CN107961213A - 一种基于黑磷的水凝胶近红外光可控释药系统及其制备方法 - Google Patents

一种基于黑磷的水凝胶近红外光可控释药系统及其制备方法 Download PDF

Info

Publication number
CN107961213A
CN107961213A CN201711307308.0A CN201711307308A CN107961213A CN 107961213 A CN107961213 A CN 107961213A CN 201711307308 A CN201711307308 A CN 201711307308A CN 107961213 A CN107961213 A CN 107961213A
Authority
CN
China
Prior art keywords
black phosphorus
infrared light
near infrared
releasing system
nano flake
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201711307308.0A
Other languages
English (en)
Inventor
张晗
仇萌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN201711307308.0A priority Critical patent/CN107961213A/zh
Priority to PCT/CN2018/071703 priority patent/WO2019114066A1/zh
Publication of CN107961213A publication Critical patent/CN107961213A/zh
Pending legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/06Ointments; Bases therefor; Other semi-solid forms, e.g. creams, sticks, gels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7028Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages
    • A61K31/7034Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages attached to a carbocyclic compound, e.g. phloridzin
    • A61K31/704Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages attached to a carbocyclic compound, e.g. phloridzin attached to a condensed carbocyclic ring system, e.g. sennosides, thiocolchicosides, escin, daunorubicin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K41/00Medicinal preparations obtained by treating materials with wave energy or particle radiation ; Therapies using these preparations
    • A61K41/0052Thermotherapy; Hyperthermia; Magnetic induction; Induction heating therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/02Inorganic compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/16Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing nitrogen, e.g. nitro-, nitroso-, azo-compounds, nitriles, cyanates
    • A61K47/18Amines; Amides; Ureas; Quaternary ammonium compounds; Amino acids; Oligopeptides having up to five amino acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/36Polysaccharides; Derivatives thereof, e.g. gums, starch, alginate, dextrin, hyaluronic acid, chitosan, inulin, agar or pectin

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Inorganic Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Molecular Biology (AREA)
  • Medicinal Preparation (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

本发明提供了一种基于黑磷的水凝胶近红外光可控释药系统,包括琼脂糖水凝胶载体、以及负载在所述琼脂糖水凝胶载体中的黑磷纳米薄片和抗癌药物。该基于黑磷的水凝胶近红外光可控释药系统具有近红外光响应,可通过近红外光照射在体内实现胶凝状态到溶胶状态的转变,从而可实现局部可控地药物释放,有效杀死病灶部位肿瘤细胞,同时释药系统具备可控降解特性,对于癌症的治疗具有极高的临床价值。本发明还提供了该基于黑磷的水凝胶近红外光可控释药系统的制备方法。

Description

一种基于黑磷的水凝胶近红外光可控释药系统及其制备方法
技术领域
本发明涉及生物医用纳米材料技术领域,特别是涉及一种基于黑磷的水凝胶近红外光可控释药系统及其制备方法。
背景技术
癌症严重危害着人类的生命健康,而目前针对癌症的临床治疗,无论是化学治疗、手术治疗或放射治疗都对身体有极大副作用,且在发生恶性转移以后,无论采用上述何种方式都难以彻底治愈。虽然已有大量的人力、物力、财力已经投入到癌症的研究,但进展十分有限、癌症的有效治疗仍然是人类面对的极大考验。
有研究表明,将生物大分子与纳米技术应用到癌症诊断治疗领域,具有广阔的前景及临床价值。其中,具有光控释放的水凝胶药物载体是一种新型的癌症治疗方式,利用激光照射可控释放药物、对病灶部分进行局域给药,其照射用的激发光一般采用近红外光,是一种非侵入性的癌症治疗方式,能够有效穿透人体正常组织到达癌症部位,极大程度地减少对正常组织的损害。然而目前用于光控释放的光敏纳米粒子(如金纳米颗粒)的光热转化效率较低、不可降解,给临床应用带来困难。
近期研究发现,黑磷二维材料由于具有低毒性、高生物相容性、高消光系数和高光热转换效率,在生物医用领域,尤其是癌症治疗方面具有极大的应用潜力,因此,有必要开发一种基于黑磷的水凝胶光控释药系统,解决现有水凝胶药物载体临床应用困难的问题。
发明内容
鉴于此,本发明提供了一种基于黑磷的水凝胶近红外光可控释药系统,其具有近红外光响应,可通过近红外光照射在体内实现胶凝状态到溶胶状态的转变,从而实现局部光控释药,有效杀死病灶部位肿瘤细胞,并且同时具备可控降解特性。
具体地,第一方面,本发明提供了一种基于黑磷的水凝胶近红外光可控释药系统,包括琼脂糖水凝胶载体、以及负载在所述琼脂糖水凝胶载体中的黑磷纳米薄片和抗癌药物。
本发明提供的近红外光可控释药系统,以琼脂糖水凝胶作为药物控释载体,以黑磷作为光敏剂,由于黑磷具有非常高的光热转化效率,因此在近红外光的作用下,黑磷将产生大量热使得胶凝状态的琼脂糖水凝胶溶解呈溶胶状态,从而实现抗癌药物的可控释放,同时黑磷自身在高强度的近红外光作用下发生降解,因此本发明释药系统可同时实现药物载体和光敏剂的可控降解,从而有望显著提高癌症治疗的临床疗效。
本发明中,所述琼脂糖水凝胶载体的溶胶温度为40℃-50℃,所述释药系统在40℃以下为胶凝状态,而在40℃-50℃转变为溶胶状态。具体地,溶胶温度可以是40℃、42℃、45℃、48℃、50℃。选择溶胶温度较低的琼脂糖,一方面可以使得释药系统在没有近红外光作用的时候为胶凝状态,将抗癌药物和黑磷束缚住,有利于实现对病灶部位进行局部给药,同时提高抗癌药物的利用率,避免抗癌药物对正常组织细胞的伤害;另一方面可使得释药系统在有近红外光作用时,能够借助黑磷纳米薄片的光热转换效应产生的热量溶解,实现体内光控释药。
本发明中,所述释药系统中,所述黑磷纳米薄片的含量为0.01-1mg/mL,所述抗癌药物的质量含量为0.01-1mg/mL。进一步地,黑磷纳米薄片的含量为0.2-0.5mg/mL,所述抗癌药物的质量含量为0.2-0.5mg/mL。所述适合的黑磷纳米薄片含量有利于提高近红外光可控释药系统的稳定性和可控释药能力。抗癌药物的质量含量可根据具体抗癌药物种类和用药量需求进行合理设定。
本发明中,所述琼脂糖水凝胶载体由琼脂糖与水构成,具有交织的网络结构,所述琼脂糖水凝胶载体中琼脂糖的质量含量为0.5%-2%,进一步地,琼脂糖的质量含量为0.8%-1.5%或1.0%-1.2%。琼脂糖的质量含量直接影响着凝胶的网孔尺寸和机械强度。
本发明中,所述黑磷纳米薄片的长宽尺寸为50nm-200nm;所述黑磷纳米薄片的厚度为1nm-5nm。可选地,黑磷纳米薄片的尺寸为50nm-150nm、100nm-150nm、120nm-180nm、160nm-200nm。可选地,厚度为1-3nm或2-4nm。适合的黑磷纳米薄片长宽尺寸和厚度有利于其在琼脂糖水凝胶中的均匀分散及对近红外辐射的吸收。
由于黑磷纳米薄片表面具有强负电性,因此所述抗癌药物部分吸附在所述黑磷纳米薄片表面,部分独立分散于所述琼脂糖水凝胶载体形成的网络结构中。
本发明中,所述黑磷纳米薄片表面包覆有聚乙二醇胺,所述黑磷纳米薄片与聚乙二醇胺的质量比为1∶0.5-2。进一步地,所述黑磷纳米薄片与聚乙二醇胺的质量比为1∶0.8-1.5或1∶1-1.2。所述聚乙二醇胺包括甲基聚乙二醇胺(CH3-PEG-NH2)、甲氧基聚乙二醇胺(CH3O-PEG-NH2,简称为mPEG-NH2)和聚乙二醇二胺(NH2-PEG-NH2)中的至少一种。所述聚乙二醇胺通过静电引力吸附在所述黑磷纳米薄片表面,所述聚乙二醇胺的重均分子量为2000-30000。聚乙二醇胺可以提高黑磷纳米薄片的生物相容性,有效避免黑磷纳米薄片发生聚集并提高黑磷纳米片在水溶液中的稳定性,因此可使黑磷纳米薄片均匀稳定分散在所述水凝胶载体中,实现良好的光控释药。
所述抗癌药物包括目前常用的治疗癌症的药物,如阿霉素。
本发明的基于黑磷的水凝胶近红外光可控释药系统的尺寸可依据实际应用环境而定,体积可从微纳米级别到厘米级别。本发明的基于黑磷的水凝胶近红外光可控释药系统在常温下为固态,当进行体内注射时,加热使其转变成溶胶状态,待注入体内后在生理环境温度下又迅速转化成胶凝状态,后续再通过近红外光作用转变成溶胶状态,实现药物释放。
本发明中,所述黑磷纳米薄片和琼脂糖均具有很好的生物相容性,可通过生物降解或者正常的生理途径排出体外,对生物体无毒副作用、生物安全性高。
本发明第一方面提供的基于黑磷的水凝胶近红外光可控释药系统,其具有近红外光(700-1500nm)响应,兼具黑磷光热材料的光热杀死肿瘤和化疗药物的化疗治疗肿瘤的功效,对于癌症(如乳腺癌等)治疗具有极高的临床价值。
第二方面,本发明提供了一种基于黑磷的水凝胶近红外光可控释药系统的制备方法,包括以下步骤:
提供黑磷纳米薄片,将所述黑磷纳米薄片分散到水相中,得到黑磷纳米薄片分散液;向上述分散液中加入抗癌药物,混合均匀后得到混合溶液,将所述混合溶液加热至50-70℃,再加入琼脂糖,冷却后形成水凝胶,即得到基于黑磷的水凝胶近红外光可控释药系统。
本发明中,所述黑磷纳米薄片的长宽尺寸为50nm-200nm;所述黑磷纳米薄片的厚度为1nm-5nm。可选地,黑磷纳米薄片的尺寸为50nm-150nm、100nm-150nm、120nm-180nm、160nm-200nm。可选地,厚度为1-3nm或2-4nm。所述黑磷纳米薄片的获得方式不限,例如可以是以块状黑磷为原料,采用溶液剥离结合探针超声法制备,并采用离心管离心方式收集、纯化得到,所述探针超声的超声时间为12-18小时,所述探针超声过程中,持续超声45秒-1小时,及等待15秒-1小时为一个周期,功放为20%-30%,所述离心的速率为1000rpm-2000rpm,时间为6-15分钟,温度为4℃。
本发明中,加热的温度可具体根据琼脂糖的溶胶温度而定,例如可以是50℃、60℃、70℃等。所述琼脂糖的溶胶温度为40℃-50℃,所述释药系统在40℃以下为胶凝状态,而在40℃-50℃转变为溶胶状态。具体地,溶胶温度可以是40℃、42℃、45℃、48℃、50℃。
本发明中,所述释药系统中,所述黑磷纳米薄片的含量为0.01-1mg/mL,所述抗癌药物的质量含量为0.01-1mg/mL。进一步地,黑磷纳米薄片的含量为0.2-0.5mg/mL,所述抗癌药物的质量含量为0.2-0.5mg/mL。
本发明中,所述琼脂糖水凝胶中琼脂糖的质量含量为0.5%-2%,进一步地,琼脂糖的质量含量为0.8%-1.5%或1.0%-1.2%。
本发明中,所述抗癌药物包括目前常用的治疗癌症的药物,如阿霉素。
本发明中,在加入所述抗癌药物之前,进一步包括在所述黑磷纳米薄片分散液中加入聚乙二醇胺,在搅拌作用下或超声结合搅拌的作用下得到聚乙二醇胺包覆的黑磷纳米薄片。所述搅拌的转速为800rpm-1200rpm,持续时间为2-4小时。所述超声的频率为3000-4500HZ,持续时间为0.5-2小时。所述超声和搅拌可以是依次进行,例如可以是先超声0.5小时,再搅拌3小时。所述聚乙二醇胺包括甲基聚乙二醇胺(CH3-PEG-NH2)、甲氧基聚乙二醇胺(CH3O-PEG-NH2,简称为mPEG-NH2)和聚乙二醇二胺(NH2-PEG-NH2)中的至少一种。所述聚乙二醇胺的重均分子量为2000-30000。
本发明第二方面提供的基于黑磷的水凝胶近红外光可控释药系统的制备方法,制备过程简单易操作,适于工业化生产。
附图说明
图1为本发明实施例1制备的基于黑磷的水凝胶近红外光可控释药系统的结构示意图;
图2为本发明实施例1中制备得到的聚乙二醇胺包覆的黑磷纳米薄片的结构示意图;
图3为本发明实施例1中制备得到的聚乙二醇胺包覆的黑磷纳米薄片的EDS(Energy Dispersive Spectrometer,能谱)图;
图4为本发明实施例的基于黑磷的水凝胶近红外光可控释药系统的释药和降解示意图;
图5为本发明实施例1制备的基于黑磷的水凝胶近红外光可控释药系统在Hela细胞中,光照不同时间下的体外细胞荧光成像;
图6为本发明实施例的基于黑磷的水凝胶近红外光可控释药系统随温度变化的药物释放曲线;
图7为本发明实施例1制备的基于黑磷的水凝胶近红外光可控释药系统在不同癌症细胞(Hela、MCF-7、A549和PC3)中的细胞毒性结果;
图8为不同凝胶体系作用下的细胞活性随时间变化的结果图。
具体实施方式
以下所述是本发明实施例的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明实施例原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也视为本发明实施例的保护范围。
实施例1
一种基于黑磷的水凝胶近红外光可控释药系统的制备方法,包括以下步骤:
(1)采用溶液剥离结合探针超声法制备黑磷纳米薄片:取50mg块状黑磷材料,置于100mL超纯水中,进行探针超声,所述探针超声法的超声时间为12小时,过程为持续超声45秒,等待15秒为一个周期,功放为20%;超声结束后,取棕黑色剥离液置于离心管中,1000rpm离心10分钟,温度为4℃,沉淀未被剥离的块状黑磷,并小心分离沉淀的块状黑磷和上清液中的黑磷纳米薄片,以进一步提纯分离黑磷纳米薄片;
(2)将上述所得黑磷纳米薄片分散到水中,依次采用超声与磁力搅拌的方式,在黑磷纳米薄片的表面包覆聚乙二醇胺,得到包含有聚乙二醇胺包覆的黑磷纳米薄片的溶液;其中黑磷纳米薄片和聚乙二醇胺的质量比为1:2,超声的频率为4000HZ,持续时间为2小时,磁力搅拌转速为800rpm,持续时间为4小时;所述聚乙二醇胺为甲基聚乙二醇胺、甲氧基聚乙二醇胺和聚乙二醇二胺中的至少一种,聚乙二醇胺的重均分子量为2000-30000;
(3)向上述所得包含有聚乙二醇胺包覆的黑磷纳米薄片的溶液中加入抗癌药物阿霉素,得到混合溶液;
(4)将所述混合溶液加热至50℃,再向其中加入溶胶温度为40℃的琼脂糖,待琼脂糖完全溶解,冷却后形成水凝胶,即得到基于黑磷的水凝胶近红外光可控释药系统。
图1为本发明实施例1制备的基于黑磷的水凝胶近红外光可控释药系统的结构示意图,包括琼脂糖水凝胶载体10,均匀分布在所述琼脂糖水凝胶载体10中的黑磷纳米薄片20和抗癌药物30。本实施例制备得到的基于黑磷的水凝胶近红外光可控释药系统,黑磷纳米薄片的含量为0.5mg/mL(相当于500ppm),琼脂糖水凝胶载体中琼脂糖的质量浓度为1%,阿霉素的质量含量为0.1mg/mL。
图2和图3分别为本发明实施例1中步骤(2)制备得到的聚乙二醇胺包覆的黑磷纳米薄片的结构示意图和EDS能谱图;图中21为黑磷纳米薄片,22为聚乙二醇胺。从图3中C、O、N的峰位可以获知黑磷上包覆了聚乙二醇胺。
本发明实施例制备得到的基于黑磷的水凝胶近红外光可控释药系统可实现对病灶部位进行局部给药,给药完成后,通过808nm近红外波段激光激发,黑磷纳米薄片将发挥其超强的光热转换性能,提供大量热量使得胶凝态的琼脂糖水凝胶软化,提高抗癌药物在水凝胶中的扩散系数,从而快速释放药物;然后进一步提高激光功率,比如从开始的1W提高到2W,使水凝胶溶解,加快其降解,并加快内部的黑磷纳米薄片的降解,从而实现抗癌药物的可控释放,最终有效杀死病灶部位癌细胞。图4为本发明实施例制备的基于黑磷的水凝胶近红外光可控释药系统的释药和降解示意图。
图5中,a)、b)、c)、d)分别为本发明实施例1制备的基于黑磷的水凝胶近红外光可控释药系统在Hela细胞中,光照不同时间下的体外细胞荧光成像。从图中0min,5min,10min,15min的不同光照时间结果可以看出,随着光照时间的增加,释放出的阿霉素越多,正常癌细胞的数量不断减少,光照15min后,癌细胞基本全部死亡。
图6为本发明实施例1的基于黑磷的水凝胶近红外光可控释药系统随温度变化的药物释放曲线。图中曲线1代表温度曲线,曲线2代表释放到溶液中的药物的浓度,on表示加热,off表示停止加热。从图中结果可以看到,每次加热升温都会导致药物快速的释放出来,而停止加热的时候,药物释放速度很低。
实施例2
一种基于黑磷的水凝胶近红外光可控释药系统的制备方法,包括以下步骤:
(1)采用溶液剥离结合探针超声法制备黑磷纳米薄片:取50mg块状黑磷材料,置于100mL超纯水中,进行探针超声,所述探针超声法的超声时间为18小时,过程为持续超声1小时,等待1小时为一个周期,功放为20%。超声结束后,取棕黑色剥离液置于离心管中,2000rpm离心6分钟,温度为4℃,沉淀未被剥离的块状黑磷,并小心分离沉淀的块状黑磷和上清液中的黑磷纳米薄片,以进一步提纯分离黑磷纳米薄片;
(2)将上述所得黑磷纳米薄片分散到水中,依次采用超声与磁力搅拌的方式,在黑磷纳米薄片的表面包覆聚乙二醇胺,得到包含有聚乙二醇胺包覆的黑磷纳米薄片的溶液;其中黑磷纳米薄片和聚乙二醇胺的质量比为1:1,超声的频率为3500HZ,持续时间为0.5小时,磁力搅拌转速为1000rpm,持续时间为4小时;所述聚乙二醇胺为甲基聚乙二醇胺、甲氧基聚乙二醇胺和聚乙二醇二胺中的至少一种,聚乙二醇胺的重均分子量为2000-30000;
(3)向上述所得包含有聚乙二醇胺包覆的黑磷纳米薄片的溶液中加入抗癌药物阿霉素,得到混合溶液;
(4)将所述混合溶液加热至60℃,再向其中加入溶胶温度为45℃的琼脂糖,待琼脂糖完全溶解,冷却后形成水凝胶,即得到基于黑磷的水凝胶近红外光可控释药系统。本实施例制备得到的基于黑磷的水凝胶近红外光可控释药系统,黑磷纳米薄片的含量为1mg/mL,琼脂糖水凝胶载体中琼脂糖的质量浓度为0.5%,阿霉素的质量含量为0.1mg/mL。
实施例3
一种基于黑磷的水凝胶近红外光可控释药系统的制备方法,包括以下步骤:
(1)采用溶液剥离结合探针超声法制备黑磷纳米薄片,取50mg块状黑磷材料,置于100mL超纯水中,进行探针超声,所述探针超声法的超声时间为16小时,过程为持续超声1小时,等待1小时为一个周期,功放为25%。超声结束后,取棕黑色剥离液置于离心管中,1000rpm离心15分钟,温度为4℃,沉淀未被剥离的块状黑磷,并小心分离沉淀的块状黑磷和上清液中的黑磷纳米薄片,以进一步提纯分离黑磷纳米薄片;
(2)将上述所得黑磷纳米薄片分散到水中,依次采用超声与磁力搅拌的方式,在黑磷纳米薄片的表面包覆聚乙二醇胺,得到包含有聚乙二醇胺包覆的黑磷纳米薄片的溶液;其中黑磷纳米薄片和聚乙二醇胺的质量比为1:0.5,超声的频率为4000HZ,持续时间为1小时,磁力搅拌转速为1200rpm,持续时间为4小时;所述聚乙二醇胺为甲基聚乙二醇胺、甲氧基聚乙二醇胺和聚乙二醇二胺中的至少一种,聚乙二醇胺的重均分子量为2000-30000;
(3)向上述所得包含有聚乙二醇胺包覆的黑磷纳米薄片的溶液中加入抗癌药物阿霉素,得到混合溶液;
(4)将所述混合溶液加热至70℃,再向其中加入溶胶温度为50℃的琼脂糖,待琼脂糖完全溶解,冷却后形成水凝胶,即得到基于黑磷的水凝胶近红外光可控释药系统。本实施例制备得到的基于黑磷的水凝胶近红外光可控释药系统,黑磷纳米薄片的质量浓度为0.2mg/mL,琼脂糖水凝胶载体中琼脂糖的质量浓度为2%,阿霉素的质量含量为0.5mg/mL。
实施例4
一种基于黑磷的水凝胶近红外光可控释药系统的制备方法,包括以下步骤:
(1)采用溶液剥离结合探针超声法制备黑磷纳米薄片,取50mg块状黑磷材料,置于100mL超纯水中,进行探针超声,所述探针超声法的超声时间为14小时,过程为持续超声0.5小时,等待0.5小时为一个周期,功放为30%。超声结束后,取棕黑色剥离液置于离心管中,2000rpm离心10分钟,温度为4℃,沉淀未被剥离的块状黑磷,并小心分离沉淀的块状黑磷和上清液中的黑磷纳米薄片,以进一步提纯分离黑磷纳米薄片;
(2)将上述所得黑磷纳米薄片分散到水中,依次采用超声与磁力搅拌的方式,在黑磷纳米薄片的表面包覆聚乙二醇胺,得到包含有聚乙二醇胺包覆的黑磷纳米薄片的溶液;其中黑磷纳米薄片和聚乙二醇胺的质量比为1:1,超声的频率为4500HZ,持续时间为1.5小时,磁力搅拌转速为1000rpm,持续时间为3小时;所述聚乙二醇胺为甲基聚乙二醇胺、甲氧基聚乙二醇胺和聚乙二醇二胺中的至少一种,聚乙二醇胺的重均分子量为2000-30000;
(3)向上述所得包含有聚乙二醇胺包覆的黑磷纳米薄片的溶液中加入抗癌药物阿霉素,得到混合溶液;
(4)将所述混合溶液加热至55℃,再向其中加入溶胶温度为45℃的琼脂糖,待琼脂糖完全溶解,冷却后形成水凝胶,即得到基于黑磷的水凝胶近红外光可控释药系统。本实施例制备得到的基于黑磷的水凝胶近红外光可控释药系统,黑磷纳米薄片的质量浓度为0.05mg/mL,琼脂糖水凝胶载体中琼脂糖的质量浓度为1.5%,阿霉素的质量含量为1mg/mL。
图7为本发明实施例制备的不同黑磷浓度的基于黑磷的水凝胶近红外光可控释药系统在不同癌症细胞(A549、Hela、PC3和MCF-7)中的毒性结果;图中共有四组不同黑磷浓度(0mg/mL、0.05mg/mL、0.2mg/mL、0.5mg/mL)的实验,每组实验中,从左至右每个柱子依次记为1、2、3、4,其中1代表A549,2代表Hela、3代表PC3,4代表MCF-7。从图中可以看出,本发明实施例的基于黑磷的水凝胶近红外光可控释药系统在无激光照射情况下不具备细胞毒性,生物安全性好、无毒副作用。
图8为不同凝胶体系作用下的细胞活性随时间变化的结果图。其中纵坐标代表细胞活性,100%表示细胞活性最高,0表示细胞全部凋亡;横坐标代表细胞由不同凝胶体系作用的时间,图中具体显示了作用时间分别为0min、5min、10min、15min的四组实验结果,每组结果中,从左至右每个柱子依次记为1、2、3、4,其中1代表只采用激光照射的情况;2代表加入本发明实施例1的基于黑磷的水凝胶近红外光可控释药系统,但没有激光照射的情况;3代表加入本发明实施例1的基于黑磷的水凝胶近红外光可控释药系统的情况(黑磷浓度为0.5mg/mL,琼脂糖质量含量为1%);4代表加入本发明实施例2的基于黑磷的水凝胶近红外光可控释药系统的情况(黑磷浓度为1mg/mL,琼脂糖质量含量为0.5%)。图中结果显示,采用本发明实施例提供的基于黑磷的水凝胶近红外光可控释药系统的实验组3和4,随着时间的推移,癌细胞明显减少,且实验组4的效果优于实验组3。

Claims (11)

1.一种基于黑磷的水凝胶近红外光可控释药系统,其特征在于,包括琼脂糖水凝胶载体、以及负载在所述琼脂糖水凝胶载体中的黑磷纳米薄片和抗癌药物。
2.如权利要求1所述的基于黑磷的水凝胶近红外光可控释药系统,其特征在于,所述琼脂糖水凝胶载体的溶胶温度为40℃-50℃,所述释药系统在40℃以下为胶凝状态,而在40℃-50℃转变为溶胶状态。
3.如权利要求1所述的基于黑磷的水凝胶近红外光可控释药系统,其特征在于,所述释药系统中,所述黑磷纳米薄片的含量为0.01mg/mL-1mg/mL,所述抗癌药物的质量含量为0.01mg/mL-1mg/mL。
4.如权利要求1所述的基于黑磷的水凝胶近红外光可控释药系统,其特征在于,所述琼脂糖水凝胶载体中琼脂糖的质量含量为0.5%-2%。
5.如权利要求1所述的基于黑磷的水凝胶近红外光可控释药系统,其特征在于,所述黑磷纳米薄片的长宽尺寸为50nm-200nm;所述黑磷纳米薄片的厚度为1nm-5nm。
6.如权利要求1所述的基于黑磷的水凝胶近红外光可控释药系统,其特征在于,所述抗癌药物部分吸附在所述黑磷纳米薄片表面,部分独立分散于所述琼脂糖水凝胶载体形成的网络结构中。
7.如权利要求1所述的基于黑磷的水凝胶近红外光可控释药系统,其特征在于,所述黑磷纳米薄片表面包覆有聚乙二醇胺,所述黑磷纳米薄片与聚乙二醇胺的质量比为1∶0.5-2。
8.如权利要求7所述的基于黑磷的水凝胶近红外光可控释药系统,其特征在于,所述聚乙二醇胺通过静电引力吸附在所述黑磷纳米薄片表面,所述聚乙二醇胺包括甲基聚乙二醇胺、甲氧基聚乙二醇胺和聚乙二醇二胺中的至少一种,所述聚乙二醇胺的重均分子量为2000-30000。
9.如权利要求1所述的基于黑磷的水凝胶近红外光可控释药系统,其特征在于,所述抗癌药物包括阿霉素。
10.一种基于黑磷的水凝胶近红外光可控释药系统的制备方法,其特征在于,包括以下步骤:
提供黑磷纳米薄片,将所述黑磷纳米薄片分散到水相中,得到黑磷纳米薄片分散液;向上述分散液中加入抗癌药物,混合均匀后得到混合溶液,将所述混合溶液加热至50-70℃,再加入琼脂糖,冷却后形成水凝胶,即得到基于黑磷的水凝胶近红外光可控释药系统。
11.如权利要求10所述的制备方法,其特征在于,进一步包括在加入所述抗癌药物之前,在所述黑磷纳米薄片分散液中加入聚乙二醇胺,在搅拌作用下得到聚乙二醇胺包覆的黑磷纳米薄片。
CN201711307308.0A 2017-12-11 2017-12-11 一种基于黑磷的水凝胶近红外光可控释药系统及其制备方法 Pending CN107961213A (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201711307308.0A CN107961213A (zh) 2017-12-11 2017-12-11 一种基于黑磷的水凝胶近红外光可控释药系统及其制备方法
PCT/CN2018/071703 WO2019114066A1 (zh) 2017-12-11 2018-01-08 一种基于黑磷的水凝胶近红外光可控释药系统及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711307308.0A CN107961213A (zh) 2017-12-11 2017-12-11 一种基于黑磷的水凝胶近红外光可控释药系统及其制备方法

Publications (1)

Publication Number Publication Date
CN107961213A true CN107961213A (zh) 2018-04-27

Family

ID=61998469

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711307308.0A Pending CN107961213A (zh) 2017-12-11 2017-12-11 一种基于黑磷的水凝胶近红外光可控释药系统及其制备方法

Country Status (2)

Country Link
CN (1) CN107961213A (zh)
WO (1) WO2019114066A1 (zh)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110279650A (zh) * 2019-05-31 2019-09-27 谢中建 一种基于碲烯的水凝胶近红外光可控释药系统
CN110279651A (zh) * 2019-05-31 2019-09-27 谢中建 一种基于黑磷的水凝胶近红外光可控释免疫药系统
CN110801429A (zh) * 2019-10-25 2020-02-18 深圳大学 一种释药纤维管及其制备方法和药物控释支架与应用
CN111220579A (zh) * 2018-11-27 2020-06-02 中国科学院深圳先进技术研究院 一种基于功能化黑磷生物传感器检测循环肿瘤核酸的方法
CN111265714A (zh) * 2020-03-11 2020-06-12 四川大学 黒磷功能化的可注射水凝胶及其制备方法和应用
CN111840550A (zh) * 2020-07-28 2020-10-30 清华大学 一种利用脉冲激光控制药物释放的方法及系统
CN111939119A (zh) * 2020-09-01 2020-11-17 深圳瀚光科技有限公司 一种基于黑磷水凝胶的纳米递药系统及其制备方法和应用
CN112089838A (zh) * 2020-09-25 2020-12-18 深圳大学 肿瘤微环境响应的黑磷纳米凝胶药物及其制备方法和应用
CN112220758A (zh) * 2020-10-16 2021-01-15 温州医科大学附属第二医院(温州医科大学附属育英儿童医院) 一种具有光热响应性的可融化水凝胶载药微球的制备及其在细胞扩增中的应用
CN113198042A (zh) * 2021-04-25 2021-08-03 华南理工大学 一种负载生长因子的可注射纳米复合水凝胶材料及其构建方法与应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105903015A (zh) * 2016-05-24 2016-08-31 上海理工大学 一种多功能温敏琼脂糖水凝胶及其制备方法和用途
CN106620699A (zh) * 2016-11-25 2017-05-10 深圳大学 一种靶向光热黑磷纳米制剂及其制备方法和应用
CN106853248A (zh) * 2015-12-09 2017-06-16 首都师范大学 一种光热复合纳米材料及其制备方法与应用
CN107007865A (zh) * 2017-05-05 2017-08-04 湖北大学 一种壳聚糖‑黑磷复合水凝胶及其制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108697810A (zh) * 2015-12-18 2018-10-23 联邦科学与工业研究组织 用于剂的控制释放的聚合物复合材料
CN106267204B (zh) * 2016-09-21 2019-08-27 中南大学 一种黑磷纳米片-抗肿瘤化合物的复合材料及其制备方法和应用
CN107416846B (zh) * 2016-12-29 2020-08-04 深圳大学 一种石墨烯/黑磷纳米片/含硫离子液体复合气凝胶及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106853248A (zh) * 2015-12-09 2017-06-16 首都师范大学 一种光热复合纳米材料及其制备方法与应用
CN105903015A (zh) * 2016-05-24 2016-08-31 上海理工大学 一种多功能温敏琼脂糖水凝胶及其制备方法和用途
CN106620699A (zh) * 2016-11-25 2017-05-10 深圳大学 一种靶向光热黑磷纳米制剂及其制备方法和应用
CN107007865A (zh) * 2017-05-05 2017-08-04 湖北大学 一种壳聚糖‑黑磷复合水凝胶及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CAIXIA SUN, ET AL.: "One-pot solventless preparation of PEGylated black phosphorus", 《BIOMATERIALS》 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111220579A (zh) * 2018-11-27 2020-06-02 中国科学院深圳先进技术研究院 一种基于功能化黑磷生物传感器检测循环肿瘤核酸的方法
CN111220579B (zh) * 2018-11-27 2023-02-24 中国科学院深圳先进技术研究院 一种基于功能化黑磷生物传感器检测循环肿瘤核酸的方法
CN110279650A (zh) * 2019-05-31 2019-09-27 谢中建 一种基于碲烯的水凝胶近红外光可控释药系统
CN110279651A (zh) * 2019-05-31 2019-09-27 谢中建 一种基于黑磷的水凝胶近红外光可控释免疫药系统
CN110801429A (zh) * 2019-10-25 2020-02-18 深圳大学 一种释药纤维管及其制备方法和药物控释支架与应用
CN110801429B (zh) * 2019-10-25 2023-04-07 深圳大学 一种释药纤维管及其制备方法和药物控释支架与应用
CN111265714A (zh) * 2020-03-11 2020-06-12 四川大学 黒磷功能化的可注射水凝胶及其制备方法和应用
CN111840550A (zh) * 2020-07-28 2020-10-30 清华大学 一种利用脉冲激光控制药物释放的方法及系统
CN111939119A (zh) * 2020-09-01 2020-11-17 深圳瀚光科技有限公司 一种基于黑磷水凝胶的纳米递药系统及其制备方法和应用
CN112089838A (zh) * 2020-09-25 2020-12-18 深圳大学 肿瘤微环境响应的黑磷纳米凝胶药物及其制备方法和应用
CN112220758A (zh) * 2020-10-16 2021-01-15 温州医科大学附属第二医院(温州医科大学附属育英儿童医院) 一种具有光热响应性的可融化水凝胶载药微球的制备及其在细胞扩增中的应用
CN113198042A (zh) * 2021-04-25 2021-08-03 华南理工大学 一种负载生长因子的可注射纳米复合水凝胶材料及其构建方法与应用

Also Published As

Publication number Publication date
WO2019114066A1 (zh) 2019-06-20

Similar Documents

Publication Publication Date Title
CN107961213A (zh) 一种基于黑磷的水凝胶近红外光可控释药系统及其制备方法
CN110279651A (zh) 一种基于黑磷的水凝胶近红外光可控释免疫药系统
Chang et al. Cu2MoS4/Au Heterostructures with Enhanced Catalase‐Like Activity and Photoconversion Efficiency for Primary/Metastatic Tumors Eradication by Phototherapy‐Induced Immunotherapy
Zhang et al. Near-infrared-triggered in situ hybrid hydrogel system for synergistic cancer therapy
Ni et al. Uniformly sized hollow microspheres loaded with polydopamine nanoparticles and doxorubicin for local chemo-photothermal combination therapy
Zhao et al. Self-assembled ZnO nanoparticle capsules for carrying and delivering isotretinoin to cancer cells
CN105797157B (zh) 一种多孔核壳双金属有机框架纳米载药体的制备方法和应用
CN107007835B (zh) 载普鲁士蓝靶向纳米复合物及其制备方法
Chiang et al. Biofunctional core-shell polypyrrole–polyethylenimine nanocomplex for a locally sustained photothermal with reactive oxygen species enhanced therapeutic effect against lung cancer
CN108653754A (zh) 一种透明质酸靶向聚多巴胺包覆相变型液态氟碳纳米超声造影剂
CN104758948B (zh) 基于金纳米星的多功能抗肿瘤靶向诊断治疗药物的制备方法及应用
Gao et al. AuNRs@ MIL-101-based stimuli-responsive nanoplatform with supramolecular gates for image-guided chemo-photothermal therapy
CN104013960B (zh) 一种靶向光热治疗用水溶性复合物及其制备方法与应用
CN108030922A (zh) 温敏金纳米笼及制备方法和应用、载药温敏金纳米笼及制备方法
CN104940945A (zh) 一种透明质酸修饰的中空介孔硫化铜复合物及其制备方法与应用
Li et al. Nanodiamond-based multifunctional platform for oral chemo-photothermal combinational therapy of orthotopic colon cancer
CN104548095A (zh) 一种PLGA/MoS2复合药物支架材料及其制备方法和应用
CN109999197A (zh) 肿瘤靶向的纳米复合物、制备方法及其在声动力介导的肿瘤精准治疗中的应用
Li et al. Cobalt phosphide nanoparticles applied as a theranostic agent for multimodal imaging and anticancer photothermal therapy
CN110339359B (zh) 一种近红外光热疗栓塞微球及其制备方法和应用
CN104721131B (zh) 一种用于肿瘤原位治疗的凝胶制剂及制备方法
CN109316485A (zh) 一种共价有机框架材料的抗肿瘤应用
CN104971365B (zh) 纳米炭混悬注射剂的新用途
CN116059360A (zh) 一种基于黑磷纳米片的智能近红外光响应复合水凝胶及其制备方法和应用
CN104288093B (zh) 纳米药物透皮制剂在肿瘤中的应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20180427