CN107977744A - 一种基于传统Benders分解法的电力系统日前鲁棒调度方法 - Google Patents

一种基于传统Benders分解法的电力系统日前鲁棒调度方法 Download PDF

Info

Publication number
CN107977744A
CN107977744A CN201711238465.0A CN201711238465A CN107977744A CN 107977744 A CN107977744 A CN 107977744A CN 201711238465 A CN201711238465 A CN 201711238465A CN 107977744 A CN107977744 A CN 107977744A
Authority
CN
China
Prior art keywords
mrow
msubsup
msub
munder
mover
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201711238465.0A
Other languages
English (en)
Other versions
CN107977744B (zh
Inventor
杨楠
王璇
李宏圣
黎索亚
叶迪
黄禹
董邦天
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Three Gorges University CTGU
Original Assignee
China Three Gorges University CTGU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Three Gorges University CTGU filed Critical China Three Gorges University CTGU
Priority to CN201711238465.0A priority Critical patent/CN107977744B/zh
Publication of CN107977744A publication Critical patent/CN107977744A/zh
Application granted granted Critical
Publication of CN107977744B publication Critical patent/CN107977744B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0631Resource planning, allocation, distributing or scheduling for enterprises or organisations
    • G06Q10/06312Adjustment or analysis of established resource schedule, e.g. resource or task levelling, or dynamic rescheduling
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/06Energy or water supply

Landscapes

  • Business, Economics & Management (AREA)
  • Human Resources & Organizations (AREA)
  • Engineering & Computer Science (AREA)
  • Economics (AREA)
  • Strategic Management (AREA)
  • Tourism & Hospitality (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Marketing (AREA)
  • Entrepreneurship & Innovation (AREA)
  • General Business, Economics & Management (AREA)
  • Operations Research (AREA)
  • Development Economics (AREA)
  • Quality & Reliability (AREA)
  • Game Theory and Decision Science (AREA)
  • Health & Medical Sciences (AREA)
  • Educational Administration (AREA)
  • Public Health (AREA)
  • Water Supply & Treatment (AREA)
  • General Health & Medical Sciences (AREA)
  • Primary Health Care (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

本发明属于电网调度领域,具体是一种基于传统Benders分解法的电力系统日前鲁棒调度方法,用来求解含新能源的电力系统动态经济调度问题。提出了一种综合考虑负荷、风电以及光伏出力不确定性及概率相关性的日前鲁棒调度方法。首先构建考虑多重不确定性因素及概率相关性的改进鲁棒优化调度模型;然后利用Cholesky分解法将具有相关性的随机样本转换为相互独立的随机样本,从而基于样本特征直接确定最坏场景;最后利用Benders分解法对模型进行求解。基于IEEE‑118节点算例的仿真结果表明:本发明所提方法可以在多重不确定性因素下,保证日前调度计划鲁棒性的同时,有效提升其经济性,而基于Cholesky分解的最坏场景确定方法也有效提升了鲁棒调度模型的紧凑性,使其计算效率得到显著提升。

Description

一种基于传统Benders分解法的电力系统日前鲁棒调度方法
技术领域
本发明一种基于传统Benders分解法的电力系统日前鲁棒调度方法,涉及电力系统调度领域。
背景技术
风电及光伏是无污染、绿色的可再生能源,其分布广泛、能量密度高,适合大规模开发,因此,风力和光伏发电技术已受到了世界各国的高度重视。然而,由于其出力具有随机性与波动性的特点,大规模接入电网将会给传统的调度方法带来极大的挑战,因此,研究多种新能源大规模接入下的电力系统日前调度方法具有重要的理论价值与现实意义。
目前很多专家学者从不同角度研究了新能源接入下的电力系统日前调度问题,但普遍仅考虑了单一不确定性变量,然而实际电力系统中包含诸如风电出力、光伏出力、负荷预测误差等多重不确定性因素,现有仅考虑单一不确定性的日前调度显然难以保证其决策的有效性并影响系统运行的经济性。因此在调度问题中考虑多重不确定性因素的影响已经成为近年来专家学者们研究的热点。
发明内容
针对现有方法的不足,本发明提出了一种综合考虑负荷、风电以及光伏不确定性及相关性的改进鲁棒调度方法,该方法首先构造考虑多种不确定性因素的日前鲁棒优化调度模型,然后引入Cholesky分解法将具有相关性的随机样本转换为相互独立的随机样本,并基于样本特征直接确定最坏场景,最后进行鲁棒机组组合求解。
本发明采取的技术方案为:
一种基于传统Benders分解法的电力系统日前鲁棒调度方法,包括以下步骤:
1)考虑多重随机因素的日前鲁棒调度建模;
2)最坏场景求解;
3)通过Benders分解法来对模型进行求解;
在步骤1)中,首先考虑多重随机因素的日前鲁棒调度建模;然后进行基本场景下的日前调度建模;再进行不确定场景下的日前调度建模;
在步骤2)中首先进行随机因素的概率密度函数建模,然后样本抽样,再进行正交转换矩阵推导;接着进行最坏场景求取;
在步骤3)中,具体操作步骤如下:
1)求解主问题模型,得到其最优机组组合和出力方案;
2)将主问题的解分别代入到两个安全子问题中进行校验;
3)如果两个子问题有任何一个无法通过校验,则生成相应的Benders割;
4)将生成的Benders割返回到主问题中继续寻找新的机组组合和出力方案,并返回步骤2),如果两个子问题校验均通过,则迭代停止,输出结果。
在步骤1)中,多重随机因素包括风电、光伏及负荷预测误差因素。
在步骤1)中,将机组组合决策分为基本场景和最坏场景分别建模。
上述基本场景以不确定性因素功率预测值为基础,以系统总运行成本最小为目标,同时考虑系统在确定性环境下的各种常规约束条件。
上述最坏场景以不确定性电源出力的最大波动出力为基础,考虑不确定性约束条件。
在步骤2)中,先寻求最坏场景,然后直接利用最坏场景进行鲁棒性校核。
首先利用非参数核密度估计分别构建风电、光伏以及负荷的概率密度函数,然后利用拉丁超立方抽样生成样本,最后采用Cholesky分解法将上述具有相关性的随机样本转换为相互独立的随机样本,并以此为基础确定最坏场景。
已知基于历史数据的负荷样本个数为n,则基于非参数核密度估计方法构建负荷的概率密度模型为:
式中:φ(Pd)为负荷的概率密度函数;K(Pd,l)为核函数;Pdm为负荷样本中的第m个样本值,l为带宽。
选择高斯函数作为负荷概率密度模型的核函数,并对带宽l进行求解,从而得到系统负荷的概率密度函数φ(Pd)。
求得风电出力的概率密度函数φ(Pw)以及光伏出力概率密度函数φ(Pv)。如式(2)和式(3)。
式中:φ(Pw)为负荷的概率密度函数;K(Pw,l)为核函数;Pwm为风电出力样本中的第m个样本值,l为带宽。
式中:φ(Pv)为负荷的概率密度函数;K(Pv,l)为核函数;Pvm为光伏出力样本中的第m个样本值,l为带宽。
采用拉丁超立方抽样进行分层采样。
设采样规模为N,Ym=Fm(Xm)表示第m个随机变量Xm的概率密度函数,其具体抽样过程如下:将区间[0,1]平均分为N等分,选取每个子区间的中间值,通过其反函数得到采样值所有随机变量采样完成后,则得到其样本矩阵。
利用相关系数矩阵来描述负荷、风电以及光伏发电间的相关性,设通过拉丁超立方抽样得到的样本矩阵为W=[w1,w2,L wl]T,其相关系数矩阵为Cw
该矩阵各元素可由式(5)求得:
式中:分别为输入变量wi和wj的标准差;Cov(wi,wj)为输入变量wi和wj的协方差。
相关系数矩阵Cw是正定矩阵,则可以对系数矩阵进行Cholesky分解:
Cw=GGT(6)
式中:G为下三角矩阵,其中元素可由式(7)求得:
设存在一正交矩阵B,可将具有相关性的输入随机变量W转换为不相关的随机变量Y:
Y=BW (8)
由于不相关随机变量Y的相关系数矩阵CY为单位矩阵I,因而有:
CY=ρ(Y,YT)=ρ(BW,WTBT)=Bρ(W,WT)BT=BCWBT=I (9)
又由式(6)可得:
CY=BCWBT=BGGTBT=(BG)(BG)T=I (10)
由上式推导得到:
B=G-1 (11)
在已知有相关性的输入不确定量W的前提下,通过正交变换矩阵,可以将其变为不相关的随机变量Y。
通过得到的正交变换矩阵,将存在相关性的负荷、风电及光伏出力矩阵转换为独立矩阵,消除其间的相关性,进而通过最坏场景线性叠加的方法求得最坏场景。
采用Benders分解法对模型进行求解;将原问题分解为主问题和两个子问题,主问题为基本场景下的UC决策问题;子问题分别为基本场景下的网络安全校核子问题和最坏场景下的鲁棒校核子问题,主问题及子问题模型如下:
1)UC主问题模型
主问题包括目标函数式(12)及约束条件式(14-20)以及所有生成的Benders割
(1)目标函数
其中:
式中:表示机组i在t时刻的有功出力;表示机组i在t时刻的状态;为开停机费用,ai、bi、ci为机组的发电成本函数的参数。
(2)功率平衡约束
式中:为t时刻风电出力和负荷功率以及光伏发电出力的预测值。
(3)常规机组出力约束
式中:Pi min与Pi max分别表示火电机组i的最大和最小有功出力。
(4)常规机组爬坡速率约束
上升爬坡速率约束
下降爬坡速率约束
(5)常规机组启停时间约束
式中:为机组i在t时刻的开停机时间,Ton,iToff,i为最小开机和停机时间约束。
(6)网络安全约束
式中:为线路最大潮流约束,SFl,m为节点功率转移因子。U(m)、D(m)、W(m)和V(m)分别为常规机组、负荷、风电以及光伏所在母线集合。
2)基本场景下的安全校核子问题模型
式中:vl,t为松弛变量。
子问题中引入松弛变量vl,t的作用是当于约束条件不能满足时,用松弛变量暂时缓解网络安全约束,以保证子问题始终有解。若最终优化得出的vl,t大于给定的安全阈值,则表示主问题求得的最优机组组合方案不能满足网络安全约束,因此需要返回Benders割如下:
3)考虑不确定性的安全校核子问题模型
不确定场景下的安全校核模型如式(23)所示,其校验在最坏场景下能否满足安全约束。
S.t.
0≤v1,lt,v2t,v3t (23)
式中:λ1,it2,it1,it2,it1,it2,it是旋转备用约束、机组容量约束、爬坡约束的对偶变量。
如果不能满足安全约束,则返回Benders割式(24)到主问题,其作为约束条件,使得机组组合和出力方案在最坏场景上自适应调整满足网络安全约束和功率平衡。
通过上述步骤,完成考虑多重不确定性及相关性的电力系统日前鲁棒调度。
本发明的技术效果如下:
1)、与传统方法相比,本发明一方面可以有效计及多重不确定性因素及其相关性,因而可以在保证调度决策方案鲁棒性的同时提高系统运行的经济性;另一方面,改进的鲁棒调度模型有效避免了在海量场景下求解机组组合问题,具有较高的求解效率。
2)、本发明通过引入Cholesky分解法对鲁棒优化方法进行改进,从而无需通过多场景潮流计算直接确定最坏场景,有效提升了鲁棒优化模型的适用性和求解效率。
附图说明
图1本发明整体建模框图;
图2本发明最坏场景求取流程图;
图3本发明算法总体思路框图;
图4本发明实施例风电及光伏有功出力曲线;
图5为时刻1下的最坏场景对比表格;
图6为日前调度成本对比结果表格;
图7为计算效率对比表格。
具体实施方式
一种基于传统Benders分解法的电力系统日前鲁棒调度方法,包括以下步骤:
步骤1:基本场景下的日前调度建模
本发明基于鲁棒优化思想,构建考虑风电、光伏及负荷预测误差不确定性的日前调度模型。本发明将机组组合决策分为基本场景和最坏场景分别建模,基本场景以不确定性因素功率预测值为基础,以系统总运行成本最小为目标,同时考虑系统在确定性环境下的各种常规约束条件,从而保障调度决策的经济性;最坏场景以不确定性电源出力的最大波动出力为基础,考虑不确定性约束条件,从而保证基本场景下的决策方案在不确定环境下的鲁棒性。模型框图如图1所示。
步骤1.1:基本场景下的日前调度建模:包含目标函数及约束条件
1)确定包含了常规机组的燃料费用和机组启停成本的目标函数:
其中:
式中:表示机组i在t时刻的有功出力;表示机组i在t时刻的状态;为开停机费用,ai、bi、ci为机组的发电成本函数的参数。
2)确立该模型中含有的约束条件,如:
(1)系统功率平衡约束,不计网损的情况下:
式中:为t时刻风电出力和负荷功率以及光伏发电出力的预测值。
(2)常规机组出力约束:
式中:Pi min与Pi max分别表示火电机组i的最大和最小有功出力。
(3)机组爬坡速率约束
上升爬坡速率约束
下降爬坡速率约束
式中:URi,DRi为常规机组爬坡功率限制。
(4)常规机组启停时间约束
式中:为机组i在t时刻的开停机时间,Ton,iToff,i为最小开机和停机时间约束。
(5)网络安全约束
式中:为线路最大潮流约束,SFl,m为节点功率转移因子。U(m)、D(m)、W(m)和V(m)分别为常规机组、负荷、风电以及光伏所在母线集合。
步骤1.2:不确定场景下的日前调度建模
基本场景下求得的日前机组组合和机组出力计划应当保证系统在不确定性环境下的鲁棒性,因此,需要利用不确定性环境下的系统约束条件对日前计划进行校核。需要指出的是,在实际计算中可以先寻求最坏场景,然后直接利用最坏场景进行鲁棒性校核。
确立模型中的约束条件:
(1)系统功率平衡约束,不计网损的情况下:
式中:为不确定情况下的风电出力、光伏出力以及负荷的实际值。
(2)常规机组出力约束:
式中:为不确定情况下的常规机组实际出力。
(3)机组爬坡速率约束
上升爬坡速率约束
下降爬坡速率约束
(4)旋转备用容量约束
式中:为常规机组的正、负旋转备用。
(5)网络安全约束
式中:为线路最大潮流约束,SFl,m为节点功率转移因子。U(m)、D(m)、W(m)和V(m)分别为常规机组、负荷、风电以及光伏所在母线集合。
步骤2:最坏场景求解
由步骤1可知,在实际计算中可以先寻求最坏场景,然后直接利用最坏场景进行鲁棒性校核。因此本发明基于Cholesky分解理论,提出了一种适用于多重相关随机性因素的最坏场景快速推求方法。首先利用非参数核密度估计分别构建风电、光伏以及负荷的概率密度函数,然后利用拉丁超立方抽样生成样本,最后采用Cholesky分解法将上述具有相关性的随机样本转换为相互独立的随机样本,并以此为基础确定最坏场景。
步骤2.1:随机因素的概率密度函数建模
已知基于历史数据的负荷样本个数为n,则基于非参数核密度估计方法构建负荷的概率密度模型为:
式中:φ(Pd)为负荷的概率密度函数;K(Pd,l)为核函数;Pdm为负荷样本中的第m个样本值,l为带宽。
本发明选择高斯函数作为负荷概率密度模型的核函数,并对带宽l进行求解,从而得到系统负荷的概率密度函数φ(Pd)。
同理可以求得风电出力的概率密度函数φ(Pw)以及光伏出力概率密度函数φ(Pv)。如式(17)和式(18)。
式中:φ(Pw)为负荷的概率密度函数;K(Pw,l)为核函数;Pwm为风电出力样本中的第m个样本值,l为带宽。
式中:φ(Pv)为负荷的概率密度函数;K(Pv,l)为核函数;Pvm为光伏出力样本中的第m个样本值,l为带宽。
步骤2.2:样本抽样
拉丁超立方抽样是一种分层采样方法,其具有样本记忆功能,可避免抽取已经出现的样本。设采样规模为N,Ym=Fm(Xm)表示第m个随机变量Xm的概率密度函数。其具体抽样过程如下:将区间[0,1]平均分为N等分,选取每个子区间的中间值,通过其反函数得到采样值所有随机变量采样完成后,则得到其样本矩阵。
步骤2.3:正交转换矩阵推导
利用相关系数矩阵来描述负荷、风电以及光伏发电间的相关性,设通过拉丁超立方抽样得到的样本矩阵为W=[w1,w2,L wl]T,其相关系数矩阵为Cw
该矩阵各元素可由式(20)求得:
式中:分别为输入变量wi和wj的标准差;Cov(wi,wj)为输入变量wi和wj的协方差。
由定义不难看出,本发明的相关系数矩阵Cw是正定矩阵,则可以对系数矩阵进行Cholesky分解:
Cw=GGT (21)
式中:G为下三角矩阵,其中元素可由式(22)求得。
设存在一正交矩阵B,可将具有相关性的输入随机变量W转换为不相关的随机变量Y:
Y=BW (23)
由于不相关随机变量Y的相关系数矩阵CY为单位矩阵I,因而有:
CY=ρ(Y,YT)=ρ(BW,WTBT)=Bρ(W,WT)BT=BCWBT=I (24)
又由式(21)可得:
CY=BCWBT=BGGTBT=(BG)(BG)T=I (25)
由上式推导得到:
B=G-1 (26)
在已知有相关性的输入不确定量W的前提下,通过正交变换矩阵,可以将其变为不相关的随机变量Y。
步骤2.4:最坏场景求取;
通过步骤2.3得到的正交变换矩阵,将存在相关性的负荷、风电及光伏出力矩阵转换为独立矩阵,消除其间的相关性,进而通过最坏场景线性叠加的方法求得最坏场景。最坏场景求取流程图如图2所示。
步骤3:模型求解
本发明提出了一种基于Benders分解的多阶段分解算法来对模型进行求解。
采用Benders分解法对模型进行求解;将原问题分解为主问题和两个子问题,主问题为基本场景下的UC决策问题;子问题分别为基本场景下的网络安全校核子问题和最坏场景下的鲁棒校核子问题,主问题及子问题模型如下:
1)UC主问题模型
主问题包括目标函数式(12)及约束条件式(14-20)以及所有生成的Benders割
(1)目标函数
其中:
式中:表示机组i在t时刻的有功出力;表示机组i在t时刻的状态;为开停机费用,ai、bi、ci为机组的发电成本函数的参数。
(2)功率平衡约束
式中:为t时刻风电出力和负荷功率以及光伏发电出力的预测值。
(3)常规机组出力约束
式中:Pi min与Pi max分别表示火电机组i的最大和最小有功出力。
(4)常规机组爬坡速率约束
上升爬坡速率约束
下降爬坡速率约束
(5)常规机组启停时间约束
式中:为机组i在t时刻的开停机时间,Ton,iToff,i为最小开机和停机时间约束。
(6)网络安全约束
式中:为线路最大潮流约束,SFl,m为节点功率转移因子。U(m)、D(m)、W(m)和V(m)分别为常规机组、负荷、风电以及光伏所在母线集合。
2)基本场景下的安全校核子问题模型
vl,t≥0 (21)
式中:vl,t为松弛变量。
子问题中引入松弛变量vl,t的作用是当于约束条件不能满足时,用松弛变量暂时缓解网络安全约束,以保证子问题始终有解。若最终优化得出的vl,t大于给定的安全阈值,则表示主问题求得的最优机组组合方案不能满足网络安全约束,因此需要返回Benders割如下:
3)考虑不确定性的安全校核子问题模型
不确定场景下的安全校核模型如式(23)所示,其校验在最坏场景下能否满足安全约束。
S.t.
0≤v1,lt,v2t,v3t (23)
式中:λ1,it2,it1,it2,it1,it2,it是旋转备用约束、机组容量约束、爬坡约束的对偶变量。
如果不能满足安全约束,则返回Benders割式(24)到主问题,其作为约束条件,使得机组组合和出力方案在最坏场景上自适应调整满足网络安全约束和功率平衡。
通过上述步骤,完成考虑多重不确定性及相关性的电力系统日前鲁棒调度。
具体的,本发明以修改的IEEE-118节点系统来验证所提模型的正确性。该系统包含了54台常规火电机组、3个风电场以及1个光伏电站。其中风电场额定功率分别为100MW、200MW、250MW,位于5、9、48号节点;光伏电站的容量为300MW,位于20号节点。风电与光伏的有功出力曲线如图5所示。系统中常规机组正旋转备用需求为系统最大负荷的8%,负旋转备用需求为系统最小负荷的2%。安全校核子问题校验值的阈值均取10-3MWh。采用拉丁超立方抽样对负荷、风电以及光伏出力每小时抽样100次,共计2400组样本。相关计算均在英特尔酷睿i5-4460处理器3.20GHz,8G内存计算机上完成,采用Matlab和Cplex 12.5对算例进行编程求解。
根据本发明所提最坏场景求解方法,求出模式1和模式2的不确定性因素最坏场景对比结果如图5所示。
由图5可知,如果不考虑不确定性因素间的概率相关性,通过简单线性叠加求出的最坏场景较为保守,这将会影响到日前调度决策的经济性,通过本文方法的精确计算可以看出,由于不确定性因素之间存在相关性,这种最坏场景其实是不可能出现的。
分别计算模式1和模式2下的日前调度方案,其结果如图6所示。
由图6可知,相较于不考虑多重不确定性因素概率相关性的传统日前调度方法,本发明提出的方法使本算例的日前调度成本降低了约38650$。其原因是,本发明方法充分考虑了风电、光伏与负荷间的概率相关性,有效避免了在鲁棒性校核过程中计及不可能发生的极端场景,从而使日前调度决策在保证系统鲁棒性的同时,降低其运行成本。
为比较本发明方法相较于传统方法的优势,分别采用标准Benders分解方法和本发明方法对同一算例进行仿真,并对比其计算效率。对比结果如图7所示。
由图7可知:本发明所提方法较计算效率得到了非常显著的提升,这是由于本发明提出的基于Cholesky分解的最坏场景求取方法有效避免了在大量场景下进行机组组合和潮流计算的求解问题,因而计算效率提升了411.5%。
本发明按照优选实施例进行了说明,但上述实施例不以任何形式限定本发明,凡采用等同替换或等效变换的形式所获得的技术方案,均落在本发明技术方案的范围内。

Claims (11)

1.一种基于传统Benders分解法的电力系统日前鲁棒调度方法,其特征在于:包括以下步骤:
1)考虑多重随机因素的日前鲁棒调度建模;
2)最坏场景求解;
3)通过Benders分解法来对模型进行求解;
在步骤1)中,首先考虑多重随机因素的日前鲁棒调度建模;然后进行基本场景下的日前调度建模;再进行不确定场景下的日前调度建模;
在步骤2)中首先进行随机因素的概率密度函数建模,然后样本抽样,再进行正交转换矩阵推导;接着进行最坏场景求取;
在步骤3)中,具体操作步骤如下:
1)求解主问题模型,得到其最优机组组合和出力方案;
2)将主问题的解分别代入到两个安全子问题中进行校验;
3)如果两个子问题有任何一个无法通过校验,则生成相应的Benders割;
4)将生成的Benders割返回到主问题中继续寻找新的机组组合和出力方案,并返回步骤2),如果两个子问题校验均通过,则迭代停止,输出结果。
2.根据权利要求1所述的基于传统Benders分解法的电力系统日前鲁棒调度方法,其特征在于:首先利用非参数核密度估计分别构建风电、光伏以及负荷的概率密度函数,然后利用拉丁超立方抽样生成样本,最后采用Cholesky分解法将上述具有相关性的随机样本转换为相互独立的随机样本,并以此为基础确定最坏场景。
3.根据权利要求2所述的基于传统Benders分解法的电力系统日前鲁棒调度方法,其特征在于:已知基于历史数据的负荷样本个数为n,则基于非参数核密度估计方法构建负荷的概率密度模型为:
<mrow> <mi>&amp;phi;</mi> <mrow> <mo>(</mo> <msub> <mi>P</mi> <mi>d</mi> </msub> <mo>,</mo> <mi>l</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mn>1</mn> <mrow> <mi>n</mi> <mi>l</mi> </mrow> </mfrac> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <mi>K</mi> <mrow> <mo>(</mo> <mfrac> <mrow> <msub> <mi>P</mi> <mi>d</mi> </msub> <mo>-</mo> <msub> <mi>P</mi> <mrow> <mi>d</mi> <mi>m</mi> </mrow> </msub> </mrow> <mi>l</mi> </mfrac> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow>
式中:φ(Pd)为负荷的概率密度函数;K(Pd,l)为核函数;Pdm为负荷样本中的第m个样本值,l为带宽。
4.根据权利要求3所述的基于传统Benders分解法的电力系统日前鲁棒调度方法,其特征在于:选择高斯函数作为负荷概率密度模型的核函数,并对带宽l进行求解,从而得到系统负荷的概率密度函数φ(Pd)。
5.根据权利要求3或4所述的基于传统Benders分解法的电力系统日前鲁棒调度方法,其特征在于:求得风电出力的概率密度函数φ(Pw)以及光伏出力概率密度函数φ(Pv);如式(2)和式(3);
<mrow> <mi>&amp;phi;</mi> <mrow> <mo>(</mo> <msub> <mi>P</mi> <mi>w</mi> </msub> <mo>,</mo> <mi>l</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mn>1</mn> <mrow> <mi>n</mi> <mi>l</mi> </mrow> </mfrac> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <mi>K</mi> <mrow> <mo>(</mo> <mfrac> <mrow> <msub> <mi>P</mi> <mi>w</mi> </msub> <mo>-</mo> <msub> <mi>P</mi> <mrow> <mi>w</mi> <mi>m</mi> </mrow> </msub> </mrow> <mi>l</mi> </mfrac> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> </mrow>
式中:φ(Pw)为负荷的概率密度函数;K(Pw,l)为核函数;Pwm为风电出力样本中的第m个样本值,l为带宽;
<mrow> <mi>&amp;phi;</mi> <mrow> <mo>(</mo> <msub> <mi>P</mi> <mi>v</mi> </msub> <mo>,</mo> <mi>l</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mn>1</mn> <mrow> <mi>n</mi> <mi>l</mi> </mrow> </mfrac> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <mi>K</mi> <mrow> <mo>(</mo> <mfrac> <mrow> <msub> <mi>P</mi> <mi>v</mi> </msub> <mo>-</mo> <msub> <mi>P</mi> <mrow> <mi>v</mi> <mi>m</mi> </mrow> </msub> </mrow> <mi>l</mi> </mfrac> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>3</mn> <mo>)</mo> </mrow> </mrow>
式中:φ(Pv)为负荷的概率密度函数;K(Pv,l)为核函数;Pvm为光伏出力样本中的第m个样本值,l为带宽。
6.根据权利要求2所述的基于传统Benders分解法的电力系统日前鲁棒调度方法,其特征在于:采用拉丁超立方抽样进行样本分层采样。
7.根据权利要求6所述的基于传统Benders分解法的电力系统日前鲁棒调度方法,其特征在于:设采样规模为N,Ym=Fm(Xm)表示第m个随机变量Xm的概率密度函数,其具体抽样过程如下:将区间[0,1]平均分为N等分,选取每个子区间的中间值,通过其反函数得到采样值xmn=Fm -1((n-0.5)/N);所有随机变量采样完成后,则得到其样本矩阵。
8.根据权利要求2或7所述的基于传统Benders分解法的电力系统日前鲁棒调度方法,其特征在于:利用相关系数矩阵来描述负荷、风电以及光伏发电间的相关性,设通过拉丁超立方抽样得到的样本矩阵为W=[w1,w2,L wl]T,其相关系数矩阵为Cw
<mrow> <msub> <mi>C</mi> <mi>w</mi> </msub> <mo>=</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <msub> <mi>&amp;rho;</mi> <mrow> <mi>w</mi> <mn>12</mn> </mrow> </msub> </mtd> <mtd> <mi>L</mi> </mtd> <mtd> <msub> <mi>&amp;rho;</mi> <mrow> <mi>w</mi> <mn>1</mn> <mi>l</mi> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>&amp;rho;</mi> <mrow> <mi>w</mi> <mn>21</mn> </mrow> </msub> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mi>L</mi> </mtd> <mtd> <msub> <mi>&amp;rho;</mi> <mrow> <mi>w</mi> <mn>21</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <mi>M</mi> </mtd> <mtd> <mi>M</mi> </mtd> <mtd> <mi>O</mi> </mtd> <mtd> <mi>M</mi> </mtd> </mtr> <mtr> <mtd> <msub> <mi>&amp;rho;</mi> <mrow> <mi>w</mi> <mi>l</mi> <mn>1</mn> </mrow> </msub> </mtd> <mtd> <msub> <mi>&amp;rho;</mi> <mrow> <mi>w</mi> <mi>l</mi> <mn>2</mn> </mrow> </msub> </mtd> <mtd> <mi>L</mi> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>4</mn> <mo>)</mo> </mrow> </mrow>
该矩阵各元素可由式(5)求得:
<mrow> <msub> <mi>&amp;rho;</mi> <mrow> <mi>w</mi> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mo>=</mo> <mi>&amp;rho;</mi> <mrow> <mo>(</mo> <msub> <mi>w</mi> <mi>i</mi> </msub> <mo>,</mo> <msub> <mi>w</mi> <mi>j</mi> </msub> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mrow> <msub> <mi>C</mi> <mrow> <mi>o</mi> <mi>v</mi> </mrow> </msub> <mrow> <mo>(</mo> <msub> <mi>w</mi> <mi>i</mi> </msub> <mo>,</mo> <msub> <mi>w</mi> <mi>j</mi> </msub> <mo>)</mo> </mrow> </mrow> <mrow> <msub> <mi>&amp;sigma;</mi> <msub> <mi>w</mi> <mi>i</mi> </msub> </msub> <msub> <mi>&amp;sigma;</mi> <msub> <mi>w</mi> <mi>j</mi> </msub> </msub> </mrow> </mfrac> <mo>=</mo> <mfrac> <mrow> <msub> <mi>C</mi> <mrow> <mi>o</mi> <mi>v</mi> </mrow> </msub> <mrow> <mo>(</mo> <msub> <mi>w</mi> <mi>j</mi> </msub> <mo>,</mo> <msub> <mi>w</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> </mrow> <mrow> <msub> <mi>&amp;sigma;</mi> <msub> <mi>w</mi> <mi>j</mi> </msub> </msub> <msub> <mi>&amp;sigma;</mi> <msub> <mi>w</mi> <mi>i</mi> </msub> </msub> </mrow> </mfrac> <mo>=</mo> <msub> <mi>&amp;rho;</mi> <msub> <mi>w</mi> <mrow> <mi>j</mi> <mi>i</mi> </mrow> </msub> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>5</mn> <mo>)</mo> </mrow> </mrow>
式中:分别为输入变量wi和wj的标准差;Cov(wi,wj)为输入变量wi和wj的协方差。
9.根据权利要求8所述的基于传统Benders分解法的电力系统日前鲁棒调度方法,其特征在于:相关系数矩阵Cw是正定矩阵,则可以对系数矩阵进行Cholesky分解:
Cw=GGT (6)
式中:G为下三角矩阵,其中元素可由式(7)求得:
<mrow> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <msub> <mi>g</mi> <mrow> <mi>k</mi> <mi>k</mi> </mrow> </msub> <mo>=</mo> <msup> <mrow> <mo>(</mo> <msub> <mi>&amp;rho;</mi> <msub> <mi>w</mi> <mrow> <mi>k</mi> <mi>k</mi> </mrow> </msub> </msub> <mo>-</mo> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>m</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </munderover> <msubsup> <mi>g</mi> <mrow> <mi>k</mi> <mi>m</mi> </mrow> <mn>2</mn> </msubsup> <mo>)</mo> </mrow> <mrow> <mn>1</mn> <mo>/</mo> <mn>2</mn> </mrow> </msup> <mo>,</mo> <mi>k</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mi>L</mi> <mi> </mi> <mi>l</mi> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>g</mi> <mrow> <mi>i</mi> <mi>k</mi> </mrow> </msub> <mo>=</mo> <mfrac> <mrow> <msub> <mi>&amp;rho;</mi> <msub> <mi>w</mi> <mrow> <mi>i</mi> <mi>k</mi> </mrow> </msub> </msub> <mo>-</mo> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>m</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </munderover> <mrow> <msub> <mi>g</mi> <mrow> <mi>i</mi> <mi>m</mi> </mrow> </msub> <msub> <mi>g</mi> <mrow> <mi>k</mi> <mi>m</mi> </mrow> </msub> </mrow> </mrow> <msub> <mi>g</mi> <mrow> <mi>k</mi> <mi>k</mi> </mrow> </msub> </mfrac> <mo>,</mo> <mi>i</mi> <mo>=</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo>,</mo> <mi>k</mi> <mo>+</mo> <mn>2</mn> <mo>,</mo> <mi>L</mi> <mi> </mi> <mi>l</mi> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>7</mn> <mo>)</mo> </mrow> </mrow>
设存在一正交矩阵B,可将具有相关性的输入随机变量W转换为不相关的随机变量Y:
Y=BW (8)
由于不相关随机变量Y的相关系数矩阵CY为单位矩阵I,因而有:
CY=ρ(Y,YT)=ρ(BW,WTBT)=Bρ(W,WT)BT=BCWBT=I (9)
又由式(6)可得:
CY=BCWBT=BGGTBT=(BG)(BG)T=I (10)
由上式推导得到:
B=G-1 (11)
在已知有相关性的输入不确定量W的前提下,通过正交变换矩阵,可以将其变为不相关的随机变量Y。
10.根据权利要求9所述的基于传统Benders分解法的电力系统日前鲁棒调度方法,其特征在于:通过得到的正交变换矩阵,将存在相关性的负荷、风电及光伏出力矩阵转换为独立矩阵,消除其间的相关性,进而通过最坏场景线性叠加的方法求得最坏场景。
11.根据权利要求1所述的基于传统Benders分解法的电力系统日前鲁棒调度方法,其特征在于:采用Benders分解法对模型进行求解;将原问题分解为主问题和两个子问题,主问题为基本场景下的UC决策问题;子问题分别为基本场景下的网络安全校核子问题和最坏场景下的鲁棒校核子问题,主问题及子问题模型如下:
其中,UC主问题模型:
主问题包括目标函数式(12)及约束条件式(14-20)以及所有生成的Benders割
目标函数为:
<mrow> <mi>M</mi> <mi>i</mi> <mi>n</mi> <munder> <mo>&amp;Sigma;</mo> <mi>t</mi> </munder> <munder> <mo>&amp;Sigma;</mo> <mi>i</mi> </munder> <mo>&amp;lsqb;</mo> <msub> <mi>C</mi> <mi>i</mi> </msub> <mrow> <mo>(</mo> <msubsup> <mi>P</mi> <mrow> <mi>i</mi> <mi>t</mi> </mrow> <mi>b</mi> </msubsup> <mo>)</mo> </mrow> <mo>*</mo> <msubsup> <mi>I</mi> <mrow> <mi>i</mi> <mi>t</mi> </mrow> <mi>b</mi> </msubsup> <mo>+</mo> <msubsup> <mi>SU</mi> <mrow> <mi>i</mi> <mi>t</mi> </mrow> <mi>b</mi> </msubsup> <mo>+</mo> <msubsup> <mi>SD</mi> <mrow> <mi>i</mi> <mi>t</mi> </mrow> <mi>b</mi> </msubsup> <mo>&amp;rsqb;</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>12</mn> <mo>)</mo> </mrow> </mrow>
其中:
<mrow> <msub> <mi>C</mi> <mi>i</mi> </msub> <mrow> <mo>(</mo> <msubsup> <mi>P</mi> <mrow> <mi>i</mi> <mi>t</mi> </mrow> <mi>b</mi> </msubsup> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>a</mi> <mi>i</mi> </msub> <msup> <mrow> <mo>(</mo> <msubsup> <mi>P</mi> <mrow> <mi>i</mi> <mi>t</mi> </mrow> <mi>b</mi> </msubsup> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>+</mo> <msub> <mi>b</mi> <mi>i</mi> </msub> <msubsup> <mi>P</mi> <mrow> <mi>i</mi> <mi>t</mi> </mrow> <mi>b</mi> </msubsup> <mo>+</mo> <msub> <mi>c</mi> <mi>i</mi> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>13</mn> <mo>)</mo> </mrow> </mrow>
式中:表示机组i在t时刻的有功出力;表示机组i在t时刻的状态;为开停机费用,ai、bi、ci为机组的发电成本函数的参数;
功率平衡约束为:
<mrow> <munder> <mo>&amp;Sigma;</mo> <mi>i</mi> </munder> <msubsup> <mi>P</mi> <mrow> <mi>i</mi> <mi>t</mi> </mrow> <mi>b</mi> </msubsup> <mo>+</mo> <munder> <mo>&amp;Sigma;</mo> <mi>w</mi> </munder> <msubsup> <mi>P</mi> <mrow> <mi>w</mi> <mi>t</mi> </mrow> <mi>b</mi> </msubsup> <mo>+</mo> <munder> <mo>&amp;Sigma;</mo> <mi>v</mi> </munder> <msubsup> <mi>P</mi> <mrow> <mi>v</mi> <mi>t</mi> </mrow> <mi>b</mi> </msubsup> <mo>=</mo> <munder> <mo>&amp;Sigma;</mo> <mi>d</mi> </munder> <msubsup> <mi>P</mi> <mrow> <mi>d</mi> <mi>t</mi> </mrow> <mi>b</mi> </msubsup> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>14</mn> <mo>)</mo> </mrow> </mrow>
式中:为t时刻风电出力和负荷功率以及光伏发电出力的预测值;
常规机组出力约束为:
<mrow> <msubsup> <mi>P</mi> <mi>i</mi> <mi>min</mi> </msubsup> <mo>&amp;le;</mo> <msubsup> <mi>P</mi> <mrow> <mi>i</mi> <mi>t</mi> </mrow> <mi>b</mi> </msubsup> <mo>&amp;le;</mo> <msubsup> <mi>P</mi> <mi>i</mi> <mi>max</mi> </msubsup> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>15</mn> <mo>)</mo> </mrow> </mrow>
式中:Pi min与Pi max分别表示火电机组i的最大和最小有功出力。
常规机组爬坡速率约束为:
上升爬坡速率约束
<mrow> <msubsup> <mi>P</mi> <mrow> <mi>i</mi> <mi>t</mi> </mrow> <mi>b</mi> </msubsup> <mo>-</mo> <msubsup> <mi>P</mi> <mrow> <mi>i</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> <mi>b</mi> </msubsup> <mo>&amp;le;</mo> <msub> <mi>UR</mi> <mi>i</mi> </msub> <mo>&amp;CenterDot;</mo> <msubsup> <mi>I</mi> <mrow> <mi>i</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> <mi>b</mi> </msubsup> <mo>+</mo> <msubsup> <mi>P</mi> <mi>i</mi> <mi>min</mi> </msubsup> <mo>&amp;CenterDot;</mo> <mrow> <mo>(</mo> <msubsup> <mi>I</mi> <mrow> <mi>i</mi> <mi>t</mi> </mrow> <mi>b</mi> </msubsup> <mo>-</mo> <msubsup> <mi>I</mi> <mrow> <mi>i</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> <mi>b</mi> </msubsup> <mo>)</mo> </mrow> <mo>+</mo> <msubsup> <mi>P</mi> <mi>i</mi> <mi>max</mi> </msubsup> <mo>&amp;CenterDot;</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msubsup> <mi>I</mi> <mrow> <mi>i</mi> <mi>t</mi> </mrow> <mi>b</mi> </msubsup> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>16</mn> <mo>)</mo> </mrow> </mrow>
下降爬坡速率约束
<mrow> <msubsup> <mi>P</mi> <mrow> <mi>i</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> <mi>b</mi> </msubsup> <mo>-</mo> <msubsup> <mi>P</mi> <mrow> <mi>i</mi> <mi>t</mi> </mrow> <mi>b</mi> </msubsup> <mo>&amp;le;</mo> <msub> <mi>DR</mi> <mi>i</mi> </msub> <mo>&amp;CenterDot;</mo> <msubsup> <mi>I</mi> <mrow> <mi>i</mi> <mi>t</mi> </mrow> <mi>b</mi> </msubsup> <mo>+</mo> <msubsup> <mi>P</mi> <mi>i</mi> <mi>min</mi> </msubsup> <mo>&amp;CenterDot;</mo> <mrow> <mo>(</mo> <msubsup> <mi>I</mi> <mrow> <mi>i</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> <mi>b</mi> </msubsup> <mo>-</mo> <msubsup> <mi>I</mi> <mrow> <mi>i</mi> <mi>t</mi> </mrow> <mi>b</mi> </msubsup> <mo>)</mo> </mrow> <mo>+</mo> <msubsup> <mi>P</mi> <mi>i</mi> <mi>max</mi> </msubsup> <mo>&amp;CenterDot;</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msubsup> <mi>I</mi> <mrow> <mi>i</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> <mi>b</mi> </msubsup> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>17</mn> <mo>)</mo> </mrow> </mrow>
常规机组启停时间约束为:
<mrow> <mo>&amp;lsqb;</mo> <msubsup> <mi>X</mi> <mrow> <mi>o</mi> <mi>n</mi> <mo>,</mo> <mi>i</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> <mi>b</mi> </msubsup> <mo>-</mo> <msub> <mi>T</mi> <mrow> <mi>o</mi> <mi>n</mi> <mo>,</mo> <mi>i</mi> </mrow> </msub> <mo>&amp;rsqb;</mo> <mo>&amp;CenterDot;</mo> <mo>&amp;lsqb;</mo> <msubsup> <mi>I</mi> <mrow> <mi>i</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> <mi>b</mi> </msubsup> <mo>-</mo> <msubsup> <mi>I</mi> <mrow> <mi>i</mi> <mi>t</mi> </mrow> <mi>b</mi> </msubsup> <mo>&amp;rsqb;</mo> <mo>&amp;GreaterEqual;</mo> <mn>0</mn> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>18</mn> <mo>)</mo> </mrow> </mrow>
<mrow> <mo>&amp;lsqb;</mo> <msubsup> <mi>X</mi> <mrow> <mi>o</mi> <mi>f</mi> <mi>f</mi> <mo>,</mo> <mi>i</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> <mi>b</mi> </msubsup> <mo>-</mo> <msub> <mi>T</mi> <mrow> <mi>o</mi> <mi>f</mi> <mi>f</mi> <mo>,</mo> <mi>i</mi> </mrow> </msub> <mo>&amp;rsqb;</mo> <mo>&amp;CenterDot;</mo> <mo>&amp;lsqb;</mo> <msubsup> <mi>I</mi> <mrow> <mi>i</mi> <mi>t</mi> </mrow> <mi>b</mi> </msubsup> <mo>-</mo> <msubsup> <mi>I</mi> <mrow> <mi>i</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> <mi>b</mi> </msubsup> <mo>&amp;rsqb;</mo> <mo>&amp;GreaterEqual;</mo> <mn>0</mn> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>19</mn> <mo>)</mo> </mrow> </mrow>
式中:为机组i在t时刻的开停机时间,Ton,iToff,i为最小开机和停机时间约束。
网络安全约束为:
<mrow> <mo>-</mo> <msubsup> <mi>PL</mi> <mi>l</mi> <mi>max</mi> </msubsup> <mo>&amp;le;</mo> <munder> <mo>&amp;Sigma;</mo> <mi>m</mi> </munder> <msub> <mi>SF</mi> <mrow> <mi>l</mi> <mo>,</mo> <mi>m</mi> </mrow> </msub> <mrow> <mo>(</mo> <munder> <mi>&amp;Sigma;</mi> <mrow> <mi>i</mi> <mo>&amp;Element;</mo> <mi>U</mi> <mrow> <mo>(</mo> <mi>m</mi> <mo>)</mo> </mrow> </mrow> </munder> <msubsup> <mi>P</mi> <mrow> <mi>i</mi> <mi>t</mi> </mrow> <mi>b</mi> </msubsup> <mo>+</mo> <munder> <mi>&amp;Sigma;</mi> <mrow> <mi>w</mi> <mo>&amp;Element;</mo> <mi>W</mi> <mrow> <mo>(</mo> <mi>m</mi> <mo>)</mo> </mrow> </mrow> </munder> <msubsup> <mi>P</mi> <mrow> <mi>w</mi> <mi>t</mi> </mrow> <mi>b</mi> </msubsup> <mo>+</mo> <munder> <mi>&amp;Sigma;</mi> <mrow> <mi>v</mi> <mo>&amp;Element;</mo> <mi>V</mi> <mrow> <mo>(</mo> <mi>m</mi> <mo>)</mo> </mrow> </mrow> </munder> <msubsup> <mi>P</mi> <mrow> <mi>v</mi> <mi>t</mi> </mrow> <mi>b</mi> </msubsup> <mo>-</mo> <munder> <mi>&amp;Sigma;</mi> <mrow> <mi>d</mi> <mo>&amp;Element;</mo> <mi>D</mi> <mrow> <mo>(</mo> <mi>m</mi> <mo>)</mo> </mrow> </mrow> </munder> <msubsup> <mi>P</mi> <mrow> <mi>d</mi> <mi>t</mi> </mrow> <mi>b</mi> </msubsup> <mo>)</mo> </mrow> <mo>&amp;le;</mo> <msubsup> <mi>PL</mi> <mi>l</mi> <mi>max</mi> </msubsup> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>20</mn> <mo>)</mo> </mrow> </mrow>
式中:为线路最大潮流约束,SFl,m为节点功率转移因子,U(m)、D(m)、W(m)和V(m)分别为常规机组、负荷、风电以及光伏所在母线集合;
其中,基本场景下的安全校核子问题模型:
<mrow> <mi>M</mi> <mi>i</mi> <mi>n</mi> <munder> <mo>&amp;Sigma;</mo> <mi>l</mi> </munder> <msub> <mi>v</mi> <mrow> <mi>l</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> </mrow>
<mfenced open = "" close = ""> <mtable> <mtr> <mtd> <mrow> <mi>S</mi> <mo>.</mo> <mi>t</mi> <mo>.</mo> <mo>-</mo> <msub> <mi>v</mi> <mrow> <mi>l</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>&amp;le;</mo> <msubsup> <mi>PL</mi> <mi>l</mi> <mi>max</mi> </msubsup> <mo>-</mo> <munder> <mo>&amp;Sigma;</mo> <mi>m</mi> </munder> <msub> <mi>SF</mi> <mrow> <mi>l</mi> <mo>,</mo> <mi>m</mi> </mrow> </msub> <mo>&amp;CenterDot;</mo> <mrow> <mo>(</mo> <munder> <mi>&amp;Sigma;</mi> <mrow> <mi>i</mi> <mo>&amp;Element;</mo> <mi>U</mi> <mrow> <mo>(</mo> <mi>m</mi> <mo>)</mo> </mrow> </mrow> </munder> <msubsup> <mover> <mi>P</mi> <mo>^</mo> </mover> <mrow> <mi>i</mi> <mi>t</mi> </mrow> <mi>b</mi> </msubsup> <mo>+</mo> <munder> <mi>&amp;Sigma;</mi> <mrow> <mi>w</mi> <mo>&amp;Element;</mo> <mi>W</mi> <mrow> <mo>(</mo> <mi>m</mi> <mo>)</mo> </mrow> </mrow> </munder> <msubsup> <mover> <mi>P</mi> <mo>^</mo> </mover> <mrow> <mi>w</mi> <mi>t</mi> </mrow> <mi>b</mi> </msubsup> <mo>+</mo> <munder> <mi>&amp;Sigma;</mi> <mrow> <mi>v</mi> <mo>&amp;Element;</mo> <mi>V</mi> <mrow> <mo>(</mo> <mi>m</mi> <mo>)</mo> </mrow> </mrow> </munder> <msubsup> <mover> <mi>P</mi> <mo>^</mo> </mover> <mrow> <mi>v</mi> <mi>t</mi> </mrow> <mi>b</mi> </msubsup> <mo>-</mo> <munder> <mi>&amp;Sigma;</mi> <mrow> <mi>d</mi> <mo>&amp;Element;</mo> <mi>D</mi> <mrow> <mo>(</mo> <mi>m</mi> <mo>)</mo> </mrow> </mrow> </munder> <msubsup> <mi>P</mi> <mrow> <mi>d</mi> <mi>t</mi> </mrow> <mi>b</mi> </msubsup> <mo>)</mo> </mrow> </mrow> </mtd> <mtd> <msub> <mi>&amp;lambda;</mi> <mrow> <mn>1</mn> <mo>,</mo> <mi>l</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> </mtd> </mtr> </mtable> </mfenced>
<mfenced open = "" close = ""> <mtable> <mtr> <mtd> <mrow> <mo>-</mo> <msub> <mi>v</mi> <mrow> <mi>l</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>&amp;le;</mo> <msubsup> <mi>PL</mi> <mi>l</mi> <mi>max</mi> </msubsup> <mo>+</mo> <munder> <mo>&amp;Sigma;</mo> <mi>m</mi> </munder> <msub> <mi>SF</mi> <mrow> <mi>l</mi> <mo>,</mo> <mi>m</mi> </mrow> </msub> <mo>&amp;CenterDot;</mo> <mrow> <mo>(</mo> <munder> <mi>&amp;Sigma;</mi> <mrow> <mi>i</mi> <mo>&amp;Element;</mo> <mi>U</mi> <mrow> <mo>(</mo> <mi>m</mi> <mo>)</mo> </mrow> </mrow> </munder> <msubsup> <mover> <mi>P</mi> <mo>^</mo> </mover> <mrow> <mi>i</mi> <mi>t</mi> </mrow> <mi>b</mi> </msubsup> <mo>+</mo> <munder> <mi>&amp;Sigma;</mi> <mrow> <mi>w</mi> <mo>&amp;Element;</mo> <mi>W</mi> <mrow> <mo>(</mo> <mi>m</mi> <mo>)</mo> </mrow> </mrow> </munder> <msubsup> <mover> <mi>P</mi> <mo>^</mo> </mover> <mrow> <mi>w</mi> <mi>t</mi> </mrow> <mi>b</mi> </msubsup> <mo>+</mo> <munder> <mi>&amp;Sigma;</mi> <mrow> <mi>v</mi> <mo>&amp;Element;</mo> <mi>V</mi> <mrow> <mo>(</mo> <mi>m</mi> <mo>)</mo> </mrow> </mrow> </munder> <msubsup> <mover> <mi>P</mi> <mo>^</mo> </mover> <mrow> <mi>v</mi> <mi>t</mi> </mrow> <mi>b</mi> </msubsup> <mo>-</mo> <munder> <mi>&amp;Sigma;</mi> <mrow> <mi>d</mi> <mo>&amp;Element;</mo> <mi>D</mi> <mrow> <mo>(</mo> <mi>m</mi> <mo>)</mo> </mrow> </mrow> </munder> <msubsup> <mi>P</mi> <mrow> <mi>d</mi> <mi>t</mi> </mrow> <mi>b</mi> </msubsup> <mo>)</mo> </mrow> </mrow> </mtd> <mtd> <msub> <mi>&amp;lambda;</mi> <mrow> <mn>2</mn> <mo>,</mo> <mi>l</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> </mtd> </mtr> </mtable> </mfenced>
vl,t≥0 (21)
式中:vl,t为松弛变量;
子问题中引入松弛变量vl,t的作用是当于约束条件不能满足时,用松弛变量暂时缓解网络安全约束,以保证子问题始终有解。若最终优化得出的vl,t大于给定的安全阈值,则表示主问题求得的最优机组组合方案不能满足网络安全约束,因此需要返回Benders割如下:
<mrow> <munder> <mo>&amp;Sigma;</mo> <mi>l</mi> </munder> <mo>{</mo> <mo>-</mo> <mrow> <mo>(</mo> <msub> <mover> <mi>&amp;lambda;</mi> <mo>^</mo> </mover> <mrow> <mn>1</mn> <mo>,</mo> <mi>l</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>-</mo> <msub> <mover> <mi>&amp;lambda;</mi> <mo>^</mo> </mover> <mrow> <mn>2</mn> <mo>,</mo> <mi>l</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>)</mo> </mrow> <mo>&amp;CenterDot;</mo> <munder> <mo>&amp;Sigma;</mo> <mi>m</mi> </munder> <msub> <mi>SF</mi> <mrow> <mi>l</mi> <mo>,</mo> <mi>m</mi> </mrow> </msub> <mo>&amp;CenterDot;</mo> <mrow> <mo>(</mo> <munder> <mi>&amp;Sigma;</mi> <mrow> <mi>i</mi> <mo>&amp;Element;</mo> <mi>U</mi> <mrow> <mo>(</mo> <mi>m</mi> <mo>)</mo> </mrow> </mrow> </munder> <mo>(</mo> <mrow> <msubsup> <mi>P</mi> <mrow> <mi>i</mi> <mi>t</mi> </mrow> <mi>b</mi> </msubsup> <mo>-</mo> <msubsup> <mover> <mi>P</mi> <mo>^</mo> </mover> <mrow> <mi>i</mi> <mi>t</mi> </mrow> <mi>b</mi> </msubsup> </mrow> <mo>)</mo> <mo>+</mo> <munder> <mi>&amp;Sigma;</mi> <mrow> <mi>w</mi> <mo>&amp;Element;</mo> <mi>W</mi> <mrow> <mo>(</mo> <mi>m</mi> <mo>)</mo> </mrow> </mrow> </munder> <mo>(</mo> <mrow> <msubsup> <mi>P</mi> <mrow> <mi>w</mi> <mi>t</mi> </mrow> <mi>b</mi> </msubsup> <mo>-</mo> <msubsup> <mover> <mi>P</mi> <mo>^</mo> </mover> <mrow> <mi>w</mi> <mi>t</mi> </mrow> <mi>b</mi> </msubsup> </mrow> <mo>)</mo> <mo>+</mo> <munder> <mi>&amp;Sigma;</mi> <mrow> <mi>v</mi> <mo>&amp;Element;</mo> <mi>V</mi> <mrow> <mo>(</mo> <mi>m</mi> <mo>)</mo> </mrow> </mrow> </munder> <mo>(</mo> <mrow> <msubsup> <mi>P</mi> <mrow> <mi>v</mi> <mi>t</mi> </mrow> <mi>b</mi> </msubsup> <mo>-</mo> <msubsup> <mover> <mi>P</mi> <mo>^</mo> </mover> <mrow> <mi>v</mi> <mi>t</mi> </mrow> <mi>b</mi> </msubsup> </mrow> <mo>)</mo> <mo>)</mo> </mrow> <mo>}</mo> <mo>+</mo> <munder> <mo>&amp;Sigma;</mo> <mi>l</mi> </munder> <msub> <mover> <mi>v</mi> <mo>^</mo> </mover> <mrow> <mi>l</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>&amp;le;</mo> <mn>0</mn> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>22</mn> <mo>)</mo> </mrow> </mrow>
其中,考虑不确定性的安全校核子问题模型为:
不确定场景下的安全校核模型如式(23)所示,其校验在最坏场景下能否满足安全约束;
<mrow> <mi>M</mi> <mi>i</mi> <mi>n</mi> <mi>v</mi> <mo>=</mo> <munder> <mo>&amp;Sigma;</mo> <mi>t</mi> </munder> <mrow> <mo>(</mo> <munder> <mo>&amp;Sigma;</mo> <mi>l</mi> </munder> <msub> <mi>v</mi> <mrow> <mn>1</mn> <mo>,</mo> <mi>l</mi> <mi>t</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>v</mi> <mrow> <mn>2</mn> <mi>t</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>v</mi> <mrow> <mn>3</mn> <mi>t</mi> </mrow> </msub> <mo>)</mo> </mrow> </mrow>
S.t.
<mrow> <munder> <mi>&amp;Sigma;</mi> <mi>m</mi> </munder> <msub> <mi>SF</mi> <mrow> <mi>l</mi> <mo>,</mo> <mi>m</mi> </mrow> </msub> <mo>&amp;CenterDot;</mo> <mrow> <mo>(</mo> <munder> <mi>&amp;Sigma;</mi> <mrow> <mi>i</mi> <mo>&amp;Element;</mo> <mi>U</mi> <mrow> <mo>(</mo> <mi>m</mi> <mo>)</mo> </mrow> </mrow> </munder> <msubsup> <mi>P</mi> <mrow> <mi>i</mi> <mi>t</mi> </mrow> <mrow> <mi>w</mi> <mi>o</mi> <mi>r</mi> <mi>s</mi> <mi>t</mi> </mrow> </msubsup> <mo>+</mo> <munder> <mi>&amp;Sigma;</mi> <mrow> <mi>w</mi> <mo>&amp;Element;</mo> <mi>W</mi> <mrow> <mo>(</mo> <mi>m</mi> <mo>)</mo> </mrow> </mrow> </munder> <msubsup> <mi>P</mi> <mrow> <mi>w</mi> <mi>t</mi> </mrow> <mrow> <mi>w</mi> <mi>o</mi> <mi>r</mi> <mi>s</mi> <mi>t</mi> </mrow> </msubsup> <mo>+</mo> <munder> <mi>&amp;Sigma;</mi> <mrow> <mi>v</mi> <mo>&amp;Element;</mo> <mi>V</mi> <mrow> <mo>(</mo> <mi>m</mi> <mo>)</mo> </mrow> </mrow> </munder> <msubsup> <mi>P</mi> <mrow> <mi>v</mi> <mi>t</mi> </mrow> <mrow> <mi>w</mi> <mi>o</mi> <mi>r</mi> <mi>s</mi> <mi>t</mi> </mrow> </msubsup> <mo>-</mo> <munder> <mi>&amp;Sigma;</mi> <mrow> <mi>d</mi> <mo>&amp;Element;</mo> <mi>D</mi> <mrow> <mo>(</mo> <mi>m</mi> <mo>)</mo> </mrow> </mrow> </munder> <msubsup> <mi>P</mi> <mrow> <mi>d</mi> <mi>t</mi> </mrow> <mrow> <mi>w</mi> <mi>o</mi> <mi>r</mi> <mi>s</mi> <mi>t</mi> </mrow> </msubsup> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>v</mi> <mrow> <mn>1</mn> <mo>,</mo> <mi>l</mi> <mi>t</mi> </mrow> </msub> <mo>&amp;le;</mo> <msubsup> <mi>PL</mi> <mi>l</mi> <mi>max</mi> </msubsup> </mrow>
<mrow> <mo>-</mo> <munder> <mi>&amp;Sigma;</mi> <mi>m</mi> </munder> <msub> <mi>SF</mi> <mrow> <mi>l</mi> <mo>,</mo> <mi>m</mi> </mrow> </msub> <mo>&amp;CenterDot;</mo> <mrow> <mo>(</mo> <munder> <mi>&amp;Sigma;</mi> <mrow> <mi>i</mi> <mo>&amp;Element;</mo> <mi>U</mi> <mrow> <mo>(</mo> <mi>m</mi> <mo>)</mo> </mrow> </mrow> </munder> <msubsup> <mi>P</mi> <mrow> <mi>i</mi> <mi>t</mi> </mrow> <mrow> <mi>w</mi> <mi>o</mi> <mi>r</mi> <mi>s</mi> <mi>t</mi> </mrow> </msubsup> <mo>+</mo> <munder> <mi>&amp;Sigma;</mi> <mrow> <mi>w</mi> <mo>&amp;Element;</mo> <mi>W</mi> <mrow> <mo>(</mo> <mi>m</mi> <mo>)</mo> </mrow> </mrow> </munder> <msubsup> <mi>P</mi> <mrow> <mi>w</mi> <mi>t</mi> </mrow> <mrow> <mi>w</mi> <mi>o</mi> <mi>r</mi> <mi>s</mi> <mi>t</mi> </mrow> </msubsup> <mo>+</mo> <munder> <mi>&amp;Sigma;</mi> <mrow> <mi>v</mi> <mo>&amp;Element;</mo> <mi>V</mi> <mrow> <mo>(</mo> <mi>m</mi> <mo>)</mo> </mrow> </mrow> </munder> <msubsup> <mi>P</mi> <mrow> <mi>v</mi> <mi>t</mi> </mrow> <mrow> <mi>w</mi> <mi>o</mi> <mi>r</mi> <mi>s</mi> <mi>t</mi> </mrow> </msubsup> <mo>-</mo> <munder> <mi>&amp;Sigma;</mi> <mrow> <mi>d</mi> <mo>&amp;Element;</mo> <mi>D</mi> <mrow> <mo>(</mo> <mi>m</mi> <mo>)</mo> </mrow> </mrow> </munder> <msubsup> <mi>P</mi> <mrow> <mi>d</mi> <mi>t</mi> </mrow> <mrow> <mi>w</mi> <mi>o</mi> <mi>r</mi> <mi>s</mi> <mi>t</mi> </mrow> </msubsup> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>v</mi> <mrow> <mn>1</mn> <mo>,</mo> <mi>l</mi> <mi>t</mi> </mrow> </msub> <mo>&amp;le;</mo> <msubsup> <mi>PL</mi> <mi>l</mi> <mi>max</mi> </msubsup> </mrow>
<mrow> <munder> <mo>&amp;Sigma;</mo> <mi>i</mi> </munder> <msubsup> <mi>P</mi> <mrow> <mi>i</mi> <mi>t</mi> </mrow> <mrow> <mi>w</mi> <mi>o</mi> <mi>r</mi> <mi>s</mi> <mi>t</mi> </mrow> </msubsup> <mo>+</mo> <munder> <mo>&amp;Sigma;</mo> <mi>w</mi> </munder> <msubsup> <mi>P</mi> <mrow> <mi>w</mi> <mi>t</mi> </mrow> <mrow> <mi>w</mi> <mi>o</mi> <mi>r</mi> <mi>s</mi> <mi>t</mi> </mrow> </msubsup> <mo>+</mo> <munder> <mo>&amp;Sigma;</mo> <mi>v</mi> </munder> <msubsup> <mi>P</mi> <mrow> <mi>v</mi> <mi>t</mi> </mrow> <mrow> <mi>w</mi> <mi>o</mi> <mi>r</mi> <mi>s</mi> <mi>t</mi> </mrow> </msubsup> <mo>+</mo> <msub> <mi>v</mi> <mrow> <mn>2</mn> <mi>t</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>v</mi> <mrow> <mn>3</mn> <mi>t</mi> </mrow> </msub> <mo>=</mo> <munder> <mo>&amp;Sigma;</mo> <mi>d</mi> </munder> <msubsup> <mi>P</mi> <mrow> <mi>d</mi> <mi>t</mi> </mrow> <mrow> <mi>w</mi> <mi>o</mi> <mi>r</mi> <mi>s</mi> <mi>t</mi> </mrow> </msubsup> </mrow>
<mfenced open = "" close = ""> <mtable> <mtr> <mtd> <mrow> <msubsup> <mi>P</mi> <mi>i</mi> <mi>min</mi> </msubsup> <mo>&amp;le;</mo> <msubsup> <mi>P</mi> <mrow> <mi>i</mi> <mi>t</mi> </mrow> <mrow> <mi>w</mi> <mi>o</mi> <mi>r</mi> <mi>s</mi> <mi>t</mi> </mrow> </msubsup> <mo>&amp;le;</mo> <msubsup> <mi>P</mi> <mi>i</mi> <mi>max</mi> </msubsup> </mrow> </mtd> <mtd> <mrow> <msub> <mi>&amp;mu;</mi> <mrow> <mn>2</mn> <mo>,</mo> <mi>i</mi> <mi>t</mi> </mrow> </msub> <mo>,</mo> <msub> <mi>&amp;mu;</mi> <mrow> <mn>1</mn> <mo>,</mo> <mi>i</mi> <mi>t</mi> </mrow> </msub> </mrow> </mtd> </mtr> </mtable> </mfenced>
<mfenced open = "" close = ""> <mtable> <mtr> <mtd> <mrow> <msubsup> <mover> <mi>P</mi> <mo>^</mo> </mover> <mrow> <mi>i</mi> <mi>t</mi> </mrow> <mi>b</mi> </msubsup> <mo>-</mo> <msubsup> <mi>R</mi> <mi>i</mi> <mrow> <mi>d</mi> <mi>o</mi> <mi>w</mi> <mi>n</mi> </mrow> </msubsup> <mo>&amp;CenterDot;</mo> <msubsup> <mover> <mi>I</mi> <mo>^</mo> </mover> <mrow> <mi>i</mi> <mi>t</mi> </mrow> <mi>b</mi> </msubsup> <mo>&amp;le;</mo> <msubsup> <mi>P</mi> <mrow> <mi>i</mi> <mi>t</mi> </mrow> <mrow> <mi>w</mi> <mi>o</mi> <mi>r</mi> <mi>s</mi> <mi>t</mi> </mrow> </msubsup> <mo>&amp;le;</mo> <msubsup> <mover> <mi>P</mi> <mo>^</mo> </mover> <mrow> <mi>i</mi> <mi>t</mi> </mrow> <mi>b</mi> </msubsup> <mo>+</mo> <msubsup> <mi>R</mi> <mi>i</mi> <mrow> <mi>u</mi> <mi>p</mi> </mrow> </msubsup> <mo>&amp;CenterDot;</mo> <msubsup> <mover> <mi>I</mi> <mo>^</mo> </mover> <mrow> <mi>i</mi> <mi>t</mi> </mrow> <mi>b</mi> </msubsup> </mrow> </mtd> <mtd> <mrow> <msub> <mi>&amp;lambda;</mi> <mrow> <mn>2</mn> <mo>,</mo> <mi>i</mi> <mi>t</mi> </mrow> </msub> <mo>,</mo> <msub> <mi>&amp;lambda;</mi> <mrow> <mn>1</mn> <mo>,</mo> <mi>i</mi> <mi>t</mi> </mrow> </msub> </mrow> </mtd> </mtr> </mtable> </mfenced>
<mfenced open = "" close = ""> <mtable> <mtr> <mtd> <mrow> <msubsup> <mi>P</mi> <mrow> <mi>i</mi> <mi>t</mi> </mrow> <mi>u</mi> </msubsup> <mo>-</mo> <msubsup> <mi>P</mi> <mrow> <mi>i</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> <mi>u</mi> </msubsup> <mo>&amp;le;</mo> <msub> <mi>UR</mi> <mi>i</mi> </msub> <mo>&amp;CenterDot;</mo> <msubsup> <mover> <mi>I</mi> <mo>^</mo> </mover> <mrow> <mi>i</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> <mi>b</mi> </msubsup> <mo>+</mo> <msubsup> <mi>P</mi> <mi>i</mi> <mi>min</mi> </msubsup> <mo>&amp;CenterDot;</mo> <mrow> <mo>(</mo> <msubsup> <mover> <mi>I</mi> <mo>^</mo> </mover> <mrow> <mi>i</mi> <mi>t</mi> </mrow> <mi>b</mi> </msubsup> <mo>-</mo> <msubsup> <mover> <mi>I</mi> <mo>^</mo> </mover> <mrow> <mi>i</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> <mi>b</mi> </msubsup> <mo>)</mo> </mrow> <mo>+</mo> <msubsup> <mi>P</mi> <mi>i</mi> <mi>max</mi> </msubsup> <mo>&amp;CenterDot;</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msubsup> <mover> <mi>I</mi> <mo>^</mo> </mover> <mrow> <mi>i</mi> <mi>t</mi> </mrow> <mi>b</mi> </msubsup> <mo>)</mo> </mrow> </mrow> </mtd> <mtd> <msub> <mi>&amp;eta;</mi> <mrow> <mn>1</mn> <mo>,</mo> <mi>i</mi> <mi>t</mi> </mrow> </msub> </mtd> </mtr> </mtable> </mfenced>
<mfenced open = "" close = ""> <mtable> <mtr> <mtd> <mrow> <msubsup> <mi>P</mi> <mrow> <mi>i</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> <mi>u</mi> </msubsup> <mo>-</mo> <msubsup> <mi>P</mi> <mrow> <mi>i</mi> <mi>t</mi> </mrow> <mi>u</mi> </msubsup> <mo>&amp;le;</mo> <msub> <mi>DR</mi> <mi>i</mi> </msub> <mo>&amp;CenterDot;</mo> <msubsup> <mover> <mi>I</mi> <mo>^</mo> </mover> <mrow> <mi>i</mi> <mi>t</mi> </mrow> <mi>b</mi> </msubsup> <mo>+</mo> <msubsup> <mi>P</mi> <mi>i</mi> <mi>min</mi> </msubsup> <mo>&amp;CenterDot;</mo> <mrow> <mo>(</mo> <msubsup> <mover> <mi>I</mi> <mo>^</mo> </mover> <mrow> <mi>i</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> <mi>b</mi> </msubsup> <mo>-</mo> <msubsup> <mover> <mi>I</mi> <mo>^</mo> </mover> <mrow> <mi>i</mi> <mi>t</mi> </mrow> <mi>b</mi> </msubsup> <mo>)</mo> </mrow> <mo>+</mo> <msubsup> <mi>P</mi> <mi>i</mi> <mi>max</mi> </msubsup> <mo>&amp;CenterDot;</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msubsup> <mover> <mi>I</mi> <mo>^</mo> </mover> <mrow> <mi>i</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> <mi>b</mi> </msubsup> <mo>)</mo> </mrow> </mrow> </mtd> <mtd> <msub> <mi>&amp;eta;</mi> <mrow> <mn>2</mn> <mo>,</mo> <mi>i</mi> <mi>t</mi> </mrow> </msub> </mtd> </mtr> </mtable> </mfenced>
0≤v1,lt,v2t,v3t (23)
式中:λ1,it2,it1,it2,it1,it2,it是旋转备用约束、机组容量约束、爬坡约束的对偶变量;
如果不能满足安全约束,则返回Benders割式(24)到主问题,其作为约束条件,使得机组组合和出力方案在最坏场景上自适应调整满足网络安全约束和功率平衡;
<mrow> <mtable> <mtr> <mtd> <mrow> <mover> <mi>v</mi> <mo>^</mo> </mover> <mo>+</mo> <munderover> <mi>&amp;Sigma;</mi> <mrow> <mi>t</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow> <mi>N</mi> <mi>T</mi> </mrow> </munderover> <munder> <mo>&amp;Sigma;</mo> <mi>l</mi> </munder> <mo>&amp;lsqb;</mo> <mrow> <mo>(</mo> <msub> <mover> <mi>&amp;lambda;</mi> <mo>^</mo> </mover> <mrow> <mn>1</mn> <mo>,</mo> <mi>i</mi> <mi>t</mi> </mrow> </msub> <mo>&amp;CenterDot;</mo> <msubsup> <mi>R</mi> <mi>i</mi> <mrow> <mi>u</mi> <mi>p</mi> </mrow> </msubsup> <mo>-</mo> <msub> <mover> <mi>&amp;lambda;</mi> <mo>^</mo> </mover> <mrow> <mn>2</mn> <mo>,</mo> <mi>i</mi> <mi>t</mi> </mrow> </msub> <mo>&amp;CenterDot;</mo> <msubsup> <mi>R</mi> <mi>i</mi> <mrow> <mi>d</mi> <mi>o</mi> <mi>w</mi> <mi>n</mi> </mrow> </msubsup> <mo>+</mo> <msub> <mover> <mi>&amp;mu;</mi> <mo>^</mo> </mover> <mrow> <mn>1</mn> <mo>,</mo> <mi>i</mi> <mi>t</mi> </mrow> </msub> <mo>&amp;CenterDot;</mo> <msubsup> <mi>P</mi> <mi>i</mi> <mi>max</mi> </msubsup> <mo>-</mo> <msub> <mover> <mi>&amp;mu;</mi> <mo>^</mo> </mover> <mrow> <mn>2</mn> <mo>,</mo> <mi>i</mi> <mi>t</mi> </mrow> </msub> <mo>&amp;CenterDot;</mo> <msubsup> <mi>P</mi> <mi>i</mi> <mi>min</mi> </msubsup> <mo>)</mo> </mrow> <mo>&amp;CenterDot;</mo> <mrow> <mo>(</mo> <msubsup> <mi>I</mi> <mrow> <mi>i</mi> <mi>t</mi> </mrow> <mi>b</mi> </msubsup> <mo>-</mo> <msubsup> <mover> <mi>I</mi> <mo>^</mo> </mover> <mrow> <mi>i</mi> <mi>t</mi> </mrow> <mi>b</mi> </msubsup> <mo>)</mo> </mrow> <mo>+</mo> <mrow> <mo>(</mo> <msub> <mover> <mi>&amp;lambda;</mi> <mo>^</mo> </mover> <mrow> <mn>1</mn> <mo>,</mo> <mi>i</mi> <mi>t</mi> </mrow> </msub> <mo>-</mo> <msub> <mover> <mi>&amp;lambda;</mi> <mo>^</mo> </mover> <mrow> <mn>2</mn> <mo>,</mo> <mi>i</mi> <mi>t</mi> </mrow> </msub> <mo>)</mo> </mrow> <mo>&amp;CenterDot;</mo> <mrow> <mo>(</mo> <msubsup> <mi>P</mi> <mrow> <mi>i</mi> <mi>t</mi> </mrow> <mi>b</mi> </msubsup> <mo>-</mo> <msubsup> <mover> <mi>P</mi> <mo>^</mo> </mover> <mrow> <mi>i</mi> <mi>t</mi> </mrow> <mi>b</mi> </msubsup> <mo>)</mo> </mrow> <mo>&amp;rsqb;</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>+</mo> <munderover> <mi>&amp;Sigma;</mi> <mrow> <mi>t</mi> <mo>=</mo> <mn>2</mn> </mrow> <mrow> <mi>N</mi> <mi>T</mi> </mrow> </munderover> <munder> <mo>&amp;Sigma;</mo> <mi>i</mi> </munder> <mo>&amp;lsqb;</mo> <msub> <mover> <mi>&amp;eta;</mi> <mo>^</mo> </mover> <mrow> <mn>1</mn> <mo>,</mo> <mi>i</mi> <mi>t</mi> </mrow> </msub> <mo>&amp;CenterDot;</mo> <mrow> <mo>(</mo> <msub> <mi>UR</mi> <mi>i</mi> </msub> <mo>-</mo> <msubsup> <mi>P</mi> <mi>i</mi> <mi>max</mi> </msubsup> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mover> <mi>&amp;eta;</mi> <mo>^</mo> </mover> <mrow> <mn>2</mn> <mo>,</mo> <mi>i</mi> <mi>t</mi> </mrow> </msub> <mo>&amp;CenterDot;</mo> <mrow> <mo>(</mo> <msubsup> <mi>P</mi> <mi>i</mi> <mi>min</mi> </msubsup> <mo>-</mo> <msubsup> <mi>P</mi> <mi>i</mi> <mi>max</mi> </msubsup> <mo>)</mo> </mrow> <mo>&amp;rsqb;</mo> <mo>&amp;CenterDot;</mo> <mrow> <mo>(</mo> <msubsup> <mi>I</mi> <mrow> <mi>i</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> <mi>b</mi> </msubsup> <mo>-</mo> <msubsup> <mover> <mi>I</mi> <mo>^</mo> </mover> <mrow> <mi>i</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> <mi>b</mi> </msubsup> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>+</mo> <munderover> <mi>&amp;Sigma;</mi> <mrow> <mi>t</mi> <mo>=</mo> <mn>2</mn> </mrow> <mrow> <mi>N</mi> <mi>T</mi> </mrow> </munderover> <munder> <mo>&amp;Sigma;</mo> <mi>i</mi> </munder> <mo>&amp;lsqb;</mo> <msub> <mover> <mi>&amp;eta;</mi> <mo>^</mo> </mover> <mrow> <mn>1</mn> <mo>,</mo> <mi>i</mi> <mi>t</mi> </mrow> </msub> <mo>&amp;CenterDot;</mo> <mrow> <mo>(</mo> <msubsup> <mi>P</mi> <mi>i</mi> <mi>min</mi> </msubsup> <mo>-</mo> <msubsup> <mi>P</mi> <mi>i</mi> <mi>max</mi> </msubsup> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mover> <mi>&amp;eta;</mi> <mo>^</mo> </mover> <mrow> <mn>2</mn> <mo>,</mo> <mi>i</mi> <mi>t</mi> </mrow> </msub> <mo>&amp;CenterDot;</mo> <mrow> <mo>(</mo> <msub> <mi>DR</mi> <mi>i</mi> </msub> <mo>-</mo> <msubsup> <mi>P</mi> <mi>i</mi> <mi>max</mi> </msubsup> <mo>)</mo> </mrow> <mo>&amp;rsqb;</mo> <mo>&amp;CenterDot;</mo> <mrow> <mo>(</mo> <msubsup> <mi>I</mi> <mrow> <mi>i</mi> <mi>t</mi> </mrow> <mi>b</mi> </msubsup> <mo>-</mo> <msubsup> <mover> <mi>I</mi> <mo>^</mo> </mover> <mrow> <mi>i</mi> <mi>t</mi> </mrow> <mi>b</mi> </msubsup> <mo>)</mo> </mrow> <mo>&amp;le;</mo> <mn>0</mn> </mrow> </mtd> </mtr> </mtable> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>24</mn> <mo>)</mo> </mrow> </mrow>
通过上述步骤,完成考虑多重不确定性及相关性的电力系统日前鲁棒调度。
CN201711238465.0A 2017-11-30 2017-11-30 一种基于传统Benders分解法的电力系统日前鲁棒调度方法 Active CN107977744B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711238465.0A CN107977744B (zh) 2017-11-30 2017-11-30 一种基于传统Benders分解法的电力系统日前鲁棒调度方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711238465.0A CN107977744B (zh) 2017-11-30 2017-11-30 一种基于传统Benders分解法的电力系统日前鲁棒调度方法

Publications (2)

Publication Number Publication Date
CN107977744A true CN107977744A (zh) 2018-05-01
CN107977744B CN107977744B (zh) 2021-07-13

Family

ID=62008649

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711238465.0A Active CN107977744B (zh) 2017-11-30 2017-11-30 一种基于传统Benders分解法的电力系统日前鲁棒调度方法

Country Status (1)

Country Link
CN (1) CN107977744B (zh)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108667010A (zh) * 2018-05-04 2018-10-16 清华大学 一种基于分布鲁棒优化的配电网经济调度方法
CN109193684A (zh) * 2018-08-14 2019-01-11 河海大学 一种基于两阶段优化的电力系统实时无功优化方法
CN109274117A (zh) * 2018-09-21 2019-01-25 华中科技大学 一种数据驱动的日前鲁棒机组组合方法
CN109785183A (zh) * 2018-12-26 2019-05-21 国网山西省电力公司电力科学研究院 一种考虑风电与负荷预测不确定性的鲁棒调度方法
CN109995056A (zh) * 2019-05-15 2019-07-09 长沙理工大学 一种多机调频比例决策方法
CN110061528A (zh) * 2019-04-11 2019-07-26 华中科技大学 一种气电联合系统日前鲁棒调度方法
CN110175740A (zh) * 2019-04-15 2019-08-27 大唐环境产业集团股份有限公司 一种基于Kriging代理模型的场景分析实现方法
CN111711184A (zh) * 2020-05-25 2020-09-25 国网青海省电力公司 一种基于最坏场景辨识的电力系统鲁棒经济调度方法
CN111786384A (zh) * 2020-07-10 2020-10-16 中国船舶工业集团公司第七0八研究所 一种受到外界干扰后的弹性导向配电网鲁棒优化运行方法
CN112531687A (zh) * 2020-11-24 2021-03-19 国家电网有限公司 含热电联合机组的综合能源系统周前机组组合优化方法
CN112615386A (zh) * 2020-11-23 2021-04-06 国网浙江省电力有限公司台州供电公司 一种面向风电消纳的电热混合储能系统优化定容方法
CN113659634A (zh) * 2021-08-13 2021-11-16 华中科技大学 一种计及局部相关性的电力系统鲁棒调度方法和系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102684224A (zh) * 2012-05-25 2012-09-19 浙江大学 一种求解考虑风电波动性的机组组合方法
CN105846456A (zh) * 2016-05-13 2016-08-10 清华大学 一种交直流互联电网风、火协调动态经济调度优化方法
CN106159974A (zh) * 2016-08-02 2016-11-23 清华大学 一种输配协调的分布式无功电压优化方法
CN106655246A (zh) * 2016-10-18 2017-05-10 国网黑龙江省电力有限公司哈尔滨供电公司 基于风电预测与需求响应的鲁棒双层优化模型的求解方法
CN106815661A (zh) * 2017-02-22 2017-06-09 清华大学 一种热电联合系统的分解协调调度方法
CN106992538A (zh) * 2017-04-17 2017-07-28 国网浙江省电力公司电力科学研究院 一种基于Benders分解的独立型交流微电网优化配置方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102684224A (zh) * 2012-05-25 2012-09-19 浙江大学 一种求解考虑风电波动性的机组组合方法
CN105846456A (zh) * 2016-05-13 2016-08-10 清华大学 一种交直流互联电网风、火协调动态经济调度优化方法
CN106159974A (zh) * 2016-08-02 2016-11-23 清华大学 一种输配协调的分布式无功电压优化方法
CN106655246A (zh) * 2016-10-18 2017-05-10 国网黑龙江省电力有限公司哈尔滨供电公司 基于风电预测与需求响应的鲁棒双层优化模型的求解方法
CN106815661A (zh) * 2017-02-22 2017-06-09 清华大学 一种热电联合系统的分解协调调度方法
CN106992538A (zh) * 2017-04-17 2017-07-28 国网浙江省电力公司电力科学研究院 一种基于Benders分解的独立型交流微电网优化配置方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
钱峰等: "计及安全约束的机组最优组合鲁棒优化方法", 《电力建设》 *

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108667010A (zh) * 2018-05-04 2018-10-16 清华大学 一种基于分布鲁棒优化的配电网经济调度方法
CN109193684B (zh) * 2018-08-14 2021-09-07 河海大学 一种基于两阶段优化的电力系统实时无功优化方法
CN109193684A (zh) * 2018-08-14 2019-01-11 河海大学 一种基于两阶段优化的电力系统实时无功优化方法
CN109274117A (zh) * 2018-09-21 2019-01-25 华中科技大学 一种数据驱动的日前鲁棒机组组合方法
CN109785183A (zh) * 2018-12-26 2019-05-21 国网山西省电力公司电力科学研究院 一种考虑风电与负荷预测不确定性的鲁棒调度方法
CN110061528A (zh) * 2019-04-11 2019-07-26 华中科技大学 一种气电联合系统日前鲁棒调度方法
CN110175740A (zh) * 2019-04-15 2019-08-27 大唐环境产业集团股份有限公司 一种基于Kriging代理模型的场景分析实现方法
CN109995056A (zh) * 2019-05-15 2019-07-09 长沙理工大学 一种多机调频比例决策方法
CN111711184A (zh) * 2020-05-25 2020-09-25 国网青海省电力公司 一种基于最坏场景辨识的电力系统鲁棒经济调度方法
CN111786384A (zh) * 2020-07-10 2020-10-16 中国船舶工业集团公司第七0八研究所 一种受到外界干扰后的弹性导向配电网鲁棒优化运行方法
CN111786384B (zh) * 2020-07-10 2022-03-04 中国船舶工业集团公司第七0八研究所 一种受到外界干扰后的弹性导向配电网鲁棒优化运行方法
CN112615386A (zh) * 2020-11-23 2021-04-06 国网浙江省电力有限公司台州供电公司 一种面向风电消纳的电热混合储能系统优化定容方法
CN112615386B (zh) * 2020-11-23 2023-04-07 国网浙江省电力有限公司台州供电公司 一种面向风电消纳的电热混合储能系统优化定容方法
CN112531687A (zh) * 2020-11-24 2021-03-19 国家电网有限公司 含热电联合机组的综合能源系统周前机组组合优化方法
CN113659634A (zh) * 2021-08-13 2021-11-16 华中科技大学 一种计及局部相关性的电力系统鲁棒调度方法和系统
CN113659634B (zh) * 2021-08-13 2023-08-25 华中科技大学 一种计及局部相关性的电力系统鲁棒调度方法和系统

Also Published As

Publication number Publication date
CN107977744B (zh) 2021-07-13

Similar Documents

Publication Publication Date Title
CN107977744A (zh) 一种基于传统Benders分解法的电力系统日前鲁棒调度方法
CN107947164A (zh) 一种考虑多重不确定性及相关性的电力系统日前鲁棒调度方法
Shi et al. Simultaneous optimization of renewable energy and energy storage capacity with the hierarchical control
Lopes et al. Impact of the combined integration of wind generation and small hydropower plants on the system reliability
CN107239863B (zh) 一种电网安全约束的鲁棒机组组合方法
Liang et al. Probability-driven transmission expansion planning with high-penetration renewable power generation: A case study in northwestern China
CN105429129B (zh) 一种考虑网络约束的间歇性能源发电容量置信度评估方法
CN103810535B (zh) 电力系统风电消纳能力评估方法
CN103545832A (zh) 一种基于发电预测误差的光伏系统储能容量配置方法
CN108306303A (zh) 一种考虑负荷增长和新能源出力随机的电压稳定评估方法
Yang et al. An improved robust SCUC approach considering multiple uncertainty and correlation
CN110009141B (zh) 基于sdae特征提取和svm分类模型的爬坡事件预测方法及系统
CN111313475A (zh) 一种功率平衡约束考虑预测误差不确定变量的电力系统调度方法
CN103473393A (zh) 一种考虑随机概率的输电裕度控制模型建模方法
CN105226650A (zh) 基于微燃机-储能联合运行策略的微电网可靠性计算方法
Huang et al. Joint generation and reserve scheduling of wind‐solar‐pumped storage power systems under multiple uncertainties
CN106611243A (zh) 一种基于garch模型的风速预测残差修正方法
CN111900713A (zh) 网源协调下考虑负荷和风电随机性多场景输电网规划方法
CN104915788B (zh) 一种考虑多风场相关性的电力系统动态经济调度的方法
CN111193295A (zh) 一种考虑动态重构的配网灵活性提升鲁棒优化调度方法
CN112670982B (zh) 一种基于奖励机制的微电网有功调度控制方法及系统
Zhou et al. Distributionally robust unit commitment considering unimodality-skewness information of wind power uncertainty
CN107104466B (zh) 基于冒泡排序的风储联合发电系统储能元件优化运行方法
Zhang et al. Short-Term Power Prediction of Wind Power Generation System Based on Logistic Chaos Atom Search Optimization BP Neural Network
CN114336607B (zh) 计及源荷双侧不确定性的电网经济运行域生成方法及系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20180501

Assignee: Hubei Yunzhihang Drone Technology Co.,Ltd.

Assignor: CHINA THREE GORGES University

Contract record no.: X2023980044730

Denomination of invention: A Robust Day-Ahead Scheduling Method for Power Systems Based on Traditional Benders Decomposition Method

Granted publication date: 20210713

License type: Common License

Record date: 20231027

EE01 Entry into force of recordation of patent licensing contract