CN107946357A - 具有低米勒电容的igbt器件 - Google Patents

具有低米勒电容的igbt器件 Download PDF

Info

Publication number
CN107946357A
CN107946357A CN201711442211.0A CN201711442211A CN107946357A CN 107946357 A CN107946357 A CN 107946357A CN 201711442211 A CN201711442211 A CN 201711442211A CN 107946357 A CN107946357 A CN 107946357A
Authority
CN
China
Prior art keywords
type
epitaxial layer
conduction type
control gate
grid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201711442211.0A
Other languages
English (en)
Inventor
牛博
姜梅
许生根
姚阳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu CAS IGBT Technology Co Ltd
Original Assignee
Jiangsu CAS IGBT Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu CAS IGBT Technology Co Ltd filed Critical Jiangsu CAS IGBT Technology Co Ltd
Priority to CN201711442211.0A priority Critical patent/CN107946357A/zh
Publication of CN107946357A publication Critical patent/CN107946357A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/552Protection against radiation, e.g. light or electromagnetic waves
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42356Disposition, e.g. buried gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42364Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Electromagnetism (AREA)
  • Toxicology (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

本发明涉及一种具有低米勒电容的IGBT器件,其元胞结构包括第二导电类型体区、第一导电类型源区以及栅极多晶硅体,栅极多晶硅体包括屏蔽栅以及控制栅,控制栅、屏蔽栅分别通过控制栅氧化层、屏蔽栅氧化层与第一导电类型外延层间隔;所述控制栅与下方的第二导电类型体区、第一导电类型源区交叠,屏蔽栅位于第二类型体区之间;在所述第一导电类型外延层上方还设置发射极金属,所述发射极金属与第二导电类型体区、第一导电类型源区以及屏蔽栅欧姆接触,且发射极金属通过绝缘介质层与控制栅绝缘隔离。本发明结构紧凑,能有效降低IGBT器件的米勒电容,提高IGBT开关速度,从而降低IGBT器件的功耗,安全可靠。

Description

具有低米勒电容的IGBT器件
技术领域
本发明涉及一种IGBT器件,尤其是一种具有低米勒电容的IGBT器件,属于IGBT器件的技术领域。
背景技术
IGBT(Insulate Gate Bipolar Transistor),即绝缘双极晶体管,由于其优越的器件性能和可靠性,已成为中高功率电子领域的主流功率开关器件,广泛应用于工业、信息、新能源、医学、交通、军事和航空领域。
IGBT自发明以来,一直朝着低功耗、高频率和高可靠性的方向发展。关于IGBT的功率损耗,主要由静态损耗和动态损耗构成,静态损耗和动态损耗存在着折中关系。对现有的IGBT结构需要进行优化设计,才能优化静态损耗和动态损耗的折中关系,从而降低器件的整体功率损耗。
IGBT的开关过程就是对栅极电容进行充放电的过程,栅极电容越大,充放电时间越长,因此,在IGBT开关过程中,栅极电容特别是米勒电容对器件的动态损耗具有重要影响。
米勒电容是集电极与栅电极之间的电容,由栅电极面积、栅电极下方的介质、外延层中的结电容等决定。现有的平面型IGBT,由于覆盖在外延层表面的栅电极面积较大,造成米勒电容偏大,制约了IGBT开关速度的提升。
发明内容
本发明的目的是克服现有技术中存在的不足,提供一种具有低米勒电容的IGBT器件,其结构紧凑,能有效降低IGBT器件的米勒电容,提高IGBT开关速度,从而降低IGBT器件的功耗,安全可靠。
按照本发明提供的技术方案,所述具有低米勒电容的IGBT器件,包括半导体基板,所述半导体基板包括第一导电类型外延层以及设置于所述第一导电类型外延层上的元胞结构;
在所述IGBT器件的截面上,元胞结构包括对称分布于第一导电类型外延层内的第二导电类型体区,在每个第二导电类型体区内设置第一导电类型源区;在第一导电类型外延层上方设置栅极多晶硅体,所述栅极多晶硅体包括屏蔽栅以及对称分布于所述屏蔽栅两侧的控制栅,所述控制栅、屏蔽栅分别通过控制栅氧化层、屏蔽栅氧化层与第一导电类型外延层间隔;所述控制栅与下方的第二导电类型体区、第一导电类型源区交叠,屏蔽栅位于第二类型体区之间;
在所述第一导电类型外延层上方还设置发射极金属,所述发射极金属与第二导电类型体区、第一导电类型源区以及屏蔽栅欧姆接触,且发射极金属通过绝缘介质层与控制栅绝缘隔离。
所述屏蔽栅氧化层的厚度大于控制栅氧化层的厚度,所述屏蔽栅氧化层的厚度为0.8μm~1.2μm。
还包括集电极结构,所述集电极结构包括位于第一导电类型外延层下方的第一导电类型场截止层、第二导电类型集电区,第一导电类型场截止层位于第二导电类型集电区与第一导电类型外延层间,且第一导电类型场截止层邻接第一导电类型外延层以及第二导电类型集电区,第二导电类型集电区上设置集电极金属,所述集电极金属与第二导电类型集电区欧姆接触。
所述“第一导电类型”和“第二导电类型”两者中,对于N型功率IGBT器件,第一导电类型指N型,第二导电类型为P型;对于P型功率IGBT器件,第一导电类型与第二导电类型所指的类型与N型半导体器件正好相反。
本发明的优点:栅极多晶硅体分成屏蔽栅、控制栅,屏蔽栅与发射极金属欧姆接触,能使得集电极与栅电极的交叠面积减小。同时,在屏蔽栅通过屏蔽栅氧化层与第一导电类型外延层7隔离,屏蔽栅氧化层的厚度大于控制栅氧化层的厚度,通过屏蔽栅氧化层可以起到减小电容的效果。屏蔽栅由于与发射极金属等电位,还可以对第一导电类型外延层表面的电荷起到屏蔽作用,从而可以使米勒电容减小,改善IGBT的开关特性。屏蔽栅氧化层还能减小JFET区域,从而减小IGBT的导通压降,结构紧凑,安全可靠。
附图说明
图1为本发明的剖视图。
附图标记说明:1-发射极金属、2-控制栅、3-屏蔽栅、4-P型第一体区、5-P型第二体区、6-N+源区、7-N型外延层、8-N型场截止层、9-P+集电区、10-集电极金属、11-控制栅氧化层、12-绝缘介质层以及13-控制栅氧化层。
具体实施方式
下面结合具体附图和实施例对本发明作进一步说明。
如图1所示:为了能有效降低IGBT器件的米勒电容,提高IGBT开关速度,从而降低IGBT器件的功耗,以N型IGBT器件为例,本发明包括半导体基板,所述半导体基板包括N型外延层7以及设置于所述N型外延层7上的元胞结构;
在所述IGBT器件的截面上,元胞结构包括对称分布于N型外延层7内的P型体区,在每个P型体区内设置N+源区6;在N型外延层7上方设置栅极多晶硅体,所述栅极多晶硅体包括屏蔽栅3以及对称分布于所述屏蔽栅3两侧的控制栅2,所述控制栅2、屏蔽栅3分别通过控制栅氧化层13、屏蔽栅氧化层11与N型外延层7间隔;所述控制栅2与下方的P型体区、N+源区6交叠,屏蔽栅3位于P型体区之间;
在所述N型外延层7上方还设置发射极金属1,所述发射极金属1与P型体区、N+源区6以及屏蔽栅3欧姆接触,且发射极金属1通过绝缘介质层12与控制栅2绝缘隔离。
具体地,半导体基板可以采用常用的半导体材料,如硅等,具体可以根据需要进行选择,此处不再一一列举。半导体基板内包括N型外延层7,元胞结构设置于N型外延层7上。
本发明实施例中,采用平面栅结构,因此,在IGBT器件的截面上,P型体区对称分布于N型外延层7内,一般地,P型体区包括P型第一体区4以及P型第二体区5,P型第一体区4与P型第二体区5连接,P型第一体区4的掺杂浓度大于P型第二体区5的掺杂浓度。对于元胞结构内的两个P型体区中,P型第二体区5相互靠近。N+源区6设置于P型体区内,N+源区6的掺杂浓度大于N型外延层7的掺杂浓度。
栅极多晶硅体位于N型外延层7的上方,本发明实施例中,栅极多晶硅体包括控制栅2与屏蔽栅3的组合,即屏蔽栅3、控制栅2均采用导电多晶硅制成,控制栅2与屏蔽栅3间通过绝缘介质层12绝缘隔离。屏蔽栅3的正下方为N型外延层7,控制栅2的下方为P型体区、N+源区6以及N型外延层7。控制栅2远离屏蔽栅3的一端与下方的P型体区、N+源区6部分交叠,控制栅2靠近屏蔽栅3的一端与下方的N型外延层7交叠。本发明实施例中,所述交叠具体是指对控制栅2正投影时,与下方的区域能够重叠。
具体实施时,所述屏蔽栅氧化层11的厚度大于控制栅氧化层13的厚度,所述控制栅氧化层11的厚度为0.8μm~1.2μm。屏蔽栅氧化层11可以采用局部氧化等工艺制备得到,控制栅2邻近屏蔽栅3的一端还部分搭在屏蔽栅氧化层11上。
发射极金属1与P型体区、N+源区6以及屏蔽栅3欧姆接触,通过发射极金属1能形成IGBT器件的发射极,通过将控制栅2引出后能形成IGBT器件的栅电极,具体形成栅电极的具体结构等为本技术领域人员所熟知,此处不再赘述。发射极金属1通过绝缘介质层12与控制栅2绝缘隔离。
进一步地,还包括集电极结构,所述集电极结构包括位于N型外延层7下方的N型场截止层8、P+集电区9,N型场截止层8位于P+集电区9与N型外延层7间,且N型场截止层8邻接N型外延层7以及P+集电区9,P+集电区9上设置集电极金属10,所述集电极金属10与P+集电区9欧姆接触。
本发明实施例中,N型场截止层8的掺杂浓度大于N型外延层7的掺杂浓度,集电极金属10与P+集电区9欧姆接触,通过集电极金属10能形成IGBT器件的集电极,具体为本技术领域人员所熟知,此处不再赘述。
本发明栅极多晶硅体分成屏蔽栅3、控制栅2,屏蔽栅3与发射极金属1欧姆接触,能使得集电极与栅电极的交叠面积减小。同时,在屏蔽栅3通过屏蔽栅氧化层11与N型外延层7隔离,屏蔽栅氧化层11的厚度大于控制栅氧化层13的厚度,通过屏蔽栅氧化层可以起到减小电容的效果。屏蔽栅3由于与发射极金属1等电位,还可以对N型外延层7表面的电荷起到屏蔽作用,从而可以使米勒电容减小,改善IGBT的开关特性。屏蔽栅氧化层11还能减小JFET区域,从而减小IGBT的导通压降,结构紧凑,安全可靠。

Claims (3)

1.一种具有低米勒电容的IGBT器件,包括半导体基板,所述半导体基板包括第一导电类型外延层以及设置于所述第一导电类型外延层上的元胞结构;其特征是:
在所述IGBT器件的截面上,元胞结构包括对称分布于第一导电类型外延层内的第二导电类型体区,在每个第二导电类型体区内设置第一导电类型源区;在第一导电类型外延层上方设置栅极多晶硅体,所述栅极多晶硅体包括屏蔽栅以及对称分布于所述屏蔽栅两侧的控制栅,所述控制栅、屏蔽栅分别通过控制栅氧化层、屏蔽栅氧化层与第一导电类型外延层间隔;所述控制栅与下方的第二导电类型体区、第一导电类型源区交叠,屏蔽栅位于第二类型体区之间;
在所述第一导电类型外延层上方还设置发射极金属,所述发射极金属与第二导电类型体区、第一导电类型源区以及屏蔽栅欧姆接触,且发射极金属通过绝缘介质层与控制栅绝缘隔离。
2.根据权利要求1所述的具有低米勒电容的IGBT器件,其特征是:所述屏蔽栅氧化层的厚度大于控制栅的厚度,所述屏蔽栅氧化层的厚度为0.8μm~1.2μm。
3.根据权利要求1所述的具有低米勒电容的IGBT器件,其特征是:还包括集电极结构,所述集电极结构包括位于第一导电类型外延层下方的第一导电类型场截止层、第二导电类型集电区,第一导电类型场截止层位于第二导电类型集电区与第一导电类型外延层间,且第一导电类型场截止层邻接第一导电类型外延层以及第二导电类型集电区,第二导电类型集电区上设置集电极金属,所述集电极金属与第二导电类型集电区欧姆接触。
CN201711442211.0A 2017-12-27 2017-12-27 具有低米勒电容的igbt器件 Pending CN107946357A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711442211.0A CN107946357A (zh) 2017-12-27 2017-12-27 具有低米勒电容的igbt器件

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711442211.0A CN107946357A (zh) 2017-12-27 2017-12-27 具有低米勒电容的igbt器件

Publications (1)

Publication Number Publication Date
CN107946357A true CN107946357A (zh) 2018-04-20

Family

ID=61939337

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711442211.0A Pending CN107946357A (zh) 2017-12-27 2017-12-27 具有低米勒电容的igbt器件

Country Status (1)

Country Link
CN (1) CN107946357A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108565289A (zh) * 2018-06-26 2018-09-21 南京方旭智芯微电子科技有限公司 超结场效应管及超结场效应管的制造方法
CN108767001A (zh) * 2018-08-22 2018-11-06 江苏中科君芯科技有限公司 具有屏蔽栅的沟槽型igbt器件
CN108831927A (zh) * 2018-06-12 2018-11-16 北京世港晟华科技有限公司 超结金属氧化物半导体场效应晶体管及其制造方法
CN109065620A (zh) * 2018-08-22 2018-12-21 江苏中科君芯科技有限公司 一种具有低米勒电容的igbt器件

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102569386A (zh) * 2010-12-17 2012-07-11 上海华虹Nec电子有限公司 具有屏蔽栅的vdmos器件及其制备方法
CN102779847A (zh) * 2012-07-18 2012-11-14 电子科技大学 一种载流子存储的沟槽双极型晶体管
CN104681433A (zh) * 2015-01-26 2015-06-03 电子科技大学 一种fs-igbt的制备方法
CN105161540A (zh) * 2015-09-15 2015-12-16 电子科技大学 一种具有低米勒电容的vdmos器件结构及其制备方法
CN207818574U (zh) * 2017-12-27 2018-09-04 江苏中科君芯科技有限公司 具有低米勒电容的igbt器件

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102569386A (zh) * 2010-12-17 2012-07-11 上海华虹Nec电子有限公司 具有屏蔽栅的vdmos器件及其制备方法
CN102779847A (zh) * 2012-07-18 2012-11-14 电子科技大学 一种载流子存储的沟槽双极型晶体管
CN104681433A (zh) * 2015-01-26 2015-06-03 电子科技大学 一种fs-igbt的制备方法
CN105161540A (zh) * 2015-09-15 2015-12-16 电子科技大学 一种具有低米勒电容的vdmos器件结构及其制备方法
CN207818574U (zh) * 2017-12-27 2018-09-04 江苏中科君芯科技有限公司 具有低米勒电容的igbt器件

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108831927A (zh) * 2018-06-12 2018-11-16 北京世港晟华科技有限公司 超结金属氧化物半导体场效应晶体管及其制造方法
CN108565289A (zh) * 2018-06-26 2018-09-21 南京方旭智芯微电子科技有限公司 超结场效应管及超结场效应管的制造方法
CN108767001A (zh) * 2018-08-22 2018-11-06 江苏中科君芯科技有限公司 具有屏蔽栅的沟槽型igbt器件
CN109065620A (zh) * 2018-08-22 2018-12-21 江苏中科君芯科技有限公司 一种具有低米勒电容的igbt器件
CN108767001B (zh) * 2018-08-22 2023-08-15 江苏中科君芯科技有限公司 具有屏蔽栅的沟槽型igbt器件
CN109065620B (zh) * 2018-08-22 2023-10-13 江苏中科君芯科技有限公司 一种具有低米勒电容的igbt器件

Similar Documents

Publication Publication Date Title
CN103383958B (zh) 一种rc-igbt器件及其制作方法
CN107946357A (zh) 具有低米勒电容的igbt器件
CN108198851A (zh) 一种具有增强载流子存储效应的超结igbt
CN108389901A (zh) 一种载流子存储增强型超结igbt
CN103794647B (zh) 一种双向igbt器件及其制作方法
CN106653836A (zh) 具有低导通压降的绝缘栅双极型晶体管器件及其制造方法
CN108389902A (zh) 一种含有背面槽栅的逆导型igbt
WO2014117492A1 (zh) 一种绝缘栅双极晶体管
CN110379852A (zh) 能降低米勒电容的沟槽型igbt器件
CN107658214A (zh) 一种双沟槽的带浮空区的低导通电阻碳化硅mosfet器件与制备方法
CN109065620A (zh) 一种具有低米勒电容的igbt器件
CN108649068A (zh) Rc-igbt器件及其制备方法
CN117497579B (zh) 碳化硅igbt的结构、制造方法及电子设备
CN110534576A (zh) 一种分裂栅4H-SiC VDMOS器件
CN102544084B (zh) 一种双阳极短接的igbt器件
CN207818574U (zh) 具有低米勒电容的igbt器件
CN107134488B (zh) 一种载流子存储增强的绝缘栅双极型晶体管
CN109801911A (zh) 一种混合元胞型集成igbt器件
CN105047706B (zh) 一种低通态损耗igbt及其制造方法
CN110444595A (zh) 具有倒t型屏蔽栅的igbt器件
CN205211763U (zh) 一种高压肖特基二极管
CN109148572B (zh) 一种反向阻断型fs-igbt
CN103839802A (zh) 一种沟槽型igbt结构的制作方法
CN110416295A (zh) 一种沟槽型绝缘栅双极晶体管及其制备方法
CN209056501U (zh) 能提高加工良率的igbt器件

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination