CN107818218B - Nanosecond electromagnetic pulse generator for electromagnetic fault injection - Google Patents
Nanosecond electromagnetic pulse generator for electromagnetic fault injection Download PDFInfo
- Publication number
- CN107818218B CN107818218B CN201711041567.3A CN201711041567A CN107818218B CN 107818218 B CN107818218 B CN 107818218B CN 201711041567 A CN201711041567 A CN 201711041567A CN 107818218 B CN107818218 B CN 107818218B
- Authority
- CN
- China
- Prior art keywords
- electromagnetic
- mosfet
- circuit
- marx
- generator
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000002347 injection Methods 0.000 title claims abstract description 13
- 239000007924 injection Substances 0.000 title claims abstract description 13
- 239000000523 sample Substances 0.000 claims abstract description 36
- 230000001052 transient effect Effects 0.000 claims abstract description 17
- 239000003990 capacitor Substances 0.000 claims description 15
- 238000004146 energy storage Methods 0.000 claims description 12
- 230000001629 suppression Effects 0.000 claims description 10
- 238000002955 isolation Methods 0.000 claims description 8
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 3
- 230000008859 change Effects 0.000 claims description 3
- 229910000859 α-Fe Inorganic materials 0.000 claims description 3
- 208000033999 Device damage Diseases 0.000 claims description 2
- 238000013461 design Methods 0.000 abstract description 6
- 238000004519 manufacturing process Methods 0.000 abstract 1
- 238000010586 diagram Methods 0.000 description 6
- 208000028659 discharge Diseases 0.000 description 5
- 238000000034 method Methods 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 2
- 238000004088 simulation Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/30—Circuit design
Landscapes
- Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Evolutionary Computation (AREA)
- Geometry (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Generation Of Surge Voltage And Current (AREA)
- Testing Electric Properties And Detecting Electric Faults (AREA)
Abstract
本发明公开了一种用于电磁故障注入的纳秒级电磁脉冲发生器,用以产生瞬态电磁脉冲信号,属于电磁故障注入领域。本发明主要包括直流电源、信号发生器、Marx发生器、MOSFET驱动电路和电磁探头。直流电源分别为Marx发生器和MOSFET驱动电路供电,信号发生器为MOSFET驱动电路提供脉冲信号,控制MOSFET的导通和关断,进而在电磁探头上产生脉宽、频率为设定值的瞬态电磁脉冲。本发明装置在负载端电磁探头两端可产生幅值可调、脉宽可变(200‑2000ns)的电压脉冲信号,进而在电磁探头上产生脉宽、频率为设定值的不同强度的瞬态电磁脉冲。本发明的电磁脉冲发生器设计原理简单,制造成本低,电路稳定性好。
The invention discloses a nanosecond electromagnetic pulse generator for electromagnetic fault injection, which is used to generate transient electromagnetic pulse signals and belongs to the field of electromagnetic fault injection. The invention mainly includes a DC power supply, a signal generator, a Marx generator, a MOSFET drive circuit and an electromagnetic probe. The DC power supply supplies power to the Marx generator and the MOSFET drive circuit respectively. The signal generator provides pulse signals to the MOSFET drive circuit to control the turn-on and turn-off of the MOSFET, thereby generating a transient with a pulse width and frequency of the set value on the electromagnetic probe. Electromagnetic Pulse. The device of the invention can generate voltage pulse signals with adjustable amplitude and variable pulse width (200-2000ns) at both ends of the electromagnetic probe at the load end, and then generate instantaneous pulse signals of different intensities with pulse width and frequency at the set values on the electromagnetic probe. electromagnetic pulse. The electromagnetic pulse generator of the present invention has simple design principle, low manufacturing cost and good circuit stability.
Description
技术领域Technical field
本发明涉及电磁脉冲故障注入领域,尤其涉及一种用于电磁故障注入的纳秒级电磁脉冲发生器。The present invention relates to the field of electromagnetic pulse fault injection, and in particular to a nanosecond electromagnetic pulse generator used for electromagnetic fault injection.
背景技术Background technique
随着CMOS工艺特征尺寸的不断缩小,集成电路的电磁兼容性受到了越来越多的关注和研究。电磁故障注入(EMFI)是指利用电磁探头产生的局部强磁场攻击芯片,从而造成芯片内部产生瞬态的感应电压和电流,对被攻击芯片引入故障。电磁故障注入作为一种新型的攻击方法,能对芯片的局部进行攻击并利用密码分析技术来获取其机密信息,被广泛应用。为研发有效的防护措施,需要研究电磁脉冲故障注入对集成电路芯片的故障机理。因此,研制出一台参数可调的电磁脉冲发生器就显得很有必要。As the feature size of CMOS processes continues to shrink, the electromagnetic compatibility of integrated circuits has received more and more attention and research. Electromagnetic fault injection (EMFI) refers to using a local strong magnetic field generated by an electromagnetic probe to attack the chip, causing transient induced voltages and currents inside the chip, and introducing faults to the attacked chip. As a new attack method, electromagnetic fault injection can attack parts of the chip and use cryptanalysis technology to obtain its confidential information, and is widely used. In order to develop effective protective measures, it is necessary to study the failure mechanism of electromagnetic pulse fault injection on integrated circuit chips. Therefore, it is necessary to develop an electromagnetic pulse generator with adjustable parameters.
Marx发生器因可方便地通过级联产生高压而被广泛应用于电磁故障注入领域。目前所研制的电磁脉冲发生器虽然产生的脉冲幅值较高、上升时间较短,但是控制电路复杂、实验装置体积庞大,并且由于使用火花间隙等作为开关,其使用寿命和频率受到很大限制,幅值和脉宽的调节也很困难。由于MOSFET开关器件具有紧凑、高重复频率、轻便、低成本和高效率等优点,使其能结合MOSFET驱动电路,产生电流变化率大的脉冲信号,可研制出电路结构简单、成本低、电磁脉冲输出频率和强度可调的纳秒级电磁脉冲发生器。Marx generators are widely used in the field of electromagnetic fault injection because they can easily generate high voltage through cascading. Although the electromagnetic pulse generator currently developed produces high pulse amplitude and short rise time, the control circuit is complex and the experimental device is bulky. Moreover, due to the use of spark gaps as switches, its service life and frequency are greatly limited. , the adjustment of amplitude and pulse width is also difficult. Since MOSFET switching devices have the advantages of compactness, high repetition frequency, lightness, low cost and high efficiency, they can be combined with MOSFET drive circuits to generate pulse signals with large current change rates, and can develop electromagnetic pulse devices with simple circuit structure, low cost and high efficiency. Nanosecond electromagnetic pulse generator with adjustable output frequency and intensity.
发明内容Contents of the invention
本发明的目的是为了克服现有技术中的不足,提供一种用于电磁故障注入的纳秒级电磁脉冲发生器,采用MOSFET作为Marx发生器的开关器件,基于Hspice软件对电路的仿真分析,指导电路元器件的选取和PCB的设计,实现电磁脉冲输出频率和强度的可控调节。The purpose of this invention is to overcome the deficiencies in the prior art and provide a nanosecond-level electromagnetic pulse generator for electromagnetic fault injection, using MOSFET as the switching device of the Marx generator and conducting simulation analysis of the circuit based on Hspice software. Guide the selection of circuit components and PCB design to achieve controllable adjustment of electromagnetic pulse output frequency and intensity.
本发明的目的是通过以下技术方案实现的:The purpose of the present invention is achieved through the following technical solutions:
一种用于电磁故障注入的纳秒级电磁脉冲发生器,包括直流电源、信号发生器、Marx发生器、MOSFET驱动电路和电磁探头,A nanosecond electromagnetic pulse generator for electromagnetic fault injection, including a DC power supply, a signal generator, a Marx generator, a MOSFET drive circuit and an electromagnetic probe,
所述直流电源与所述MOSFET驱动电路、Marx发生器分别连接,为所述MOSFET驱动电路和所述Marx发生器提供电源;The DC power supply is connected to the MOSFET drive circuit and the Marx generator respectively to provide power for the MOSFET drive circuit and the Marx generator;
所述MOSFET驱动电路内置有MOSFET驱动芯片、瞬态电压抑制二极管(TVS)、保护电阻(R1)和栅极驱动电阻(Rg);所述MOSFET驱动芯片的输入端与所述信号发生器的输出端连接,所述MOSFET驱动芯片的输出端与所述栅极驱动电阻(Rg)相连,所述瞬态电压抑制二极管(TVS)与所述栅极驱动电阻(Rg)串联,所述保护电阻(R1)与所述瞬态电压抑制二极管(TVS)并联;The MOSFET drive circuit has a built-in MOSFET drive chip, a transient voltage suppression diode (TVS), a protection resistor (R1) and a gate drive resistor (Rg); the input end of the MOSFET drive chip and the output of the signal generator terminal is connected, the output terminal of the MOSFET driver chip is connected to the gate driving resistor (Rg), the transient voltage suppression diode (TVS) is connected in series with the gate driving resistor (Rg), and the protection resistor ( R1) is connected in parallel with the transient voltage suppression diode (TVS);
所述Marx发生器包括充电隔离电阻(RC)和一至四级可调Marx电路,所述的充电隔离电阻(RC)的一端与所述直流电源的输出端相连,用于Marx电路的高压与直流电源隔离和充电限流;所述充电隔离电阻(RC)的另一端通过导线与所述Marx电路的第一级电路的二极管的正极连接,每级Marx电路由MOSFET开关、储能电容和二极管组成;在每级所述的Marx电路中二极管的负极通过导线与MOSFET开关和储能电容的并联点连接;所述Marx电路通过在PCB板上的各级连接处放置跳线帽来改变电路结构;MOSFET开关的栅源极分别与所述MOSFET驱动电路的瞬态电压抑制二极管(TVS)并联,用以避免MOSFET开关栅源极过电压导致器件损坏;当MOSFET开关处于关断状态时,二极管导通形成储能电容的充电电流回路,储能电容并联充电至所述直流电源的设定电压值;当MOSFET开关处于导通状态时,二极管反向截止形成储能电容的放电电流回路,已经充满至预设电压值的储能电容以串联方式对所述电磁探头进行放电,通过控制MOSFET开关的导通时间使电磁探头两端获得相应脉冲宽度的高压纳秒脉冲方波,实现在电磁探头上产生脉宽、频率为设定值的瞬态电磁脉冲;当MOSFET开关重新断开时,对储能电容再次充电。The Marx generator includes a charging isolation resistor (RC) and a one to four-level adjustable Marx circuit. One end of the charging isolation resistor (RC) is connected to the output end of the DC power supply and is used for the high voltage and DC of the Marx circuit. Power supply isolation and charging current limiting; the other end of the charging isolation resistor (RC) is connected to the anode of the diode of the first stage circuit of the Marx circuit through a wire. Each stage of the Marx circuit is composed of a MOSFET switch, an energy storage capacitor and a diode. ; In each stage of the Marx circuit, the cathode of the diode is connected to the parallel point of the MOSFET switch and the energy storage capacitor through a wire; the Marx circuit changes the circuit structure by placing jumper caps at the connections of each stage on the PCB board; The gate and source of the MOSFET switch are respectively connected in parallel with the transient voltage suppression diode (TVS) of the MOSFET drive circuit to prevent device damage caused by overvoltage at the gate and source of the MOSFET switch; when the MOSFET switch is in the off state, the diode is turned on A charging current loop of the energy storage capacitor is formed, and the energy storage capacitor is charged in parallel to the set voltage value of the DC power supply; when the MOSFET switch is in the on state, the diode reversely cuts off to form a discharge current loop of the energy storage capacitor, which has been fully charged to The energy storage capacitor with a preset voltage value discharges the electromagnetic probe in a series manner. By controlling the conduction time of the MOSFET switch, the two ends of the electromagnetic probe obtain a high-voltage nanosecond pulse square wave with a corresponding pulse width, thereby generating a high-voltage nanosecond pulse square wave on the electromagnetic probe. The pulse width and frequency are transient electromagnetic pulses at the set values; when the MOSFET switch is turned off again, the energy storage capacitor is charged again.
进一步的,所述电磁探头包括线圈匝数、铜线直径和铁氧体磁芯直径三个参数;通过对所述三个参数的设置得到不同类型的电磁探头,用以产生不同强度的电磁脉冲信号。Further, the electromagnetic probe includes three parameters: the number of coil turns, the diameter of the copper wire, and the diameter of the ferrite core; different types of electromagnetic probes are obtained by setting the three parameters to generate electromagnetic pulses of different intensities. Signal.
进一步的,所述电磁探头所产生的电磁脉冲强度与电磁探头上的电流变化率成正比。Further, the intensity of the electromagnetic pulse generated by the electromagnetic probe is proportional to the current change rate on the electromagnetic probe.
与现有技术相比,本发明的技术方案所带来的有益效果是:Compared with the existing technology, the beneficial effects brought by the technical solution of the present invention are:
1)本发明采用MOSFET作为Marx发生器的开关器件,使得电磁脉冲发生器的重复频率高,使用寿命长。1) The present invention uses MOSFET as the switching device of the Marx generator, so that the electromagnetic pulse generator has a high repetition frequency and a long service life.
2)本发明在MOSFET开关的驱动部分,通过MOSFET驱动芯片和低电阻值的栅极驱动电阻Rg对MOSFET开关进行快速充放电,来提高MOSFET的开关速度,可在电磁探头两端产生上升沿和下降沿均达纳秒级别的电压脉冲,进而在电磁探头上产生脉宽、频率为设定值的瞬态电磁脉冲。2) In the driving part of the MOSFET switch, the present invention quickly charges and discharges the MOSFET switch through the MOSFET driver chip and the low-resistance gate drive resistor Rg to increase the switching speed of the MOSFET, which can generate rising edges and The falling edge is a voltage pulse of nanosecond level, which generates a transient electromagnetic pulse with a pulse width and frequency of the set value on the electromagnetic probe.
3)本发明采用不同类型的电磁探头,便于产生不同电磁强度的电磁脉冲信号。3) The present invention uses different types of electromagnetic probes to facilitate the generation of electromagnetic pulse signals with different electromagnetic strengths.
4)本发明基于Hspice软件的仿真分析,指导电路元器件的选取和PCB板的设计,为电磁脉冲发生电路的设计提供了参考;电路工作稳定性高,实现了电磁脉冲幅度、脉宽和频率的任意调节,能在0.5mm距离对直径为1.5mm的单匝接收线圈产生最高2.9V的感应电压,为进行电磁故障注入实验奠定了基础。4) This invention is based on the simulation analysis of Hspice software to guide the selection of circuit components and the design of PCB boards, providing a reference for the design of electromagnetic pulse generation circuits; the circuit has high working stability and realizes the electromagnetic pulse amplitude, pulse width and frequency. With arbitrary adjustment, it can produce an induced voltage of up to 2.9V for a single-turn receiving coil with a diameter of 1.5mm at a distance of 0.5mm, laying the foundation for electromagnetic fault injection experiments.
附图说明Description of the drawings
图1是电磁脉冲发生器的原理框图。Figure 1 is a schematic block diagram of an electromagnetic pulse generator.
图2是MOSFET驱动电路的结构示意图。Figure 2 is a schematic structural diagram of the MOSFET drive circuit.
图3是级数可调的Marx发生器电路原理示意图。Figure 3 is a schematic diagram of the circuit principle of a Marx generator with adjustable series.
图4(a)和图4(b)分别是电磁探头两端输出的脉冲波形图。Figure 4(a) and Figure 4(b) are respectively the pulse waveforms output from both ends of the electromagnetic probe.
具体实施方式Detailed ways
下面结合具体实施例对本发明作进一步详细的说明。The present invention will be described in further detail below with reference to specific embodiments.
如图1所示,是电磁脉冲发生器的原理框图,包括:直流电源、信号发生器、Marx发生器、MOSFET驱动电路和电磁探头。直流电源分别为Marx发生器和MOSFET驱动电路供电,信号发生器为MOSFET驱动电路提供脉冲信号,控制MOSFET开关的导通和关断,进而在电磁探头上产生脉宽、频率为设定值的瞬态电磁脉冲。As shown in Figure 1, it is the schematic block diagram of the electromagnetic pulse generator, including: DC power supply, signal generator, Marx generator, MOSFET drive circuit and electromagnetic probe. The DC power supply supplies power to the Marx generator and MOSFET drive circuit respectively. The signal generator provides pulse signals to the MOSFET drive circuit, controls the on and off of the MOSFET switch, and then generates an instantaneous pulse with a pulse width and frequency of the set value on the electromagnetic probe. electromagnetic pulse.
如图2所示,是所述MOSFET驱动电路的电路设计结构示意图。驱动芯片与MOSFET栅极间串接驱动电阻Rg,适当取值,以减小驱动信号震荡幅值;同时在MOSFET栅源极并联瞬态电压抑制二极管TVS和电阻R1,以进一步限制MOSFET栅源极过电压。As shown in Figure 2, it is a schematic diagram of the circuit design structure of the MOSFET drive circuit. The driving resistor Rg is connected in series between the driving chip and the MOSFET gate, and the value is appropriately selected to reduce the oscillation amplitude of the driving signal; at the same time, the transient voltage suppression diode TVS and the resistor R1 are connected in parallel to the MOSFET gate and source to further limit the MOSFET gate and source. Overvoltage.
如图3所示,是所述Marx发生器的电路原理图。本发明设计了级数可调的n级Marx发生器电路,每级电路由二极管、MOSFET开关和储能电容组成。本实施例中n取1,图中,D1~D2n为二极管,C1~Cn为储能电容,M1~Mn为MOSFET开关,VDD为直流电源,RC为限流电阻,Magnetic_Microprobe为负载端的电磁探头。As shown in Figure 3, it is the circuit schematic diagram of the Marx generator. The present invention designs an n-level Marx generator circuit with an adjustable number of levels. Each level circuit is composed of a diode, a MOSFET switch and an energy storage capacitor. In this embodiment, n is 1. In the figure, D1~D2n are diodes, C1~Cn are energy storage capacitors, M1~Mn are MOSFET switches, VDD is the DC power supply, RC is the current limiting resistor, and Magnetic_Microprobe is the electromagnetic probe at the load end.
本发明所选用的MOSFET驱动芯片为IXDN609PI,所选用的瞬态电压抑制二极管为SMBJ16CA,所选用的二极管为快恢复二极管DSEI60-06A,所选用的MOSFET开关为IXFB100N50Q3。The MOSFET driver chip selected in this invention is IXDN609PI, the transient voltage suppression diode selected is SMBJ16CA, the diode selected is the fast recovery diode DSEI60-06A, and the MOSFET switch selected is IXFB100N50Q3.
其具体步骤如下:The specific steps are as follows:
(1)选取用于攻击的电磁探头(1) Select the electromagnetic probe used for attack
本发明选择了圆柱形铁氧体磁芯来增强探头的磁导率,并使用直径为0.1mm的铜线设计了15个特定的小型电磁探头,探头直径分别为0.7mm、1mm和1.2mm,线圈的匝数分别为1、3、5、7、9,用以产生不同攻击区域和不同电磁强度的电磁脉冲;本实施例选用的电磁探头直径为1.2mm,线圈匝数为7;The present invention selected a cylindrical ferrite core to enhance the magnetic permeability of the probe, and designed 15 specific small electromagnetic probes using copper wire with a diameter of 0.1mm, with probe diameters of 0.7mm, 1mm and 1.2mm respectively. The number of turns of the coil is 1, 3, 5, 7, and 9 respectively, which are used to generate electromagnetic pulses with different attack areas and different electromagnetic strengths; the diameter of the electromagnetic probe selected in this embodiment is 1.2mm, and the number of coil turns is 7;
(2)为驱动芯片供电和为储能电容充电(2) Power the driver chip and charge the energy storage capacitor
如图2所示,直流电源为MOSFET驱动芯片提供18V的电源电压,所述信号发生器的触发脉冲信号作为MOSFET驱动芯片的输入信号,经过驱动芯片后,输出脉冲信号的幅度为18V,脉冲最快上升和下降时间可达20ns,用以快速驱动MOSFET的导通和关断;As shown in Figure 2, the DC power supply provides a power supply voltage of 18V for the MOSFET driver chip. The trigger pulse signal of the signal generator is used as the input signal of the MOSFET driver chip. After passing through the driver chip, the amplitude of the output pulse signal is 18V, and the maximum pulse Fast rise and fall times can reach 20ns to quickly drive MOSFET on and off;
如图3所示,在充电阶段,MOSFET开关M1~Mn关断,二极管D1~D2n导通形成充电电流通路,直流电源通过限流保护电阻RC和二极管对并联电容C1~Cn充电至直流电源电压VDD;As shown in Figure 3, during the charging stage, the MOSFET switches M1~Mn are turned off, and the diodes D1~D2n are turned on to form a charging current path. The DC power supply charges the parallel capacitors C1~Cn to the DC power supply voltage through the current limiting protection resistor RC and the diode. VDD;
(3)于MOSFET导通阶段对电容串联放电(3) Discharge the capacitor in series during the MOSFET conduction stage
如图3所示,在放电阶段,M1~Mn导通,D1~D2n反向截止,电容C1~Cn以串联方式进行放电,n级等效串联电容电压迅速加到负载电磁探头两端,使其获得n倍VDD的电压,用以在电磁探头上产生瞬态的电磁脉冲;As shown in Figure 3, during the discharge stage, M1~Mn are turned on, D1~D2n are turned off in reverse, the capacitors C1~Cn are discharged in series, and the n-level equivalent series capacitance voltage is quickly added to both ends of the load electromagnetic probe, so that It obtains n times the voltage of VDD to generate transient electromagnetic pulses on the electromagnetic probe;
(4)于电磁探头上产生瞬态电磁脉冲(4) Generate transient electromagnetic pulse on the electromagnetic probe
本实施例在电磁探头两端所产生的电压脉冲波形如图4(a)、4(b)所示;测试时,选用了一级Marx发生器电路,直流电源输出电压VDD为0~50V,限流电阻RC为1KΩ,栅极电阻Rg为1Ω,与电磁探头串联的负载电阻RL为20Ω;图4(a)为根据所述信号发生器的脉宽设定,分别在负载端输出脉宽为200ns、1us和2us的电压脉冲信号;图4(b)为直流电源VDD分别输出24V、38V和50V电压的情况下负载端的电压脉冲波形;The voltage pulse waveforms generated at both ends of the electromagnetic probe in this embodiment are shown in Figures 4(a) and 4(b); during the test, a first-level Marx generator circuit was selected, and the DC power supply output voltage VDD was 0~50V. The current limiting resistor RC is 1KΩ, the gate resistor Rg is 1Ω, and the load resistor RL connected in series with the electromagnetic probe is 20Ω; Figure 4(a) shows the pulse widths output at the load end according to the pulse width settings of the signal generator. are voltage pulse signals of 200ns, 1us and 2us; Figure 4(b) shows the voltage pulse waveform at the load end when the DC power supply VDD outputs 24V, 38V and 50V voltages respectively;
本发明采用直径为1.5mm的单匝接收线圈,通过BNC同轴电缆线将测试线圈与示波器连接,用以测试不同的电磁探头在接收线圈上产生的感应电动势的大小;实验测得,当使用三级Marx发生器电路,且电磁探头固定放置于接收线圈正上方0.5mm处时,在接收线圈上测得的感应电压高达2.9V,可使待攻击的芯片产生故障。The present invention uses a single-turn receiving coil with a diameter of 1.5mm, and connects the test coil to an oscilloscope through a BNC coaxial cable to test the magnitude of the induced electromotive force generated by different electromagnetic probes on the receiving coil; experimentally measured, when used Three-level Marx generator circuit, and when the electromagnetic probe is fixedly placed 0.5mm directly above the receiving coil, the induced voltage measured on the receiving coil is as high as 2.9V, which can cause the chip to be attacked to malfunction.
本发明并不限于上文描述的实施方式。以上对具体实施方式的描述旨在描述和说明本发明的技术方案,上述的具体实施方式仅仅是示意性的,并不是限制性的。在不脱离本发明宗旨和权利要求所保护的范围情况下,本领域的普通技术人员在本发明的启示下还可做出很多形式的具体变换,这些均属于本发明的保护范围之内。The invention is not limited to the embodiments described above. The above description of the specific embodiments is intended to describe and illustrate the technical solution of the present invention. The above specific embodiments are only illustrative and not restrictive. Without departing from the spirit of the present invention and the scope protected by the claims, those of ordinary skill in the art can make many specific changes based on the inspiration of the present invention, and these all fall within the protection scope of the present invention.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201711041567.3A CN107818218B (en) | 2017-10-31 | 2017-10-31 | Nanosecond electromagnetic pulse generator for electromagnetic fault injection |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201711041567.3A CN107818218B (en) | 2017-10-31 | 2017-10-31 | Nanosecond electromagnetic pulse generator for electromagnetic fault injection |
Publications (2)
Publication Number | Publication Date |
---|---|
CN107818218A CN107818218A (en) | 2018-03-20 |
CN107818218B true CN107818218B (en) | 2023-11-21 |
Family
ID=61604406
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201711041567.3A Active CN107818218B (en) | 2017-10-31 | 2017-10-31 | Nanosecond electromagnetic pulse generator for electromagnetic fault injection |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107818218B (en) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109307829A (en) * | 2018-11-23 | 2019-02-05 | 西安交通大学 | Detection device and detection method for partial discharge of on-site transient ground voltage |
CN109660030A (en) * | 2018-11-23 | 2019-04-19 | 西安揽智俱应智能科技有限公司 | With the emitter and its launching technique of transient earth voltage shelf depreciation on site |
DE102018221518A1 (en) * | 2018-12-12 | 2020-06-18 | Siemens Healthcare Gmbh | High-voltage generator for providing a high-voltage pulse |
CN109596953B (en) * | 2018-12-20 | 2021-06-22 | 国网北京市电力公司 | Electromagnetic wave transmitting device and partial discharge testing instrument |
CN109900988A (en) * | 2019-03-14 | 2019-06-18 | 合肥格威特电气技术有限公司 | A kind of two fingers number test gimulator of electromagnetic pulse electric current access |
CN113054956A (en) * | 2021-01-15 | 2021-06-29 | 清华大学 | Pulse decomposition method for silicon carbide MOSFET switch transient process frequency domain analysis |
CN112994658A (en) * | 2021-03-14 | 2021-06-18 | 国网内蒙古东部电力有限公司呼伦贝尔供电公司 | Marx generator-based pulse source with adjustable waveform |
CN113381740A (en) * | 2021-03-19 | 2021-09-10 | 国网内蒙古东部电力有限公司呼伦贝尔供电公司 | Compact hybrid isolation Marx pulse generator for plasma discharge |
CN114094988B (en) * | 2022-01-18 | 2022-09-09 | 杭州维纳安可医疗科技有限责任公司 | Pulse generating circuit, equipment and method with pulse detection function |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103684360A (en) * | 2013-12-24 | 2014-03-26 | 国家电网公司 | Implementing method of high-voltage square-wave generator |
CN203617979U (en) * | 2013-12-24 | 2014-05-28 | 国家电网公司 | High-voltage square-wave generator |
WO2014193254A1 (en) * | 2013-05-28 | 2014-12-04 | Instituto Superior Tecnico | Modular generator for bipolar or unipolar pulses with correction of voltage decay integrated in power semiconductor modules |
CN205105184U (en) * | 2015-11-24 | 2016-03-23 | 国家电网公司 | All solid state nanosecond pulser MOSFET drive circuit |
CN105634441A (en) * | 2016-04-01 | 2016-06-01 | 中国人民解放军军械工程学院 | High-efficiency and double-exponential electromagnetic pulse generation device |
CN107124163A (en) * | 2017-05-04 | 2017-09-01 | 重庆大学 | A kind of composite mode solid state pulse source |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100820171B1 (en) * | 2006-11-02 | 2008-04-07 | 한국전기연구원 | Pulse power supply using semiconductor switch |
-
2017
- 2017-10-31 CN CN201711041567.3A patent/CN107818218B/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014193254A1 (en) * | 2013-05-28 | 2014-12-04 | Instituto Superior Tecnico | Modular generator for bipolar or unipolar pulses with correction of voltage decay integrated in power semiconductor modules |
CN103684360A (en) * | 2013-12-24 | 2014-03-26 | 国家电网公司 | Implementing method of high-voltage square-wave generator |
CN203617979U (en) * | 2013-12-24 | 2014-05-28 | 国家电网公司 | High-voltage square-wave generator |
CN205105184U (en) * | 2015-11-24 | 2016-03-23 | 国家电网公司 | All solid state nanosecond pulser MOSFET drive circuit |
CN105634441A (en) * | 2016-04-01 | 2016-06-01 | 中国人民解放军军械工程学院 | High-efficiency and double-exponential electromagnetic pulse generation device |
CN107124163A (en) * | 2017-05-04 | 2017-09-01 | 重庆大学 | A kind of composite mode solid state pulse source |
Non-Patent Citations (1)
Title |
---|
细胞外钙调素对转基因烟草悬浮细胞rbcS-GUS基因表达的促进作用;马力耕, 周君莉, 张素巧, 刘强, 孙大业;科学通报(第19期);全文 * |
Also Published As
Publication number | Publication date |
---|---|
CN107818218A (en) | 2018-03-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107818218B (en) | Nanosecond electromagnetic pulse generator for electromagnetic fault injection | |
Jiang et al. | Pulsed power generation by solid-state LTD | |
US10631395B2 (en) | Inductively coupled pulsed RF voltage multiplier | |
Li et al. | Theoretical analysis and experimental study on an avalanche transistor-based Marx generator | |
CN103236829B (en) | A kind of square wave circuit for generating | |
Li et al. | Gate driving circuit for the all solid-state rectangular Marx generator | |
Wang et al. | A stage-stage paralleled topology of all-solid-state Marx generator for high current | |
CN107017610A (en) | A kind of passive constant pressure clamper of Transient Electromagnetic Transmitter rapidly switches off circuit | |
CN112165313A (en) | Avalanche transistor-based high-amplitude high-repetition-frequency fast pulse generation circuit | |
CN101183785A (en) | A device for real-time shutdown protection of high-voltage fast pulse signals | |
He et al. | A novel high‐voltage solid‐state switch based on the SiC MOSFET series and its overcurrent protection | |
Zorngiebel et al. | Modular 50-kV IGBT switch for pulsed-power applications | |
CN108988618A (en) | The synchronous drive circuit with overcurrent protection and negative voltage bias based on Magnetic isolation | |
Dong et al. | Modular solid‐state pulse generator based on multi‐turn LTD | |
CN207397276U (en) | A kind of nanosecond electromagnetic pulse generator for electromagnetism direct fault location | |
Wang et al. | The development of all solid-state multi-turn linear transformer driver | |
Shang et al. | A Marx generator based on thyristors triggered in a shock ionization wave mode | |
CN103746567B (en) | A kind of wavefront continuously adjustable impact high voltage method for generation | |
CN208849692U (en) | A kind of compact high-voltage switch gear component | |
CN104764911A (en) | Ringing wave test signal generator based on electronic switches | |
CN205070778U (en) | Voltage peak absorption circuit and switching power supply circuit | |
Cook et al. | Inductive-adder kicker modulator for DARHT-2 | |
CN202696455U (en) | Field effect transistor drive circuit | |
Rao et al. | Synchronous drive circuit with current limitation for solid‐state pulsed power modulators | |
CN101741361A (en) | A Slope and Peak Integrated Control Circuit for Insulated Gate Bipolar Transistors |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |