Tyr Gly Leu Phe Phe Ala Leu Val Ala Asn
85 90 95
Asp Arg Arg Met Phe Asp Thr Ile Leu Ala Trp Thr Glu Asn Asn Leu
100 105 110
Ala Gln Gly Asp Leu Ser Ala His Leu Pro Ala Trp Leu Trp Gly Arg
115 120 125
Ala Pro Asp Gly Ala Trp Arg Val Leu Asp Ala Asn Ala Ala Ser Asp
130 135 140
Ala Asp Leu Trp Ile Ala Tyr Ala Leu Val Glu Ala Gly Arg Leu Trp
145 150 155 160
His Glu Arg Ser Tyr Thr Ala Arg Gly Ala Leu Leu Ala Lys Arg Val
165 170 175
Leu Asp Glu Glu Thr Ala Thr Val Pro Gly Leu Gly Val Thr Leu Leu
180 185 190
Pro Gly Pro Thr Gly Phe Lys Leu Pro Asn Gly Gln Trp Arg Val Asn
195 200 205
Pro Ser Tyr Ser Pro Pro Gln Val Ile Arg Ala Leu Gly Ala Arg Leu
210 215 220
Pro Asp Asp Arg Arg Trp Ala Ala Leu Ala Ser Ser Thr Gly Arg Val
225 230 235 240
Leu Leu Asp Thr Ala Pro Lys Gly Phe Ser Pro Asp Trp Ala Leu Tyr
245 250 255
Arg Ala Gly Thr Gly Phe Gly Pro Asp Pro Gln Thr His Ala Glu Ser
260 265 270
Ala Tyr Asn Ala Ile Arg Val Tyr Leu Trp Ala Gly Met Leu Asp Arg
275 280 285
Ala Asp Pro Leu Ala Ala Pro Leu Leu Ala Arg Phe Ala Pro Phe Ala
290 295 300
Asp His Ile Ala Ala His Gly Ala Pro Pro Glu Lys Val Asp Thr Thr
305 310 315 320
Thr Gly Val Ala Gly Pro Asn Asp Gly Asn Gly Gly Phe Ser Ala Ala
325 330 335
Ala Val Pro Phe Leu Asp Ala Arg Gly Gln Arg Ala Leu Ala Asp Ala
340 345 350
Gln Ala Ala Arg Val Glu Ser Leu Ala Arg Gln Ser Ala Pro Gly Tyr
355 360 365
Tyr Thr Ser Val Leu Thr Leu Phe Gly Leu Gly Trp Arg Asp Gly Arg
370 375 380
Tyr Arg Phe Gly Ala Asp Gly Thr Leu Asp Ala Arg Trp Gly Gly Pro
385 390 395 400
Ser Cys Ala Ala Arg
405
<210> 2
<211> 370
<212> PRT
<213> Burkholderia pyrrocinia
<400> 2
Met Ala Asp Ala Gly Ala Thr Asp Ala Ala Ala Ala Gly Cys Gly Ala
1 5 10 15
Pro Trp Pro Arg Trp Asp Ala Phe Lys Arg Asp Phe Ile Ser Ala Asp
20 25 30
Gly Arg Val Ile Asp Val Gly Ser Ala Asp Ser Arg Thr Val Ser Glu
35 40 45
Gly Gln Ala Tyr Gly Leu Phe Phe Ala Leu Val Ala Asn Asp Arg Arg
50 55 60
Met Phe Asp Thr Ile Leu Ala Trp Thr Glu Asn Asn Leu Ala Gln Gly
65 70 75 80
Asp Leu Ser Ala His Leu Pro Ala Trp Leu Trp Gly Arg Ala Pro Asp
85 90 95
Gly Ala Trp Arg Val Leu Asp Ala Asn Ala Ala Ser Asp Ala Asp Leu
100 105 110
Trp Ile Ala Tyr Ala Leu Val Glu Ala Gly Arg Leu Trp His Glu Arg
115 120 125
Ser Tyr Thr Ala Arg Gly Ala Leu Leu Ala Lys Arg Val Leu Asp Glu
130 135 140
Glu Thr Ala Thr Val Pro Gly Leu Gly Val Thr Leu Leu Pro Gly Pro
145 150 155 160
Thr Gly Phe Lys Leu Pro Asn Gly Gln Trp Arg Val Asn Pro Ser Tyr
165 170 175
Ser Pro Pro Gln Val Ile Arg Ala Leu Gly Ala Arg Leu Pro Asp Asp
180 185 190
Arg Arg Trp Ala Ala Leu Ala Ser Ser Thr Gly Arg Val Leu Leu Asp
195 200 205
Thr Ala Pro Lys Gly Phe Ser Pro Asp Trp Ala Leu Tyr Arg Ala Gly
210 215 220
Thr Gly Phe Gly Pro Asp Pro Gln Thr His Ala Glu Ser Ala Tyr Asn
225 230 235 240
Ala Ile Arg Val Tyr Leu Trp Ala Gly Met Leu Asp Arg Ala Asp Pro
245 250 255
Leu Ala Ala Pro Leu Leu Ala Arg Phe Ala Pro Phe Ala Asp His Ile
260 265 270
Ala Ala His Gly Ala Pro Pro Glu Lys Val Asp Thr Thr Thr Gly Val
275 280 285
Ala Gly Pro Asn Asp Gly Asn Gly Gly Phe Ser Ala Ala Ala Val Pro
290 295 300
Phe Leu Asp Ala Arg Gly Gln Arg Ala Leu Ala Asp Ala Gln Ala Ala
305 310 315 320
Arg Val Glu Ser Leu Ala Arg Gln Ser Ala Pro Gly Tyr Tyr Thr Ser
325 330 335
Val Leu Thr Leu Phe Gly Leu Gly Trp Arg Asp Gly Arg Tyr Arg Phe
340 345 350
Gly Ala Asp Gly Thr Leu Asp Ala Arg Trp Gly Gly Pro Ser Cys Ala
355 360 365
Ala Arg
370
<210> 3
<211> 1218
<212> DNA
<213> Burkholderia pyrrocinia
<400> 3
atggcgaagc gacgggtaac gcggccggcg cggcgcgtcg gcgcggcact cgcgctggcg 60
gttgcgatgg cgtgtgcggc gggcggcatg gccgctcgcg cgcaggccgc gggcgccggc 120
gcgaccgatg cggccgccgc cggatgcggc gcgccgtggc cgcgctggga cgcgttcaag 180
cgcgatttca tctcggccga cggccgcgtg atcgacgtcg gctcggccga ttcacgcacg 240
gtgtcggagg ggcaggcgta tggacttttc ttcgcgctgg tcgcgaacga ccggcgcatg 300
ttcgacacga tcctcgcatg gaccgagaac aacctcgcgc agggcgacct gagcgcgcac 360
ctgccggcgt ggctgtgggg ccgcgcgccg gacggcgcgt ggcgcgtgct cgacgcgaac 420
gcggcgtcgg acgccgacct gtggatcgcg tacgcgctcg tcgaggccgg gcggctgtgg 480
cacgagcgca gctacaccgc gcgcggcgcg ctgctcgcga agcgcgtgct cgacgaggaa 540
accgcgaccg tgccgggcct cggcgtcacg ctgctgcccg ggccgaccgg cttcaagctg 600
cccaacggcc agtggcgcgt gaacccgagc tattcgccgc cgcaggtgat ccgcgcgctc 660
ggcgcgcgcc tgcccgacga ccggcgctgg gccgcgctgg catccagcac cgggcgcgtg 720
ctgctcgaca cggcgccgaa gggtttttcg cccgactggg cgctgtatcg cgcgggcacg 780
ggcttcgggc ccgatccgca gacgcatgcg gagagcgcgt acaacgcgat ccgcgtgtac 840
ctgtgggccg gcatgctcga ccgcgccgat ccgctcgccg cgccgttgct cgcgcgtttc 900
gcgccgttcg ccgaccatat cgccgcgcat ggcgcgccgc cggagaaggt cgatacgacg 960
acgggcgtcg cggggccgaa cgacggcaac ggcggatttt ccgcggcggc cgtgccgttt 1020
ctcgacgcgc gcggccagcg cgcgctcgcc gatgcgcagg cggcccgcgt cgagtcgctc 1080
gcgcgccagt cggcgcccgg ctattacacg agcgtgctga cgctgttcgg cctcggctgg 1140
cgcgacggac gctacaggtt cggcgcggac ggcacgctcg acgcccgctg gggaggccct 1200
tcgtgcgccg cccgctga 1218
<210> 4
<211> 1113
<212> DNA
<213> Burkholderia pyrrocinia
<400> 4
atggcggacg ccggcgcgac cgatgcggcc gccgccggat gcggcgcgcc gtggccgcgc 60
tgggacgcgt tcaagcgcga tttcatctcg gccgacggcc gcgtgatcga cgtcggctcg 120
gccgattcac gcacggtgtc ggaggggcag gcgtatggac ttttcttcgc gctggtcgcg 180
aacgaccggc gcatgttcga cacgatcctc gcatggaccg agaacaacct cgcgcagggc 240
gacctgagcg cgcacctgcc ggcgtggctg tggggccgcg cgccggacgg cgcgtggcgc 300
gtgctcgacg cgaacgcggc gtcggacgcc gacctgtgga tcgcgtacgc gctcgtcgag 360
gccgggcggc tgtggcacga gcgcagctac accgcgcgcg gcgcgctgct cgcgaagcgc 420
gtgctcgacg aggaaaccgc gaccgtgccg ggcctcggcg tcacgctgct gcccgggccg 480
accggcttca agctgcccaa cggccagtgg cgcgtgaacc cgagctattc gccgccgcag 540
gtgatccgcg cgctcggcgc gcgcctgccc gacgaccggc gctgggccgc gctggcatcc 600
agcaccgggc gcgtgctgct cgacacggcg ccgaagggtt tttcgcccga ctgggcgctg 660
tatcgcgcgg gcacgggctt cgggcccgat ccgcagacgc atgcggagag cgcgtacaac 720
gcgatccgcg tgtacctgtg ggccggcatg ctcgaccgcg ccgatccgct cgccgcgccg 780
ttgctcgcgc gtttcgcgcc gttcgccgac catatcgccg cgcatggcgc gccgccggag 840
aaggtcgata cgacgacggg cgtcgcgggg ccgaacgacg gcaacggcgg attttccgcg 900
gcggccgtgc cgtttctcga cgcgcgcggc cagcgcgcgc tcgccgatgc gcaggcggcc 960
cgcgtcgagt cgctcgcgcg ccagtcggcg cccggctatt acacgagcgt gctgacgctg 1020
ttcggcctcg gctggcgcga cggacgctac aggttcggcg cggacggcac gctcgacgcc 1080
cgctggggag gcccttcgtg cgccgcccgc tga 1113
<210> 5
<211> 27
<212> DNA
<213> 引物Primer 1(Artificial)
<400> 5
cgaattcatg gcgaagcgac gggtaac 27
<210> 6
<211> 26
<212> DNA
<213> 引物 Primer 2(Artificial)
<400> 6
cgaattctca gcgggcggcg cacgaa 26
<210> 7
<211> 26
<212> DNA
<213> 特异引物PrimerF(Artificial)
<400> 7
cggatccatg gcggacgccg gcgcga 26
<210> 8
<211> 26
<212> DNA
<213> 特异引物PrimerR(Artificial)
<400> 8
cgaattctca gcgggcggcg cacgaa 26

Claims (10)

1.一种冷适应性内切β-1,4-葡聚糖酶,其氨基酸序列如 SEQ ID NO.1所示。
2.权利要求1所述的冷适应性内切β-1,4-葡聚糖酶,其去信号肽氨基酸序列如SEQ IDNO.2所示。
3.权利要求1所述的冷适应性内切β-1,4-葡聚糖酶的表达基因,核苷酸序列如 SEQ IDNO.3所示。
4.权利要求2所述的冷适应性内切β-1,4-葡聚糖酶的去信号肽的表达基因,其核苷酸序列如 SEQ ID NO.4所示。
5.含有权利要求3所述的冷适应性内切β-1,4-葡聚糖酶的表达基因的载体或宿主菌。
6.含有权利要求4所述的冷适应性内切β-1,4-葡聚糖酶的去信号肽的表达基因的载体或宿主菌。
7.权利要求1所述的冷适应性内切β-1,4-葡聚糖酶在生产单糖中的应用。
8.权利要求1所述的冷适应性内切β-1,4-葡聚糖酶的的去信号肽在生产单糖中的应用。
9.权利要求1所述的冷适应性内切β-1,4-葡聚糖酶对羧甲基纤维素的最适反应温度为35℃,最适pH为6.0。
10.一种利用权利要求1所述的冷适应性内切β-1,4-葡聚糖酶生产葡萄糖的方法,其特征在于:将核苷酸序列如 SEQ ID NO.4 所示的基因片段导入到pET-32a质粒载体中,将重组质粒转入E.coli BL21(DE3)中,通过亲和层析色谱分离纯化制得内切β-1,4-葡聚糖酶,然后将内切β-1,4-葡聚糖酶加入以CMC-Na为底物的反应液中,在温度为35℃,pH为 6.0 的条件下反应24h,得到的葡萄糖溶液。
CN201711273657.5A 2017-12-06 2017-12-06 一种冷适应性内切β-1,4-葡聚糖酶及其表达基因和应用 Pending CN107988186A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711273657.5A CN107988186A (zh) 2017-12-06 2017-12-06 一种冷适应性内切β-1,4-葡聚糖酶及其表达基因和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711273657.5A CN107988186A (zh) 2017-12-06 2017-12-06 一种冷适应性内切β-1,4-葡聚糖酶及其表达基因和应用

Publications (1)

Publication Number Publication Date
CN107988186A true CN107988186A (zh) 2018-05-04

Family

ID=62036252

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711273657.5A Pending CN107988186A (zh) 2017-12-06 2017-12-06 一种冷适应性内切β-1,4-葡聚糖酶及其表达基因和应用

Country Status (1)

Country Link
CN (1) CN107988186A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111647582A (zh) * 2020-06-18 2020-09-11 北京工商大学 吡咯伯克霍尔德氏菌内切葡聚糖酶及其重组表达方法和应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1173623A (zh) * 1996-06-04 1998-02-18 梅塞尔·格里斯海姆有限公司 贮存致冷剂用的小型贮罐
CN1485426A (zh) * 2002-09-29 2004-03-31 中国科学院生物化学与细胞生物学研究 新的外切-β-1,4-葡聚糖酶/内切-β-1,4-木聚糖酶及其应用
CN102041252A (zh) * 2009-10-26 2011-05-04 复旦大学 高效内切葡聚糖酶RuCelB,其编码基因、制备方法与应用
CN103160483A (zh) * 2013-04-11 2013-06-19 山东大学 一种β-葡萄糖苷酶及其表达基因与应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1173623A (zh) * 1996-06-04 1998-02-18 梅塞尔·格里斯海姆有限公司 贮存致冷剂用的小型贮罐
CN1485426A (zh) * 2002-09-29 2004-03-31 中国科学院生物化学与细胞生物学研究 新的外切-β-1,4-葡聚糖酶/内切-β-1,4-木聚糖酶及其应用
CN102041252A (zh) * 2009-10-26 2011-05-04 复旦大学 高效内切葡聚糖酶RuCelB,其编码基因、制备方法与应用
CN103160483A (zh) * 2013-04-11 2013-06-19 山东大学 一种β-葡萄糖苷酶及其表达基因与应用

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111647582A (zh) * 2020-06-18 2020-09-11 北京工商大学 吡咯伯克霍尔德氏菌内切葡聚糖酶及其重组表达方法和应用
CN111647582B (zh) * 2020-06-18 2021-12-28 北京工商大学 吡咯伯克霍尔德氏菌内切葡聚糖酶及其重组表达方法和应用

Similar Documents

Publication Publication Date Title
Li et al. Cloning of the thermostable cellulase gene from newly isolated Bacillus subtilis and its expression in Escherichia coli
CN102787130B (zh) 一种耐酸性高温α-淀粉酶及其基因、工程菌和制备方法
Afzal et al. Pre and post cloning characterization of a β-1, 4-endoglucanase from Bacillus sp.
CN108660145A (zh) 耐热型普鲁兰酶的编码基因及其重组表达和应用
Sun et al. Direct cloning, expression of a thermostable xylanase gene from the metagenomic DNA of cow dung compost and enzymatic production of xylooligosaccharides from corncob
Chimtong et al. Isolation and characterization of endocellulase-free multienzyme complex from newly isolated Thermoanaerobacterium thermosaccharolyticum strain NOI-1
CN102260694B (zh) 耐酸中温α-淀粉酶及其制备方法
CN102827820A (zh) 一种β-葡糖苷酶及其应用
CN102816728A (zh) β-1,4-内切木聚糖酶工程菌的构建及其酶的应用
CN105734069A (zh) 一种高温α-L-阿拉伯呋喃糖苷酶基因和一种高温乙酰木聚糖酯酶基因及其蛋白表达与应用
CN110373403A (zh) 耐高温中性普鲁兰酶及其应用
Klippel et al. Characterization of a thermoactive endoglucanase isolated from a biogas plant metagenome
CN107988186A (zh) 一种冷适应性内切β-1,4-葡聚糖酶及其表达基因和应用
CN112322604A (zh) 一种高比酶活木聚糖酶突变体及其应用
Qin et al. Purification and enzymatic properties of a difunctional glycoside hydrolase from Aspergillus oryzae HML366
Zhu et al. MFα signal peptide enhances the expression of cellulase eg1 gene in yeast
CN111394374A (zh) 一种编码纤维素酶家族GH30的纤维素酶基因gk2691及其应用
CN116064616A (zh) 一种纤维素酶基因、纤维素酶、重组载体及应用
Mitsuya et al. Continuous saccharification of laminarin by immobilized laminarinase ulam111 followed by ethanol fermentation with a marine-derived yeast
CN107974442A (zh) 内切葡聚糖酶、其编码基因cel5A-h42及其应用
US9080162B2 (en) Cellulase variants
Ng et al. Cloning and expression of Cel8A from Klebsiella pneumoniae in Escherichia coli and comparison to cel gene of Cellulomonas uda
CN104313000A (zh) 一种基因工程木聚糖酶及其制备与应用
CN101880680A (zh) 一种编码β-葡萄糖苷酶的基因及其应用
CN101886064A (zh) 一种酸性淀粉酶amya4及其基因和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20180504

RJ01 Rejection of invention patent application after publication