CN107795466A - The manufacture method of fluid control device - Google Patents

The manufacture method of fluid control device Download PDF

Info

Publication number
CN107795466A
CN107795466A CN201610801487.2A CN201610801487A CN107795466A CN 107795466 A CN107795466 A CN 107795466A CN 201610801487 A CN201610801487 A CN 201610801487A CN 107795466 A CN107795466 A CN 107795466A
Authority
CN
China
Prior art keywords
plate
synchronous
distressed structure
control device
fluid control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610801487.2A
Other languages
Chinese (zh)
Other versions
CN107795466B (en
Inventor
韩永隆
黄启峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Microjet Technology Co Ltd
Original Assignee
Microjet Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Microjet Technology Co Ltd filed Critical Microjet Technology Co Ltd
Priority to CN201610801487.2A priority Critical patent/CN107795466B/en
Publication of CN107795466A publication Critical patent/CN107795466A/en
Application granted granted Critical
Publication of CN107795466B publication Critical patent/CN107795466B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B43/00Machines, pumps, or pumping installations having flexible working members
    • F04B43/02Machines, pumps, or pumping installations having flexible working members having plate-like flexible members, e.g. diaphragms
    • F04B43/04Pumps having electric drive
    • F04B43/043Micropumps
    • F04B43/046Micropumps with piezoelectric drive
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B53/00Component parts, details or accessories not provided for in, or of interest apart from, groups F04B1/00 - F04B23/00 or F04B39/00 - F04B47/00
    • F04B53/22Arrangements for enabling ready assembly or disassembly

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Reciprocating Pumps (AREA)

Abstract

A kind of manufacture method of fluid control device, comprising:(a) housing, piezo-activator and deformable base construction are provided, piezo-activator is made up of piezoelectric element and oscillating plate, oscillating plate has first surface and corresponding second surface, second surface has a protuberance, deformable base construction includes flow plate and flex plate, and flex plate has movable part;(b) flex plate of deformable base construction and flow plate are stacked with engaging and implement prefabricated synchronous deformation operation, make flex plate and the prefabricated profiled synchronous distressed structure of flow plate synchronization deformation construction;(c) housing, piezo-activator and deformable base construction are sequentially stacked with locating engagement, the prefabricated profiled synchronous distressed structure of deformable base construction is the protuberance relative to oscillating plate, so as to define certain depth between movable part and protuberance.

Description

The manufacture method of fluid control device
【Technical field】
This case is on a kind of manufacture method of fluid control device, espespecially a kind of fluid control with deformable pedestal The manufacture method of device.
【Background technology】
The either industry such as medicine, computer technology, printing, energy in each field at present, product is towards sophistication and micro- Smallization direction is developed, and the fluid delivery structure that wherein product such as Micropump, sprayer, ink gun, industrial printing devices is included is Its key technology, therefore how by means of innovation structure its technical bottleneck is broken through, for the important content of development.
Refer to shown in Figure 1A and Figure 1B, Figure 1A is the part-structure schematic diagram of known fluid control device, and Figure 1B is Know the part-structure assembling deviation schematic diagram of fluid control device.As illustrated, known fluid control device 100 makees kinetonucleus The heart mainly includes substrate 101 and piezo-activator 102, and substrate 101 is to stack to set with piezo-activator 102, and substrate 101 with Piezo-activator 102 has a gap 103, wherein, the gap 103 need to keep certain depth, remain certain by this gap 103 Depth, when piezo-activator 102 is activated by application voltage produces deformation, then fluid can be driven in fluid control device 100 Each chamber indoor moveable, so as to reach fluid transmission purpose.However, in this known fluid control device 100, wherein pressing Electric actuator 102 and substrate 101 are flat overall structure, and have certain rigidity, on this condition, make this two Individual entirety is that flat structure precisely aligns each other, to cause to produce with certain gap 103 between two flat board, that is, is tieed up Certain depth is held, there can be certain degree of difficulty, is easy to produce error, because the certain rigid entirety of any of the above-described tool is put down Plate, an angle, θ is tilted if any any side, then can produce the shift value that relative distance is multiplied by the angle, θ in relative position, Such as a displacement d, and cause to increase d ' (as shown in Figure 1B) at the graticule in certain gap 103, or vice versa reduce d ' and (do not scheme Show);Particularly when fluid control device is towards the development of microminiaturization, the size of each element designs towards microminiaturization to be carried out, and is made Obtain and be intended between two flat board maintain with certain gap 103, without increasing or decreasing d ', and then keep the certain of gap 103 Depth, its degree of difficulty more and more higher, and if the certain depth in gap 103 can not be kept, such as gap 103 is the above-mentioned d ' of increase It is during the error of displacement, the distance for causing the gap 103 is excessive, and then make it that fluid efficiency of transmission is bad;Conversely, if gap is In opposite direction so that reducing an above-mentioned d ' displacements (not shown), then make it that the distance in gap 103 is too small, and then piezoelectric actuated The problem of interference is easily contacted during 102 start of device with other elements, and produces noise, and cause the fraction defective of fluid control device with Lifting.
In other words, because the piezo-activator 102 and substrate 101 of known fluid control device 100 are with certain Rigid flat overall structure, both are intended to, with overall alignment mode, to reach the purpose precisely aligned and shown for difficulty between flat board, especially It more becomes small in component size, is more difficult to exactitude position during assembling, and then the efficiency for conveying fluid is low and produces noise Problem, cause using upper not convenient and uncomfortable.
Therefore, above-mentioned known technology missing can be improved by how developing one kind, can make the instrument of conventionally employed fluid conveying device Device or equipment reach small volume, miniaturization and Jing Yin, and the problem of be also easy to produce error when overcoming assembling, and then reach light comfortable Portable purpose minisize fluid transmitting device, actually at present it is in the urgent need to address the problem of.
【The content of the invention】
The main purpose of this case is in fluid control device known to solution, and substrate is with piezo-activator because element is small The design of change, be not easy to be precisely located and produce error when assembling, make its be difficult to maintain after assembling the demand in its gap away from From and then the efficiency that causes fluid to convey is low and the problem of produce noise, causes not convenient and uncomfortable to ask using upper Topic.
For the above-mentioned purpose, the one of this case broader pattern of implementing is to provide a kind of manufacture method of fluid control device, Comprising:(a) housing, a piezo-activator and a deformable base construction be provided, the piezo-activator by a piezoelectric element and One oscillating plate is formed, and the oscillating plate has first surface and corresponding second surface, and the second surface has a protuberance, The deformable base construction includes a flow plate and a flex plate, and the flex plate has a movable part;(b) by the deformable pedestal Flex plate and the flow plate of structure are stacked with engaging and implement a prefabricated synchronous deformation operation, make the flex plate and the stream Logical plate synchronizes the prefabricated profiled synchronous distressed structure of deformation construction one;And (c) sequentially by the housing, the piezo-activator And the deformable base construction is stacked with, and locating engagement is carried out, the prefabricated profiled synchronization of the deformable base construction Distressed structure is the protuberance relative to the oscillating plate, so that the protuberance of the movable part of the flex plate and the oscillating plate Between define a certain depth.
For the above-mentioned purpose, another broader implementation pattern of this case is a kind of manufacturer of fluid control device of offer Method, comprising:(a) housing, a piezo-activator and a deformable base construction are provided, the piezo-activator is by a piezoelectric element And one oscillating plate formed, the deformable base construction includes a flow plate and a flex plate, and the flex plate has a movable part; (b) flex plate of the deformable base construction and the flow plate are stacked with engaging and implement a prefabricated synchronous deformation and made Industry, the flex plate and the flow plate is set to synchronize the prefabricated profiled synchronous distressed structure of deformation construction one;And (c) sequentially will The housing, the piezo-activator and the deformable base construction are stacked with, and carry out locating engagement, the prefabricated profiled synchronization Distressed structure is relative to the oscillating plate, so as to define a specific depth between the movable part and the oscillating plate of the flex plate Degree.
【Brief description of the drawings】
Figure 1A is the part-structure schematic diagram of known fluid control device.
Figure 1B is the part-structure assembling deviation schematic diagram of known fluid control device.
Fig. 2 is the manufacture method schematic flow sheet of the fluid control device of this case preferred embodiment.
Fig. 3 A are the cross-sectional view of the fluid control device of this case.
Fig. 3 B are the local illustrative view of the fluid control device of this case.
Fig. 4 A are the first embodiment aspect of the prefabricated profiled synchronous distressed structure of the fluid control device of this case preferred embodiment Schematic diagram.
Fig. 4 B are the second embodiment aspect of the prefabricated profiled synchronous distressed structure of the fluid control device of this case preferred embodiment Schematic diagram.
Fig. 4 C are the 3rd embodiment aspect of the prefabricated profiled synchronous distressed structure of the fluid control device of this case preferred embodiment Schematic diagram.
Fig. 4 D are the 4th embodiment aspect of the prefabricated profiled synchronous distressed structure of the fluid control device of this case preferred embodiment Schematic diagram.
Fig. 5 A are the 5th embodiment aspect of the prefabricated profiled synchronous distressed structure of the fluid control device of this case preferred embodiment Schematic diagram.
Fig. 5 B are the 6th embodiment aspect of the prefabricated profiled synchronous distressed structure of the fluid control device of this case preferred embodiment Schematic diagram.
Fig. 5 C are the 7th embodiment aspect of the prefabricated profiled synchronous distressed structure of the fluid control device of this case preferred embodiment Schematic diagram.
Fig. 5 D are the 8th embodiment aspect of the prefabricated profiled synchronous distressed structure of the fluid control device of this case preferred embodiment Schematic diagram.
Fig. 6 A are the 9th embodiment aspect of the prefabricated profiled synchronous distressed structure of the fluid control device of this case preferred embodiment Schematic diagram.
Fig. 6 B are the tenth embodiment aspect of the prefabricated profiled synchronous distressed structure of the fluid control device of this case preferred embodiment Schematic diagram.
Fig. 6 C are the 11st implementation state of the prefabricated profiled synchronous distressed structure of the fluid control device of this case preferred embodiment Sample schematic diagram.
Fig. 6 D are the 12nd implementation state of the prefabricated profiled synchronous distressed structure of the fluid control device of this case preferred embodiment Sample schematic diagram.
Fig. 7 is the 13rd embodiment aspect of the prefabricated profiled synchronous distressed structure of the fluid control device of this case preferred embodiment Schematic diagram.
Fig. 8 is the manufacture method schematic flow sheet of the fluid control device of another preferred embodiment of this case.
【Embodiment】
Embodying some exemplary embodiments of this case features and advantages will describe in detail in the explanation of back segment.It should be understood that This case can have various changes in different aspects, and it does not all depart from the scope of this case, and explanation therein and diagram Inherently it is illustrated as being used, and nand architecture is in limitation this case.
The manufacture method of the fluid control device of this case be made fluid control device 2 can be applied to the raw skill of medicine, The industry such as the energy, computer technology or printing, in order to transmit fluid, but it is not limited.Fig. 2 and Fig. 3 A are referred to, Fig. 2 is The manufacture method schematic flow sheet of the fluid control device of this case preferred embodiment, Fig. 3 A are cuing open for the fluid control device of this case Face structural representation.As shown in Fig. 2 in the manufacture method of the fluid control device of this case, and as shown in Figure 3A, first as walked Shown in rapid S31, there is provided housing 26, piezo-activator 23 and deformable base construction 20.Wherein piezo-activator 23 is by a piezoelectricity The oscillating plate 230 of element 233 and one is formed, and oscillating plate 230 has first surface 230b and corresponding second surface 230a, the Two surface 230a have a protuberance 230c;And oscillating plate 230 can be but not be limited to flexible square platy structure, piezoelectricity member Part 233 for can square platy structure, and its length of side is not more than the length of side of oscillating plate 230, and can be attached at the first of oscillating plate 230 On the 230b of surface, but it is not limited, the piezoelectric element 233 produces deformation after by application voltage and drives the oscillating plate 230 curved Qu Zhendong, another piezo-activator 23 further include housing 231 and at least a support 232, and housing 231 surround and is arranged at oscillating plate 230 outside, and its kenel also corresponds roughly to the kenel of oscillating plate 230, i.e., its can be but not be limited to the hollow out frame of square Type structure, and between oscillating plate 230 and housing 231 connected with an at least support 232, and resilient support is provided;It is and variable Shape base construction 20 includes flow plate 21 and flex plate 22, but is not limited, and flow plate 21 has an at least surface, and this is at least One surface includes an outer surface 21a, and further there is the flow plate 21 an at least access aperture 210, at least one to conflux groove 211 and one to conflux opening portion 212, the access aperture 210 is connected through the flow plate 21 and with least one groove 211 that confluxes, And the other end for confluxing groove 211 is to be communicated in the opening portion 212 of confluxing, and flex plate 22 has a movable part 22a and one Fixed part 22b, flex plate 22 set and are connected on flow plate 21, to be fixedly connected on so as to fixed part 22b on flow plate 21, and Movable part 22a is corresponds in the part at the place for opening portion 212 of confluxing, and stream hole 220 is arranged on movable part 22a, and stream Hole 220 corresponds to opening portion 212 of confluxing.Housing 26 has an at least tap 261, and housing 26 is not only single plate knot Structure, it also can be the frame structure that periphery has side wall 260, be set wherein for the piezo-activator 23, i.e., housing 26 can cover and be placed on Outside piezo-activator 23 and deformable base construction 20, and make to form fluid circulation between housing 26 and piezo-activator 23 Temporary chamber A, and tap 261 makes fluid circulate in outside housing 26 to connect temporary chamber A.
Thereafter, stated for another example shown in Fig. 2 step S32, flex plate 22 and flow plate 21 are stacked with engaging and implemented pre- The synchronous deformation operation of system, makes flex plate 22 and flow plate 21 synchronize the prefabricated profiled synchronous distressed structure of deformation construction one. The prefabricated synchronous deformation operation can be to apply the synchronous deformation operation of external force, or be the synchronous deformation operation of non-external force, its In, the synchronous deformation operation of non-external force refers to deformable base construction 20 because being caused structure by temperature change or other factors Inside changes, and then the dimensional deformation made, rather than because the structure by structure in itself beyond force and deform, example Such as thermal expansion deformation, cold events deformation etc., and then to form the prefabricated profiled synchronous distressed structure (such as Fig. 4 A to Fig. 7 institutes Show).In the present embodiment, the prefabricated synchronous deformation operation is the synchronous deformation operation for the application external force, the application external force Synchronous deformation operation is applied to few external force in an at least surface for the deformable base construction 20, and at least an external force can be for this Single only imposes an external force, or imposes multiple external force simultaneously, but is not limited, and at least an external force can be but not be limited to One contact force, i.e., at least on a surface of deformable base construction 20 is implemented on through by external force contact, so that deformable base Holder structure 20 produces synchronous deformation, and then to form the prefabricated profiled synchronous distressed structure, and the external force contacted it is prefabricated The surface of the synchronous distressed structure of shaping can produce an at least distressed structure, such as:Exert a force vestige (not shown), but not as Limit.An at least external force also can be but not be limited to keep the super away from power of certain interval (not shown) with the surface for applying external force again, For example, an at least external force is through suction or magnetic attracting force etc. caused by a vacuum extractor, not with this It is limited, is imposed on through these pull of vacuum or magnetic attracting force etc. are super away from power on the deformable base construction 20, can make can Deformation base construction 20 produces synchronous deformation, and then forms the prefabricated profiled synchronous distressed structure.
Finally, it is sequentially that housing 26, piezo-activator 23 and deformable base construction 20 is mutual for another example described in step S33 Stack, and carry out locating engagement, and the prefabricated profiled synchronous distressed structure of deformable base construction 20 is relative to oscillating plate 230 protuberance 230c, so as to define one between the movable part 22a of the flex plate 22 and the protuberance 230c of oscillating plate 230 Certain depth δ.This step makes housing 206 cover the outboard peripheries (as shown in Figure 3A) for being placed on the piezo-activator 23, wherein variable Though shape base construction 20 not yet carries out step S32 synchronous deformation, so in this mainly illustrating the fluid control device 2 of this case The mode that sets of stacking, piezo-activator 23 is arranged in the accommodation space 26a of housing 26, then with deformable pedestal The deformable base construction of structure 20 or prefabricated profiled synchronous distressed structure is corresponding to be assembled with piezo-activator 23, and jointly It is arranged in accommodation space 26a, the bottom so as to closing piezo-activator 23, and movable part 22a is relative to oscillating plate 130 Protuberance 130c position, and in the present embodiment, the prefabricated profiled synchronous distressed structure of deformable base construction 20 is Can towards close to or away from the protuberance 130c directions of the oscillating plate 230 synchronously deform, i.e., as shown in Fig. 4 A to Fig. 7, and not with This is limited, and it predominantly makes to define one between the movable part 22a of flex plate 22 and the protuberance 230c of oscillating plate 230 required Certain depth δ, and then can pass through prefabricated profiled synchronous distressed structure so that this case is made to maintain required certain depth δ Fluid control device 2.
Made fluid control device 2 as described above, as shown in Fig. 3 A and Fig. 3 B, when flow plate 21, flex plate 22 with , then can be common with the opening portion 212 of confluxing of flow plate 21 at the stream hole 220 of flex plate 22 after the corresponding assembling of piezo-activator 23 With forming a chamber for confluxing fluid, and between flex plate 22 and the housing 231 of piezo-activator 23 be with spacing h, in It is that can fill a medium in some embodiments, in spacing h, such as:Conducting resinl, but be not limited, it is fixed to be engaged through medium Position, so that maintainable certain distance between flex plate 22 and the oscillating plate 230 of piezo-activator 23, such as spacing h, it can more make Obtain and form a certain depth δ between the movable part 22a of flex plate 22 and the protuberance 230c of oscillating plate 230, when the oscillating plate 230 , can be by the fluid compression, between the protuberance 230c for implying that the movable part 22a and oscillating plate 230 that make flex plate 22 when vibration Spacing diminish, and the pressure of fluid and flow velocity is increased;In addition, certain depth δ is for a suitable distance, to make reduction Contact interference between the movable part 22a of flex plate 22 and the protuberance 230c of oscillating plate 230, asking for noise is produced to reduce Topic;And certain depth δ forms chamber transmission between the movable part 22a of flex plate 22 and the protuberance 230c of oscillating plate 230 The stream hole 220 of flex plate 22 and be connected with the chamber for the fluid that confluxes at the opening portion 212 of confluxing of flow plate 21;When fluid control During 2 start of device processed, mainly driving oscillating plate is deformed by voltage actuation is applied by the piezoelectric element 233 of piezo-activator 23 230 carry out the reciprocating vibration of vertical direction, when oscillating plate 230 vibrates upwards, because flex plate 22 is light, thin sheet knot Structure, flex plate 22 also can with resonance and carry out the reciprocating vibration of vertical direction, the as movable part 22a of flex plate 22 portion Point also can with flexural vibrations deformation, and the stream hole 220 is arranged at the center of flex plate 22 or is adjacent at center, now scratches The movable part 22a of property plate 22 can because the drive vibrated upwards of oscillating plate 230 and fluid is up brought into and pushed and with to Upper vibration, then fluid is entered by least access aperture 210 on flow plate 21, and confluxes groove 211 through at least one to collect To at the opening portion 212 of confluxing in center, then via on flex plate 22 with conflux stream hole 220 that opening portion 212 is correspondingly arranged to On flow into certain depth δ between the movable part 22a of flex plate 22 and the protuberance 230c of oscillating plate 230 and form in chamber, By the deformation of this flex plate 22, to compress the certain depth δ institutes between the movable part 22a of flex plate 22 and piezo-activator 23 The volume of chamber is formed, strengthens the certain depth δ between the movable part 22a of flex plate 22 and the protuberance 230c of oscillating plate 230 The kinetic energy that formed chamber middle flow space is compressed, promote the fluid in it to push and flowed to both sides, and then by vibration Space between plate 230 and support 232 and pass through flowing upwards, and when oscillating plate 230 is bent downwardly vibration, then flex plate 22 Movable part 22a also with resonance be bent downwardly vibration deformation, fluid is pooled at the opening portion 212 of confluxing in center and tailed off, and The also vibration downwards of piezo-activator 23, and be moved between the movable part 22a of flex plate 22 and the protuberance 230c of oscillating plate 230 Certain depth δ forms cavity bottom and increases the compressible volume of chamber, so repeats the implementation start shown in Fig. 3 B, i.e., The certain depth δ that can be increased between the movable part 22a of flex plate 22 and the protuberance 230c of oscillating plate 230 is formed among chamber The space that free air space is compressed, reach larger fluid soakage and discharge rate.
In the preferred embodiment of this case, as it was previously stated, deformable base construction 20 is by flow plate 21 and flex plate 22 Formed, wherein flow plate 21 and flex plate 22 be to be stacked with, and flow plate 21 and flex plate 22 both can to carry out this pre- System is synchronous to be deformed operation and produces synchronous deformation, to form prefabricated profiled synchronous distressed structure.Furthermore, it is foregoing Synchronous deformation refers to flow plate 21 and flex plate 22, when either of which is deformed, then another one necessarily with deformation, and The shape of both deformations is consistent, i.e., both corresponding surfaces are to engage and position each other, and between the two not Have any gap or parallel misalignment, for example, when the flow plate 21 of deformable base construction 20 is deformed, flex plate 22 Also identical deformation is produced;In the same manner, when the flex plate 22 of deformable base construction 20 is deformed, flow plate 21 also produces Identical deforms.In addition, because as described in preceding contents known, in known fluid control device, wherein piezo-activator and substrate Be flat overall structure, and there is certain rigidity, on this condition, make this two be Integral flat-plate formula knot Structure precisely aligns each other, to cause to maintain certain gap between two flat board, implies that maintenance certain depth, can have certain be stranded Difficulty, it is easy to produce error, causes variety of problems.So preferred embodiment various in this case, its feature is using can The prefabricated profiled synchronous distressed structure of base construction 20 is deformed, it is the synchronous deformation knot for flow plate 21 and flex plate 22 Structure, the deformable base construction 20 is equivalent to the base component of known technology, and only the deformable base construction 20 is pre-formed Synchronous distressed structure flow plate 21 and flex plate 22 have it is various specific pre- defined in various embodiments in this case The synchronous distressed structure of type is made, and the various specific prefabricated profiled synchronous distressed structures can be with relative oscillating plate Between 230 protuberance 230c, it is maintained within a required certain depth δ, therefore even if when fluid control device 2 is towards micro- The development of smallization, the size of each element designs towards microminiaturization to be carried out, and is remained to by the prefabricated profiled synchronous distressed structure Easily so that this it is above-mentioned be intended to maintain between the two with certain gap to be easy because aligning what area had reduced using it The synchronous distressed structure of non-planar base (no matter this is deformed into bending, tapered shape, various curved, irregular etc. shape) Aligned with a flat board, and be no longer the flat board contraposition of two large area, but the small area of a non-planar base and a large area is flat Plate aligns, therefore can reduce gap error between the two easily, and then the efficiency for solving fluid conveying is low and generation is made an uproar The problem of sound so that solve using upper not convenient and uncomfortable known problem.
In some embodiments, prefabricated profiled synchronous distressed structure can be the aspect that synchronously deforms can be warp architecture, Pyramidal structure, projection planar structure, curved-surface structure or irregular structure etc., but be not limited, what these were synchronously deformed Structure and aspect will be described in detail in back segment specification.
As shown in Fig. 4 A and Fig. 4 C, in this first embodiment aspect and the 3rd embodiment aspect, prefabricated profiled synchronous deformation Structure is the bending synchronization distressed structure being made up of flow plate 21 and flex plate 22, that is, prefabricated profiled synchronous distressed structure The synchronous deformed region of bending be in movable part 22a region and beyond other regions of movable part 22a, i.e. two embodiment aspect Prefabricated profiled synchronous distressed structure be a bending synchronization distressed structure, the direction that only only both bending synchronously deforms has Institute's difference.Implement the prefabricated synchronous deformation operation of flexural deformation in the first embodiment aspect as shown in Figure 4 A, it is in deformable The outer surface 21a of the flow plate 21 of base construction 20 is bent towards the direction of the protuberance 230c close to the oscillating plate 230 to be become Shape, while the movable part 22a of flex plate 22 region and be also directed to beyond other regions of movable part 22a close to the oscillating plate 230 Protuberance 230c direction flexural deformation, to form the bending synchronization distressed structure of prefabricated profiled synchronous distressed structure;And Implement the prefabricated synchronous deformation operation of flexural deformation in the 3rd embodiment aspect as shown in Figure 4 C, it is in deformable base construction The outer surface 21a of 20 flow plate 21 is directed away from the protuberance 230c of the oscillating plate 230 direction flexural deformation, scratches simultaneously Property plate 22 movable part 22a region and the protuberance away from the oscillating plate 230 is also directed to beyond other regions of movable part 22a 230c direction flexural deformation, to form the bending synchronization distressed structure of prefabricated profiled synchronous distressed structure;Therefore first implements The movable part 22a of the flex plate 22 of prefabricated profiled synchronous distressed structure region is formed in aspect and the 3rd embodiment aspect with shaking It is maintained between the protuberance 230c of dynamic plate 230 within the scope of a required certain depth δ, and then forms this two implementation The fluid control that the bending of the flow plate 21 and flex plate 22 with prefabricated profiled synchronous distressed structure of aspect synchronously deforms Device 2.
As shown in Fig. 5 A and Fig. 5 C, in this 5th embodiment aspect and the 7th embodiment aspect, prefabricated profiled synchronous deformation Structure is the taper synchronization distressed structure being made up of flow plate 21 and flex plate 22, that is, prefabricated profiled synchronous distressed structure Taper synchronization deformed region be i.e. two embodiment aspect in movable part 22a region and beyond other regions of movable part 22a Synchronous distressed structure is a taper synchronization distressed structure, the direction that only only both taper synchronously deforms difference.And such as The prefabricated synchronization for implementing synchronously to be deformed into pyramidal structure in the 5th embodiment aspect shown in Fig. 5 A deforms operation, and it is in deformable The outer surface 21a of the flow plate 21 of base construction 20 towards the protuberance 230c close to the oscillating plate 230 direction taper become Shape, while the movable part 22a of flex plate 22 region and be also directed to beyond other regions of movable part 22a close to the oscillating plate 230 Protuberance 230c direction taper-deformation, to form the taper synchronization distressed structure of prefabricated profiled synchronous distressed structure;And The prefabricated synchronization for implementing synchronously to be deformed into pyramidal structure in the 7th embodiment aspect as shown in Figure 5 C deforms operation, and it is in variable The outer surface 21a of the flow plate 21 of shape base construction 20 is directed away from the protuberance 230c of the oscillating plate 230 direction taper Deformation, while the movable part 22a of flex plate 22 region and be also directed to beyond other regions of movable part 22a away from the oscillating plate 230 protuberance 230c direction taper-deformation, to form the taper synchronization distressed structure of prefabricated profiled synchronous distressed structure; Therefore to form the movable part of the flex plate 22 of prefabricated profiled synchronous distressed structure in the 5th embodiment aspect and the 7th embodiment aspect It is maintained between 22a region and the protuberance 230c of oscillating plate 230 within the scope of a required certain depth δ, and then The taper for forming the flow plate 21 and flex plate 22 with prefabricated profiled synchronous distressed structure of this two embodiment aspect synchronously becomes The fluid control device 2 of shape.
As shown in Fig. 6 A and Fig. 6 C, in this 9th embodiment aspect and the 11st embodiment aspect, prefabricated profiled synchronous change Shape structure is the projection plane synchronization distressed structure being made up of flow plate 21 and flex plate 22, that is, prefabricated profiled synchronization becomes The projection plane synchronization deformed region of shape structure be in movable part 22a region and beyond other regions of movable part 22a, i.e., this two The synchronous distressed structure of embodiment aspect is a projection plane synchronization distressed structure, only only both projection plane synchronization deformation Direction difference.And implement synchronously to be deformed into the prefabricated synchronization of projection planar structure in the 9th embodiment aspect as shown in Figure 6A Operation is deformed, it in movable part 22a region and is exceeded in the outer surface 21a of the flow plate 21 of deformable base construction 20 Other regions of movable part 22a are towards the direction projection plane deformation of the protuberance 230c close to the oscillating plate 230, while flex plate 22 movable part 22a region and it is also directed to beyond other regions of movable part 22a close to the protuberance 230c's of the oscillating plate 230 Direction projection plane deformation, to form the projection plane synchronization distressed structure of prefabricated profiled synchronous distressed structure;And such as Fig. 7 C The prefabricated synchronization for implementing synchronously to be deformed into projection planar structure in the 11st shown embodiment aspect deforms operation, and it is in variable The outer surface 21a of the flow plate 21 of shape base construction 20 is directed away from the protuberance 230c of the oscillating plate 230 direction projection Plane deformation, while the movable part 22a of flex plate 22 region and be also directed to beyond other regions of movable part 22a away from the vibration The protuberance 230c of plate 230 direction projection plane deformation, it is same to form the projection plane of prefabricated profiled synchronous distressed structure Walk distressed structure;Therefore to form the flexibility of prefabricated profiled synchronous distressed structure in the 9th embodiment aspect and the 11st embodiment aspect The model of a required certain depth δ is maintained between the movable part 22a of plate 22 region and the protuberance 230c of oscillating plate 230 Within enclosing, and then form the flow plate 21 with prefabricated profiled synchronous distressed structure and flex plate 22 of this two embodiment aspect The fluid control device 2 of projection plane synchronization deformation.
And for example foregoing, in some embodiments, prefabricated profiled synchronous distressed structure is flow plate 21 and flex plate 22 Also can be only Partial synchronization distressed structure, that is, the Partial synchronization deformed region of prefabricated profiled synchronous distressed structure is only can Dynamic portion 22a regions, the Partial synchronization distressed structure of prefabricated profiled synchronous distressed structure can be warp architecture or tapered structure or Projection planar structure, but be also not limited.
As shown in Fig. 4 B and Fig. 4 D, in the second embodiment aspect and the 4th embodiment aspect, prefabricated profiled synchronous deformation knot The part that structure is made up of flow plate 21 and flex plate 22 bends synchronous distressed structure, that is, prefabricated profiled synchronous distressed structure Part flexural deformation region be that the synchronous distressed structure of i.e. two embodiment aspect is that a bending is same in movable part 22a regions Distressed structure is walked, the direction that only only both bending synchronously deforms difference.It is real in the second embodiment aspect as shown in Figure 4 B The prefabricated synchronous deformation operation that part bending synchronously deforms is applied, it is in the outer surface of the flow plate 21 of deformable base construction The movable part 22a regions that 21a correspondingly confluxes at opening portion 212 are curved towards the direction of the protuberance 230c close to the oscillating plate 230 Song deformation, while the movable part 22a regions of flex plate 22 are also directed to the direction bending close to the protuberance 230c of the oscillating plate 230 Deformation, synchronous distressed structure is bent to reach prefabricated profiled synchronous distressed structure part;And the 4th as shown in Figure 4 D implements Implement the prefabricated synchronous deformation operation of pre-erection bending in aspect, it is in the flow plate of prefabricated profiled synchronous distressed structure Correspondingly the conflux movable part 22a regions of opening portion 212 of 21 outer surface 21a are directed away from the protuberance of the oscillating plate 230 230c direction flexural deformation, while the movable part 22a regions of flex plate 22 are also directed to the protuberance away from the oscillating plate 230 230c direction flexural deformation, synchronous distressed structure is bent to form prefabricated profiled synchronous distressed structure part;Therefore second is real Apply in aspect and the 4th embodiment aspect to form the movable part 22a of the flex plate 22 of prefabricated profiled synchronous distressed structure region It is maintained between the protuberance 230c of oscillating plate 230 within the scope of a required certain depth δ, and then forms this two reality Apply the stream that the part bending of the flow plate 21 and flex plate 22 with prefabricated profiled synchronous distressed structure of aspect synchronously deforms Member control apparatus 2.
, can prefabricated profiled synchronous deformation in the 6th embodiment aspect and the 8th embodiment aspect as shown in Fig. 5 B and Fig. 5 D Structure is the part conic synchronization distressed structure of flow plate 21 and flex plate 22, that is, the portion of prefabricated profiled synchronous distressed structure Reference cone deformation region is that the synchronous distressed structure of i.e. two embodiment aspect is that a taper synchronously becomes in movable part 22a regions Shape structure, the direction that only only both taper synchronously deforms difference.Implementation in the 6th embodiment aspect as shown in Figure 5 B Divide the prefabricated synchronous deformation operation for being synchronously deformed into pyramidal structure, it is in the outside of flow plate 21 of deformable base construction 20 The movable part 22a regions that surface 21a correspondingly confluxes at opening portion 212 are towards the side of the protuberance 230c close to the oscillating plate 230 It is also directed to the movable part 22a regions of taper-deformation, while flex plate 22 close to the protuberance 230c of the oscillating plate 230 direction Taper-deformation, to reach prefabricated profiled synchronous distressed structure part conic synchronization distressed structure;And the as shown in Figure 5 D the 8th Implementation section is synchronously deformed into the prefabricated synchronous deformation operation of pyramidal structure in embodiment aspect, and it is in deformable base construction Correspondingly the conflux movable part 22a regions of opening portion 212 of the outer surface 21a of flow plate 21 are directed away from the prominent of the oscillating plate 230 Go out portion 230c direction taper-deformation, while the movable part 22a regions of flex plate 22 are also directed to the protrusion away from the oscillating plate 230 Portion 230c direction taper-deformation, to form the part conic synchronization distressed structure of prefabricated profiled synchronous distressed structure;Therefore the To form the movable part 22a's of the flex plate 22 of prefabricated profiled synchronous distressed structure in six embodiment aspects and the 8th embodiment aspect It is maintained between region and the protuberance 230c of oscillating plate 230 within the scope of a required certain depth δ, and then forms this The part conic synchronously deformation of the flow plate 21 and flex plate 22 with prefabricated profiled synchronous distressed structure of two embodiment aspects Fluid control device 2.
As shown in Fig. 6 B and Fig. 6 D, in the tenth embodiment aspect and the 12nd embodiment aspect, prefabricated profiled synchronous deformation Structure is the part projection plane synchronization distressed structure of flow plate 21 and flex plate 22, that is, prefabricated profiled synchronous distressed structure Part projection plane deformation region be that the synchronous distressed structure of i.e. two embodiment aspect is one convex in movable part 22a regions Block plane synchronization distressed structure, the only only direction difference of both projection plane synchronization deformations.As shown in Figure 6B the tenth Implementation section is synchronously deformed into the prefabricated synchronous deformation operation of projection planar structure in embodiment aspect, and it is in deformable pedestal knot The movable part 22a regions that the outer surface 21a of the flow plate 21 of structure 20 correspondingly confluxes at opening portion 212 are towards close to the oscillating plate 230 protuberance 230c direction projection plane deformation, while the movable part 22a regions of flex plate 22 are also directed to close to the vibration The protuberance 230c of plate 230 direction projection plane deformation, put down with forming the part projection of prefabricated profiled synchronous distressed structure Face synchronization distressed structure;And implementation section is synchronously deformed into projection planar structure in the 12nd embodiment aspect as shown in Figure 6 D Prefabricated synchronous deformation operation, is correspondingly to conflux out in the outer surface 21a of the flow plate 21 of prefabricated profiled synchronous distressed structure The movable part 22a regions of oral area 212 are directed away from the protuberance 230c of the oscillating plate 230 direction projection plane deformation, simultaneously The movable part 22a regions of flex plate 22 are also directed to the direction projection plane deformation of the protuberance 230c away from the oscillating plate 230, with Form the part projection plane synchronization distressed structure of prefabricated profiled synchronous distressed structure;Therefore the tenth embodiment aspect and the 12nd is in fact Apply in aspect to form the movable part 22a of the flex plate 22 of prefabricated profiled synchronous distressed structure region and oscillating plate 230 It is maintained between protuberance 230c within the scope of a required certain depth δ, and then forms having for this two embodiment aspect The fluid control dress of the part projection plane synchronization deformation of the flow plate 21 and flex plate 22 of prefabricated profiled synchronous distressed structure Put 2.
And for example foregoing, in some embodiments, prefabricated profiled synchronous distressed structure is flow plate 21 and the institute of flex plate 22 The curved surface synchronization distressed structure aspect of composition, the curved surface synchronization distressed structure are formed by the curved surface of each and every one more different curvatures, or Person is that the curved surface of same curvature is formed, and refers to and implements synchronously to be deformed into curved-surface structure in Fig. 7 the 13rd embodiment aspect Prefabricated synchronous deformation operation, it in the outer surface 21a of the flow plate 21 of deformable base construction is multiple different curvatures that it, which is, The deformation that curved surface is formed, while the deformation that the surface of flex plate 22 is also made up of the curved surface of multiple different curvatures, to form The curved surface synchronization distressed structure of prefabricated profiled synchronous distressed structure, so that the curved surface of prefabricated profiled synchronous distressed structure is synchronous It is maintained within the scope of required certain depth δ, and then forms between distressed structure and the protuberance 230c of oscillating plate 230 The fluid control dress that the curved-surface structure of flow plate 21 and flex plate 22 with prefabricated profiled synchronous distressed structure synchronously deforms Put 2.
In other embodiments, the synchronous distressed structure of prefabricated profiled synchronous distressed structure, which differs, is set to conformation of rules Synchronous distressed structure, it also can be irregular synchronous distressed structure, imply that the flow plate of prefabricated profiled synchronous distressed structure 21 and the surface of flex plate 22 be irregular synchronous distressed structure, but be not limited.It is prefabricated in other embodiments The synchronous distressed structure of shaping can be protrusion synchronous distressed structure of the direction close to the protuberance 230c directions of the oscillating plate 230, Or can be the synchronous distressed structure of protrusion in the protuberance 230c directions for being directed away from the oscillating plate 230, the protrusion synchronously deforms A certain depth δ is defined between structure and the protuberance 230c of the oscillating plate 230.
Produced prefabricated profiled synchronous distressed structure can have many embodiment party in numerous embodiment aspects described in this case Formula, and can appoint according to situation is actually applied and apply change, it is not limited by foregoing in a manner of these.
In addition, in other embodiments, the oscillating plate 230 of the piezo-activator 23 of this case can also be not provided with protuberance The second surface 230a of 230c, i.e. piezo-activator 23 oscillating plate 230 is the structure (not shown) that but can not be limited to a plane; Therefore in this embodiment aspect, the gap h between deformable base construction 20 and piezo-activator 23 is then deformable pedestal knot The distance between the flex plate 22 of structure 20 and the second surface 230a of oscillating plate 230 of piezo-activator 23, and make after assembling Deformable pedestal 20 produces synchronous deformation to form prefabricated profiled synchronous distressed structure, and makes prefabricated profiled synchronous deformation knot It is maintained between structure and oscillating plate 230 within the scope of required certain depth δ, so that flex plate 22 and piezo-activator 23 Oscillating plate 230 be in contact with each other interference reduce, and then can lifting fluid transmission efficiency, more reduce produce noise the problem of.And In this embodiment aspect, prefabricated profiled synchronous distressed structure synchronizes the aspect of deformation then as it was previously stated, can be bending Structure, pyramidal structure, projection planar structure, curved-surface structure or irregular structure etc., and be not limited.
Therefore the oscillating plate 230 of above-mentioned piezo-activator 23 is not provided with protuberance 230c, its another preferred embodiment manufacture Method is as described below.Fig. 8 is the manufacture method schematic flow sheet of the fluid control device of another preferred embodiment of this case.Such as Fig. 8 It is shown, in the manufacture method of the fluid control device of this case, as described in step S41, housing 26, piezo-activator are provided first 230 and deformable base construction 20;And piezo-activator 23 is also made up of piezoelectric element 233 and oscillating plate 230, oscillating plate 230 be that can be but not be limited to flexible square platy structure, and has first surface 230b and corresponding second surface 230a, piezoelectric element 233 be for can square platy structure, and its length of side is not more than the length of side of oscillating plate 230, and can be attached at and shake On the first surface 230b of dynamic plate 230, but it is not limited, the piezoelectric element 233 is produced deformation driving by after applying voltage The flexural vibrations of oscillating plate 230.
For another example described in step S42, sequentially housing 20, piezo-activator 23 and deformable base construction 20 are stacked with connecing Merge and implement prefabricated synchronous deformation operation, flex plate 22 and flow plate 21 is synchronized one prefabricated profiled synchronization of deformation construction Distressed structure.This prefabricated synchronous deformation operation can be to apply the prefabricated synchronous deformation operation of external force, or be the pre- of non-external force The synchronous deformation operation of system, the prefabricated synchronous deformation operation of non-external force refer to deformable base construction 20 because by temperature change or its The factor of his non-external force and cause inside configuration to change, and then the dimensional deformation made, the rather than because structure is tied Structure in itself beyond force and deform, such as thermal expansion deformation, cold events deformation etc., and then to form the prefabricated profiled synchronization Distressed structure (as shown in Fig. 4 A to Fig. 7).In the present embodiment, the prefabricated synchronous deformation operation is for the synchronization of the application external force Deform operation, the prefabricated synchronous deformation operation of the application external force is applied to few external force in deformable base construction 20 at least One surface, to form prefabricated profiled synchronous distressed structure, and an at least external force can be that single only imposes an external force, or together When impose multiple external force, but be not limited.An at least external force can be but not be limited to a contact force, that is, pass through the external force Contact is implemented at least on a surface of deformable base construction 20, so that deformable base construction 20 produces synchronous deformation, enters And to form the prefabricated profiled synchronous distressed structure, and the surface of prefabricated profiled synchronous distressed structure that the external force is contacted An at least distressed structure (such as the vestige that exerts a force, not shown) can be produced, and an at least external force also can be but not be limited to and apply The surface of external force keeps the super away from power of certain interval (not shown), for example, an at least external force is through a vacuum drawn Suction caused by device or magnetic attracting force etc., are not limited, through these pull of vacuum or magnetic attracting force Imposed on Deng super away from power on the deformable base construction 20, deformable base construction 20 can be made to produce synchronous deformation, and then formed and be somebody's turn to do Prefabricated profiled synchronous distressed structure.
Finally, as shown in step S43, sequentially by 20 mutual heap of housing 26, piezo-activator 23 and deformable base construction It is folded, and locating engagement is carried out, so as to define a certain depth δ between the movable part 22a and oscillating plate 230 of the flex plate 22. This step makes housing 206 cover the outboard peripheries (as shown in Figure 3A) for being placed on the piezo-activator 23, as makes piezo-activator 23 It is arranged in the accommodation space 26a of housing 26, then it is right to have the deformable base construction 20 of prefabricated profiled synchronous distressed structure It should assemble and be arranged at jointly in accommodation space 26a with piezo-activator 23, the bottom so as to closing piezo-activator 23, with And movable part 22a, relative to the position of oscillating plate 130, and in the present embodiment, prefabricated profiled synchronous distressed structure can direction Synchronously deform, i.e., as shown in Fig. 4 A to Fig. 7, and be not limited, it predominantly makes to scratch close to or away from the direction of oscillating plate 230 Define a required certain depth δ between property plate 22 and oscillating plate 230, so be made this case can pass through it is prefabricated profiled Synchronous distressed structure is to maintain required certain depth δ fluid control device 2.
Through above-mentioned various embodiment aspects, group is carried out to have the deformable pedestal 20 of the prefabricated profiled synchronous distressed structure Dress, can make between the movable part 22a of the flex plate 22 of prefabricated profiled synchronous distressed structure and the protuberance 230c of oscillating plate 230 It is maintained within the scope of required certain depth δ, is limited through this certain depth δ scope, or can make pre-formed Synchronous distressed structure flex plate 22 movable part 22a and oscillating plate 230 between be maintained at required certain depth δ model Within enclosing, limited through this certain depth δ scope, then the error during assembling of fluid control device 2 can be avoided to cause gap mistake Big or too small and its caused flex plate 22 and piezo-activator 23 are in contact with each other interference, so make fluid efficiency of transmission it is bad, The problems such as avoiding producing noise.
In summary, this case can be prefabricated same through implementing in deformable base construction before assembling in fluid control device Step deformation operation, makes it produce synchronous deformation, to form prefabricated profiled synchronous distressed structure, and makes itself and piezo-activator group After dress, it can make to be maintained at required between the movable part of flex plate and the protuberance of oscillating plate of prefabricated profiled synchronous distressed structure Within the scope of the certain depth asked, or can make prefabricated profiled synchronous distressed structure flex plate flex plate movable part with It is maintained between oscillating plate within the scope of required certain depth δ, so makes scratching for prefabricated profiled synchronous distressed structure Between the movable part and oscillating plate (or protuberance of oscillating plate) of property plate in the range of adjustment to the certain depth of demand, and then Reduce flex plate with piezo-activator contact interference, in order to can lifting fluid transmission efficiency, more can reach reduce noise work( Effect can reduce the fraction defective of product, the quality of lifting fluid control device to reach.
This case appointed as person familiar with the technology apply craftsman think and be it is all as modification, it is so neither de- such as attached claim Be intended to Protector.
【Symbol description】
100:Known fluid control device
101:Substrate
102:Piezo-activator
103:Gap
2:Fluid control device
20:Deformable base construction
21:Flow plate
21a:Outer surface
21b:First surface
210:Access aperture
211:Conflux groove
212:Conflux opening portion
22:Flex plate
22a:Movable part
22b:Fixed part
23:Piezo-activator
230:Oscillating plate
230a、230b:Surface
230c:Protuberance
231:Housing
232:Support
233:Piezoelectric element
δ:Certain depth
h:Spacing
d、d’:Displacement
θ:Angle
S31~S33:The step of manufacture method of fluid control device
S41~S43:The step of manufacture method of fluid control device

Claims (25)

1. a kind of manufacture method of fluid control device, comprising:
(a) housing, a piezo-activator and a deformable base construction are provided, the piezo-activator is by a piezoelectric element and one Oscillating plate is formed, and the oscillating plate has first surface and corresponding second surface, and the second surface has a protuberance, should Deformable base construction includes a flow plate and a flex plate, and the flex plate has a movable part;
(b) flex plate of the deformable base construction and the flow plate are stacked with engaging and implement a prefabricated synchronous deformation Operation, the flex plate and the flow plate is set to synchronize the prefabricated profiled synchronous distressed structure of deformation construction one;And
(c) sequentially the housing, the piezo-activator and the deformable base construction are stacked with, and carry out locating engagement, should The prefabricated profiled synchronous distressed structure of deformable base construction is the protuberance relative to the oscillating plate, so that the flexibility A certain depth is defined between the movable part of plate and the protuberance of the oscillating plate.
2. the manufacture method of fluid control device as claimed in claim 1, it is characterised in that the prefabricated profiled synchronous deformation One synchronous deformed region of structure be in the movable part region of the flex plate, and the prefabricated profiled synchronous distressed structure be one Synchronous distressed structure is bent, a certain depth is defined between the bending synchronization distressed structure and the protuberance of the oscillating plate.
3. the manufacture method of fluid control device as claimed in claim 1, it is characterised in that the prefabricated profiled synchronous deformation One synchronous deformed region of structure is that and the prefabricated profiled synchronous distressed structure one is bored in the movable part region of the flex plate Just as step distressed structure, a certain depth is defined between the taper synchronization distressed structure and the protuberance of the oscillating plate.
4. the manufacture method of fluid control device as claimed in claim 1, it is characterised in that the prefabricated profiled synchronous deformation One synchronous deformed region of structure is in the movable part region of the flex plate, and the one of the prefabricated profiled synchronous distressed structure Projection plane synchronization distressed structure, it is specific to define one between the projection plane synchronization distressed structure and the protuberance of the oscillating plate Depth.
5. the manufacture method of fluid control device as claimed in claim 1, it is characterised in that the prefabricated profiled synchronous deformation One synchronous deformed region of structure is in the movable part region of the flex plate and beyond movable part region, the prefabricated profiled synchronization A certain depth is defined between distressed structure and the protuberance of the oscillating plate.
6. the manufacture method of fluid control device as claimed in claim 1, it is characterised in that the prefabricated profiled synchronous deformation One synchronous deformed region of structure is in the movable part region of the flex plate and beyond movable part region, and this is prefabricated profiled same It is the synchronous distressed structure of a bending to walk distressed structure, is defined between the bending synchronization distressed structure and the protuberance of the oscillating plate One certain depth.
7. the manufacture method of fluid control device as claimed in claim 1, it is characterised in that the prefabricated profiled synchronous deformation One synchronous deformed region of structure is in the movable part region of the flex plate and beyond movable part region, and this is prefabricated profiled same Step distressed structure is a taper synchronization distressed structure, is defined between the taper synchronization distressed structure and the protuberance of the oscillating plate One certain depth.
8. the manufacture method of fluid control device as claimed in claim 1, it is characterised in that the prefabricated profiled synchronous deformation One synchronous deformed region of structure is in the movable part region of the flex plate and beyond movable part region, and this is prefabricated profiled same Step distressed structure is a projection plane synchronization distressed structure, the protuberance of the projection plane synchronization distressed structure and the oscillating plate it Between define a certain depth.
9. the manufacture method of fluid control device as claimed in claim 1, it is characterised in that the prefabricated profiled synchronous deformation The curved surface synchronization distressed structure that structure is formed for the flow plate and the flex plate, the curved surface synchronization distressed structure for it is multiple not The curved surface of same curvature is formed, and justice goes out between the curved surface synchronization distressed structure of the flex plate and the protuberance of the oscillating plate One certain depth.
10. the manufacture method of fluid control device as claimed in claim 1, it is characterised in that the prefabricated profiled synchronous change The curved surface synchronization distressed structure that shape structure is formed for the flow plate and the flex plate, the curved surface synchronization distressed structure are multiple The curved surface of same curvature is formed, and justice goes out between the curved surface synchronization distressed structure of the flex plate and the protuberance of the oscillating plate One certain depth.
11. the manufacture method of fluid control device as claimed in claim 1, it is characterised in that the prefabricated profiled synchronous change The irregular synchronous distressed structure that shape structure is formed for the flow plate and the flex plate, this of the flex plate are irregular Justice goes out a certain depth between the protuberance of synchronous distressed structure and the oscillating plate.
12. the manufacture method of the fluid control device as any one of claim 1 to 11, it is characterised in that this is prefabricated The synchronous distressed structure of shaping is that one protruded towards the protuberance direction close to the oscillating plate protrudes synchronous distressed structure, and this is prominent Go out between the protuberance of synchronous distressed structure and the oscillating plate and define a certain depth.
13. the manufacture method of the fluid control device as any one of claim 1 to 11, it is characterised in that this is prefabricated The synchronous distressed structure of shaping is to be directed away from the synchronous distressed structure of a protrusion that the protuberance direction of the oscillating plate protrudes, and this is prominent Go out between the protuberance of synchronous distressed structure and the oscillating plate and define a certain depth.
14. the manufacture method of fluid control device as claimed in claim 1, it is characterised in that the vibration of the piezo-activator Plate is square, and flexible vibration, and the piezo-activator further includes:
One housing, around the outside for being arranged at the oscillating plate;And
An at least support, it is connected between a side of the oscillating plate and the housing, for resilient support.
15. the manufacture method of fluid control device as claimed in claim 1, it is characterised in that the prefabricated profiled synchronous change Positioning is engaged by a medium between shape structure and the oscillating plate, and the medium is a sticker.
16. the manufacture method of fluid control device as claimed in claim 1, it is characterised in that the housing is piezoelectric actuated with this The temporary chamber for forming fluid circulation is stacked between device, and the housing is provided with least one tap, is communicated in the temporary storage cavity Room is outside with the housing.
17. the manufacture method of fluid control device as claimed in claim 1, it is characterised in that the flex plate has a stream Hole, and be arranged at the center of the movable part or be adjacent at center, so that fluid passes through.
18. the manufacture method of fluid control device as claimed in claim 17, it is characterised in that the flow plate has at least one Access aperture, at least one, which are confluxed, groove and one confluxes opening portion, and the access aperture at least one is confluxed groove through the flow plate and with this It is connected, and the other end of the groove that confluxes is to be communicated in the opening portion of confluxing, and the opening portion of confluxing corresponds to the flexibility The movable part of plate, and connected with the stream hole of the flex plate.
19. a kind of manufacture method of fluid control device, comprising:
(a) housing, a piezo-activator and a deformable base construction are provided, the piezo-activator is by a piezoelectric element and one Oscillating plate is formed, and the deformable base construction includes a flow plate and a flex plate, and the flex plate has a movable part;
(b) flex plate of the deformable base construction and the flow plate are stacked with engaging and implement a prefabricated synchronous deformation Operation, the flex plate and the flow plate is set to synchronize the prefabricated profiled synchronous distressed structure of deformation construction one;And
(c) sequentially the housing, the piezo-activator and the deformable base construction are stacked with, and carry out locating engagement, should Prefabricated profiled synchronous distressed structure is relative to the oscillating plate, so that fixed between the movable part and the oscillating plate of the flex plate Justice goes out a certain depth.
20. the manufacture method of fluid control device as claimed in claim 19, it is characterised in that the prefabricated profiled synchronous change The synchronous distressed structure of a bending that shape structure is formed for the flow plate and the flex plate, the bending synchronization distressed structure shake with this A certain depth is defined between dynamic plate.
21. the manufacture method of fluid control device as claimed in claim 19, it is characterised in that the prefabricated profiled synchronous change The taper synchronization distressed structure that shape structure is formed for the flow plate and the flex plate, the taper synchronization distressed structure shake with this A certain depth is defined between dynamic plate.
22. the manufacture method of fluid control device as claimed in claim 19, it is characterised in that the prefabricated profiled synchronous change The projection plane synchronization distressed structure that shape structure is formed for the flow plate and the flex plate, projection plane synchronization deformation knot A certain depth is defined between structure and the oscillating plate.
23. the manufacture method of fluid control device as claimed in claim 19, it is characterised in that the prefabricated profiled synchronous change The curved surface synchronization distressed structure that shape structure is formed for the flow plate and the flex plate, the curved surface synchronization distressed structure are multiple The curved surface for differing curvature is formed, adopted between the curved surface synchronization distressed structure of the flex plate and the protuberance of the oscillating plate Go out a certain depth.
24. the manufacture method of fluid control device as claimed in claim 19, it is characterised in that the prefabricated profiled synchronous change The curved surface synchronization distressed structure that shape structure is formed for the flow plate and the flex plate, the curved surface synchronization distressed structure are multiple The curved surface of same curvature is formed, and justice goes out between the curved surface synchronization distressed structure of the flex plate and the protuberance of the oscillating plate One certain depth.
25. the manufacture method of fluid control device as claimed in claim 19, it is characterised in that the prefabricated profiled synchronous change The irregular synchronous distressed structure that shape structure is formed for the flow plate and the flex plate, this of the flex plate are irregular Justice goes out a certain depth between the protuberance of synchronous distressed structure and the oscillating plate.
CN201610801487.2A 2016-09-05 2016-09-05 Method for manufacturing fluid control device Active CN107795466B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610801487.2A CN107795466B (en) 2016-09-05 2016-09-05 Method for manufacturing fluid control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610801487.2A CN107795466B (en) 2016-09-05 2016-09-05 Method for manufacturing fluid control device

Publications (2)

Publication Number Publication Date
CN107795466A true CN107795466A (en) 2018-03-13
CN107795466B CN107795466B (en) 2020-03-10

Family

ID=61530564

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610801487.2A Active CN107795466B (en) 2016-09-05 2016-09-05 Method for manufacturing fluid control device

Country Status (1)

Country Link
CN (1) CN107795466B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109695562A (en) * 2018-05-25 2019-04-30 常州威图流体科技有限公司 A kind of fluid pump and exciting element
EP4081715A4 (en) * 2019-12-29 2024-01-03 Actasys Inc Novel design and production technique of synthetic jet actuators

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050069430A1 (en) * 2003-09-29 2005-03-31 Brother Kogyo Kabushiki Kaisha Liquid delivery apparatus
JP2005307858A (en) * 2004-04-21 2005-11-04 Matsushita Electric Works Ltd Piezoelectric diaphragm pump
US20100111726A1 (en) * 2008-10-31 2010-05-06 Fu Lung-Ming Electromagnetic Micro-pump
CN102979705A (en) * 2011-09-06 2013-03-20 株式会社村田制作所 Fluid control device
CN102979704A (en) * 2011-09-06 2013-03-20 株式会社村田制作所 Fluid control device
CN103362786A (en) * 2013-07-12 2013-10-23 重庆中镭科技有限公司 Minitype piezoelectric diaphragm pump
CN105240252A (en) * 2015-10-08 2016-01-13 广东奥迪威传感科技股份有限公司 Piezoelectric micro air pump structure

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050069430A1 (en) * 2003-09-29 2005-03-31 Brother Kogyo Kabushiki Kaisha Liquid delivery apparatus
JP2005307858A (en) * 2004-04-21 2005-11-04 Matsushita Electric Works Ltd Piezoelectric diaphragm pump
US20100111726A1 (en) * 2008-10-31 2010-05-06 Fu Lung-Ming Electromagnetic Micro-pump
CN102979705A (en) * 2011-09-06 2013-03-20 株式会社村田制作所 Fluid control device
CN102979704A (en) * 2011-09-06 2013-03-20 株式会社村田制作所 Fluid control device
CN103362786A (en) * 2013-07-12 2013-10-23 重庆中镭科技有限公司 Minitype piezoelectric diaphragm pump
CN105240252A (en) * 2015-10-08 2016-01-13 广东奥迪威传感科技股份有限公司 Piezoelectric micro air pump structure

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109695562A (en) * 2018-05-25 2019-04-30 常州威图流体科技有限公司 A kind of fluid pump and exciting element
EP4081715A4 (en) * 2019-12-29 2024-01-03 Actasys Inc Novel design and production technique of synthetic jet actuators

Also Published As

Publication number Publication date
CN107795466B (en) 2020-03-10

Similar Documents

Publication Publication Date Title
CN206092351U (en) Fluid control device
CN206129568U (en) Miniature fluid controlling means
TWI683959B (en) Actuator structure and micro-fluid control device using the same
JP6688770B2 (en) Fluid control device
CN206035774U (en) Miniature fluid controlling means
TW201825821A (en) Fluid control device
CN108138759A (en) Fluid control device, decompressor and pressue device
CN107795466A (en) The manufacture method of fluid control device
TWI612246B (en) Manufacturing method of fluid control device
JP6585672B2 (en) Fluid control device
CN107795469A (en) The manufacture method of fluid control device
CN107795468A (en) The manufacture method of fluid control device
CN107795467A (en) The manufacture method of fluid control device
TWI599868B (en) Manufacturing method of fluid control device
CN107795471A (en) Fluid control device
CN107795472A (en) Fluid control device
JP6605003B2 (en) Fluid control device
JP6605002B2 (en) Fluid control device
JP6574464B2 (en) Small fluid control device
TW201808655A (en) Manufacturing method of fluid control device
CN107795473A (en) Fluid control device
TWI616351B (en) Manufacturing method of fluid control device
CN107795470A (en) Fluid control device
CN209212517U (en) Fluid control device

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant