CN107887103B - 一种磁电阻薄膜材料及其制备方法 - Google Patents

一种磁电阻薄膜材料及其制备方法 Download PDF

Info

Publication number
CN107887103B
CN107887103B CN201711169287.0A CN201711169287A CN107887103B CN 107887103 B CN107887103 B CN 107887103B CN 201711169287 A CN201711169287 A CN 201711169287A CN 107887103 B CN107887103 B CN 107887103B
Authority
CN
China
Prior art keywords
film
substrate
nife
nico
annealing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201711169287.0A
Other languages
English (en)
Other versions
CN107887103A (zh
Inventor
李明华
于广华
施辉
方帅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Science and Technology Beijing USTB
Original Assignee
University of Science and Technology Beijing USTB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Science and Technology Beijing USTB filed Critical University of Science and Technology Beijing USTB
Priority to CN201711169287.0A priority Critical patent/CN107887103B/zh
Publication of CN107887103A publication Critical patent/CN107887103A/zh
Application granted granted Critical
Publication of CN107887103B publication Critical patent/CN107887103B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/08Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers
    • H01F10/10Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3464Sputtering using more than one target
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5806Thermal treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/14Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/01Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/10Magnetoresistive devices

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Power Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Hall/Mr Elements (AREA)
  • Thin Magnetic Films (AREA)
  • Magnetic Heads (AREA)

Abstract

本发明属于磁性薄膜领域,尤其涉及一种磁电阻薄膜材料及其制备方法,其薄膜结构为:基片/Ta和半金属元素的合金化合物/(1.0~200.0nm)多层膜和半金属元素(如B、Si、As、Sb、Te、Po)的合金化合物。本发明的有益效果是,该方法是在NiFe(NiCo)或者MO/NiFe(NiCo)/MO两边沉积(1.0~20.0 nm)Ta和半金属元素的合金化合物的缓冲层和保护层。利用半金属材料特殊的物理化学性质来改善薄膜中输运电子的散射途径,延长电子的平均自由程,进而达到提高NiFe和NiCo薄膜的平面霍尔效应(PHE)灵敏度、改善其热稳定性的目的,以满足磁传感器的性能和产品需求。

Description

一种磁电阻薄膜材料及其制备方法
技术领域
本发明属于磁性薄膜领域,涉及一种磁电阻薄膜材料及其制备方法。
背景技术
自1954年戈登堡等人发现平面霍尔效应(PHE)之后,人们利用PHE效应制成各类传感器。近十几年来,利用PHE效应制成的传感器具有好的频率响应特性、线性度以及热稳定性,且材料成本低,制备工艺简单,可以广泛应用在信息、机电、电子、能源管理、汽车、磁信息读写及工业自动控制等领域。与巨磁电阻(GMR)和各向异性磁电阻(AMR)等传感器相比,PHE传感器具有低热漂移、更易获得线性响应、高的信噪比等优点,更适合测量微小磁场下沿电流方向的磁化偏移、微米或纳米磁系统下的反向磁化和磁畴结构。此外,PHE传感器在测量磁珠和生物分子、研究生物分子之间的反应上具有其独特的优势,在磁性生物传感器方面有很好的发展前景。目前文献所报导的PHE传感器的灵敏度普遍较低(大约为340V/AT),与半导体霍尔效应传感器的灵敏度(大约为1000V/AT)相比还有很大差距。因此,要想推广PHE传感器的应用,必需采取适当的措施提高其灵敏度。
具有较高灵敏度的PHE材料的制备是一项非常关键的工作,它是PHE传感器应用的基础。目前国际上还在不断地挖掘磁性PHE薄膜的潜力,提高其磁场灵敏度和热稳定性等,以扩大其应用领域。为了提高其灵敏度,采用适当的措施增大其信号大小或者降低其饱和场,或者通过合适的插层、退火等方法可以达到上述目的。
发明内容
为了解决上述问题,本发明的目的是提供工艺简单,具有较高的PHE灵敏度和好的热稳定性等综合性能的磁电阻薄膜材料及其制备方法。
本发明的技术方案是:一种磁电阻薄膜材料,该磁电阻薄膜材料包括基底、缓冲层、多层膜NiFe(NiCo)或者MO/NiFe(NiCo)/MO层(其中MO 为氧化物)、保护层。
其中,所述缓冲层和保护层均由金属Ta和半金属元素构成,所述金属Ta的质量百分比为:19.9-99.9%,剩余为半金属元素。
进一步,所述半金属元素为B、Si、As、Sb、 Te或Po的一种或多种。
进一步,所述基底为硅片、玻璃片或MgO基片。
本发明的另一目的是提供上述磁电阻薄膜材料的制备方法,该方法具体包括以下步骤:
步骤1:选取基底材料,进行清洗;
步骤2:采用共溅射方法沉积Ta和半金属元素合金化合物沉积在经步骤1处理后的基底材料上作为缓冲层,
步骤3:在所述缓冲层上沉积NiFe(NiCo)或者MO/NiFe(NiCo)/MO层;
步骤4:采用共溅射方法把Ta和半金属元素合金化合物沉积在NiFe(NiCo)或者MO/NiFe(NiCo)/MO层上作为保护层;
步骤5:将经过步骤4制备的薄膜在真空退火炉中进行退火处理,最终得到磁电阻薄膜材料。
进一步,所述共溅射方法的具体工艺为:溅射室本底真空度为1.0×10-4~9.9×10-4 Pa或者1.0×10-5~9.9×10-5 Pa,溅射前通入镀膜室99.99%纯度氩气0.5~1小时,维持在气压0.1~1.5 Pa;溅射时99.99%纯度的高纯氩气气压为0.2 ~2.7 Pa;基片用循环去离子水冷却,平行于基片平面方向加有5~60 kA/m的磁场。
进一步,所述步骤5的退火工艺为:退火炉本底真空为1.0×10-4~9.9×10-4 Pa或者1.0×10-5~9.9×10-5 Pa、退火温度为100-500℃,退火时间为10m-2h,退火时沿薄膜的易轴方向加5-100 kA/m的磁场,并在磁场中随炉冷却。
进一步,所述缓冲层和保护层的沉积厚度为:1.0~20.0nm。
进一步,所述多层膜层的沉积厚度为:1.0~200.0nm。
进一步,所述磁电阻薄膜材料的灵敏度最高达到2000V/AT,热稳定性达到500℃。
本发明的原理是:由于采用上述技术方案,该方法是在NiFe(NiCo)或者MO/NiFe(NiCo)/MO两边沉积(1.0~20.0 nm)Ta和半金属元素的合金化合物的缓冲层和保护层。利用半金属材料特殊的物理化学性质来改善薄膜中输运电子的散射途径,延长电子的自由程,进而达到提高NiFe和NiCo薄膜的PHE灵敏度、改善其热稳定性的目的,以满足磁传感器的性能和产品需求。
附图说明
图1为(a)Ta(3nm)/NiFe(5nm)/Ta(3nm)薄膜制备态的PHE曲线和(b)TaTe(5nm)/NiFe(5nm)/TaTe(3nm)薄膜500℃、2h退火的PHE曲线。
图2 是TaSe(5nm)/NiFe(5nm)/TaSe(3nm) 薄膜的500℃、2h退火的PHE曲线。
图3是TaTe(5nm)/MgO(2nm)/NiFe(5nm)/MgO(1nm)/TaTe(5nm)薄膜的500℃、2h退火的PHE曲线。
具体实施方式
下面结合附图和具体实施例对本发明的技术方案做进一步说明。
本发明一种磁电阻薄膜材料,该磁电阻薄膜材料包括基底、缓冲层、多层膜层和保护层;
其中,所述缓冲层和保护层均由金属Ta和半金属元素构成,所述金属Ta的质量百分比为:19.9-99.9%,剩余为半金属元素。
所述半金属元素为B、Si、As、Sb、 Te或Po中的一种或多种。
所述基底为硅片、玻璃片或MgO基片。
本发明的另一目的是提供上述磁电阻薄膜材料的制备方法,该方法具体包括以下步骤:
步骤1:选取基底材料,进行清洗;
步骤2:采用共溅射方法将Ta和半金属元素合金化合物沉积在经步骤1处理后的基底材料上作为缓冲层,
步骤3:在所述缓冲层上沉积多层膜(NiFe(NiCo)或者MO/NiFe(NiCo)/MO)层;
步骤4:采用共溅射方法沉积Ta和半金属元素合金化合物沉积在NiFe(NiCo)或者MO/NiFe(NiCo)/MO层上作为保护层;
步骤5:将经过步骤4制备的薄膜在真空退火炉中进行退火处理,最终得到磁电阻薄膜材料。
进一步,所述共溅射方法的具体工艺为:溅射室本底真空度为1.0×10-4~9.9×10-4 Pa或者1.0×10-5~9.9×10-5 Pa,溅射前通入镀膜室99.99%纯度氩气0.5~1小时,维持在气压0.1~1.5 Pa;溅射时99.99%纯度的高纯氩气气压为0.2 ~2.7 Pa;基片用循环去离子水冷却,平行于基片平面方向加有5~60 kA/m的磁场。
进一步,所述步骤5的退火工艺为:退火炉本底真空为1.0×10-4~9.9×10-4 Pa或者1.0×10-5~9.9×10-5 Pa、退火温度为100-500℃,退火时间为10m-2h,退火时沿薄膜的易轴方向加5-100 kA/m的磁场,并在磁场中随炉冷却。
所述缓冲层和保护层的沉积厚度为:1.0~20.0nm。
所述NiFe(NiCo)或者MO/NiFe(NiCo)/MO层的沉积厚度为:1.0~200.0nm。
所述磁电阻薄膜材料的灵敏度最高达到2000V/AT,热稳定性达到500℃。
对比实施例:
在磁控溅射仪中制备坡莫合金NiFe和NiCo薄膜。首先将玻璃基片用有机化学溶剂和去离子水超声清洗,然后装入溅射室样品基座上。基片用循环去离子水冷却,平行于基片方向加有16 kA/m的磁场,并且基片始终以18转/分钟的速率旋转,溅射沉积速率为0.17nm/分钟。溅射室本底真空4.0×10-5 Pa,溅射前通入镀膜室99.99%纯度氩气0.5小时,维持在气压0.5 Pa。在溅射时99.99%纯度的高纯氩气气压为0.2 Pa的条件下依次沉积5 nm厚度的Ta和200 nm厚度的NiFe和NiCo。通过对200 nm的NiFe和NiCo 做化学分析,找出薄膜杂质含量小于0.1%的情况下所对应的NiFe和NiCo合金靶。利用这个选出的NiFe和NiCo靶来沉积NiFe和NiCo薄膜。如图1所示,曲线a为Ta(3 nm)/NiFe(5 nm)/Ta(3 nm)薄膜制备态的PHE曲线,薄膜的灵敏度350V/AT。
实施例1:
溅射室本底真空度为6.0×10-5 Pa,溅射前通入镀膜室99.99%纯度氩气0.5小时,维持在气压0.6 Pa;溅射时99.99%纯度的高纯氩气气压为0.2 Pa;基片用循环去离子水冷却,平行于基片平面方向加有16 kA/m的磁场,以诱发一个易磁化方向。采用共溅射的方法制备Ta和半金属 Te的合金化合物,通过化学分析,控制合金化合物中Ta的比例为85%,Te的比例为15%。
在真空退火炉中对薄膜进行退火处理,退火温度为500℃,退火时间为2h,并在磁场中随炉冷却。退火炉本底真空为3.0×10-5 Pa, 退火时沿薄膜的易轴方向加55 kA/m的磁场,图1b中TaTe/NiFe/TaTe薄膜PHE灵敏度为880V/AT,与Ta/NiFe/Ta相比得到了显著的提高。
实施例2:
溅射室本底真空度为6.0×10-5 Pa,溅射前通入镀膜室99.99%纯度氩气0.5小时,维持在气压0.6 Pa;溅射时99.99%纯度的高纯氩气气压为0.2 Pa;基片用循环去离子水冷却,平行于基片平面方向加有16 kA/m的磁场,以诱发一个易磁化方向。采用共溅射的方法制备Ta和半金属元素Se的合金化合物,通过化学分析,控制合金化合物中Ta的比例为85%,Se的比例为15%。
在真空退火炉中对薄膜进行退火处理,退火温度为500℃,退火时间为2h,并在磁场中随炉冷却。退火炉本底真空为3.0×10-5 Pa, 退火时沿薄膜的易轴方向加55 kA/m的磁场。
图2 是TaSe(5nm)/CoFe(5nm)/TaSe(5nm)薄膜的薄膜500℃、2h退火的PHE曲线,其灵敏度为543V/AT。
实施例3:
溅射室本底真空度为6.0×10-5 Pa,溅射前通入镀膜室99.99%纯度氩气0.5小时,维持在气压0.6 Pa;溅射时99.99%纯度的高纯氩气气压为0.2 Pa;基片用循环去离子水冷却,平行于基片平面方向加有16 kA/m的磁场,以诱发一个易磁化方向。采用共溅射的方法制备Ta和 Te的合金化合物,通过化学分析,控制合金化合物中Ta的比例为90%,Te的比例为10%。
在真空退火炉中对薄膜进行退火处理,退火温度为500℃,退火时间为2h,并在磁场中随炉冷却。退火炉本底真空为3.0×10-5 Pa, 退火时沿薄膜的易轴方向加55 kA/m的磁场。
图3是TaTe(5nm)/MgO(2nm)/NiFe(5nm)/MgO(1nm)/TaTe(5nm)薄膜的500℃、2h退火的PHE曲线,其灵敏度为1783V/AT。

Claims (1)

1.一种磁电阻薄膜材料的制备工艺,该磁电阻薄膜材料包括基底、缓冲层、多层膜和保护层;所述缓冲层和保护层均由金属Ta和半金属元素构成,所述金属Ta的质量百分比为:19.9-99.9%,剩余为半金属元素;所述半金属元素为B、As、Sb、Te或Po中一种或多种;所述磁电阻薄膜材料的灵敏度最高达到2000V/AT,热稳定性达到500℃,其特征在于,方法具体包括以下步骤:
步骤1:选取基底材料,进行清洗;所述基底为硅基片、玻璃基片或MgO基片;
步骤2:采用共溅射方法将Ta和半金属元素的合金化合物沉积在经步骤1处理后的基底材料上作为缓冲层,所述缓冲层的沉积厚度为:1.0~20.0nm;
步骤3:在所述缓冲层上沉积多层膜,所述多层膜为NiFe、NiCo、MO/NiFe/MO或MO/ NiCo/MO,其中,MO为MgO;保护层的沉积厚度为:1.0~20.0nm;
步骤4:采用共溅射方法将Ta和半金属元素的合金化合物沉积在多层膜上作为保护层,得到薄膜;
其中,溅射室本底真空度为1.0×10-4~9.9×10-4 Pa或者1.0×10-5~9.9×10-5 Pa,溅射前通入镀膜室99.99%纯度氩气0.5~1小时,维持在气压0.1~1.5 Pa;溅射时99.99%纯度的高纯氩气气压为0.2 ~2.7 Pa;基片用循环去离子水冷却,平行于基片平面方向加有5~60 kA/m的磁场;
步骤5:将经过步骤4制备的薄膜在真空退火炉中进行退火处理,最终得到磁电阻薄膜材料;
退火炉本底真空度为1.0×10-4~9.9×10-4 Pa或者1.0×10-5~9.9×10-5 Pa、退火温度为100-500℃,退火时间为10min-2h,退火时沿薄膜的易轴方向加5-100kA/m的磁场,并在磁场中随炉冷却。
CN201711169287.0A 2017-11-13 2017-11-13 一种磁电阻薄膜材料及其制备方法 Expired - Fee Related CN107887103B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711169287.0A CN107887103B (zh) 2017-11-13 2017-11-13 一种磁电阻薄膜材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711169287.0A CN107887103B (zh) 2017-11-13 2017-11-13 一种磁电阻薄膜材料及其制备方法

Publications (2)

Publication Number Publication Date
CN107887103A CN107887103A (zh) 2018-04-06
CN107887103B true CN107887103B (zh) 2020-07-03

Family

ID=61778409

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711169287.0A Expired - Fee Related CN107887103B (zh) 2017-11-13 2017-11-13 一种磁电阻薄膜材料及其制备方法

Country Status (1)

Country Link
CN (1) CN107887103B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109273254A (zh) * 2018-09-25 2019-01-25 电子科技大学 一种改善各向异性磁电阻坡莫合金薄膜磁性能的方法
CN110129736B (zh) * 2019-04-30 2021-07-13 南开大学 一种Fe/C60颗粒薄膜霍尔效应材料及制备方法
CN111740010B (zh) * 2020-06-18 2022-11-15 电子科技大学 一种基于多层磁性复合结构的各向异性磁电阻

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4124736A (en) * 1974-10-29 1978-11-07 Poly-Disc Systems, Inc. Surface protected magnetic recording members
JP2701743B2 (ja) * 1994-07-01 1998-01-21 日本電気株式会社 グラニュラー物質およびこれを用いたグラニュラー膜
CN101710525B (zh) * 2009-12-17 2011-04-20 北京科技大学 一种超高灵敏磁电阻薄膜材料及其制备方法
CN102867645B (zh) * 2012-09-27 2015-04-29 北京科技大学 一种提高各向异性磁电阻坡莫合金薄膜热稳定性的方法
CN104465073A (zh) * 2014-04-16 2015-03-25 贵州雅光电子科技股份有限公司 一种各向异性磁阻坡莫合金缓冲层的制备方法

Also Published As

Publication number Publication date
CN107887103A (zh) 2018-04-06

Similar Documents

Publication Publication Date Title
CN102867645B (zh) 一种提高各向异性磁电阻坡莫合金薄膜热稳定性的方法
CN107887103B (zh) 一种磁电阻薄膜材料及其制备方法
CN101710525B (zh) 一种超高灵敏磁电阻薄膜材料及其制备方法
CN109166690B (zh) 一种基于多层交换偏置结构的各向异性磁电阻
Gao et al. Room temperature perpendicular exchange bias in CoNi/(Co, Ni) O multilayers with perpendicular magnetic anisotropy directly induced by FM/AFM interface
CN1921003A (zh) 一种基于纳米晶软磁薄膜的磁三明治材料及其制备方法
CN101148754A (zh) 一种提高坡莫合金薄膜磁电阻变化率的方法
CN101373813A (zh) 一种改善各向异性磁电阻坡莫合金薄膜性能的方法
Hashi et al. A large thermal elasticity of the ordered FeRh alloy film with sharp magnetic transition
CN101944365B (zh) 一种提高交换偏置薄膜磁性和热稳定性的方法
Tian et al. Effect of TaN buffer layer on the sensitivity of ASIC-integrated AMR sensors
Liu et al. High-sensitivity GMR with low coercivity in top-IrMn spin-valves
CN110797454B (zh) 一种超高各向异性磁电阻薄膜材料及其制备方法
CN103194727A (zh) 一种磁电阻薄膜的制备及平面霍尔效应提高的方法
KR20040081628A (ko) Bi 박막 제조방법 및 Bi 박막을 이용한 소자
Masoero et al. Magnetic properties of Ni-Co thick-film magnetoresistors
JP5389370B2 (ja) 強磁性薄膜材料とその製造方法
US11156678B2 (en) Magnetic field sensor using in situ solid source graphene and graphene induced anti-ferromagnetic coupling and spin filtering
CN109314181A (zh) 隧道磁阻元件及其制备方法
RU2767593C1 (ru) Способ изготовления магниторезистивных наноструктур
Vorobiov et al. Magnetoresistive Properties of Thin Film Systems Based on Fe (Co)/Gd/Fe (Co)
CN102623132A (zh) 利用表面活化剂提高各向异性磁电阻灵敏度的方法
KR101406358B1 (ko) 초연자성 재료 및 이를 포함하는 스핀 밸브
JP2000216454A (ja) 磁気抵抗効果素子及びその製造方法
CN104851975A (zh) 一种以NiFe合金为磁性层的各向异性磁电阻材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20200703

CF01 Termination of patent right due to non-payment of annual fee