CN107855107B - 溶胶-微波一步法制备炭担载铝硅酸钠复合材料的方法 - Google Patents

溶胶-微波一步法制备炭担载铝硅酸钠复合材料的方法 Download PDF

Info

Publication number
CN107855107B
CN107855107B CN201711319171.0A CN201711319171A CN107855107B CN 107855107 B CN107855107 B CN 107855107B CN 201711319171 A CN201711319171 A CN 201711319171A CN 107855107 B CN107855107 B CN 107855107B
Authority
CN
China
Prior art keywords
carbon
sodium aluminosilicate
aluminum hydroxide
composite material
sol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201711319171.0A
Other languages
English (en)
Other versions
CN107855107A (zh
Inventor
韩成良
杜慧慧
沈寿国
朱德春
高大明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fugu County Hongyi Activated Carbon Technology Development Co.,Ltd.
Original Assignee
Hefei University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hefei University filed Critical Hefei University
Priority to CN201711319171.0A priority Critical patent/CN107855107B/zh
Publication of CN107855107A publication Critical patent/CN107855107A/zh
Application granted granted Critical
Publication of CN107855107B publication Critical patent/CN107855107B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/12Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electromagnetic waves
    • B01J19/122Incoherent waves
    • B01J19/126Microwaves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/16Alumino-silicates
    • B01J20/18Synthetic zeolitic molecular sieves
    • B01J20/183Physical conditioning without chemical treatment, e.g. drying, granulating, coating, irradiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28016Particle form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/18Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/341Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation
    • B01J37/344Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation of electromagnetic wave energy
    • B01J37/346Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation of electromagnetic wave energy of microwave energy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/40Aspects relating to the composition of sorbent or filter aid materials
    • B01J2220/48Sorbents characterised by the starting material used for their preparation
    • B01J2220/4812Sorbents characterised by the starting material used for their preparation the starting material being of organic character
    • B01J2220/4825Polysaccharides or cellulose materials, e.g. starch, chitin, sawdust, wood, straw, cotton

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Electromagnetism (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Composite Materials (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Plasma & Fusion (AREA)
  • General Health & Medical Sciences (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

溶胶‑微波一步法制备炭担载铝硅酸钠复合材料的方法,属于复合材料制备技术领域。将干燥稻壳与氢氧化铝溶胶进行充分的混合得到表面粘附氢氧化铝溶胶的稻壳,再将氢氧化铝溶胶负载的稻壳和适量的活性炭一并放入微波炉中加热处理,通过原位化合反应,析出铝硅酸钠纳米颗粒;同时稻壳中的有机物炭化成炭,析出的铝硅酸钠纳米颗粒负载于炭基体之上,从而获得炭担载铝硅酸钠复合材料。制备的炭担载铝硅酸钠复合材料,其宏观形态为稻壳状,呈黑色;微观形态为无数球形的铝硅酸钠颗粒无规则分布在炭基体的表面。兼具有炭和铝硅酸钠分子筛优点,可望用于工业催化剂和吸附剂等领域。

Description

溶胶-微波一步法制备炭担载铝硅酸钠复合材料的方法
技术领域
本发明涉及一种溶胶-微波一步法制备炭担载铝硅酸钠复合材料的方法,属于复合材料制备技术领域。
背景技术
稻壳是稻米加工过程中数量最大的副产品。稻壳的组成中75%为有机物,25%为二氧化硅。我国是一个产粮大国,每年的稻壳产量约为数千万吨。长期以来国内外对稻壳的综合利用进行了广泛的研究,获得了许多可供利用的途径。目前,稻壳的综合利用方面很多,如焚烧取热,作为饲料、压制成稻壳板、制备水玻璃、白炭黑以及活性炭等。
但是,真正能够形成宏量生产的,能大量消耗稻壳的利用途径并不多,或是经济效益不显著、增值不大;或是在工艺上、技术上、质量上、环境污染等方面还存在一些问题。因此,许多地方把稻壳作为废弃物,这不仅是对资源的极大浪费,在经济上造成巨大损失,而且对环境也造成了很大污染。研究解决稻壳的合理利用,变废为宝,是摆在我们面前的一项意义重大的任务。如果采用一般的方法进行焚烧,即产生炭化,但作为吸附材料的价值不大,只能用于改良土壤。
有关通过稻壳制备炭担载铝硅酸钠复合材料至今尚未见文献报道。
发明内容
本发明针对现有技术中所存在的不足之处,提供一种工艺简单、安全可靠、成本低廉适合连续规模化生产的溶胶-微波一步法制备炭担载铝硅酸钠复合材料的方法。
为了实现上述目的,本发明所采用的技术方案为:一种溶胶-微波一步法制备炭担载铝硅酸钠复合材料的方法,将干燥稻壳与氢氧化铝溶胶进行充分的混合得到表面粘附氢氧化铝溶胶的稻壳,再将氢氧化铝溶胶负载的稻壳和适量的活性炭一并放入微波炉中加热处理,通过原位化合反应,析出铝硅酸钠纳米颗粒;同时稻壳中的有机物炭化成炭,析出的铝硅酸钠纳米颗粒负载于炭基体之上,从而获得炭担载铝硅酸钠复合材料。
作为本发明制备方法的优选技术方案,具体包括如下步骤:
1)、将硫酸铝和氢氧化钠固体分别加入盛有适量去离子水的两个烧杯中,超声使其完全溶解得到溶液A和B,将溶液A和B混合,搅拌得到氢氧化铝溶胶C;
2)、将氢氧化铝溶胶与适量的稻壳混合,并通过搅拌改善氢氧化铝溶胶与稻壳表面粘附状况,从而获得氢氧化铝溶胶/稻壳复合前驱体;
3)、将获得的氢氧化铝溶胶/稻壳复合前驱体和适量的活性炭一起放置于微波炉中进行微波加热反应,得到炭担载铝硅酸钠复合材料。
作为本发明制备方法的进一步优选技术方案,步骤2)中氢氧化铝溶胶与稻壳按照质量比为0.5~5:5~100混合。步骤3)中微波反应时间为10~60min,微波功率为中火~高火。步骤3)中用于引发微波强吸收作用的活性炭与氢氧化铝溶胶/稻壳复合前驱体的质量比为0.1~1:5~100。
本发明提供一种溶胶-微波一步法制备炭担载铝硅酸钠复合材料的方法,即将一定量洁净的干燥稻壳与新配置的氢氧化铝溶胶进行充分的混合,得到表面粘附氢氧化铝溶胶的稻壳;再将一定量的氢氧化铝溶胶负载的稻壳和适量的活性炭一并放入微波炉中加热处理若干时间后,获得炭担载铝硅酸钠复合材料。通过一系列的表征表明,制备的复合材料是由炭担载铝硅酸钠纳米颗粒构成,两者结合状况良好。
与现有技术相比,本发明具有以下优点:
1)、制备的炭担载铝硅酸钠复合材料,其宏观形态为稻壳状,呈黑色;微观形态为无数球形的铝硅酸钠颗粒无规则分布在炭基体的表面,铝硅酸钠纳米颗粒的平均粒径为0.5~24μm,炭颗粒的尺寸为400~2000μm。
2)、制备方法具有原理简单、操作方便、所需设备简单、制备效率高和安全可靠等优点,可用于宏量制备。同时,从新的角度解决了稻壳的综合利用问题。
3)、制备的炭担载铝硅酸钠复合材料具有多孔结构和形态,兼具有炭和铝硅酸钠分子筛优点,可望用于工业催化剂和吸附剂等领域。
附图说明
图1为本发明的制备方法流程图。
图2为实施例1制备的复合材料的XRD谱图。
图3为实施例1制备的复合材料的FE-SEM图(低倍率)。
图4为实施例1制备的复合材料的FE-SEM图(高倍率)。
具体实施方式
下面结合附图和具体实施例对本发明进行详细说明。
本发明方法所得复合材料的结构、形貌和组成分别选用X射线粉末衍射(XRD)和场发射扫描电子显微镜(FE-SEM)进行表征。
本发明一种溶胶-微波一步法制备炭担载铝硅酸钠复合材料的方法,其工艺流程如图1所示,整个过程无需经历洗涤和干燥等操作,制备原理简单,因此可以用于宏量制备。具体是:将一定量洁净的干燥稻壳与新配置的氢氧化铝溶解进行充分的混合,得到表面粘附氢氧化铝溶胶的稻壳;再将一定量的氢氧化铝溶胶负载的稻壳和适量的活性炭一并放入微波炉中加热处理;反应若干时间后,即可获得了炭担载铝硅酸钠复合材料。
本发明的反应原理如下:
首先,在微波反应条件下,粘附或浸入到稻壳表层的Al(OH)3将与稻壳中的SiO2进行化合反应形成NaAlSi3O8纳米颗粒(见反应式1);稻壳在脱硅、炭化后形成了炭骨架(见示意式2)。
Figure BDA0001504400300000031
Figure BDA0001504400300000032
反应后NaAlSi3O8纳米颗粒嵌入在炭基体的表面,从而形成了炭担载铝硅酸钠纳米复合材料(见示意式3)。
Figure BDA0001504400300000033
实施例1
溶胶-微波一步法制备炭担载铝硅酸钠复合材料的方法,包括如下步骤:
1)、将硫酸铝和氢氧化钠固体分别加入盛有适量去离子水的两个烧杯中,超声使其完全溶解得到溶液A和B,将溶液A和B混合,搅拌得到氢氧化铝溶胶C;
2)、将氢氧化铝溶胶与稻壳按照质量比为0.5:100混合,并通过搅拌改善氢氧化铝溶胶与稻壳表面粘附状况,从而获得氢氧化铝溶胶/稻壳复合前驱体;
3)、将获得的氢氧化铝溶胶/稻壳复合前驱体和活性炭(引发微波强吸收作用)按照质量比为50:0.1混合,一起放置于微波炉中进行微波加热反应,微波反应时间为10min,微波功率为中火~高火,得到炭担载铝硅酸钠复合材料。
图1为实施例1制备的复合材料工艺流程图,由图1可看最终产物颜色为黑色,宏观上呈颗粒状。
图2为实施例1制备的复合材料的XRD谱图。与NaAlSi3O8标准XRD谱图(PDF#19-1184)比较后可知,除了炭外,复合材料中还存在NaAlSi3O8物相。
图3和4为实施例1制备的复合材料的FE-SEM图,由图可以看出,制备出的复合材料结构中,炭基体表面分布着若干球形颗粒,即为NaAlSi3O8纳米颗粒,铝硅酸钠纳米颗粒的平均粒径为0.5~24μm,炭颗粒的尺寸为400~2000μm。
实施例2
溶胶-微波一步法制备炭担载铝硅酸钠复合材料的方法,包括如下步骤:
1)、将硫酸铝和氢氧化钠固体分别加入盛有适量去离子水的两个烧杯中,超声使其完全溶解得到溶液A和B,将溶液A和B混合,搅拌得到氢氧化铝溶胶C;
2)、将氢氧化铝溶胶与稻壳按照质量比为5:5混合,并通过搅拌改善氢氧化铝溶胶与稻壳表面粘附状况,从而获得氢氧化铝溶胶/稻壳复合前驱体;
3)、将获得的氢氧化铝溶胶/稻壳复合前驱体和活性炭(引发微波强吸收作用)按照质量比为100:1混合,一起放置于微波炉中进行微波加热反应,微波反应时间为60min,微波功率为中火~高火,得到炭担载铝硅酸钠复合材料。
实施例3
溶胶-微波一步法制备炭担载铝硅酸钠复合材料的方法,包括如下步骤:
1)、将硫酸铝和氢氧化钠固体分别加入盛有适量去离子水的两个烧杯中,超声使其完全溶解得到溶液A和B,将溶液A和B混合,搅拌得到氢氧化铝溶胶C;
2)、将氢氧化铝溶胶与稻壳按照质量比为2.5:50混合,并通过搅拌改善氢氧化铝溶胶与稻壳表面粘附状况,从而获得氢氧化铝溶胶/稻壳复合前驱体;
3)、将获得的氢氧化铝溶胶/稻壳复合前驱体和活性炭(引发微波强吸收作用)按照质量比为5:0.5混合,一起放置于微波炉中进行微波加热反应,微波反应时间为40min,微波功率为中火~高火,得到炭担载铝硅酸钠复合材料。
以上内容仅仅是对本发明的构思所作的举例和说明,所属本技术领域的技术人员对所描述的具体实施例做各种各样的修改或补充或采用类似的方式替代,只要不偏离发明的构思或者超越本权利要求书所定义的范围,均应属于本发明的保护范围。

Claims (6)

1.溶胶-微波一步法制备炭担载铝硅酸钠复合材料的方法,其特征在于,将干燥稻壳与氢氧化铝溶胶进行充分的混合得到表面粘附氢氧化铝溶胶的稻壳,再将氢氧化铝溶胶负载的稻壳和适量的活性炭一并放入微波炉中加热处理,通过原位化合反应,析出铝硅酸钠颗粒;同时稻壳中的有机物炭化成炭,析出的铝硅酸钠颗粒负载于炭基体之上,从而获得炭担载铝硅酸钠复合材料,具体包括如下步骤:
1)、将硫酸铝和氢氧化钠固体分别加入盛有适量去离子水的两个烧杯中,超声使其完全溶解得到溶液A和B,将溶液A和B混合,搅拌得到氢氧化铝溶胶C;
2)、将氢氧化铝溶胶与适量的稻壳混合,并通过搅拌改善氢氧化铝溶胶与稻壳表面粘附状况,从而获得氢氧化铝溶胶/稻壳复合前驱体;
3)、将获得的氢氧化铝溶胶/稻壳复合前驱体和适量的活性炭一起放置于微波炉中进行微波加热反应,得到炭担载铝硅酸钠复合材料。
2.如权利要求1所述的制备方法,其特征在于,步骤2)中氢氧化铝溶胶与稻壳按照质量比为0.5~5:5~100混合。
3.如权利要求1所述的制备方法,其特征在于,步骤3)中微波反应时间为10~60 min。
4.如权利要求1所述的制备方法,其特征在于,步骤3)中微波功率为中火~高火。
5.如权利要求1所述的制备方法,其特征在于,步骤3)中用于引发微波强吸收作用的活性炭与氢氧化铝溶胶/稻壳复合前驱体的质量比为0.1~1:5~100。
6.一种如权利要求1~5任一项所述方法制备的炭担载铝硅酸钠复合材料,其特征在于,产物宏观形态为稻壳状,呈黑色;产物微观形态为若干球形的铝硅酸钠颗粒无规则分布在炭基体的表面,铝硅酸钠颗粒的平均粒径为0.5~24 μm,炭颗粒的尺寸为400~2000μm。
CN201711319171.0A 2017-12-12 2017-12-12 溶胶-微波一步法制备炭担载铝硅酸钠复合材料的方法 Active CN107855107B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711319171.0A CN107855107B (zh) 2017-12-12 2017-12-12 溶胶-微波一步法制备炭担载铝硅酸钠复合材料的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711319171.0A CN107855107B (zh) 2017-12-12 2017-12-12 溶胶-微波一步法制备炭担载铝硅酸钠复合材料的方法

Publications (2)

Publication Number Publication Date
CN107855107A CN107855107A (zh) 2018-03-30
CN107855107B true CN107855107B (zh) 2020-06-30

Family

ID=61703982

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711319171.0A Active CN107855107B (zh) 2017-12-12 2017-12-12 溶胶-微波一步法制备炭担载铝硅酸钠复合材料的方法

Country Status (1)

Country Link
CN (1) CN107855107B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109065310A (zh) * 2018-08-27 2018-12-21 合肥学院 一种磁性碳复合材料制备工艺

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102372277A (zh) * 2010-08-23 2012-03-14 中国石油化工股份有限公司 无粘结剂ZSM-5/β共生分子筛的制备方法
CN103346300A (zh) * 2013-06-08 2013-10-09 合肥国轩高科动力能源股份公司 一种以稻壳炭为硅源原位合成硅酸盐/碳复合正极材料的方法
CN103420394A (zh) * 2013-09-01 2013-12-04 山东理工大学 一种利用稻壳为硅源制备x型分子筛的方法
CN107010612A (zh) * 2017-05-16 2017-08-04 合肥学院 一种利用有机质制备炭以及炭复合材料的微波碳化工艺

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102372277A (zh) * 2010-08-23 2012-03-14 中国石油化工股份有限公司 无粘结剂ZSM-5/β共生分子筛的制备方法
CN103346300A (zh) * 2013-06-08 2013-10-09 合肥国轩高科动力能源股份公司 一种以稻壳炭为硅源原位合成硅酸盐/碳复合正极材料的方法
CN103420394A (zh) * 2013-09-01 2013-12-04 山东理工大学 一种利用稻壳为硅源制备x型分子筛的方法
CN107010612A (zh) * 2017-05-16 2017-08-04 合肥学院 一种利用有机质制备炭以及炭复合材料的微波碳化工艺

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Zeolite Y from rice husk ash encapsulated with Ag-TiO2: characterization and applications for photocatalytic degradation catalysts;R.M. Mohamed et al.;《Desalination and Water Treatment》;20130408;第51卷(第40-42期);第7562-7569页 *

Also Published As

Publication number Publication date
CN107855107A (zh) 2018-03-30

Similar Documents

Publication Publication Date Title
CN107115884B (zh) 一种g-C3N4/TiO2纳米线组装结构光催化剂
CN100343166C (zh) 干法制备高膨胀性能钠基膨润土的方法
CN107029668A (zh) 一种蜂窝型分子筛‑活性炭复合吸附剂、制备方法及其应用
CN106669756B (zh) 一种纳米层状g-C3N4/Ag@AgCl复合光催化材料的制备方法
CN108325555B (zh) 氮自掺杂石墨化氮化碳纳米片光催化剂及其制备方法和应用
CN105833918A (zh) 一种复合可见光光催化剂Ag2CO3/TiO2/ UiO-66-(COOH)2的制备方法及其应用
CN109289531A (zh) 一种用于有机溶剂纳滤的聚二甲基硅氧烷/介孔纳米硅复合膜的制备方法
CN109759132A (zh) 复合光催化凝胶球的制备方法和复合光催化凝胶球
CN106693898A (zh) 一种掺杂度可控的多孔还原氧化石墨烯吸油材料及其制备方法
CN106268908A (zh) 一种去除有机污染物的石墨相C3N4掺杂TiO2负载膨胀珍珠岩的漂浮型环境修复材料及其制备方法
CN102674346A (zh) 低koh用量制备高比表面积复合孔结构煤质活性炭
CN105253896A (zh) 一种石墨烯-4a型分子筛复合材料的制备方法
CN107837816A (zh) Fe2O3/g‑C3N4复合体系及制备方法和应用
CN107628597A (zh) 一种利用SiO2包覆法制备具有微孔及介孔结构生物质碳材料的方法
CN107855107B (zh) 溶胶-微波一步法制备炭担载铝硅酸钠复合材料的方法
CN104190465A (zh) 一种sapo-5分子筛负载金属氧化物的光催化剂
CN108620109A (zh) 一种钒酸铈/改性凹凸棒石上转换异质结光催化剂的制备方法及其应用
CN113842937B (zh) 超薄富氮石墨相氮化碳纳米片负载的气凝胶可见光催化剂及其制备方法和应用
CN105597705B (zh) 一种具有优异co2吸附与分离性能的超微孔共价三嗪骨架材料以及制备方法
CN107055507B (zh) 一种碳分子筛的制备方法
CN108435168A (zh) 一种具有可见光吸收及高效co2吸附和转化性能的复合光催化剂及其制备方法
CN110563036A (zh) 一种富含氧空位的氧化铋纳米材料及其制备方法
Zeng et al. Sargassum horneri‐based carbon‐doped TiO2 and its aquatic naphthalene photodegradation under sunlight irradiation
Li et al. Effect of temperature on the synthesis of g-C3N4/montmorillonite and its visible-light photocatalytic properties
CN109772241A (zh) 一种纳米级木质素基微球及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CP03 Change of name, title or address

Address after: No.99, Jinxiu Avenue, Jingkai District, Hefei City, Anhui Province

Patentee after: Hefei University

Country or region after: China

Address before: No.99, Jinxiu Avenue, Jingkai District, Hefei City, Anhui Province

Patentee before: HEFEI University

Country or region before: China

TR01 Transfer of patent right

Effective date of registration: 20240515

Address after: No. 5-18-1, Hope City Commercial Street, No. 477 Lushan North Road, Jingyang District, Deyang City, Sichuan Province, 618000

Patentee after: Sichuan Wanhe Intellectual Property Operation Co.,Ltd.

Country or region after: China

Address before: No.99, Jinxiu Avenue, Jingkai District, Hefei City, Anhui Province

Patentee before: Hefei University

Country or region before: China

TR01 Transfer of patent right

Effective date of registration: 20240521

Address after: 719000 Bandun Village, Laogaochuan Township, Fugu County, Yulin City, Shaanxi Province

Patentee after: Fugu County Hongyi Activated Carbon Technology Development Co.,Ltd.

Country or region after: China

Address before: No. 5-18-1, Hope City Commercial Street, No. 477 Lushan North Road, Jingyang District, Deyang City, Sichuan Province, 618000

Patentee before: Sichuan Wanhe Intellectual Property Operation Co.,Ltd.

Country or region before: China