CN107815073A - 石墨烯‑pet复合材料及其制备的太阳能电池背板 - Google Patents

石墨烯‑pet复合材料及其制备的太阳能电池背板 Download PDF

Info

Publication number
CN107815073A
CN107815073A CN201710993330.9A CN201710993330A CN107815073A CN 107815073 A CN107815073 A CN 107815073A CN 201710993330 A CN201710993330 A CN 201710993330A CN 107815073 A CN107815073 A CN 107815073A
Authority
CN
China
Prior art keywords
pet
graphene
composite material
graphene oxide
pet composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710993330.9A
Other languages
English (en)
Other versions
CN107815073B (zh
Inventor
沙嫣
沙晓林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nantong Johnson Photoelectric Technology Co Ltd
Original Assignee
Nantong Johnson Photoelectric Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nantong Johnson Photoelectric Technology Co Ltd filed Critical Nantong Johnson Photoelectric Technology Co Ltd
Priority to CN201710993330.9A priority Critical patent/CN107815073B/zh
Publication of CN107815073A publication Critical patent/CN107815073A/zh
Application granted granted Critical
Publication of CN107815073B publication Critical patent/CN107815073B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/022Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the choice of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/07Flat, e.g. panels
    • B29C48/08Flat, e.g. panels flexible, e.g. films
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/16Articles comprising two or more components, e.g. co-extruded layers
    • B29C48/18Articles comprising two or more components, e.g. co-extruded layers the components being layers
    • B29C48/21Articles comprising two or more components, e.g. co-extruded layers the components being layers the layers being joined at their surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/50Details of extruders
    • B29C48/505Screws
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/22Compounding polymers with additives, e.g. colouring using masterbatch techniques
    • C08J3/226Compounding polymers with additives, e.g. colouring using masterbatch techniques using a polymer as a carrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • H01L31/049Protective back sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2467/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2467/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/08Stabilised against heat, light or radiation or oxydation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明涉及一种石墨烯‑PET复合材料及其制备的太阳能电池背板,该石墨烯‑PET复合材料包括以下质量分数的各组分:PET树脂65~80%;氧化石墨烯‑PET母料10~25%;抗氧剂0.1~3%;光稳定剂5~10%。制备氧化石墨烯‑PET复合材料步骤中,先使用氧化石墨烯粉体与粉状PET树脂通过特殊的螺杆结构排列制备氧化石墨烯‑PET母料,然后与其他组分混合熔融制备石墨烯‑PET复合材料。将所制的石墨烯‑PET复合材料与纯PET树脂配混进行三层共挤制备的太阳能背板具有优秀的抗紫外、耐磨、机械力学、电气绝缘、耐湿热、水汽透过率低等性能。

Description

石墨烯-PET复合材料及其制备的太阳能电池背板
技术领域
本发明属于复合材料技术领域,涉及一种石墨烯-PET复合材料及其制备的太阳能电池背板。
背景技术
太阳能电池背板,其作用在于为电池组件提供优异的耐紫外、耐老化、耐候性能和电气绝缘性能,对电池的使用寿命、输出功率、安全可靠性起到关键的作用。而决定背板质量的关键在于外侧保护层的特性,目前市场上使用的背板之中,外侧保护层大多使用氟涂层或氟薄膜,应用比较广泛的氟涂料主要有PTFE、FEVE两大类型,氟薄膜主要有PVF、PVDF两大类。传统的氟涂料片面追求高氟含量,因此忽略了背板的粘结性,因为氟含量越高粘结性能越差,导致组件使用过程中因背板起泡脱落影响使用寿命;而PVDF类氟薄膜的氟含量普遍偏低并且受制于生产工艺的限制,如美国杜邦Tedlar虽然具有优异的性能,但是价格高,另外含氟材料背板最终会对环境造成污染。此外,其他不含氟元素背板则抗紫外效果差,使用年限短。
PET塑料分子结构高度对称,具有一定的结晶取向能力,故而具有较高的成膜性。PET塑料具有很好的光学性能和耐候性,非晶态的PET塑料具有良好的光学透明性,另外PET塑料具有优良的耐磨耗摩擦性和尺寸稳定性及电绝缘性。但是在紫外光或湿热条件下,PET分子结构中的酯键易降解,影响PET制品使用寿命。
石墨烯是从石墨材料中剥离出来,由碳原子组成的只有一层原子厚度的二维晶体。氧化石墨烯是在石墨烯的表层进行共价键修饰,使其表面具有羧基、环氧基、羟基等含氧基团。通过石墨烯层面修饰,使得氧化石墨烯相比石墨烯更不易团聚,因此可以进行大规模工业生产。氧化石墨烯由于其独特的二维表面结构,使其具有优良的抗紫外效果,氧化石墨烯抗紫外原理是:在紫外短波长段(100-280nm),氧化石墨烯自身对紫外线反射的耦合效应吸收紫外短波长,由于氧化石墨烯类苯环结构,使其结构稳定性优于有机物抗紫外剂;在紫外长波长段(280-400nm),氧化石墨烯具有独特的平面二维结构,比表面积大,相比无机金属氧化物,其与紫外线接触面积大,进一步增加氧化石墨烯对紫外长波长的反射量。
现有技术中,石墨烯已广泛应用于复合材料中,但将其直接与PET共混制备复合材料,存在分散不均匀问题,其原因主要为石墨烯粉体的片状结构,导致其容易团聚,在添加量比较少的情况下,体系中会存在空白点,从而无法形成连续相,影响其性能的体现。
发明内容
针对现有技术的不足,本发明的提供一种石墨烯-PET复合材料及其制备的太阳能电池背板。通过制备石墨烯-PET复合材料,从而使得含种材料的太阳能电池背板具有优秀的抗紫外、耐磨、机械力学、电气绝缘、耐湿热、水汽透过率低等性能。
本发明的目的是通过以下技术方案实现的:
第一方面,本发明提供了一种石墨烯-PET复合材料,包括以下质量分数的各组分:
优选地,以氧化石墨烯-PET母料的总质量计,所述氧化石墨烯-PET母料包括以下质量分数的各组分:
PET树脂 89.7~98.9%;
氧化石墨烯 1~10%;
硅油 0.1~0.3%。
在氧化石墨烯-PET母料的制备中所用的氧化石墨烯粉体的粒径为微米级,由于在进行挤出共混时加料仓会有轻微的震动,导致微米级的氧化石墨烯粉体容易出现沉降现象,即加料仓底部出现氧化石墨烯粉体聚集,导致PET树脂与氧化石墨烯粉体在挤出机的进料口进料不均匀,进而影响其分散性。为解决该问题,在所述氧化石墨烯-PET母料中加入了硅油,由此制备母料时氧化石墨烯粉体不会发生沉降,从而分散性良好。且硅油的加入量不宜过多,过多则会导致树脂在挤出机机筒内出现打滑现象,进而影响氧化石墨烯在PET树脂中的分散效果。
优选地,所述氧化石墨烯-PET母料的制备方法包括以下步骤:
A1、采用Hummer方法制备氧化石墨烯粉体;
A2、将氧化石墨烯粉体与经过烘干处理的粉状PET树脂进行机械共混,共混时加入硅油,使氧化石墨烯粉体与粉状PET树脂预混合捏合;
A3、将经步骤A2处理后形成的石墨烯-PET预混合物经过双螺杆挤出机挤出造粒,即得。
优选地,所述石墨烯粉体的粒径为10μm以下。
优选地,步骤A3中,所述双螺杆挤出机各区段温度设定为250~265℃;挤出机螺杆结构采用强剪切螺块排列;
例如螺块结构排列具体为:48×1 64×3 48×1 30°×1 45°×1 60°×1 90°×1L32×1/2×1 30°×1 45°×1 90°×1 L32×1/2×1 48×132×1 30°×1小45°×1 45°×1小90°×1 L32×1/2×1 48×132×1 30°×1 60°×1小45°×1 90°×1 L32×1/2×1 48×1 32×130°×1 45°×1 90°×1小90°×1 L32×1/2×1 48×1 32×145°×1 60°×1 90°×1 L32×1/2×1 64×2 48×1 32×6。(备注说明:上述螺块排列结构的表示形式为A×B,其中A代表螺块的规格,当A为32、48、64时,表示螺块为输送螺块,主要作用为推动输送物料,A表示为输送螺块的长度,单位为mm;当A为30°、45°、60°、90°、小45°、小90°时,表示螺块为剪切螺块,主要作用是对物料进行剪切共混,A表示为剪切螺块中相邻组件的夹角,夹角越大剪切越强,其中小45°、小90°表示剪切螺块的长度较45°、90°的要短;当A为L32×1/2时,表示螺块为方向输送螺块,主要作用是将物料挤出输送的方向进行180°的旋转,进一步提高共混效率,该种输送螺块长度为16mm。B表示对应规格的螺块在排列时的使用数量。)使用该反向螺块L32×1/2×1,该种螺块结构主要作用是增加物料在挤出方向的反流,从而增加物料在挤出机中的停留时间,为剪切混合元件发挥作用创造更多时间,从而使得氧化石墨烯可均匀的分散在熔融PET树脂中。
优选地,所述抗氧化剂为:抗氧剂1010,抗氧剂802,抗氧剂168,抗氧剂264中的一种或者几种。
优选地,所述光稳定剂为:光稳定剂944,光稳定剂622,光稳定剂531,光稳定剂770,光稳定剂783中的几种或一种。
第二方面,本发明提供了一种石墨烯-PET复合材料的制备方法,所述方法包括以下步骤:
将氧化石墨烯-PET母料与PET树脂、抗氧剂、光稳定剂按照配比进行熔融共混,即得。
第三方面,本发明提供了一种石墨烯-PET基太阳能电池背板,包括PET树脂层和石墨烯-PET复合材料层,所述石墨烯-PET复合材料层设置在两层PET树脂层之间。
第四方面,本发明提供了一种石墨烯-PET基太阳能电池背板的制备方法,包括以下步骤:
将氧化石墨烯-PET复合材料A与纯PET树脂B分别进行熔融塑化,所得的熔体通过分配器进入三层共挤出机的模头,共挤出复合结构为ABA的三层复合薄膜,所制的复合薄膜再经过冷却、铸片、双向拉伸工艺,制得三层共挤薄膜,裁切即得所述太阳能电池背板。
与现有技术相比,本发明具有如下的有益效果:
本发明制备氧化石墨烯-PET复合材料步骤中,先使用氧化石墨烯粉体与粉状PET树脂通过特殊的螺杆结构排列制备氧化石墨烯-PET母料,其螺杆结构中采用多道反向块结构,增大PET熔体在挤出机机筒里的剪切力。再将所制的氧化石墨烯-PET母料与纯PET树脂配混进行三层共挤制备太阳能背板膜。该种材料的太阳能电池背板具有优秀的抗紫外、耐磨、机械力学、电气绝缘、耐湿热、水汽透过率低等性能。
附图说明
通过阅读参照以下附图对非限制性实施例所作的详细描述,本发明的其它特征、目的和优点将会变得更明显:
图1为本发明制备的石墨烯-PET基太阳能电池背板的结构图;其中A为PET树脂层;B为石墨烯-PET复合材料层。
具体实施方式
下面结合具体实施例对本发明进行详细说明。以下实施例将有助于本领域的技术人员进一步理解本发明,但不以任何形式限制本发明。应当指出的是,对本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进。这些都属于本发明的保护范围。
以下实施例中,所述抗氧化剂为:抗氧剂1010,抗氧剂802,抗氧剂168,抗氧剂264中的一种或者几种。
所述光稳定剂为:光稳定剂944,光稳定剂622,光稳定剂531,光稳定剂770,光稳定剂783中的几种或一种。
实施例1-4
本实施例1-4提供了一种石墨烯-PET复合材料,各组分及含量如表1所示。
表1
组分 实施例1 实施例2 实施例3 实施例4
PET 70 65 75 80
氧化石墨烯-PET母料 22(S1) 25(S2) 14(S3) 10(S2)
抗氧剂 3 2 1 0.1
光稳定剂 5 8 10 9.9
所述制备方法如下:
步骤一:制备氧化石墨烯:本发明中所用的氧化石墨烯是以石墨为原材料,利用Hummer法通过氧化还原或插层剥离的技术制备氧化石墨烯溶液,再经过真空干燥以及气流粉碎制备粒径在10μm以下的氧化石墨烯粉体。
步骤二:氧化石墨烯-PET母料S1~S6的制备:将步骤一中氧化石墨烯粉体与经过烘干处理的粉状PET树脂按比例进行机械共混,共混时加入质量分数为0.1-0.3%的硅油,使氧化石墨烯粉体与粉状PET树脂预混合捏合,最后将氧化石墨烯-PET预混合物经过双螺杆挤出机挤出造粒,制得氧化石墨烯-PET母料,母料中氧化石墨烯的质量浓度为:1%-10%,挤出机各区段温度设定为250℃-265℃,挤出机螺杆结构采用强剪切螺块排列,通过设计与使用反向螺块使得氧化石墨烯均匀的分散在熔融PET树脂中。所述母料中各组分的质量百分含量如表2所示。
表2
S1 S2 S3 S4 S5 S6
氧化石墨烯粉体 1 5 10 7 1 10
PET树脂 98.9 94.8 89.7 92.8 99 89.5
硅油 0.1 0.2 0.3 0.2 0 0.5
步骤三:将步骤二中的氧化石墨烯-PET母料与PET树脂、抗氧剂、光稳定剂按照配比进行熔融共混制备出石墨烯-PET复合材料。
对比例1
本对比例提供了一种石墨烯-PET复合材料,各组分及含量与实施例1相同,所述制备方法包括以下步骤:
步骤一:制备氧化石墨烯:本发明中所用的氧化石墨烯是以石墨为原材料,利用Hummer法通过氧化还原或插层剥离的技术制备氧化石墨烯溶液,再经过真空干燥以及气流粉碎制备粒径在10μm以下的氧化石墨烯粉体。
步骤二:将步骤一制得的氧化石墨烯与PET树脂、抗氧剂、光稳定剂按照配比进行熔融共混制备出石墨烯-PET复合材料。
对比例2
本对比例提供了一种石墨烯-PET复合材料,各组分及含量与实施例1相同,所述制备方法与实施例1基本相同,不同之处仅在于:步骤二中,采用的双螺杆挤出机为常规的螺块结构,其结构排列参考如下:48×1 64×3 48×1 30°×1 45°×1 60°×1 48×1 45°×190°×1 60°×1 135°×1 64×1 48×1 32×1 30°×2 45°×1 90°×1 48×2 32×1 30°×1 45°×1 60°×1小45°×1 L32×1/2×1 64×1 48×1 32×1 30°×1 45°×1 60°×190°×1小45°×1 90°×1 64×2 48×1 32×7。其中反向螺块L32×1/2×1使用的少,螺块排列为普通共混结构。
对比例3
本对比例提供了一种石墨烯-PET复合材料,各组分及含量与实施例1基本相同,不同之处仅在于:本对比例中采用的氧化石墨烯-PET母料为S5。
对比例4
本对比例提供了一种石墨烯-PET复合材料,各组分及含量与实施例1基本相同,不同之处仅在于:本对比例中采用的氧化石墨烯-PET母料为S6。
实施例5
将实施例1-4和对比例1-4制备的石墨烯-PET复合材料(组分A)与纯PET树脂(纯PET树脂为B组分)分别进行熔融塑化,所得的熔体通过分配器进入三层共挤出机的模头,共挤出复合结构为ABA的三层复合薄膜,所制的复合薄膜再经过冷却、铸片、双向拉伸工艺,制得三层共挤薄膜,裁切所制薄膜即得石墨烯-PET基太阳能电池背板,其剖面图如图1所示。
将制得的石墨烯-PET基太阳能电池背板进行性能测试,结果如表3所示。
表3
备注:其中抗紫外性能检测样品的紫外处理方法按照IEC61215:2005中的10.10规定进行处理,抗紫外性能等级由GB/T31034-2014中规定进行判定;热收缩率、拉伸强度、体积电阻率耐湿热性、水汽透过率均按照GB/T31034-2014中规定进行,其中热收缩率的检测条件为150℃,30min,水汽透过率的检测方法为电解传感器法(38℃,90%R.H),耐湿热性处理条件为温度85℃,湿度85%。
从上述检测结果表可知,实施例1、2、3、4的热收缩率、拉伸强度、体积电阻率耐湿热性以及水汽透过率均符合标准GB/T31034-2014的要求,但是其抗紫外性能最优的为实施例3,其原因是实施例3中的母料添加量最适量,当石墨烯母料含量过多时,石墨烯-PET复合材料在加工时,石墨烯容易发生团聚,进而对其力学性能产生负面影响,降低石墨烯的抗紫外性能,如实施例1、2所示;当石墨烯母料添加量偏少时,由于石墨烯在复合材料中的量不足,导致石墨烯无法在复合材料中形成连续相,存在空白缺陷点,进而使得其抗紫外效果差,如实施例4所示;当采用一步法制备石墨烯-PET复合材料时,由于石墨烯作为粉体且添加量比较少,比较难以分散,制备的石墨烯-PET复合材料性能缺陷大,特别是对复合材料的力学性能影响尤为明显,导致其拉伸强度未达标(GB/T31034-2014规定复合型背板的拉伸强度不低于80MPa),如对比例1所示;而采用普通共混螺块排列结构进行石墨烯-PET复合材料的制备一样存在石墨烯分散困难,导致其性能差,如对比例2所示;当不添加硅油时,在挤出加工过程中,石墨烯容易出现沉降现象,进而使得其分散不均匀,对其力学性能起到负面影响,如对比例3所示;当添加硅油过多时,容易出现挤出机机筒内物料打滑现象,也会影响石墨烯的分散性,进而使得复合材料的力学性能下降,如对比例4所示。
本发明具体应用途径很多,以上所述仅是本发明的优选实施方式。应当指出,以上实施例仅用于说明本发明,而并不用于限制本发明的保护范围。对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进,这些改进也应视为本发明的保护范围。

Claims (10)

1.一种石墨烯-PET复合材料,其特征在于,包括以下质量分数的各组分:
2.根据权利要求1所述的石墨烯-PET复合材料,其特征在于,,以氧化石墨烯-PET母料的总质量计,所述氧化石墨烯-PET母料包括以下质量分数的各组分:
PET树脂 89.7~98.9%;
氧化石墨烯 1~10%;
硅油 0.1~0.3%。
3.根据权利要求1所述的石墨烯-PET复合材料,其特征在于,所述氧化石墨烯-PET母料的制备方法包括以下步骤:
A1、采用Hummer方法制备氧化石墨烯粉体;
A2、将氧化石墨烯粉体与经过烘干处理的粉状PET树脂进行机械共混,共混时加入硅油,使氧化石墨烯粉体与粉状PET树脂预混合捏合;
A3、将经步骤A2处理后形成的石墨烯-PET预混合物经过双螺杆挤出机挤出造粒,即得。
4.根据权利要求3所述的石墨烯-PET复合材料,其特征在于,所述石墨烯粉体的粒径为10μm以下。
5.根据权利要求3所述的石墨烯-PET复合材料,其特征在于,步骤A3中,所述双螺杆挤出机各区段温度设定为250~265℃;挤出机螺杆结果采用强剪切螺块。
6.根据权利要求1所述的石墨烯-PET复合材料,其特征在于,所述抗氧化剂为:抗氧剂1010,抗氧剂802,抗氧剂168,抗氧剂264中的一种或者几种。
7.根据权利要求1所述的石墨烯-PET复合材料,其特征在于,所述光稳定剂为:光稳定剂944,光稳定剂622,光稳定剂531,光稳定剂770,光稳定剂783中的几种或一种。
8.一种根据权利要求1所述的石墨烯-PET复合材料的制备方法,其特征在于,所述方法包括以下步骤:
将氧化石墨烯-PET母料与PET树脂、抗氧剂、光稳定剂按照配比进行熔融共混,即得。
9.一种石墨烯-PET基太阳能电池背板,其特征在于,包括PET树脂层和石墨烯-PET复合材料层,所述石墨烯-PET复合材料层设置在两层PET树脂层之间。
10.一种根据权利要求9所述的石墨烯-PET基太阳能电池背板的制备方法,其特征在于,包括以下步骤:
将氧化石墨烯-PET复合材料A与纯PET树脂B分别进行熔融塑化,所得的熔体通过分配器进入三层共挤出机的模头,共挤出复合结构为ABA的三层复合薄膜,所制的复合薄膜再经过冷却、铸片、双向拉伸工艺,制得三层共挤薄膜,裁切即得所述太阳能电池背板。
CN201710993330.9A 2017-10-23 2017-10-23 石墨烯-pet复合材料及其制备的太阳能电池背板 Active CN107815073B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710993330.9A CN107815073B (zh) 2017-10-23 2017-10-23 石墨烯-pet复合材料及其制备的太阳能电池背板

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710993330.9A CN107815073B (zh) 2017-10-23 2017-10-23 石墨烯-pet复合材料及其制备的太阳能电池背板

Publications (2)

Publication Number Publication Date
CN107815073A true CN107815073A (zh) 2018-03-20
CN107815073B CN107815073B (zh) 2019-11-15

Family

ID=61608289

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710993330.9A Active CN107815073B (zh) 2017-10-23 2017-10-23 石墨烯-pet复合材料及其制备的太阳能电池背板

Country Status (1)

Country Link
CN (1) CN107815073B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110667216A (zh) * 2019-09-30 2020-01-10 常州回天新材料有限公司 一体化成型的pet共挤透明背板
CN112341764A (zh) * 2020-10-22 2021-02-09 山东理工大学 一种纺丝用纤维级石墨烯/聚对苯二甲酸乙二醇酯母粒的制备方法
CN113372653A (zh) * 2021-08-03 2021-09-10 苏州度辰新材料有限公司 一种bopp薄膜用增挺母料和制备方法及bopp薄膜
CN113462133A (zh) * 2021-07-08 2021-10-01 浙江南洋科技有限公司 一种背板用高散热透明抗uv聚酯薄膜及其制备方法
CN114388645A (zh) * 2021-12-29 2022-04-22 南通强生光电科技有限公司 一种石墨烯太阳能电池背板及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103579386A (zh) * 2012-07-18 2014-02-12 沙嫣 一种新型太阳能电池板及其生产方法
CN106008940A (zh) * 2016-05-30 2016-10-12 江苏双星彩塑新材料股份有限公司 一种太阳能电池背板及用于该背板的膜用聚酯的制备方法
CN107163511A (zh) * 2017-05-05 2017-09-15 杭州福斯特应用材料股份有限公司 一种散热型太阳能电池背板材料及制备方法
CN107230732A (zh) * 2017-04-14 2017-10-03 南通强生光电科技有限公司 太阳能电池背板的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103579386A (zh) * 2012-07-18 2014-02-12 沙嫣 一种新型太阳能电池板及其生产方法
CN106008940A (zh) * 2016-05-30 2016-10-12 江苏双星彩塑新材料股份有限公司 一种太阳能电池背板及用于该背板的膜用聚酯的制备方法
CN107230732A (zh) * 2017-04-14 2017-10-03 南通强生光电科技有限公司 太阳能电池背板的制备方法
CN107163511A (zh) * 2017-05-05 2017-09-15 杭州福斯特应用材料股份有限公司 一种散热型太阳能电池背板材料及制备方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110667216A (zh) * 2019-09-30 2020-01-10 常州回天新材料有限公司 一体化成型的pet共挤透明背板
CN112341764A (zh) * 2020-10-22 2021-02-09 山东理工大学 一种纺丝用纤维级石墨烯/聚对苯二甲酸乙二醇酯母粒的制备方法
CN113462133A (zh) * 2021-07-08 2021-10-01 浙江南洋科技有限公司 一种背板用高散热透明抗uv聚酯薄膜及其制备方法
CN113372653A (zh) * 2021-08-03 2021-09-10 苏州度辰新材料有限公司 一种bopp薄膜用增挺母料和制备方法及bopp薄膜
CN114388645A (zh) * 2021-12-29 2022-04-22 南通强生光电科技有限公司 一种石墨烯太阳能电池背板及其制备方法

Also Published As

Publication number Publication date
CN107815073B (zh) 2019-11-15

Similar Documents

Publication Publication Date Title
CN107815073B (zh) 石墨烯-pet复合材料及其制备的太阳能电池背板
Jiang et al. Reduction in percolation threshold of injection molded high‐density polyethylene/exfoliated graphene nanoplatelets composites by solid state ball milling and solid state shear pulverization
CN105175842B (zh) 一种兼具高效导热性和优异力学性能的高分子基绝缘导热复合材料
EP3353838B1 (en) Low-cost, high-performance composite bipolar plate
CN104086924B (zh) 一种碳纤维增强热塑性树脂复合材料及其制备方法
CN104559080A (zh) 一种热塑性聚酯/聚乙烯组合物及其应用
CN102152585A (zh) 一种可扭结聚酯薄膜及其制备方法
CN106589847A (zh) 一种高阻隔抗静电石墨烯/聚合物纳米复合片材/膜及其制备方法
CN102336992A (zh) 一种含氟塑料薄膜专用料的制备方法
CN102010554A (zh) 一种聚偏氟乙烯薄膜专用料
CN105885360A (zh) 高阻隔纳米有机蒙脱土-聚对苯二甲酸乙二醇酯复合材料及其制备方法
CN105061966A (zh) 一种抗静电复合材料及其制备方法
CN112968070A (zh) 一种高效冷却降温的太阳能光伏背板及其制备方法
WO2020201502A1 (en) Composite film comprising ultra-drawn uhmwpe and one or more (co-) additives
CN108440824B (zh) 一种由废弃铝塑包装材料制备的高导热绝缘材料及其方法
CN102040918A (zh) 一种超强辐射交联聚乙烯热收缩胶带及其制备方法
WO2024178824A1 (zh) 一种柔性石墨烯聚乙烯纤维及其制备方法
CN102241853B (zh) 一种钙晶须改性聚乙烯复合材料及其制备方法
CN103214730A (zh) 聚合物基碳纳米管取向增强功能材料及其制备方法、装置
CN105440679A (zh) Pps复合导电增强材料及其制备方法
Hashim et al. Preparation of nanofluids from inorganic nanostructures doped peg: characteristics and energy storage applications
CN106188916B (zh) 一种高性能聚苯乙烯基复合材料及其制备方法和应用
CN101618595A (zh) 聚合物梯度功能材料及制品的共挤制备方法
Hua et al. Mechanical and optical properties of polyethylene filled with Nano‐SiO2
CN106243463A (zh) 一种聚合物/纳米石墨片/二氧化硅复合材料的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant